
JTC1/SC22/WG14 - N3141
Title: Composite Types v2
Author: Martin Uecker, Robert Seacord
Date: 2023-06-22

Change 1:

6.2.7 Compatible Type and Composite Type

3 A composite type can be constructed from two types that are compatible; if both types are the
same type, the composite type is this type. Otherwise, it is a type that is compatible with both of
the two types and satisfies the following conditions:

-- If both types are structure types or both types are union types, the composite type is
determined recursively by forming the composite types of their members.
-- If both types are array types …
-- If both types are function types …
-- If one of the types has a standard attribute, the composite type also has that attribute.

These rules apply recursively to the types from which the two types are derived.

6.5.15

If both the second and third operands have arithmetic type, the result type that would be
determined by is the sames as if the usual arithmetic conversions, were they applied to both those
two operands. , is the type of the result. If both the operands have structure or union type, the
result is the composite typehas the type of one operand. If both operands have void type, the
result has void type

Change 2 (same type):

If any of the original types satisfies all requirements of the composite type, it is unspecified
whether the composite type is one of these types or a different type that satisfies the
requirements.**

**) The notion of "same type" affects redeclarations of typedef names and tags in the same
scope.

Change 3:

-- If both types are enumerated types, the composite type is an enumerated type.

Change 4 (new):

-- If at least one type is an enumerated type and the other type is an integer type, it is
implementation-defined whether the composite type is an integer type or an enumerated type.

