N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

INTERNATIONAL STANDARD ©ISO/IEC ISO/TIEC 9899:2023

Programming languages — C
Reply To: JeanHeyd Meneide <wg14@soasis.org>
Freek Wiedijk <freek@cs.ru.nl>

Abstract

(This cover sheet to be replaced by ISO.)

This document specifies the form and establishes the interpretation of programs expressed in the
programming language C. Its purpose is to promote portability, reliability, maintainability, and
efficient execution of C language programs on a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language execution
library. Annexes summarize aspects of both of them, and enumerate factors that influence the
portability of C programs.

Although this document is intended to guide knowledgeable C language programmers as well as
implementors of C language translation systems, the document itself is not designed to serve as a
tutorial.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

The following documents, for all intents and purposes, have been applied to this draft from before
and during the October 2019 Meeting:

DR 476 volatile semantics for lvalues

DR 488 cl6rtomb () on wide characters encoded as multiple charl6_t
DR 494 Part 1: Alignment specifier expression evaluation

DR 496 offsetof and subobjects (with editorial modification)
DR 497 "white-space character" defined in two places

DR 499 Anonymous structure in union behavior

DR 500 Ambiguous specification for FLT_EVAL_METHOD

DR 501 make DECIMAL_DIG obsolescent

FPDR 13 totalorder parameters

FPDR 20 changes for obsolescing DECIMAL_DIG

FPDR21 printf of one-digit character string

FPDR 22 changes for obsolescing DECIMAL_DIG, Part 2

FP DR 23 1lquantexp invalid case

FPDR 24 remainder NaN case

FP DR 25 totalorder parameters

N2124 and N2319 rounding direction macro FE_TONEARESTFROMZERO
N2186 Alternative to N2166

N2212 type generic cbrt (with editorial changes)

Abstract i

mailto:wg14@soasis.org
mailto:freek@cs.ru.nl

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

ii

N2260 Clarifying the restrict Keyword v2
N2265 Harmonizing static_assert with C++
N2267 nodiscard attribute

N2270 maybe_unused attribute

N2271 CR for pow divide-by-zero case

N2293 Alignment requirements for memory management functions
N2314 TS 18661-1 plus CR/DRs for C2X
N2322 preprocessor line numbers unspecified

N2325 DBL_NORM_MAX etc

N2326 floating-point zero and other normalization
N2334 deprecated attribute

N2335 attributes

N2337 strftime, with ‘b’ and 'B’ swapped

N2338 error indicator for encoding errors in fgetwc
N2341 TS 18661-2 plus CR/DRs for C2X
N2345 editors, resolve ambiguity of a semicolon

N2349 the memccpy function

N2350 defining new types in offsetof
N2353 the strdup and strndup functions
N2356 update for payload functions
N2358 no internal state for mblen

N2359 part 2 (remove WANT macros from numbered clauses) and part 3 (version macros for
changed library clauses)

N2401 TS 18661-4a for C2X

N2408 The fallthrough attribute

N2412 Two’s complement sign representation for C2x

N2417 Section 6: Add time conversion functions that are relatively thread-safe
N2418 Adding the u8 character prefix

N2432 Remove support for function definitions with identifier lists
N2508 Free Positioning of Labels Inside Compound Statements
N2554 Minor attribute wording cleanups

The following documents have been applied to this draft from the October 2019 Meeting:

N2379 *_IS_TIEC_60559 Feature Test Macros.

N2416 Floating Point Negation and Conversion.

N2384 Annex F.8 Update for Implementation Extensions and Rounding.
N2424 Why logpl as a Function Name.

N2406 Signaling NaN Initializers.

N2393 —Bool Definitions For true and false.

The following documents have been applied to this draft from the March/April 2020 Virtual
Meeting:

N2444 More optionally per-thread state for the library.

N2446 printf of NAN().

N2448 [[Nodiscard("should have a reason")]].

N2459 Add an interface to query resolution of time bases, v3.

N2464 Zero-size Reallocations are Undefined Behavior.

Abstract

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

N2476 Names and Locations of Floating Point Entities.
N2480 Allowing unnamed parameters in function definitions.

N2490 Why no wide string strfrom functions.
The following documents have been applied to this draft from the August 2020 Virtual Meeting;:

N2491 powr justification

N2492 Note About Math Function Properties.

N2506 Range Errors in Math Functions.

N2508 Free Positioning of Labels.

N2517 Clarification Request for C17 Example of Undefined Behavior.
N2532 Min-max Functions.

N2553 Querying Attribute Support.

N2554 Minor Attribute Wording Cleanup.

The following documents have been applied to this draft from the October and November 2020
Virtual Meetings:

N2546 Missing DEC_EVAL_METHOD

N2547 Missing const in decimal getpayload functions

N2548 intmax_t removal from FP functions
N2549 Binary Literals
N2552 Editorial cleanup for rounding macros

N2557 Allow Duplicate Attributes
N2560 FP hex formatting precision
N2562 Unclear type relationship between a format specifier and its argument

N2563 Character encoding of diagnostic text

N2564 Range errors and math functions (updated previous version, N2506)
N2570 Feature and WANT macros for Annex F functions
N2571 snprintf nonnegative clarification

N2572 What We Think We Reserve

N2580 Decimal Floating Point Triples

N2586 Sufficient Formatting Precision

N2594 Remove Mixed Wide String Literal Concatenation

N2559 Update to IEC 60559:2020

N2600 Update to IEC 60559:2020 (updates previous version, N2559)

N2602 Infinity/NAN Macros, Editorial Fixes

N2607 Compatibility of Pointers to Arrays with Qualifiers

The following documents have been applied to this draft from the March/April 2021 Virtual
Meeting:

N2524 String Functions for Freestanding Implementations

N2626 Digit Separators

N2630 Formatting Input/Output of Binary Integer Numbers

N2640 Missing DEC_EVAL_METHOD, Take 2

N2641 Missing +(x) in Table

N2643 Negative vs. Less Than Zero

N2645 Add Support for Preprocessing Directives #elifdef and #elifndef
N2680 Specific Width Length Modifier for Formatting

Abstract iii

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

iv

The following documents have been applied to this draft from the June 2021 Virtual Meeting;:

N2651 fabs and copysign Cleanup

N2662 [[maybe_unused]] for Labels

N2665 Zero-size Reallocations Are No Longer an Obsolescent Feature
N2670 Zeros Compare Equal

N2671 Negative Values

N2672 §5.2.4.2.2 Cleanup

N2683 Towards Integer Safety

N2751 signbit Cleanup

N2763 Adding a Fundamental Type for N-bit Integers

The following documents have been applied to this draft from the August/September 2021 Virtual
Meeting:

N2686 #warning Directive

N2688 Sterile Characters

N2710 SNAN Fixes

N2711 fmin, fmax

N2713 Integer Constant Expressions

N2714 hypot Changes

N2715 cr_ Prefix Potentially Reserved for Identifiers

N2716 Fix "numerically"/"numerically equal" Usage

N2726 _Imaginary_I and _Complex_I Qualifiers

N2728 charl6_t & char32_t String Literals Shall be UTF-16 & UTF-32
N2745 Range Error Definition

N2748 Effects of fenv Exception Functions

N2749 IEC 60559 Bindings

N2755 Static Initialization of Decimal Floating Point
N2776 ckd_x Identifiers Should be Potentially Reserved Identifiers
N2799 —has_include for C

The following documents have been applied to this draft from the November/December 2021
Virtual Meeting:

N2747 Annex F Overflow and Underflow

N2770 Remove UB from Incomplete Types in Function Parameters

N2778 Require Variably-Modified Types

N2781 Types do not have Types (with meeting-agreed changes plus some editorial changes)
N2790 “remquo” Changes

N2805 Overflow and Underflow Definitions

N2806 §5.2.4.2.2 Cleanup, Again

N2808 Allow 16-bit ptrdiff_t

N2823 Freestanding CFP Functions

N2838 Types and Sizes

N2837 Clarifying Integer Terms (also, delete Annex H and replace with the Floating Point TS
/ Annex merge)

N2842 Normal and Subnormal Classification
N2843 Clarification of Max Exponent Macros
N2845 feraiseexcept Update

Abstract

N3096

N2846
N2848
N2872

working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Clarification about Expression Transformations
INFINITY Macro Contradictions (Wording 1 only!)
Require Exact-Width Integer Type Interfaces, Part I (Change from proposal’s §3.1 only)

The following documents have been applied to this draft from the January/February 2022 Virtual
Meeting, Parts 1 and 2:

N2653
N2701
N2754
N2762
N2764
N2775
N2797
N2810
N2819
N2826
N2828
N2829
N2836
N2840
N2841
N2844
N2847
N2879
N2880
N2881
N2882
N2900
N2927
N2931
N2934
N2935
N2937

char8_t: A type for UTF-8 characters and strings

@, $, and " in the source/execution character set

Decimal Floating Point: Quantum Exponent of NaN

Fixes for Potentially Reserved Identifiers

The _Noreturn Attribute

Literal Suffixes for Bit-Precise Integers

*_HAS_SUBNORM == 0 Implies What?

calloc Overflow Handling

Disambiguate the Storage Class of Some Compound Literals
unreachable()

Unicode Sequences More Than 21 Bits are a Constraint Violation
Make assert () user friendly in C

Unicode Syntax Identifiers for C

Make call_once() Mandatory

No Function Declarators without Prototypes

Remove default promotions for _FloatN Types

Revised Suggestions of Change for Numerically Equal / Equivalent
5.2.4.2.2 Cleanup, Again Again

Overflow and Underflow Definitions Update

Normal and Subnormal Classification Update

Clarification for the Max Exponent Macros

Consistent, Warningless, and Intuitive Initialization with {}
Not-So-Magic: typeof(...)

Macros and Macro Spellings from C Floating Point Integration
Revised Spelling of Keywords

Make false and true Language Features

Properly Define Blocks in the Grammar

The following documents have been applied to this draft from the May 2022 Virtual Meeting:

N2601

N2861
N2867
N2886
N2888
N2897
N2992

Annex X (replacing Annex H) for IEC 60599 Interchange (ratified early 2021 but
integrated over a long period of time).

Indeterminate Values and Trap Representations
Checked N-Bit Integers? (Not Now)

Remove ATOMIC_VAR_INIT

Require Exact-width Integer Type Interfaces, Part II
memset_explicit

Wording Clarification for Variably-Modified Types

The following documents have been applied to this draft from the July 2022 Virtual Meeting:

N2930
N2939

Change remove_quals to typeof_unqual

Identifier Syntax Fixes

Abstract v

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Vi

N2940
N2969
N2974
N3029
N2975
N2993
N3011
N3030
N2951
N2956
N3033

N3035
N3006
N3007
N3018
N3038
N3034
N3042
N2929
N3037
N3020
N3022

N3017
N2957

Remove Trigraphs??!

Bit-Precise Bit Fields

Queryable Pointer Alignment

Improved Normal Enumerations

Relax requirements for va_start

Make *_HAS_SUBNORM Obsolete

Oops, Empty Initializers in Compound Literals

Enhanced Enumerations

Freestanding C and IEC 60559 Conformance Scope Reduction
Unsequenced Functions

Comma Ommission and Deletion (_VA_OPT__ and Preprocessor Wording Improve-
ments)

_BitInt(...) Fixes

Underspecified Object Declarations

Type Inference for Object Declarations

constexpr for Object Definitions

Introduce Storage Class Specifiers for Compound Literals
Identifier Primary Expressions

Introduce the nullptr_t constant, nullptr

Memory Layout of union s

Improved Tag Compatibility

Qualifier-preserving Standard Functions

Modern Bit Utilities - without Rotate Left/Right, Memory Reversal (“byteswap”), or
Endian-Aware Load/Store

#embed

New Optional Time Bases

In addition to these, the document has undergone some editorial changes, including the following.

The synopsis lists in Annex B are now generated automatically and classified according to
the feature test or WANT macros that are required to make them available.

A new non-normative clause].6 added to Annex] categorizes identifiers used by this
document.

Renaming of the syntax term “struct declaration”, “struct declaration list” “struct declarator”,
and “struct declarator list” to the more appropriate “member declaration”, “member declaration

list”, “member declarator” and “member declarator list”, respectively.

”ou

Misspelling of “invokation” fixed to “invocation”.

A positional reference to a table was changed to be a more direct reference due to unfortunate
page breaks.

Missing macros were added to <float.h>and <limits.h>.
A footnote added for simple atomic assignment (6.5.16).

An issue with "modifying object" being removed from an earlier draft was fixed. This was a
mistake: side effects do include modifying an object.

The Decimal Floating Point Initialization text was not well-worded. It was fixed after the
paper adding the wording was integrated.

Examples using poor phrasing for objects and their types were fixed to say “object(s) of type
int” and similar.

The terms “floating-point type” and “floating-point constant” were changed to just be
“floating type” and “floating constant”, as are defined in the standard, respectively.

Abstract

N3096

working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

The wording “thread-local storage” was normalized to be “thread storage” everywhere, as
intended (this is the word defined by the standard, the other just fell naturally out of casual
usage and thought).

A footnote clarifying the role for valid pointers with zero size was added to the library
frontmatter, specifically concerning functions like memcpy and memset.

Various duplicate spellings (e.g. "function functions" and similar) were removed and typos
were fixed (e.g., “stirng” and similar).

The pp-number production was incorrect for digit separators. Adjusted and fixed.

The wording for freestanding headers for <string.h>were very poorly done. It was changed
to have better wording.

The introductory sentence for the implementation limits was very wordy and deeply confus-
ing to normal users. The sentence was adjusted to read much better and more clearly.

In a sentence using “respectively” for fmin and fmax descriptions, the order of the respective
items was swapped. This gave the wrong definitions to each item. They were put in the
proper order.

A missing closing parenthesis in Annex] was fixed.

The term “floating-point multiply add” was changed to “fused multiply add”, matching
naming conventions in reality.

Abstract

vii

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

viii Abstract

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Contents
Foreword xviii
Introduction xix
1 Scope 1
2 Normative references 2
3 Terms, definitions, and symbols 3
4 Conformance 8
5 Environment 10
51 Conceptualmodels 10
5.1.1 Translationenvironment i e e e e 10
5.1.2 Executionenvironments i e e e 11
5.2 Environmental considerations e 18
521 Charactersets e 18
522 Character display semantics Lo oL 19
523 Signalsandinterrupts oL 20
524 Environmental imits 20
6 Language 34
6.1 Notation e e e 34
6.2 Concepts 34
6.2.1 Scopes of identifiers, type names, and compound literals 34
6.2.2 Linkages ofidentifiers o L oL 35
6.2.3 Namespacesofidentifiers. o o oL 36
6.24 Storage durationsofobjects L oL oL oL 36
625 Types 37
6.2.6 Representationsoftypes L. 41
6.2.7 Compatible type and compositetype 42
6.2.8 Alignmentofobjects oo 43
629 Encodings 44
6.3 CONVErSIONS v v v o et e e e e e e e 44
6.3.1 Arithmeticoperands L o oL 44
6.32 Otheroperands 48
6.4 Lexicalelements e e 51
641 Keywords 53

Contents ix

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.5

6.6
6.7

6.42 Identifiers 53
6.4.3 Universal characternames., 56
6.44 Constants e 57
6.45 Stringliterals L 66
6.4.6 Punctuators 68
6.47 Headernames 69
6.4.8 Preprocessingnumbers oo 70
649 Comments e 70
Expressions e 71
6.5.1 Primaryexpressions e 72
6.5.2 Postfixoperators L 73
6.5.3 Unaryoperators 80
654 Castoperators. 82
6.5.5 Multiplicative operators L oo 83
6.5.6 Additiveoperators L 83
6.5.7 Bitwiseshiftoperators L L L Lo o 85
6.5.8 Relationaloperators L 85
6.5.9 Equality operators L 86
6.5.10 Bitwise ANDoperator 87
6.5.11 Bitwise exclusive ORoperator 87
6.5.12 Bitwise inclusive OR operator 88
6.5.13 Logical ANDoperator 88
6.5.14 Logical ORoperator 88
6.5.15 Conditionaloperator oo 89
6.5.16 Assignmentoperators L, 90
6.5.17 Commaoperator 93
Constantexpressions L L 94
Declarations 96
6.7.1 Storage-classspecifiers L oo 97
6.72 Typespecifiers 101
6.73 Typequalifiers 118
6.74 Functionspecifiers o oo 122
6.7.5 Alignmentspecifier. Lo o 123
6.7.6 Declarators 124
6.77 Typenames 130
6.7.8 Typedefinitions o 131
6.79 Typeinference. 133
6.7.10 Initialization 134
6.7.11 Staticassertions L 140
6.7.12 Attributes 140

Contents

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.8 Statementsandblocks 151
6.8.1 Labeled statements 151

6.82 Compoundstatement 152

6.8.3 Expressionandnullstatements 152

6.84 Selectionstatements 153

6.8.5 Iterationstatements o 154

6.8.6 Jumpstatements L o 155

6.9 Externaldefinitions 158
6.9.1 Functiondefinitions 158

6.9.2 External object definitions L L L L oL 160

6.10 Preprocessing directives L o 162
6.10.1 Conditionalinclusion 164
6.10.2 Source fileinclusion 168
6.10.3 Binary resourceinclusion o L oL 170
6.104 Macroreplacement o 177
6.10.5 Linecontrol e 184
6.10.6 Diagnosticdirectives L 185
6.10.7 Pragmadirective 185
6.10.8 Nulldirective e 186
6.10.9 Predefined macronames. i 186
6.10.10 Pragma operator 188

6.11 Future languagedirections L oo oL 189
6.11.1 Floatingtypes e 189
6.11.2 Linkages ofidentifiers 189
6.11.3 Externalnames 189
6.11.4 Character escape SEQUENCES v vttt 189
6.11.5 Storage-classspecifiers L L L L oo 189
6.11.6 Pragmadirectives. L L L 189
6.11.7 Predefined macronames 189

7 Library 190
7.1 Introduction e 190
7.1.1 Definitionsof terms 190

712 Standard headers 190

7.1.3 Reservedidentifiers 191

714 Useoflibrary functions, 192

7.2 Diagnostics<assert.h> o o 194
721 Programdiagnostics L 194

7.3 Complex arithmetic <complex.h> 195
731 Introduction 195

Contents X1

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

xii

74

7.5
7.6

7.7
7.8

7.9
7.10
7.11

7.12

732 Conventions 195
733 Branchcuts 196
734 The CX_LIMITED_RANGE pragma 196
7.3.5 Trigonometric functions L L 196
7.3.6 Hyperbolicfunctions o oo 198
7.3.7 Exponential and logarithmic functions 199
7.3.8 Power and absolute-value functions 200
7.3.9 Manipulation functions oL L 201
Character handling <ctype.h> 204
741 Character classification functions 204
742 Character case mapping functions 206
Errors<errno.h> L 208
Floating-point environment <fenv.h> 0 0 0L 209
7.6.1 TheFENV_ACCESSpragma 211
7.6.2 The FENV_ROUND pragma, 212
7.6.3 The FENV_DEC_ROUND pragma 213
7.6.4 Floating-pointexceptions L. 214
7.6.5 Rounding and other controlmodes, 217
76.6 Environment 219
Characteristics of floating types <float.h> 221
Format conversion of integer types <inttypes.h> 222
7.8.1 Macros for format specifiers L o oo oL 222
7.8.2 Functions for greatest-width integer types 223
Alternative spellings <is0646.h>. o L. 225
Characteristics of integer types <limits.h>. 226
Localization <locale.h>. 227
7111 Localecontrol 227
7.11.2 Numeric formatting convention inquiry 228
Mathematics <math.h> Lo 233
7.12.1 Treatment of error conditions L. 236
7122 The FP_CONTRACT pragmaot i vt i it 237
712.3 Classificationmacros 237
7124 Trigonometric functions L L L L. 240
7.12.5 Hyperbolicfunctions 245
7.12.6 Exponential and logarithmic functions 247
7.12.7 Power and absolute-value functions 255
7.12.8 Error and gamma functions L L L 258
7.12.9 Nearestinteger functions, 260
7.12.10 Remainder functions L Lo L 264
7.12.11 Manipulation functions L Lo oL o 265

Contents

N3096

7.13

7.14

7.15

7.16

7.17

7.18

working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

7.12.12 Maximum, minimum, and positive difference functions 268
71213 Fused multiply-add o o o oo 273
7.12.14 Functions that round result to narrower type 273
7.12.15 Quantum and quantum exponent functions 275
7.12.16 Decimal re-encoding functions oL 277
7.12.17 CompariSON MACIOS v v v v v v e e e e e e e 279
Non-local jumps <setjmp.h> o 282
7.13.1 Save calling environment, 282
7.13.2 Restore calling environment L L L 282
Signal handling <signal.h>., 284
7.14.1 Specify signalhandling, 284
7142 Sendsignal L 285
Alignment <stdalign.h> L L L oL 287
Variable arguments <stdarg.h> 288
7.16.1 Variable argument list accessmacros 288
Atomics <stdatomic.h> 292
7171 Introduction 292
7.17.2 Initialization 293
7173 Orderand consistency 293
7174 Fences e 296
7175 Lock-freeproperty 297
717.6 Atomicintegertypes L 297
7.17.7 Operations on atomictypes 298
7.17.8 Atomic flag type and operations oL L 300
Bit and byte utilities <stdbit.h> oo o L oL 302
7181 General. 302
7182 Endian 302
7183 CountLeading Zeros 303
7184 CountLeadingOmnes 303
7185 Count Trailing Zeros 303
718.6 CountTrailingOnes 304
7.18.7 FirstLeadingZero 304
7.18.8 FirstLeadingOne 305
7189 FirstTrailing Zero. L 305
71810First TrailingOne 306
71811Count Zeros 306
71812CountOnes 307
7.1813Single-bitCheck 307
71814 BitWidth. 308
7A815BitFloor 308

Contents Xiii

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

71816BitCeiling 309
7.19 Boolean type and values <stdbool.h> 310
7.20 Checked Integer Arithmetic <stdckdint.h> 311
7.20.1 The ckd_ Checked Integer Operation Macros 311
721 Common definitions <stddef.h>. 312
7.21.1 Theunreachablemacro. 313
7212 Thenullptr_ttype 313
7.22 Integer types<stdint.h> L Lo 315
7221 Integertypes 315
7.22.2 Widths of specified-width integer types 317
7.22.3 Width of otherintegertypes. 317
7.22.4 Macros forinteger constants oL oL L 318
7.22.5 Maximal and minimal values of integer types 318
7.23 Input/output<stdio.h>. o o o 319
7231 Introduction L 319
7232 Streams 321
7233 Files 322
7234 Operationsonfiles 323
7235 Fileaccess functions L 325
7.23.6 Formatted input/output functions L L. 328
7.23.7 Character input/output functions 0L, 346
7.23.8 Directinput/output functions oL 0L 349
7.23.9 File positioning functions L oL oL L L Lo 350
7.23.10 Error-handling functions 352
7.24 General utilities <stdlib.h>o o oo oL 354
7.24.1 Numeric conversion functions 354
7.24.2 Pseudo-random sequence generation functions 361
7.24.3 Memory management functions 0L Lo 362
7244 Communication with the environment 364
7.24.5 Searching and sorting utilities oL L L L L 367
7.24.6 Integer arithmetic functions 369
7.24.7 Multibyte/wide character conversion functions 369
7.24.8 Multibyte/wide string conversion functions 371
7249 Alignmentofmemory 372
725 _Noreturn <stdnoreturn.h>. 373
7.26 String handling <string.h>. o oL 374
7.26.1 String function conventions Lo oL 374
7262 Copyingfunctions 374
7.26.3 Concatenation functions L L o Lo 376
7264 Comparisonfunctions L L L Lo 377

Xiv

Contents

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)
7265 Searchfunctions L L 378
7.26.6 Miscellaneous functions L L oo 381

7.27 Type-generic math <tgmath.h> 383
7.28 Threads <threads.h> 388
7281 Introduction 388
7.28.2 Initialization functions oL L L L oo 389
7.28.3 Condition variable functions 389
7284 Mutexfunctions L L L 391
7285 Thread functions 393
7.28.6 Thread-specific storage functions 395

729 Dateand time<time.h> oo o 398
7291 Componentsoftime 398
7.29.2 Time manipulation functions L L. 399
7.29.3 Time conversionfunctions o oL 402

7.30 Unicode utilities <uchar.h> o o o 407
7.30.1 Restartable multibyte/wide character conversion functions 407

7.31 Extended multibyte and wide character utilities <wchar.h>. 412
7.31.1 Introduction 412
7.31.2 Formatted wide character input/output functions 413
7.31.3 Wide character input/output functions 426
7.31.4 General wide string utilities 429
7.31.4.1 Wide string numeric conversion functions 430

7.31.4.2 Wide string copying functions oL 434

7.31.4.3 Wide string concatenation functions 436

7.31.44 Wide string comparison functions L. 436

7.31.4.5 Wide string search functions 438

7314.6 Imntroduction 438

7.31.4.7 Miscellaneous functions 441

7.31.5 Wide character time conversion functions 441
7.31.6 Extended multibyte/wide character conversion utilities 442
7.31.6.1 Single-byte/wide character conversion functions 442

7.31.6.2 Conversion state functions 442

7.31.6.3 Restartable multibyte/wide character conversion functions 443

7.31.6.4 Restartable multibyte/wide string conversion functions 444

7.32 Wide character classification and mapping utilities <wctype.h> 447
7.32.1 Introduction L 447
7.32.2 Wide character classification utilities L. 447
7.32.2.1 Wide character classification functions 447

7.32.2.2 Extensible wide character classification functions 450

7.32.3 Wide character case mapping utilities 451

Contents XV

ISO/IEC 9899:2023 (E) working draft — April 1, 2023

7.32.3.1 Wide character case mapping functions.
7.32.3.2 Extensible wide character case mapping functions

7.33 Future library directions
7.33.1 Complex arithmetic <complex.h>
7.33.2 Character handling <ctype.h>
7333 Errors<errno.h>. oo
7.33.4 Floating-point environment <fenv.h>.
7.33.5 Characteristics of floating types <float.h>
7.33.6 Format conversion of integer types <inttypes.h>.
7.33.7 Localization<locale.h>
7.33.8 Mathematics<math.h>
7.33.9 Signal handling <signal.h>
7.33.10 Atomics <stdatomic.h>. L.
7.33.11 Boolean type and values <stdbool.h>
7.33.12 Bit and byte utilities <stdbit.h> oL
7.33.13 Checked Arithmetic Functions <stdckdint.h>
7.33.14 Integer types <stdint.h> Lo
7.33.15Input/output <stdio.h> oL L
7.33.16 General utilities <stdlib.h>,
7.33.17 String handling <string.h>
7.33.18 Date and time <time.h> oL Lo
7.33.19 Threads <threads.h>

7.33.20 Extended multibyte and wide character utilities <wchar.h>

7.33.21 Wide character classification and mapping utilities <wctype.h>
Annex A (informative) Language syntax summary
Annex B (informative) Library summary
Annex C (informative) Sequence points
Annex D (informative) Universal character names for identifiers
Annex E (informative) Implementation limits
Annex F (normative) IEC 60559 floating-point arithmetic
Annex G (normative) IEC 60559-compatible complex arithmetic
Annex H (normative) IEC 60559 interchange and extended types
Annex I (informative) Common warnings

Annex J (informative) Portability issues

xvi Contents

N3096

456

471

500

501

503

506

536

547

580

581

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Annex K (normative) Bounds-checking interfaces 619
Annex L (normative) Analyzability 667
Annex M (informative) Change History 669
Bibliography 675
Index 676

Contents xvii

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are member of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the
following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system software interfaces.

This fifth edition cancels and replaces the fourth edition, ISO/IEC 9899:2018. A complete change
history can be found in Annex M.

Xviii Foreword

https://www.iso.org/directives
https://www.iso.org/patents
https://www.iso.org/iso/foreword.html

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Introduction

With the introduction of new devices and extended character sets, new features could be added to
this document. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, could conflict with future additions.

Certain features are obsolescent, which means that they could be considered for withdrawal in future
revisions of this document. They are retained because of their widespread use, but their use in
new implementations (for implementation features) or new programs (for language [6.11] or library
features [7.33]) is discouraged.

This document is divided into four major subdivisions:

— preliminary elements (Clauses 1-4);
— the characteristics of environments that translate and execute C programs (Clause 5);
— the language syntax, constraints, and semantics (Clause 6);

— the library facilities (Clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementers. Annexes define optional features, provide additional
information and summarize the information contained in this document. A bibliography lists
documents that were referred to during the preparation of this document.

The language clause (Clause 6) is derived from “The C Reference Manual”.
The library clause (Clause 7) is based on the 1984 /usr/group Standard.

The Working Group responsible for this document (WG 14) maintains a site on the World Wide Web
at https://www.open-std.org/JTC1/5C22/WG14/ containing ancillary information that may be
of interest to some readers.

Introduction Xix

https://www.open-std.org/JTC1/SC22/WG14/

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

INTERNATIONAL STANDARD ©ISO/IEC ISO/TIEC 9899:2023

Programming languages — C

1. Scope

1 This document specifies the form and establishes the interpretation of programs written in the C
programming language.? It specifies
— the representation of C programs;
— the syntax and constraints of the C language;
— the semantic rules for interpreting C programs;
— the representation of input data to be processed by C programs;
— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
2 This document does not specify

— the mechanism by which C programs are transformed for use by a data-processing system;
— the mechanism by which C programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conform-
ing implementation.

DThis document is designed to promote the portability of C programs among a variety of data-processing systems. It is
intended for use by implementors and programmers. Annex] gives an overview of portability issues that a C program might
encounter.

§1 General 1

10

11

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

2. Normative references

The following documents are referred to in the text in such a way that some or all their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 2382:2015, Information technology — Vocabulary. Available from the ISO online browsing
platform at http://www.iso.org/obp.
ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

ISO/IEC 10646, Information technology —Universal Coded Character Set (UCS). Available from the
ISO/IEC Information Technology Task Force (ITTF) web site at https://standards.iso.org/
ittf/PubliclyAvailableStandards/.

ISO/IEC 60559:2020, Floating-point arithmetic.

ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

ISO 80000-3, Quantities and units — Part 3: Space and time.

The Unicode Consortium. Unicode Standard Annex, UAX #44, Unicode Character Database [online].
Edited by Ken Whistler and Laurentiu lancu. Available at https://www.unicode.org/reports/
trd4.

The Unicode Consortium. Unicode Standard Annex, UAX #31, Unicode Character Database [online].
Edited by Ken Whistler and Laurentiu lancu. Available at https://www.unicode.org/reports/
tr3l.

The Unicode Consortium. The Unicode Standard, Derived Core Properties. Available at https:
//www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt.

2 General §2

http://www.iso.org/obp
https://standards.iso.org/ittf/PubliclyAvailableStandards/
https://standards.iso.org/ittf/PubliclyAvailableStandards/
https://www.unicode.org/reports/tr44
https://www.unicode.org/reports/tr44
https://www.unicode.org/reports/tr31
https://www.unicode.org/reports/tr31
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

3. Terms, definitions, and symbols

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 80000-2,
and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

Additional terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this document are not to be presumed to refer implicitly to similar terms
defined elsewhere.

3.1

access (verb)

(execution-time action) to read or modify the value of an object
Note 1 to entry: Where only one of these two actions is meant, “read” or “modify” is used.
Note 2 to entry: “Modify” includes the case where the new value being stored is the same as the previous value.

Note 3 to entry: Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte address

3.3

argument
actual argument (DEPRECATED: actual parameter)

expression in the comma-separated list bounded by the parentheses in a function call expression, or
a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation

3.4

behavior

external appearance or action

3.4.1

implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made

Note 1 to entry:].3 gives an overview over properties of C programs that lead to implementation-defined behavior.
EXAMPLE An example of implementation-defined behavior is the propagation of the high-order
bit when a signed integer is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implemen-
tation documents

Note 1 to entry:].4 gives an overview over properties of C programs that lead to locale-specific behavior.

§3.4.2 General 3

https://www.iso.org/obp
https://www.electropedia.org/

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

EXAMPLE An example of locale-specific behavior is whether the islower function returns true
for characters other than the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which
this document imposes no requirements

Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable results,
to behaving during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

Note 2 to entry:].2 gives an overview over properties of C programs that lead to undefined behavior.

EXAMPLE An example of undefined behavior is the behavior on dereferencing a null pointer.

3.4.4

unspecified behavior

behavior, that results from the use of an unspecified value, or other behavior upon which this
document provides two or more possibilities and imposes no further requirements on which is
chosen in any instance

Note 1 to entry:].1 gives an overview over properties of C programs that lead to unspecified behavior.
EXAMPLE An example of unspecified behavior is the order in which the arguments to a function
are evaluated.

3.5

bit

unit of data storage in the execution environment large enough to hold an object that can have one
of two values

Note 1 to entry: It need not be possible to express the address of each individual bit of an object.

3.6
byte

addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment

Note 1 to entry: It is possible to express the address of each individual byte of an object uniquely.

Note 2 to entry: A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined. The
least significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.7

character

(abstract) member of a set of elements used for the organization, control, or representation of data

3.71

character
single-byte character

(C) bit representation that fits in a byte

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of either the
source or the execution environment

Note 1 to entry: The extended character set is a superset of the basic character set.

4 General §3.7.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

3.7.3

wide character

value representable by an object of type wchar_t, capable of representing any character in the
current locale

3.8
constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be
interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding mode, to
what the result would be given unlimited range and precision

Note 1 to entry: In this document, when the words “correctly rounded” are not immediately followed by “result”, this is the
intended usage.

Note 2 to entry: IEC 60559 or implementation-defined rules apply for extreme magnitude results if the result format contains
infinity.
3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message output

3.11
forward reference

reference to a later subclause of this document that contains additional information relevant to this
subclause

3.12
implementation
particular set of software, running in a particular translation environment under particular con-

trol options, that performs translation of programs for, and supports execution of functions in, a
particular execution environment

3.13

implementation limit

restriction imposed upon programs by the implementation

3.14

memory location

either an object of scalar type, or a maximal sequence of adjacent bit-fields all having nonzero width

Note 1 to entry: Two threads of execution can update and access separate memory locations without interfering with each
other.

Note 2 to entry: A bit-field and an adjacent non-bit-field member are in separate memory locations. The same applies to
two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the two are separated by a
zero-length bit-field declaration, or if they are separated by a non-bit-field member declaration. It is not safe to concurrently
update two non-atomic bit-fields in the same structure if all members declared between them are also (nonzero-length)
bit-fields, no matter what the sizes of those intervening bit-fields happen to be.

EXAMPLE A structure declared as

i struct {
\ char a;
\ int b:5, c:11,:0, d:8;

§3.14 General 5

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

\ struct { int ee:8; } e:

\ }

contains four separate memory locations: The member a, and bit-fields d and e. ee are each separate
memory locations, and can be modified concurrently without interfering with each other. The
bit-fields b and c together constitute the fourth memory location. The bit-fields b and ¢ cannot be
concurrently modified, but b and a, for example, can be.

3.15
object
region of data storage in the execution environment, the contents of which can represent values

Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16

parameter
formal parameter
DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17

recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.18

runtime-constraint

requirement on a program when calling a library function

Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be
diagnosed at translation time.

Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.19

value

precise meaning of the contents of an object when interpreted as having a specific type

3.19.1

implementation-defined value

unspecified value where each implementation documents how the choice is made

3.19.2

indeterminate representation

object representation that either represents an unspecified value or is a non-value representation

3.19.3

unspecified value

valid value of the relevant type where this document imposes no requirements on which value is

6 General §3.19.3

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

chosen in any instance

3.19.4

non-value representation

an object representation that does not represent a value of the object type

3.19.5

perform a trap

interrupt execution of the program such that no further operations are performed?

Note 1 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.20

[«]

ceiling of x

the least integer greater than or equal to =
EXAMPLE [2.4]is 3, [-2.4]is —2.

3.21

Ed

floor of

the greatest integer less than or equal to
EXAMPLE |2.4]is2, |—2.4]is —3.

3.22

wraparound

the process by which a value is reduced modulo 2%V, where N is the width of the resulting type

2Note that fetching a non-value representation might perform a trap but is not required to (see 6.2.6.1).

§3.22 General 7

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

4. Conformance

In this document, “shall” is to be interpreted as a requirement on an implementation or on a program;
conversely, “shall not” is to be interpreted as a prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint or runtime-constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this document by
the words “undefined behavior” or by the omission of any explicit definition of behavior. There is
no difference in emphasis among these three; they all describe “behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing unspecified
behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit containing a
#error preprocessing directive unless it is part of a group skipped by conditional inclusion.

A strictly conforming program shall use only those features of the language and library specified
in this document.? It shall not produce output dependent on any unspecified, undefined, or
implementation-defined behavior, and shall not exceed any minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding implementation
shall accept any strictly conforming program in which the use of the features specified in the library
clause (Clause 7) is confined to the contents of the standard headers <float.h>, <is0646.h>,
<limits.h>, <stdalign.h>, <stdarg.h>, <stdbit.h>, <stdbool.h>, <stddef.h>, <stdint.h>,
and <stdnoreturn.h>. Additionally, a conforming freestanding implementation shall accept any
strictly conforming program where:

— the features specified in the header <string.h> are used, except the following functions:
strdup, strndup, strcoll, strxfrm, strerror; and/or,

— the selected function memalignment from <stdlib.h> is used.

A conforming implementation may have extensions (including additional library functions), pro-
vided they do not alter the behavior of any strictly conforming program.?

The strictly conforming programs that shall be accepted by a conforming freestanding implementa-
tion that defines __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__ may also use features in
the contents of the standard headers <fenv.h>, <math.h>, and the strtox floating-point numeric
conversion functions (7.24.1) of the standard header <stdlib.h>, provided the program does not
set the state of the FENV_ACCESS pragma to “ON".

All identifiers that are reserved when <stdlib.h> is included in a hosted implementation are
reserved when it is included in a freestanding implementation.

A conforming program is one that is acceptable to a conforming implementation. °

3 A strictly conforming program can use conditional features (see 6.10.9.3) provided the use is guarded by an appropriate
conditional inclusion preprocessing directive using the related macro. For example:

#ifdef _STDC_IEC_60559_BFP__ /x FE_UPWARD defined */
/*x ... %/
fesetround (FE_UPWARD) ;
/* ... x/

#endif

YThis implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
document.

S)Strictly conforming programs are intended to be maximally portable among conforming implementations. Conforming
programs can depend upon nonportable features of a conforming implementation.

8 General §4

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

An implementation shall be accompanied by a document that defines all implementation-defined
and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.6), characteristics of floating
types <float.h> (7.7), alternative spellings <is0646.h> (7.9), sizes of integer types <limits.h>
(7.10), alignment <stdalign.h> (7.15), variable arguments <stdarg.h> (7.16), boolean type and
values <stdbool.h> (7.19), common definitions <stddef.h> (7.21), integer types <stdint.h> (7.22),
<stdnoreturn.h> (7.25).

§4 General 9

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

5. Environment

An implementation translates C source files and executes C programs in two data-processing-system
environments, which will be called the translation environment and the execution environment in this
document. Their characteristics define and constrain the results of executing conforming C programs
constructed according to the syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references have been
noted.

5.1 Conceptual models
5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in units
called source files, (or preprocessing files) in this document. A source file together with all the headers
and source files included via the preprocessing directive #include is known as a preprocessing
translation unit. After preprocessing, a preprocessing translation unit is called a translation unit.
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers have
external linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to produce an
executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9), preprocessing direc-
tives (6.10).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.®)

1. Physical source file multibyte characters are mapped, in an implementation-defined manner, to
the source character set (introducing new-line characters for end-of-line indicators) if necessary.

2. Each instance of a backslash character (\) immediately followed by a new-line character is
deleted, splicing physical source lines to form logical source lines. Only the last backslash on
any physical source line shall be eligible for being part of such a splice. A source file that is
not empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens” and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-line
is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary
operator expressions are executed. If a character sequence that matches the syntax of a univer-
sal character name is produced by token concatenation (6.10.4.3), the behavior is undefined. A
#include preprocessing directive causes the named header or source file to be processed from
phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

®)This requires implementations to behave as if these separate phases occur, even though many are typically folded
together in practice. Source files, translation units, and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The description is
conceptual only, and does not specify any particular implementation.

7) As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is context-dependent. For
example, see the handling of < within a #include preprocessing directive.

10 Environment §5.1.1.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

5. Each source character set member and escape sequence in character constants and string
literals is converted to the corresponding member of the execution character set. Each instance
of a source character or escape sequence for which there is no corresponding member is
converted in an implementation-defined manner to some member of the execution character
set other than the null (wide) character.®)

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed
and translated as a translation unit.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4), preprocessing direc-
tives (6.10), external definitions (6.9).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an
implementation-defined manner) if a preprocessing translation unit or translation unit contains a
violation of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined
or implementation-defined. Diagnostic messages need not be produced in other circumstances.”)

EXAMPLE An implementation is required to issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this document describes the behavior for a construct as
being both a constraint error and resulting in undefined behavior, the constraint error is still required
to be diagnosed.

5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases, program startup
occurs when a designated C function is called by the execution environment. All objects with static
storage duration shall be initialized (set to their initial values) before program startup. The manner
and timing of such initialization are otherwise unspecified. Program termination returns control to
the execution environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.10).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any ben-
efit of an operating system), the name and type of the function called at program startup are
implementation-defined. Any library facilities available to a freestanding program, other than the
minimal set required by Clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following specifications if
present.

8 An implementation may convert each instance of the same non-corresponding source character to a different member of
the execution character set.

9 An implementation is encouraged to identify the nature of, and where possible localize, each violation. Of course, an
implementation is free to produce any number of diagnostic messages, often referred to as warnings, as long as a valid
program is still correctly translated. It can also successfully translate an invalid program. Annex I lists a few of the more
common warnings.

§5.1.2.2 Environment 11

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no prototype
for this function. It shall be defined with a return type of int and with no parameters:

i int main(void) { /x ... %/ }
L

or with two parameters (referred to here as argc and argv, though any names may be used, as they
are local to the function in which they are declared):

i int main(int argc, char *argv[]) { /*x ... %/ }
L

or equivalent'?; or in some other implementation-defined manner.

If they are declared, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.
— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program
information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and
lowercase, the implementation shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[01[0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argv[argc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions, and objects
described in the library clause (Clause 7).

5.1.2.2.3 Program termination

If the return type of the main function is a type compatible with int, a return from the initial call
to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument;'V reaching the } that terminates the main function returns a value of 0. If
the return type is not compatible with int, the termination status returned to the host environment
is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.24.4.4).

5.1.2.3 Program execution
The semantic descriptions in this document describe the behavior of an abstract machine in which
issues of optimization are irrelevant.

An access to an object through the use of an lvalue of volatile-qualified type is a volatile access. A
volatile access to an object, modifying an object, modifying a file, or calling a function that does any

10Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char *x argv, or the
return type may be specified by typeof (1), and so on.

DIn accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main will have ended in the
former case, even where they would not have in the latter.

12 Environment §5.1.2.3

10

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

of those operations are all side effects'?, which are changes in the state of the execution environment.

Evaluation of an expression in general includes both value computations and initiation of side effects.
Value computation for an lvalue expression includes determining the identity of the designated
object.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.!® The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no needed side effects are produced (including any caused by calling a function or through
volatile access to an object).

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects
that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified, as is
the state of the dynamic floating-point environment. The representation of any object modified by
the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes
indeterminate when the handler exits, as does the state of the dynamic floating-point environment if
it is modified by the handler and not restored to its original state.

The least requirements on a conforming implementation are:

— Volatile accesses to objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.23.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages appear prior to a program waiting for input.

This is the observable behavior of the program.
What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and
actual semantics: at every sequence point, the values of the actual objects would agree with those
specified by the abstract semantics. The keyword volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation
unit, such that the actual semantics would agree with the abstract semantics only when making
function calls across translation unit boundaries. In such an implementation, at the time of each
function entry and function return where the calling function and the called function are in different
translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function

12)The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see Annex F for
details. The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

13The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

§5.1.2.3 Environment 13

11

12

13

14

15

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

entry the values of the parameters of the called function and of all objects accessible via pointers
therein would agree with the abstract semantics. In this type of implementation, objects referred to
by interrupt service routines activated by the signal function would require explicit specification
of volatile storage, as well as other implementation-defined restrictions.

EXAMPLE 2 In executing the fragment

char cl, c2;
/* ... %/
cl = cl + c2;

the “integer promotions” require that the abstract machine promote the value of each variable to
int size and then add the two ints and truncate the sum. Provided the addition of two chars can
be done without integer overflow, or with integer overflow wrapping silently to produce the correct
result, the actual execution need only produce the same result, possibly omitting the promotions.

EXAMPLE 3 Similarly, in the fragment

float f1, f2;
double d;
/* ... %/
fl = f2 x d;

the multiplication can be executed using single-precision arithmetic if the implementation can
ascertain that the result would be the same as if it were executed using double-precision arithmetic
(for example, if d were replaced by the constant 2.0, which has type double).

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For
example, an implicit spilling of a register is not permitted to alter the value. Also, an explicit store
and load is required to round to the precision of the storage type. In particular, casts and assignments
are required to perform their specified conversion. For the fragment

double d1, d2;

float f;

dl = f = expression;

d2 = (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations
in precision as well as range. The implementation cannot generally apply the mathematical associa-
tive rules for addition or multiplication, nor the distributive rule, because of roundoff error, even
in the absence of overflow and underflow. Likewise, implementations cannot generally replace
decimal constants to rearrange expressions. In the following fragment, rearrangements suggested
by mathematical rules for real numbers are often not valid (see F.9).

double x, y, z;

/* .. %/

X = (x *y) x z; // not equivalent to x *=y * z;
z=(x-vy)+y; // not equivalent to z = X;

Z =X+ X *Yy; // not equivalent to z = x * (1.0 + vy);
y =x/5.0; // not equivalent toy = x * 0.2;

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/*x ... %/
a =a+ 32760 + b + 5;

the expression statement behaves exactly the same as

14 Environment §5.1.2.3

16

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

| a = (((a+32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760)
is next added to b, and that result is then added to 5 which results in the value assigned to a. On
a machine in which integer overflows produce an explicit trap and in which the range of values
representable by an int is [-32768, +32767], the implementation cannot rewrite this expression as

| a=((a+b) + 32765);

since if the values for a and b were, respectively, —32754 and —15, the sum a + b would produce a
trap while the original expression would not; nor can the expression be rewritten either as

| a = ((a+32765) + b);

or

[
\ a
L

(a + (b + 32765));

since the values for a and b might have been, respectively, 4 and —8 or —17 and 12. However, on a
machine in which integer overflow silently generates some value and where positive and negative
integer overflows cancel, the above expression statement can be rewritten by the implementation in
any of the above ways because the same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>

int sum;

char x*p;

/* ... %/

sum = sum * 10 - "0’ + (xp++ = getchar());

the expression statement is grouped as if it were written as

i sum = (((sum * 10) - '0') + ((x(p++)) = (getchar())));

but the actual increment of p can occur at any time between the previous sequence point and the
next sequence point (the ;), and the call to getchar can occur at any point prior to the need of its
returned value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-point envi-
ronment <fenv.h> (7.6), the signal function (7.14), files (7.23.3).

5.1.2.4 Multi-threaded executions and data races

Under a hosted implementation that does not define __STDC_NO_THREADS__, a program can have
more than one thread of execution (or thread) running concurrently. The execution of each thread
proceeds as defined by the remainder of this document. The execution of the entire program consists
of an execution of all its threads.'¥ Under a freestanding implementation, it is implementation-
defined whether a program can have more than one thread of execution.

The value of an object visible to a thread 7" at a particular point is the initial value of the object, a
value stored in the object by T', or a value stored in the object by another thread, according to the
rules below.

NOTE 1 In some cases, there could instead be undefined behavior. Much of this section is motivated by the desire to support

atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for
more restricted programs.

19 The execution can usually be viewed as an interleaving of all the threads. However, some kinds of atomic operations, for
example, allow executions inconsistent with a simple interleaving as described below.

§5.124 Environment 15

10

11

12

13

14

15

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

The library defines atomic operations (7.17) and operations on mutexes (7.28.4) that are specially
identified as synchronization operations. These operations play a special role in making assignments
in one thread visible to another. A synchronization operation on one or more memory locations is
one of an acquire operation, a release operation, both an acquire and release operation, or a consume
operation. A synchronization operation without an associated memory location is a fence and can
be either an acquire fence, a release fence, or both an acquire and release fence. In addition, there
are relaxed atomic operations, which are not synchronization operations, and atomic read-modify-write
operations, which have special characteristics.

NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing the mutex.
Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally,
performing a release operation on A forces prior side effects on other memory locations to become visible to other threads

that later perform an acquire or consume operation on A. Relaxed atomic operations are not included as synchronization
operations although, like synchronization operations, they cannot contribute to data races.

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens before B,
then A shall precede B in the modification order of M, which is defined below.

NOTE 3 This states that the modification orders are expected to respect the “happens before” relation.

NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined into a single
total order for all objects. In general this will be impossible since different threads can observe modifications to different
variables in inconsistent orders.

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M, where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. In particular,
an atomic operation A that performs a release operation on an object M synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A.

NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation.

NOTE 6 The specifications of the synchronization operations define when one reads the value written by another. For atomic
variables, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition “reads
the value written” by the last mutex release.

An evaluation A carries a dependency® to an evaluation B if:
— the value of A is used as an operand of B, unless:

e Bis an invocation of the kill_dependency macro,
o Ais the left operand of a & or | | operator,
o Ais the left operand of a ?: operator, or

o Ais the left operand of a , operator;
or

— A writes a scalar object or bit-field M, B reads from M the value written by A, and A is
sequenced before B, or

— for some evaluation X, A carries a dependency to X and X carries a dependency to B.

An evaluation A is dependency-ordered before'® an evaluation B if:

15)The “carries a dependency” relation is a subset of the “sequenced before” relation, and is similarly strictly intra-thread.
10)The “dependency-ordered before” relation is analogous to the “synchronizes with” relation, but uses release/consume in
place of release/acquire.

16 Environment §5.124

16

17

18

19
20

21

22

23

24

25

26
27

28
29

30

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

— A performs a release operation on an atomic object M, and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X:

— A synchronizes with X and X is sequenced before B,
— Ais sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

i

NOTE 7 The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”, “synchronizes
with”, and “dependency-ordered before” relationships, with two exceptions. The first exception is that a concatenation is not
permitted to end with “dependency-ordered before” followed by “sequenced before”. The reason for this limitation is that
a consume operation participating in a “dependency-ordered before” relationship provides ordering only with respect to
operations to which this consume operation carries a dependency. The reason that this limitation applies only to the end
of such a concatenation is that any subsequent release operation will provide the required ordering for a prior consume
operation. The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”. The
reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and (2) the “happens
before” relation, defined below, provides for relationships consisting entirely of “sequenced before”.

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
“happens before” relation.

NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

A wvisible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored
by the visible side effect A.

NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race and the
behavior is undefined.

NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not detectable without data races,
but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics, correspond
to data races in a simple interleaved (sequentially consistent) execution.

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some
side effect A that modifies M, where B does not happen before A.

NOTE 11 The set of side effects from which a given evaluation might take its value is also restricted by the rest of the rules
described here, and in particular, by the coherence requirements below.

If an operation A that modifies an atomic object M happens before an operation B that modifies M,
then A shall be earlier than B in the modification order of M.

NOTE 12 The requirement above is known as “write-write coherence”.

If a value computation A of an atomic object M happens before a value computation B of M, and A
takes its value from a side effect X on M, then the value computed by B shall either be the value

stored by X or the value stored by a side effect Y on M, where Y follows X in the modification
order of M.

NOTE 13 The requirement above is known as “read-read coherence”.

If a value computation A of an atomic object M happens before an operation B on M, then A shall
take its value from a side effect X on M, where X precedes B in the modification order of M.

NOTE 14 The requirement above is known as “read-write coherence”.

§5.124 Environment 17

31

32
33

34

35

36

37

38

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

If a side effect X on an atomic object M happens before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M.

NOTE 15 The requirement above is known as “write-read coherence”.

NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both operations are
“relaxed” loads. By doing so, it effectively makes the “cache coherence” guarantee provided by most hardware available to C
atomic operations.

NOTE 17 The value observed by a load of an atomic object depends on the “happens before” relation, which in turn depends
on the values observed by loads of atomic objects. The intended reading is that there exists an association of atomic loads
with modifications they observe that, together with suitably chosen modification orders and the “happens before” relation
derived as described above, satisfy the resulting constraints as imposed here.

The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior.

NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to data-race-free programs,
and data-race-free programs cannot observe most program transformations that do not change single-threaded program

semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result necessarily has undefined behavior even before such a transformation is applied.

NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that would not
be modified by the abstract machine are generally precluded by this document, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered a
data race. This includes implementations of data member assignment that overwrite adjacent members in separate memory
locations. Reordering of atomic loads in cases in which the atomics in question might alias is also generally precluded, since
this could violate the coherence requirements.

NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location might not preserve
the semantics of the program as defined in this document, since they potentially introduce a data race. However, they are
typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics for data
races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race detection.

5.2 Environmental considerations
5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in which source
files are written (the source character set), and the set interpreted in the execution environment (the
execution character set). Each set is further divided into a basic character set, whose contents are given
by this subclause, and a set of three or more!”) locale-specific members (which are not members
of the basic character set) called extended characters. The combined set is also called the extended
character set. The values of the members of the execution character set are implementation-defined.

In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

A B C H I J K L
N O P u v w X Y Z

—14 o

D E F
Q R S

the 26 lowercase letters of the Latin alphabet

b ¢ d e f g h i j k 1
o p g r s t uvwXxy z

17 The extended characters include at least @ (U+0040 Commercial At), $ (U+0024 Dollar Sign), and * (U+0060 Grave Accent,
"Backtick").

18 Environment §52.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

the 10 decimal digits

\ © 1 2 3 456 7 809

the following 29 graphic characters

bt o# s & T () - L/
o< =>?2 0 1~ {1} -~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a
byte. In both the source and execution basic character sets, the value of each character after 0 in
the above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of text; this document treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the
behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined above; in this document the term does
not include other characters that are letters in other alphabets.

The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4), preprocessing
directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Multibyte characters
The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which

need not have the same encoding as for the source character set. For both character sets, the following
shall hold:

— The basic character set, @ (U+0040 Commercial At), $ (U+0024 Dollar Sign), and * (U+0060
Grave Accent, "Backtick") shall be present and each character shall be encoded as a single byte.

— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character set may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other locale-specific shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift state. Such
a byte shall not occur as part of any other multibyte character.

For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by the
fputc function would appear. The intent of writing a printing character (as defined by the isprint
function) to a display device is to display a graphic representation of that character at the active

§522 Environment 19

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

position and then advance the active position to the next position on the current line. The direction
of writing is locale-specific. If the active position is at the final position of a line (if there is one), the
behavior of the display device is unspecified.

Alphabetic escape sequences representing non-graphic characters in the execution character set are
intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior of the display device is unspecified.

\T (form feed) Moves the active position to the initial position at the start of the next logical page.
\n (new line) Moves the active position to the initial position of the next line.
\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current
line. If the active position is at or past the last defined horizontal tabulation position, the behavior
of the display device is unspecified.

\V (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which can be
stored in a single char object. The external representations in a text file need not be identical to the
internal representations, and are outside the scope of this document.

Forward references: the isprint function (7.4.1.8), the fputc function (7.23.7.3).

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal, or may be
called by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control
flow (after the interruption), function return values, or objects with automatic storage duration.
All such objects shall be maintained outside the function image (the instructions that compose the
executable representation of a function) on a per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of language trans-
lators and libraries. The following summarizes the language-related environmental limits on a
conforming implementation; the library-related limits are discussed in Clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute a program that uses but does not exceed
the following limitations for these constructs and entities'®:

— 127 nesting levels of blocks
— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

18 Implementations are encouraged to avoid imposing fixed translation limits whenever possible.

20 Environment §524.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)'?

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 32767 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)
— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single member declaration list

5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h>(7.22).

5.2.4.2.1 Characteristics of integer types <limits.h>

The values given below shall be replaced by constant expressions suitable for use in conditional
expression inclusion preprocessing directives. Their implementation-defined values shall be equal
or greater to those shown.

— width for an object of type boo1?")

[
| BOOL_WIDTH 1
L

— number of bits for smallest object that is not a bit-field (byte)

[
| CHAR_BIT 8
L

The macros CHAR_WIDTH, SCHAR_WIDTH, and UCHAR_WIDTH that represent the width of the
types char, signed char and unsigned char shall expand to the same value as CHAR_BIT.

19)See “future language directions” (6.11.3).
20)This value is exact.

§524.2.1 Environment 21

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— width for an object of type unsigned short int

i USHRT_WIDTH 16 \
L

The macro SHRT_WIDTH represents the width of the type short int and shall expand to the
same value as USHRT_WIDTH.

— width for an object of type unsigned int

| UINT_WIDTH 16 |
L

The macro INT_WIDTH represents the width of the type int and shall expand to the same value
as UINT_WIDTH.

— width for an object of type unsigned long int

| ULONG_WIDTH 32 |
L

The macro LONG_WIDTH represents the width of the type long int and shall expand to the
same value as ULONG_WIDTH.

— width for an object of type unsigned long long int

i ULLONG_WIDTH 64 ‘
L

The macro LLONG_WIDTH represents the width of the type long long int and shall expand to
the same value as ULLONG_WIDTH.

— maximum width of a bit-precise integer type

[
| BITINT_MAXWIDTH /% see below */ \
L

The macro BITINT_MAXWIDTH represents the maximum width N supported by the declaration
of a bit-precise integer (6.2.5) in the type specifier _BitInt(N). The value BITINT_MAXWIDTH
shall expand to a value that is greater than or equal to the value of ULLONG_WIDTH.

— maximum number of bytes in a multibyte character, for any supported locale

| MB_LEN_MAX 1 |
L

For all unsigned integer types for which <limits.h> or <stdint.h> define a macro with suffix
_WIDTH holding its width N, there is a macro with suffix _MAX holding the maximal value 2V — 1
that is representable by the type and that has the same type as would an expression that is an object
of the corresponding type converted according to the integer promotions. If the value is in the range
of the type uintmax_t (7.22.1.5) the macro is suitable for use in conditional expression inclusion
preprocessing directives.

For all signed integer types for which <limits.h> or <stdint.h> define a macro with suffix _WIDTH
holding its width N, there are macros with suffix _MIN and _MAX holding the minimal and maximal
values —2V~1! and 2V~! — 1 that are representable by the type and that have the same type as
would an expression that is an object of the corresponding type converted according to the integer
promotions. If the values are in the range of the type intmax_t (7.22.1.5) the macros are suitable for
use in conditional expression inclusion preprocessing directives.

If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX.?)

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1), integer types
<stdint.h> (7.22).

2DGee 6.2.5.

22 Environment §524.21

10

11

12

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

5.2.4.2.2 Characteristics of floating types <float.h>

The characteristics of floating types are defined in terms of a model that describes a repre-
sentation of floating-point numbers and allows other values. The characteristics provide in-
formation about an implementation’s floating-point arithmetic.”? An implementation that de-
fines __STDC_IEC_60559_BFP__ or __STDC_IEC_559__ shall implement floating types and arith-
metic conforming to IEC 60559 as specified in Annex F. An implementation that defines
—STDC_IEC_60559_COMPLEX__ or __STDC_IEC_559_COMPLEX__ shall implement complex types
and arithmetic conforming to IEC 60559 as specified in Annex G.

The following parameters are used to define the model for each floating type:
sign (£1)

base or radix of exponent representation (an integer > 1)

exponent (an integer between a minimum e,;, and a maximum enax)

p precision (the number of base-b digits in the significand)
fr nonnegative integers less than b (the significand digits)

[V]

For each floating type, the parameters b, p, emin, and emax are fixed constants.

For each floating type, a floating-point number (x) is defined by the following model:
P
x = sb® Z fkb_k/ €min < € < €max
k=1

Model floating-point numbers x with f; > 0 are called normalized floating-point numbers.

Model floating-point numbers = # 0 with f; = 0 and e = ey are called subnormal floating-point
numbers.

Model floating-point numbers x # 0 with f; = 0 and e > ey,in are called unnormalized floating-point
numbers.

Model floating-point numbers x with all f; = 0 are zeros.

Floating types shall be able to represent signed zeros or an unsigned zero and all normalized floating-
point numbers. In addition, floating types may be able to contain other kinds of floating-point
numbers??, such as subnormal floating-point numbers and unnormalized floating-point numbers,
and values that are not floating-point numbers, such as NaNs and (signed and unsigned) infinities.
A NaN is a value signifying Not-a-Number. A quiet NaN propagates through almost every arithmetic
operation without raising a floating-point exception; a signaling NaN generally raises a floating-point
exception when occurring as an arithmetic operand?¥.

Wherever values are unsigned, any requirement in this document to get the sign shall produce an
unspecified sign, and any requirement to set the sign shall be ignored, unless otherwise specified.?)

Whether and in what cases subnormal numbers are treated as zeros is implementation-defined.
Subnormal numbers that in some cases are treated by arithmetic operations as zeros are properly
classified as subnormal. However, object representations that could represent subnormal numbers
but that are always treated by arithmetic operations as zeros are non-canonical zeros, and the
values are properly classified as zero, not subnormal. IEC 60559 arithmetic (with default exception
handling) always treats subnormal numbers as nonzero.

A value is negative if and only if it compares less than 0. Thus, negative zeros and NaNs are not
negative values.

An implementation may prefer particular representations of values that have multiple representa-

22)The floating-point model is intended to clarify the description of each floating-point characteristic and does not require
the floating-point arithmetic of the implementation to be identical.

23)Some implementations have types that include finite numbers with range and/or precision that are not covered by the
model.

TEC 60559 specifies quiet and signaling NaNs. For implementations that do not support TEC 60559, the terms quiet NaN
and signaling NaN are intended to apply to values with similar behavior.

2)Bit representations of floating-point values might include a sign bit, even if the values can be regarded as unsigned.
IEC 60559 NaNss are such values.

§524.22 Environment 23

13

14

15

16
17

18

19

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

tions in a floating type, 6.2.6.1 not withstanding.?®’ The preferred representations of a floating type,
including unique representations of values in the type, are called canonical. A floating type may
also contain non-canonical representations, for example, redundant representations of some or all its
values, or representations that are extraneous to the floating-point model.?”) Typically, floating-point
operations deliver results with canonical representations. IEC 60559 operations deliver results with
canonical representations, unless specified otherwise.

The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of
that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

The accuracy of the floating-point operations (+, -, *, /) and of most of the library functions in

<math.h>and <complex.h> that return floating-point results is implementation-defined, as is the
accuracy of the conversion between floating-point internal representations and string representations
performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implemen-
tation may state that the accuracy is unknown. Decimal floating-point operations have stricter
requirements.

All integer values in the <float. h> header, except FLT_ROUNDS, shall be constant expressions suit-
able for use in conditional expression inclusion preprocessing directives; all floating values shall be
arithmetic constant expressions. All except CR_DECIMAL_DIG (F.5), DECIMAL_DIG, DEC_EVAL_METHOD
, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for all floating types.
The floating-point model representation is provided for all values except DEC_EVAL_METHOD,
FLT_EVAL_METHOD and FLT_ROUNDS.

The remainder of this subclause specifies characteristics of standard floating types.

The rounding mode for floating-point addition for standard floating types is characterized by the
implementation-defined value of FLT_ROUNDS. Evaluation of FLT_ROUNDS correctly reflects any
execution-time change of rounding mode through the function fesetround in <fenv.h>.

—1 indeterminable
0 toward zero
1 to nearest, ties to even
2 toward positive infinity
3 toward negative infinity

4 to nearest, ties away from zero

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

Whether a type has the same precision (p) and exponent range (eémin < € < emax) as an
IEC 60559 format is characterized by the implementation-defined values of FLT_IS_IEC_60559
,DBL_IS_IEC_60559 and LDBL_IS_IEC_60559 (this does not imply conformance to Annex F):

0 type does not have the precision and exponent range of an IEC 60559 format

1 type has the precision and exponent range of an IEC 60559 format

The values of floating type yielded by operators subject to the usual arithmetic conversions, including
the values yielded by the implicit conversion of operands, and the values of floating constants are

26)The library operations iscanonical and canonicalize distinguish canonical (preferred) representations, but this
distinction alone does not imply that canonical and non-canonical representations are of different values.

2)Some of the values in the IEC 60559 decimal formats have non-canonical representations (as well as a canonical
representation).

24 Environment §524.22

20

21

22

23

24

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

evaluated to a format whose range and precision may be greater than required by the type. Such a
format is called an evaluation format. In all cases, assignment and cast operators yield values in the
format of the type. The extent to which evaluation formats are used is characterized by the value of
FLT_EVAL_METHOD:*®)

-1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and double to the range and precision of
the doub'le type, evaluate long double operations and constants to the range and precision
of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior. The
value of FLT_EVAL_METHOD does not characterize values returned by function calls (see 6.8.6.4, F.6).

The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

—1 indeterminable
0 absent (type does not support subnormal numbers)

1 present (type does support subnormal numbers)

The use of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM macros is an obsolescent
feature.

Each of the signaling NaN macros

FLT_SNAN
DBL_SNAN
LDBL_SNAN

is defined if and only if the respective type contains signaling NaNs. They expand to a constant
expression of the respective type representing a signaling NaN.If an optional unary + or - operator
followed by a signaling NaN macro is used as an initializer that must be evaluated at translation
time, the object is initialized with a signaling NaN value.

The macro

\ INFINITY

is defined if and only if the implementation supports an infinity for the type float. It expands to a
constant expression of type float representing positive or unsigned infinity.

The macro

\ NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

The values given in the following list shall be replaced by constant expressions with implementation-
defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

29)The evaluation method determines evaluation formats of expressions involving all floating types, not just real types.
For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the double
—Complex format, and its parts are evaluated to double.

§524.22 Environment 25

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— radix of exponent representation, b

[
| FLT_RADIX 2
L

— number of base-FLT_RADIX digits in the floating-point significand, p

[

| FLT_MANT_DIG
| DBL_MANT_DIG
| LDBL_MANT_DIG
L

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to

the value,
plogiob if b is a power of 10
[1+4 plogyyb] otherwise
iFLT_DECIMAL_DIG 6
| DBL_DECIMAL_DIG 10

‘LDBL_DECIMAL_DIG 10
L

— number of decimal digits, n, such that any floating-point number in the widest of the supported
floating types and the supported IEC 60559 encodings with pmax radix b digits can be rounded
to a floating-point number with n decimal digits and back again without change to the value,

Prmax 10810 b if b is a power of 10
[1 4 pmax loggb] otherwise

[
| DECIMAL_DIG 10
L

This is an obsolescent feature, see 7.33.8.

— number of decimal digits, ¢, such that any floating-point number with ¢ decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the ¢ decimal digits,

plogyb if b is a power of 10
[(p—1)log,,b| otherwise
FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, i,

[

| FLT_MIN_EXP
| DBL_MIN_EXP
| LDBL_MIN_EXP
L

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers, [log 19b%mi» 1]

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

26 Environment §524.22

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number; if that representable finite floating-point number is normalized,
the value of the macro is ey«

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, [log 19((1 — b™P)bemax) |

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

25 The values given in the following list shall be replaced by constant expressions with implementation-
defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number; if that number is normalized, its value is

(1 — bfp)bemax
FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

— maximum normalized floating-point number, (1 — b77))%max

FLT_NORM_MAX 1E+37
DBL_NORM_MAX 1E+37
LDBL_NORM_MAX 1E+37

26 The values given in the following list shall be replaced by constant expressions with implementation-
defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least normalized value greater than 1 that is representable in
the given floating type, b' 7

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number, b¢min~1

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

— minimum positive floating-point number

FLT_TRUE_MIN 1E-37
DBL_TRUE_MIN 1E-37
LDBL_TRUE_MIN 1E-37

§524.22 Environment 27

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Recommended practice

27 Conversion between real floating type and decimal character sequence with at most T_DECIMAL_DIG
digits should be correctly rounded, where T is the macro prefix for the type. This assures conversion
from real floating type to decimal character sequence with T_DECIMAL_DIG digits and back, using
to-nearest rounding, is the identity function.

28 EXAMPLE 1 The following describes an artificial floating-point representation that meets the
minimum requirements of this document, and the appropriate values in a <float.h> header for
type float:

6
r=s516° fr167%, —31<e<+32
k=1

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

29 EXAMPLE 2 The following describes floating-point representations that also meet the requirements
for single-precision and double-precision numbers in IEC 60559,% and the appropriate values in a
<float.h>header for types float and double:

24
xp=52°)" fr27k,
k=1

53
xTg=82°Y 27k,

—125 <e < 4128

—1021 < e < +1024

k=1

FLT_IS_IEC_60559 1

FLT_RADIX 2

FLT_MANT_DIG 24

FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT_DECIMAL_DIG 9

FLT_DIG 6

FLT_MIN_EXP -125

FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_TRUE_MIN 1.40129846E-45F // decimal constant
FLT_TRUE_MIN OX1P-149F // hex constant
FLT_HAS_SUBNORM 1

FLT_MIN_10_EXP -37

FLT_MAX_EXP +128

FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX OX1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38

DBL_MANT_DIG 53

DBL_IS_IEC_60559 1

DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant

2)The floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less
than shown here.

28 Environment §524.22

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

DBL_DECIMAL_DIG 17

DBL_DIG 15

DBL_MIN_EXP -1021

DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant
DBL_TRUE_MIN 0X1P-1074 // hex constant
DBL_HAS_SUBNORM 1

DBL_MIN_10_EXP -307

DBL_MAX_EXP +1024

DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX OX1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

Forward references: conditional inclusion (6.10.1), predefined macro names (6.10.9), complex arith-
metic <complex.h> (7.3), extended multibyte and wide character utilities <wchar.h> (7.31), floating-
point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.24), input/output <stdio.h>
(7.23), mathematics <math.h> (7.12), IEC 60559 floating-point arithmetic (Annex F), IEC 60559-
compatible complex arithmetic (Annex G).

5.2.4.2.3 Characteristics of decimal floating types in <float.h>

This subclause specifies macros in <float. h> that provide characteristics of decimal floating types
(an optional feature) in terms of the model presented in 5.2.4.2.2. An implementation shall provide
these macros if and only if it defines __STDC_IEC_60559_DFP__. The prefixes DEC32_, DEC64_, and
DEC128_ denote the types _Decimal32, _Decimal64, and _Decimall28 respectively.

DEC_EVAL_METHOD is the decimal floating-point analog of FLT_EVAL_METHOD (5.2.4.2.2). Its
implementation-defined value characterizes the use of evaluation formats for decimal floating

types:
—1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type _Decimal32 and _Decimal64 to the range and
precision of the _Decimal64 type, evaluate _Decimall28 operations and constants to the
range and precision of the _Decimal128 type;

2 evaluate all operations and constants to the range and precision of the _Decimal128 type.

Each of the decimal signaling NaN macros

DEC32_SNAN
DEC64_SNAN
DEC128_SNAN

expands to a constant expression of the respective decimal floating type representing a signaling
NaN. If an optional unary + or - operator followed by a signaling NaN macro is used for initializing
an object of the same type that has static or thread storage duration, the object is initialized with a
signaling NaN value.

The macro

\ DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

The macro

\ DEC_NAN

§524.23 Environment 29

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

expands to a constant expression of type _Decimal32 representing a quiet NaN.

The integer values given in the following lists shall be replaced by constant expressions suitable for
use in conditional expression inclusion preprocessing directives:

— radix of exponent representation, b(=10)

For the standard floating types, this value is implementation-defined and is specified by the
macro FLT_RADIX. For the decimal floating types there is no corresponding macro, since the
value 10 is an inherent property of the types. Wherever FLT_RADIX appears in a description
of a function that has versions that operate on decimal floating types, it is noted that for the
decimal floating-point versions the value used is implicitly 10, rather than FLT_RADIX.

— number of digits in the coefficient

iDEcsz_MANT_DIG 7
| DEC64_MANT_DIG 16
| DEC128_MANT_DIG 34
L

— minimum exponent

DEC32_MIN_EXP -94
DEC64_MIN_EXP -382
DEC128_MIN_EXP -6142

— maximum exponent

[
| DEC32_MAX_EXP 97
| DEC64_MAX_EXP 385

‘DECIZS_MAX_EXP 6145
L

— maximum representable finite decimal floating-point number (there are 6, 15 and 33 9’s after
the decimal points respectively)

[
| DEC32_MAX 9.999999E96DF
| DEC64_MAX 9.999999999999999E384DD

‘DECIZS_MAX 9.999999999999999999999999999999999E6144DL
L

— the difference between 1 and the least value greater than 1 that is representable in the given

floating type
DEC32_EPSILON 1E-6DF
DEC64_EPSILON 1E-15DD
DEC128_EPSILON 1E-33DL

— minimum normalized positive decimal floating-point number

DEC32_MIN 1E-95DF
DEC64_MIN 1E-383DD
DEC128_MIN 1E-6143DL

— minimum positive subnormal decimal floating-point number

iDEC32_TRUE_MIN 0.000001E-95DF

‘DEC64_TRUE_MIN 0.000000000000001E-383DD

‘DEC128_TRUE_MIN 0.000000000000000000000000000000001E-6143DL
L

30 Environment §524.23

10

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

For decimal floating-point arithmetic, it is often convenient to consider an alternate equivalent
model where the significand is represented with integer rather than fraction digits. With s, b, e, p,
and fj as defined in 5.2.4.2.2, a floating-point number z is defined by the model:

p
r=g-beP) Z fr - PR
k=1

With b fixed to 10, a decimal floating-point number z is thus:

p
z=5-10"7% " f - 1077H)
k=1

The quantum exponent is ¢ = e — p and the coefficient is ¢ = fi fa - - - fp, which is an integer between
0 and 10? — 1, inclusive. Thus, x = s - ¢ - 107 is represented by the triple of integers (s, ¢, q). The
quantum of x is 109, which is the value of a unit in the last place of the coefficient.

Quantum exponent ranges

Type —Decimal32 | _Decimal6é4 | _Decimall28
Maximum Quantum Exponent (¢,nq.) 90 369 6111
Minimum Quantum Exponent (¢;,) —101 —398 —6176

For binary floating-point arithmetic following IEC 60559, representations in the model described
in 5.2.4.2.2 that have the same numerical value are indistinguishable in the arithmetic. However, for
decimal floating-point arithmetic, representations that have the same numerical value but different
quantum exponents, e.g., (+1,10,—1) representing 1.0 and (+1, 100, —2) representing 1.00, are
distinguishable. To facilitate exact fixed-point calculation, operation results that are of decimal
floating type have a preferred quantum exponent, as specified in IEC 60559, which is determined
by the quantum exponents of the operands if they have decimal floating types (or by specific
rules for conversions from other types). The table below gives rules for determining preferred
quantum exponents for results of IEC 60559 operations, and for other operations specified in
this document. When exact, these operations produce a result with their preferred quantum
exponent, or as close to it as possible within the limitations of the type. When inexact, these
operations produce a result with the least possible quantum exponent. For example, the preferred
quantum exponent for addition is the minimum of the quantum exponents of the operands. Hence
(+1,123,—-2) 4 (41,4000, —3) = (+1, 5230, —3) or 1.23 + 4.000 = 5.230.

The following table shows, for each operation delivering a result in decimal floating-point format,
how the preferred quantum exponents of the operands, Q(x), Q(y), etc., determine the preferred
quantum exponent of the operation result, provided the table formula is defined for the arguments.
For the cases where the formula is undefined and the function result is oo, the preferred quantum
exponent is immaterial because the quantum exponent of oo is defined to be infinity. For the
other cases where the formula is undefined and the function result is finite, the preferred quantum
exponent is unspecified.>”

Preferred quantum exponents

Operation Preferred quantum exponent of result

roundeven, round, trunc, ceil, floor, max(Q(x),0)
rint, nearbyint

nextup, nextdown, nextafter, nexttoward | least possible

remainder min(Q(x), Q(y))

30) Although unspecified in IEC 60559, a preferred quantum exponent of 0 for these cases would be a reasonable implemen-
tation choice.

§524.23 Environment 31

ISO/IEC 9899:2023 (E)

working draft — April 1, 2023

N3096

fmin, fmax, fminimum, fmaximum,
fminimum_mag, fmaximum_mag,
fminimum_num, fmaximum_num,
fminimum_mag_num, fmaximum_mag_num

Q(x) if x gives the result, Q(y) if y gives the result

scalbn, scalbln Q(x)+n
ldexp Q(x) +p
logb 0

postfix ++ operator, postfix - - operator,
prefix ++ operator, prefix - - operator

+, d32add, d64add min(Q(x), Q(y))
-, d32sub, d64sub min(Q(x), Q(y))
*, d32mul, d64mul Q(x) + Q(y)
/,d32div, d64div Q(x) —Q(y)
sqrt, d32sqrt, d6é4sqrt |Q(x)/2]

fma, d32fma, d64fma min(Q(x) + Q(y), Q(z))
conversion from integer type 0

exact conversion from non-decimal floating | 0

type

inexact conversion from non-decimal least possible
floating type

conversion between decimal floating types | Q(x)

*cx returned by canonicalize Q(*x)

strto, wecsto, scanf, floating constants of see 7.24.1.6
decimal floating type

—(x), +(x) Qx)

fabs Q(x)

copysign Q(x)

quantize Qy)

quantum Q(x)

xencptr returned by encodedec, Q(xxptr)
encodebin

*xptr returned by decodedec, decodebin Q(xencptr)

fiod min(Q(x), Qy)
fdim min((Q(x),Q(y)) ifx >y, 0ifx <y
chrt [Q0x)/3]

hypot min(Q(x), Q(y))
pow [V X Q)]

modf Q(value)

*xiptr returned by modf max(@Q(value),0)
frexp Q(value) if value = 0, —(length of coefficient of

value) otherwise

*res returned by setpayload,

0 if pl does not represent a valid payload, not

setpayloadsig applicable otherwise (NaN returned)
getpayload 0 if *x is a NaN, unspecified otherwise
compoundn [n x min(0, Q(x))]|

pown [N x Q(x)]

powr Ly x Q(x)]

rootn |Q(x)/n]

rqrt —[Q0/2]

transcendental functions 0

A function family listed in the table above indicates the functions for all decimal floating types,
where the function family is represented by the name of the functions without a suffix. For example,
ceil indicates the functions ceild32, ceild64, and ceild128.

32 Environment

§5.2423

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Forward references: extended multibyte and wide character utilities <wchar.h> (7.31), floating-
point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.24), input/output <stdio.h>
(7.23), mathematics <math.h> (7.12), type-generic mathematics <tgmath.h> (7.27), IEC 60559
floating-point arithmetic (Annex F).

§524.23 Environment 33

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by the subscript “opt”, so
that

{ expressionopt }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

A summary of the language syntax is given in Annex A.

6.2 Concepts

6.2.1 Scopes of identifiers, type names, and compound literals
An identifier can denote:

— astandard attribute, an attribute prefix, or an attribute name;
— an object; a function;

— atagora member of a structure, union, or enumeration;

— a typedef name;

— alabel name;

— a macro name;

— Or, a macro parameter.

The same identifier can denote different entities at different points in the program. A member
of an enumeration is called an enumeration constant. Macro names and macro parameters are not
considered further here, because prior to the semantic phase of program translation any occurrences
of macro names in the source file are replaced by the preprocessing token sequences that constitute
their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance
(followed by a : and a statement).

Every other identifier has scope determined by the placement of its declaration (in a declarator or
type specifier). If the declarator or type specifier that declares the identifier appears outside of any
block or list of parameters, the identifier has file scope, which terminates at the end of the translation
unit. If the declarator or type specifier that declares the identifier appears inside a block or within the
list of parameter declarations in a function definition, the identifier has block scope, which terminates
at the end of the associated block. If the declarator or type specifier that declares the identifier
appears within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the function

34 Language §6.2.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

declarator. If an identifier designates two different entities in the same name space, the scopes might
overlap. If so, the scope of one entity (the inner scope) will end strictly before the scope of the other
entity (the outer scope). Within the inner scope, the identifier designates the entity declared in the
inner scope; the entity declared in the outer scope is hidden (and not visible) within the inner scope.

Unless explicitly stated otherwise, where this document uses the term “identifier” to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the tag
in a type specifier that declares the tag. Each enumeration constant has scope that begins just after
the appearance of its defining enumerator in an enumerator list. An ordinary identifier that has an
underspecified definition has scope that starts when the definition is completed; if the same ordinary
identifier declares another entity with a scope that encloses the current block, that declaration is
hidden as soon as the inner declarator is completed.3!) Any other identifier has scope that begins
just after the completion of its declarator.

As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted. A compound literal (which is an expression that provides access to an
anonymous object) is associated with the enclosing scope that corresponds to the placement of the
compound literal in the program; that scope is either file scope, function prototype scope, or block
scope.

Forward references: declarations (6.7), function calls (6.5.2.2), function calls (6.5.2.5), function
definitions (6.9.1), identifiers (6.4.2), macro replacement (6.10.4), name spaces of identifiers (6.2.3),
source file inclusion (6.10.2), statements and blocks (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer
to the same object or function by a process called linkage®?. There are three kinds of linkage: external,
internal, and none.

In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

If the declaration of a file scope identifier for:

— an object contains any of the storage-class specifiers static or constexpr;

— or, a function contains the storage-class specifier static,

then the identifier has internal linkage.33)

For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible”, if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and does not contain the storage-class specifier static or constexpr, its
linkage is external.

3DThat means, that the outer declaration is not visible for the initializer.

32)There is no linkage between different identifiers.

33) A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
34 As specified in 6.2.1, the later declaration might hide the prior declaration.

§6.2.2 Language 35

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation unit, the
syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any®® of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— standard attributes and attribute prefixes (disambiguated by the syntax of the attribute specifier
and name of the attribute token) (6.7.12);

— the trailing identifier in an attribute prefixed token; each attribute prefix has a separate name
space for the implementation-defined attributes that it introduces (disambiguated by the
attribute prefix and the trailing identifier token);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are four storage durations: static,
thread, automatic, and allocated. Allocated storage is described in 7.24.3.

The lifetime of an object is the portion of program execution during which storage is guaranteed
to be reserved for it. An object exists, has a constant address®, and retains its last-stored value
throughout its lifetime®) If an object is referred to outside of its lifetime, the behavior is undefined.
If a pointer value is used in an evaluation after the object the pointer points to (or just past) reaches
the end of its lifetime, the behavior is undefined. The representation of a pointer object becomes
indeterminate when the object the pointer points to (or just past) reaches the end of its lifetime.

An object whose identifier is declared without the storage-class specifier thread_local, and either
with external or internal linkage or with the storage-class specifier static, has static storage duration.
Its lifetime is the entire execution of the program and its stored value is initialized only once, prior
to program startup.

An object whose identifier is declared with the storage-class specifier thread_local has thread
storage duration. Its explicit or implicit initializer is evaluated prior to program execution, its lifetime
is the entire execution of the thread for which it is created, and its stored value is initialized with the
previously determined value when the thread is started. There is a distinct object per thread, and
use of the declared name in an expression refers to the object associated with the thread evaluating

3)There is only one name space for tags even though three are possible.

36)The term “constant address” means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

37)In the case of a volatile object, the last store need not be explicit in the program.

36 Language §6.24

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

the expression. The result of attempting to indirectly access an object with thread storage duration
from a thread other than the one with which the object is associated is implementation-defined.

An object whose identifier is declared with no linkage and without the storage-class specifier static
has automatic storage duration, as do some compound literals. The result of attempting to indirectly
access an object with automatic storage duration from a thread other than the one with which the
object is associated is implementation-defined.

For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering
an enclosed block or calling a function suspends, but does not end, execution of the current block.)
If the block is entered recursively, a new instance of the object is created each time. The initial
representation of the object is indeterminate. If an initialization is specified for the object and it is not
specified with constexpr, it is performed each time the declaration or compound literal is reached
in the execution of the block; if it is specified with constexpr the initializer is evaluated once at
translation time and the new instance of the object is initialized to that fixed value each time the
specification is reached; otherwise, the representation of the object becomes indeterminate each time
the declaration is reached.

For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.®® If the scope is
entered recursively, a new instance of the object is created each time. The initial representation of
the object is indeterminate.

A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an object with automatic storage duration and temporary lifetime.>® Its lifetime begins
when the expression is evaluated and its initial value is the value of the expression. Its lifetime ends
when the evaluation of the containing full expression ends. Any attempt to modify an object with
temporary lifetime results in undefined behavior. An object with temporary lifetime behaves as if it
were declared with the type of its value for the purposes of effective type. Such an object need not
have a unique address.

Forward references: array declarators (6.7.6.2), compound literals (6.5.2.5), declarators (6.7.6),
function calls (6.5.2.2), initialization (6.7.10), statements (6.8), effective type (6.5).

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the type of the
expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a
translation unit an object type may be incomplete*” (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information)*V.

An object declared as type bool is large enough to store the values false and true.

An object declared as type char is large enough to store any member of the basic execution char-
acter set. If a member of the basic execution character set is stored in a char object, its value is
guaranteed to be nonnegative. If any other character is stored in a char object, the resulting value is
implementation-defined but shall be within the range of values that can be represented in that type.

There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types may be designated in several additional ways, as
described in 6.7.2.)

38)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior
to the declaration, leaves the scope of the declaration.

3)The address of such an object is taken implicitly when an array member is accessed.

40) An incomplete type can only be used when the size of an object of that type is not needed. It is not needed, for example,
when a typedef name is declared to be a specifier for a structure or union, or when a pointer to or a function returning a
structure or union is being declared. The specification has to be complete before such a function is called or defined.

4D A type can be incomplete or complete throughout an entire translation unit, or it can change states at different points
within a translation unit.

§6.2.5 Language 37

10

11

12

13

14

15

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

A bit-precise signed integer type is designated as_BitInt (N) where N is an integer constant expression
that specifies the number of bits that are used to represent the type, including the sign bit. Each
value of N designates a distinct type.*?).

There may also be implementation-defined extended signed integer types *¥. The standard signed
integer types, bit-precise signed integer types, and extended signed integer types are collectively
called signed integer types *¥).

An object declared as type signed char occupies the same amount of storage as a “plain” char
object. A “plain” int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type bool and the unsigned integer
types that correspond to the standard signed integer types are the standard unsigned integer types.
The unsigned integer types that correspond to the extended signed integer types are the extended
unsigned integer types. In addition to the unsigned integer types that correspond to the bit-precise
signed integer types there is the type unsigned _BitInt(1), which uses one bit to represent the
type. Collectively, unsigned _BitInt(1) and the unsigned integer types that correspond to the bit-
precise signed integer types are the bit-precise unsigned integer types. The standard unsigned integer
types, bit-precise unsigned integer types, and extended unsigned integer types are collectively called
unsigned integer types.*

The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the bit-precise signed integer types and bit-precise unsigned integer types
are collectively called the bit-precise integer types; the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

For any two integer types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.?®) The range of
representable values for the unsigned type is 0 to 2V — 1 (inclusive). A computation involving
unsigned operands can never produce an overflow, because arithmetic for the unsigned type is
performed modulo 2.

There are three standard floating types, designated as float, double, and long double. *” The set
of values of the type float is a subset of the set of values of the type double; the set of values of the
type doub'le is a subset of the set of values of the type long double.

There are three decimal floating types, designated as _Decimal32, _Decimal64, and _Decimall28.
Respectively, they have the IEC 60559 formats: decimal32*®), decimal64, and decimal128. (Decimal
floating types are a conditional feature that implementations need not support; see 6.10.9.3.)

The standard floating types and the decimal floating types are collectively called the real floating
types.

There are three complex types, designated as float _Complex, double _Complex, and long double

42)Thus, _BitInt(3) is not the same type as _BitInt(4).

43)Implementation-defined keywords have the form of an identifier reserved for any use as described in 7.1.3.

44) Any statement in this document about signed integer types also applies to the bit-precise signed integer types and the
extended signed integer types, unless otherwise noted.

45) Any statement in this document about unsigned integer types also applies to the bit-precise unsigned integer types and
the extended unsigned integer types, unless otherwise specified.

46)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

47)See “future language directions” (6.11.1).

#)IEC 60559 specifies decimal32 as a data-interchange format that does not require arithmetic support; however,
_Decimal32 is a fully supported arithmetic type.

38 Language §6.2.5

16

17

18

19

20

21

22

23

24

25

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

_Complex.*” (Complex types are a conditional feature that implementations need not support; see
6.10.9.3.) The real floating and complex types are collectively called the floating types.

For each floating type there is a corresponding real type, which is always a real floating type. For real
floating types, it is the same type. For complex types, it is the type given by deleting the keyword
—Complex from the type name.

Each complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the real
part, and the second element to the imaginary part, of the complex number.

The type char, the signed and unsigned integer types, and the floating types are collectively called
the basic types. The basic types are complete object types. Even if the implementation defines two or
more basic types to have the same representation, they are nevertheless different types.

NOTE1 Animplementation can define new keywords that provide alternative ways to designate a basic (or any other) type;

this does not violate the requirement that all basic types be different. Implementation-defined keywords have the form of an
identifier reserved for any use as described in 7.1.3.

The three types char, signed char, and unsigned char are collectively called the character types.
The implementation shall define char to have the same range, representation, and behavior as either
signed char or unsigned char.®?

An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integer types. The integer and real floating types are collectively called real types.

Integer and floating types are collectively called arithmetic types. Each arithmetic type belongs to
one type domain: the real type domain comprises the real types, the complex type domain comprises the
complex types.

The void type comprises an empty set of values; it is an incomplete object type that cannot be
completed.

Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called “array of T”. The construction of an array
type from an element type is called “array type derivation”.

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called “function returning T”. The construction of a function type from a return type is called
“function type derivation”.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called “pointer to T”.

) A specification for imaginary types is in Annex G.
50)CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used to distinguish the
two options. Irrespective of the choice made, char is a separate type from the other two and is not compatible with either.

§6.2.5 Language 39

26

27

28

29

30

31

32

33

34

35

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

The construction of a pointer type from a referenced type is called “pointer type derivation”.
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic (type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.9.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types, pointer types, and the nullptr_t type are collectively called scalar types. Array
and structure types are collectively called aggregate types®?.

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

A complete type shall have a size that is less than or equal to SIZE_MAX. A type has known constant
size if it is complete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type®?, corresponding to the combinations of one, two, or all three of the const, volatile, and
restrict qualifiers. The qualified or unqualified versions of a type are distinct types that belong to
the same type category and have the same representation and alignment requirements.53) An array
and its element type are always considered to be identically qualified.> Any other derived type is
not qualified by the qualifiers (if any) of the type from which it is derived.

Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase “atomic,
qualified, or unqualified type” whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase “qualified or unqualified type”, without specific
mention of atomic, does not include the atomic types.

A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.>® Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers to other types
need not have the same representation or alignment requirements.

EXAMPLE 1 The type designated as “float x” has type “pointer to float”. Its type category
is pointer, not a floating type. The const-qualified version of this type is designated as “float
* const” whereas the type designated as “const float x” is not a qualified type — its type is
“pointer to const-qualified float” and is a pointer to a qualified type.

EXAMPLE 2 The type designated as “struct tag (x[5]) (float)” has type “array of pointer to
function returning struct tag”. The array has length five and the function has a single parameter
of type float. Its type category is array.

5DNote that aggregate type does not include union type because an object with union type can only contain one member at
a time.

52)See 6.7.3 regarding qualified array and function types.

53)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

59This does not apply to the _Atomic qualifier. Note that qualifiers do not have any direct effect on the array type itself,
but affect conversion rules for pointer types that reference an array type.

40 Language §6.2.5

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types

6.2.6.1 General
The representations of all types are unspecified except as stated in this subclause.

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.

Values stored in non-bit-field objects of any other object type are represented using n x CHAR_BIT bits,
where n is the size of an object of that type, in bytes. An object that has the value may be copied into
an object of type unsigned char [n] (e.g., by memcpy); the resulting set of bytes is called the object
representation of the value. Values stored in bit-fields consist of m bits, where m is the size specified
for the bit-field. The object representation is the set of m bits the bit-field comprises in the addressable
storage unit holding it. Two values (other than NaNs) with the same object representation compare
equal, but values that compare equal may have different object representations.

Certain object representations need not represent a value of the object type. If such a representation
is read by an lvalue expression that does not have character type, the behavior is undefined. If such
a representation is produced by a side effect that modifies all or any part of the object by an lvalue
expression that does not have character type, the behavior is undefined.> Such a representation is
called a non-value representation.

When a value is stored in an object of structure or union type, including in a member object, the bytes
of the object representation that correspond to any padding bytes take unspecified values.’® The
object representation of a structure or union object is never a non-value representation, even though
the byte range corresponding to a member of the structure or union object may be a non-value
representation for that member.

When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.’”) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a non-value representation shall not be generated.

Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5), Ivalues, arrays, and function designators
(6.3.2.1), order and consistency (7.17.3).

6.2.6.2 Integer types

For unsigned integer types the bits of the object representation shall be divided into two groups:
value bits and padding bits. If there are N value bits, each bit shall represent a different power of
2 between 1 and 21, so that objects of that type shall be capable of representing values from 0
to 2V — 1 using a pure binary representation; this shall be known as the value representation. The
values of any padding bits are unspecified. The number of value bits IV is called the width of the
unsigned integer type. The type bool shall have one value bit and (sizeof (bool)*CHAR_BIT) - 1
padding bits. Otherwise, there need not be any padding bits; unsigned char shall not have any
padding bits.

For signed integer types, the bits of the object representation shall be divided into three groups:

55)Thus, an automatic variable can be initialized to a non-value representation without causing undefined behavior, but the
value of the variable cannot be used until a proper value is stored in it.

%) Thus, for example, structure assignment need not copy any padding bits.

571t is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp (&x, &y, sizeof(T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

§6.2.6.2 Language 41

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

value bits, padding bits, and the sign bit. If the corresponding unsigned type has width N, the
signed type uses the same number of N bits, its width, as value bits and sign bit. N — 1 are value
bits and the remaining bit is the sign bit. Each bit that is a value bit shall have the same value as the
same bit in the object representation of the corresponding unsigned type. If the sign bit is zero, it
shall not affect the resulting value. If the sign bit is one, it has value —(2¥~1). There need not be any
padding bits; signed char shall not have any padding bits.

The values of any padding bits are unspecified. A valid object representation of a signed integer
type where the sign bit is zero is a valid object representation of the corresponding unsigned type,
and shall represent the same value. For any integer type, the object representation where all the bits
are zero shall be a representation of the value zero in that type.

The precision of an integer type is the number of value bits.

NOTE 1 Some combinations of padding bits might generate non-value representations, for example, if one padding bit
is a parity bit. Regardless, no arithmetic operation on valid values can generate a non-value representation other than as
part of an exceptional condition such as an integer overflow. All other combinations of padding bits are alternative object
representations of the value specified by the value bits.

NOTE 2 The sign representation defined in this document is called fwo’s complement. Previous revisions of this document
additionally allowed other sign representations.

NOTE 3 For unsigned integer types the width and precision are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type

Two types are compatible types if they are the same. Additional rules for determining whether two
types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in 6.7.6
for declarators.’® Moreover, two complete structure, union, or enumerated types declared with the
same tag are compatible if members satisfy the following requirements:

— there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types;

— if one member of the pair is declared with an alignment specifier, the other is declared with an
equivalent alignment specifier;

— and, if one member of the pair is declared with a name, the other is declared with the same
name.

For two structures, corresponding members shall be declared in the same order. For two unions
declared in the same translation unit, corresponding members shall be declared in the same order. For
two structures or unions, corresponding bit-fields shall have the same widths. For two enumerations,
corresponding members shall have the same values; if one has a fixed underlying type, then the
other shall have a compatible fixed underlying type. For determining type compatibility, anonymous
structures and unions are considered a regular member of the containing structure or union type,
and the type of an anonymous structure or union is considered compatible to the type of another
anonymous structure or union, respectively, if their members fulfill the above requirements.

Furthermore, two structure, union, or enumerated types declared in separate translation units are
compatible in the following cases:

— both are declared without tags and they fulfill the requirements above;

— both have the same tag and are completed somewhere in their respective translation units and
they fulfill the requirements above;

— both have the same tag and at least one of the two types is not completed in its translation unit.

Otherwise, the structure, union, or enumerated types are incompatible.59)

8)Two types need not be identical to be compatible.
%) A structure, union, or enumerated type without a tag or an incomplete structure, union or enumerated type is not
compatible with any other structure, union or enum type declared in the same translation unit.

42 Language §6.2.7

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

— If both types are array types, the following rules are applied:

o If one type is an array of known constant size, the composite type is an array of that size.

e Otherwise, if one type is a variable length array whose size is specified by an expression
that is not evaluated, the behavior is undefined.

o Otherwise, if one type is a variable length array whose size is specified, the composite
type is a variable length array of that size.

e Otherwise, if one type is a variable length array of unspecified size, the composite type is
a variable length array of unspecified size.

e Otherwise, both types are arrays of unknown size and the composite type is an array of
unknown size.

The element type of the composite type is the composite type of the two element types.

— If both types are function types, the type of each parameter in the composite parameter type
list is the composite type of the corresponding parameters.

— If one of the types has a standard attribute, the composite type also has that attribute.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior declaration of
that identifier is visible®”, if the prior declaration specifies internal or external linkage, the type of
the identifier at the later declaration becomes the composite type.

EXAMPLE Given the following two file scope declarations:

int f(int (%) (char x), double (x)[3]);
int f(int (x)(char *), double (*)[]);

The resulting composite type for the function is:

\ int f(int (x)(char x), double (x)[3]);

Forward references: array declarators (6.7.6.2).

6.2.8 Alignment of objects

Complete object types have alignment requirements which place restrictions on the addresses at
which objects of that type may be allocated. An alignment is an implementation-defined integer
value representing the number of bytes between successive addresses at which a given object can be
allocated. An object type imposes an alignment requirement on every object of that type: stricter
alignment can be requested using the alignas keyword.

A fundamental alignment is a valid alignment less than or equal to alignof (max_align_t). Funda-
mental alignments shall be supported by the implementation for objects of all storage durations.
The alignment requirements of the following types shall be fundamental alignments:

— all atomic, qualified, or unqualified basic types;
— all atomic, qualified, or unqualified enumerated types;

— all atomic, qualified, or unqualified pointer types;

60) As specified in 6.2.1, the later declaration might hide the prior declaration.

§6.2.8 Language 43

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— all array types whose element type has a fundamental alignment requirement;
— all types specified in Clause 7 as complete object types;

— all structure or union types whose elements have types with fundamental alignment require-
ments and none of whose elements have an alignment specifier specifying an alignment that is
not a fundamental alignment.

An extended alignment is represented by an alignment greater than alignof (max_align_t). Itis
implementation-defined whether any extended alignments are supported and the storage durations
for which they are supported. A type having an extended alignment requirement is an over-aligned

type.®!

Alignments are represented as values of the type size_t. Valid alignments include only fundamental
alignments, plus an additional implementation-defined set of values, which may be empty. Every
valid alignment value shall be a nonnegative integral power of two.

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have
larger alignment values. An address that satisfies an alignment requirement also satisfies any weaker
valid alignment requirement.

The alignment requirement of a complete type can be queried using an alignof expression. The
types char, signed char, and unsigned char shall have the weakest alignment requirement.

Comparing alignments is meaningful and provides the obvious results:

— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

6.2.9 Encodings

The literal encoding is an implementation-defined mapping of the characters of the execution character
set to the values in a character constant (6.4.4.4) or string literal (6.4.5). It shall support a mapping
from all the basic execution character set values into the implementation-defined encoding. It may
contain multibyte character sequences (5.2.1.1).

The wide literal encoding is an implementation-defined mapping of the characters of the execution
character set to the values in a wchar_t character constant (6.4.4.4) or a wchar_t string literal (6.4.5).
It shall support a mapping from all the basic execution character set values into the implementation-
defined encoding. The mapping shall produce values identical to the literal encoding for all the basic
execution character set values if an implementation does not define __STDC_MB_MIGHT_NEQ_WC__.
One or more values may map to one or more values of the extended execution character set.

6.3 Conversions

Several operators convert operand values from one type to another automatically. This subclause
specifies the result required from such an implicit conversion, as well as those that result from a cast
operation (an explicit conversion). The list in 6.3.1.8 summarizes the conversions performed by most
ordinary operators; it is supplemented as required by the discussion of each operator in 6.5.

Unless explicitly stated otherwise, conversion of an operand value to a compatible type causes no
change to the value or the representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers
Every integer type has an integer conversion rank defined as follows:

61 Every over-aligned type is, or contains, a structure or union type with a member to which an extended alignment has
been applied.

44 Language §63.1.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

— No two signed integer types shall have the same rank, even if they have the same representa-
tion.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with
less precision.

— Therank of long long int shall be greater than the rank of long int, which shall be greater
than the rank of int, which shall be greater than the rank of short int, which shall be greater
than the rank of signed char.

— The rank of a bit-precise signed integer type shall be greater than the rank of any standard
integer type with less width or any bit-precise integer type with less width.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer
type with the same width or bit-precise integer type with the same width.

— The rank of any bit-precise integer type relative to an extended integer type of the same width
is implementation-defined.

— The rank of char shall equal the rank of signed char and unsigned char.
— The rank of bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed integer
type with the same precision is implementation-defined, but still subject to the other rules for
determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than
T3, then T1 has greater rank than T3.

The following may be used in an expression wherever an int or unsigned int may be used:

— An object or expression with an integer type (other than int or unsigned int) whose integer
conversion rank is less than or equal to the rank of int and unsigned int.

— A bit-field of type bool, int, signed int, or unsigned int.

The value from a bit-field of a bit-precise integer type is converted to the corresponding bit-precise
integer type. If the original type is not a bit-precise integer type (6.2.5): if an int can represent all
values of the original type (as restricted by the width, for a bit-field), the value is converted to an
int®?); otherwise, it is converted to an unsigned int. These are called the integer promotions®®. All
other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a “plain” char
can hold negative values is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers (6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted to bool, the result is false if the value is a zero (for arithmetic
types), null (for pointer types), or the scalar has type nullptr_t; otherwise, the result is true.

©2)E.g., unsigned _BitInt(7): 2 isabit-field that can hold the values 0, 1, 2, 3, and converts to unsigned _BitInt(7).

3)The integer promotions are applied only: as part of the usual arithmetic conversions, to certain argument expressions, to
the operands of the unary +, -, and ~ operators, and to both operands of the shift operators, as specified by their respective
subclauses.

§6.3.12 Language 45

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.3.1.3 Signed and unsigned integers
When a value with integer type is converted to another integer type other than bool, if the value
can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type until the value is in the
range of the new type.®¥

Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer

When a finite value of standard floating type is converted to an integer type other than bool, the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the behavior is undefined.®

When a finite value of decimal floating type is converted to an integer type other than bool, the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the “invalid” floating-point exception shall be raised and
the result of the conversion is unspecified.

When a value of integer type is converted to a standard floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner.
If the value being converted is outside the range of values that can be represented, the behavior is
undefined. Results of some implicit conversions may be represented in greater range and precision
than that required by the new type (see 6.3.1.8 and 6.8.6.4).

When a value of integer type is converted to a decimal floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted cannot
be represented exactly, the result shall be correctly rounded with exceptions raised as specified in
IEC 60559.

6.3.1.5 Real floating types
When a value of real floating type is converted to a real floating type, if the value being converted
can be represented exactly in the new type, it is unchanged.

When a value of real floating type is converted to a standard floating type, if the value being
converted is in the range of values that can be represented but cannot be represented exactly, the
result is either the nearest higher or nearest lower representable value, chosen in an implementation-
defined manner. If the value being converted is outside the range of values that can be represented,
the behavior is undefined.

When a value of real floating type is converted to a decimal floating type, if the value being converted
cannot be represented exactly, the result is correctly rounded with exceptions raised as specified in
IEC 60559.

Results of some implicit conversions may be represented in greater range and precision than that
required by the new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.6 Complex types
When a value of complex type is converted to another complex type, both the real and imaginary
parts follow the conversion rules for the corresponding real types.

64 The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

5)The remaindering operation performed when a value of integer type is converted to unsigned type need not be
performed when a value of real floating type is converted to unsigned type. Thus, the range of portable real floating values is
(=1, Utype_MAX + 1).

46 Language §6.3.1.6

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex result value is
determined by the rules of conversion to the corresponding real type and the imaginary part of the
complex result value is a positive zero or an unsigned zero.

When a value of complex type is converted to a real type other than bool,% the imaginary part of
the complex value is discarded and the value of the real part is converted according to the conversion
rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result types in
a similar way. The purpose is to determine a common real type for the operands and result. For the
specified operands, each operand is converted, without change of type domain, to a type whose
corresponding real type is the common real type. Unless explicitly stated otherwise, the common
real type is also the corresponding real type of the result, whose type domain is the type domain of
the operands if they are the same, and complex otherwise. This pattern is called the usual arithmetic
conversions:

If one operand has decimal floating type, the other operand shall not have standard floating,
complex, or imaginary type.

First, if the type of either operand is _Decimall28, the other operand is converted to
_Decimall2s.

Otherwise, if the type of either operand is _Decimal64, the other operand is converted to
_Decimalé64.

Otherwise, if the type of either operand is _Decimal32, the other operand is converted to
—Decimal32.

Otherwise, if the corresponding real type of either operand is long double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
long double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is float.*”)

Otherwise, the integer promotions are performed on both operands. Then the following rules
are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted to the type
of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

Otherwise, if the type of the operand with signed integer type can represent all the values
of the type of the operand with unsigned integer type, then the operand with unsigned
integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

)See 6.3.1.2.
67)For example, addition of a double _Complex and a float entails just the conversion of the float operand to double
(and yields a double _Complex result).

§6.3.1.8 Language 47

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.
See 5.2.4.2.2 regarding evaluation formats.

EXAMPLE 1 One consequence of _BitInt being exempt from the integer promotion rules (6.3.1) is
that a _BitInt operand of a binary operator is not always promoted to an int or unsigned int
as part of the usual arithmetic conversions. Instead, a lower-ranked operand is converted to the
higher-rank operand type and the result of the operation is the higher-ranked type.

_BitInt(2) a2 = 1;
_BitInt(3) a3 = 2;
_BitInt(33) a33 = 1;
char c = 3;

a2 * a3 /* As part of the multiplication, a2 is converted to
_BitInt(3) and the result type is _BitInt(3). */
a2 x ¢ /* As part of the multiplication, c is promoted to int,
a2 is converted to int and the result type is int. =/
a33 x ¢ /* As part of the multiplication, c is promoted to int,
then converted to _BitInt(33) and the result type
is _BitInt(33), provided int has a width of at most
32 */

void func(_BitInt(8) al, _BitInt(24) a2) {

/* Cast one of the operands to 32-bits to guarantee the
result of the multiplication can contain all possible
values. */

_BitInt(32) a3 = al * (_BitInt(32))a2;

6.3.2 Other operands

6.3.2.1 Lvalues, arrays, and function designators

An [value is an expression (with an object type other than void) that potentially designates an
object;®® if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the lvalue used to designate
the object. A modifiable lvalue is an Ivalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

Except when it is the operand of the sizeof operator, or the typeof operators, the unary & operator,
the ++ operator, the - - operator, or the left operand of the . operator or an assignment operator, an
Ivalue that does not have array type is converted to the value stored in the designated object (and is
no longer an lvalue); this is called lvalue conversion. If the Ivalue has qualified type, the value has the
unqualified version of the type of the lvalue; additionally, if the Ivalue has atomic type, the value has
the non-atomic version of the type of the Ivalue; otherwise, the value has the type of the Ivalue. If the
Ivalue has an incomplete type and does not have array type, the behavior is undefined. If the Ivalue
designates an object of automatic storage duration that could have been declared with the register
storage class (never had its address taken), and that object is uninitialized (not declared with an
initializer and no assignment to it has been performed prior to use), the behavior is undefined.

Except when it is the operand of the sizeof operator, or typeof operators, or the unary & operator,
or is a string literal used to initialize an array, an expression that has type “array of type” is converted
to an expression with type “pointer to type” that points to the initial element of the array object and

68)The name “Ivalue” comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) Ivalue. It is perhaps better considered as representing an object “locator value”. What is sometimes called
“rvalue” is in this document described as the “value of an expression”.

An obvious example of an Ivalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object, *E is an lvalue that designates the object to which E points.

48 Language §63.2.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

is not an lvalue. If the array object has register storage class, the behavior is undefined.

A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator®, a typeof operator, or the unary & operator, a function designator with type
“function returning type” is converted to an expression that has type “pointer to function returning
type”.

Forward references: address and indirection operators (6.5.3.2), assignment operators (6.5.16),
common definitions <stddef.h> (7.21), initialization (6.7.10), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the sizeof and alignof
operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to any object
type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integer constant expression with the value 0, such an expression cast to type void *, or the
predefined constant nullptr is called a null pointer constant’”). If a null pointer constant or a value
of the type nullptr_t (which is necessarily the value nullptr) is converted to a pointer type, the
resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or
function.

Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

An integer may be converted to any pointer type. Except as previously specified, the result is
implementation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might produce an indeterminate representation when stored into an object.”?

Any pointer type may be converted to an integer type. Except as previously specified, the result
is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.

A pointer to an object type may be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned”? for the referenced type, the behavior is undefined. Otherwise,
when converted back again, the result shall compare equal to the original pointer. When a pointer to
an object is converted to a pointer to a character type, the result points to the lowest addressed byte
of the object. Successive increments of the result, up to the size of the object, yield pointers to the
remaining bytes of the object.

A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

) Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4

70The macro NULL is defined in <stddef. h> (and other headers) as a null pointer constant; see 7.21.

7DThe mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with
the addressing structure of the execution environment.

72In general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

§6.3.2.3 Language 49

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.3.24 nullptr_t

The type nullptr_t may be converted to void, bool or to a pointer type; The result is a void
expression, false, or a null pointer value, respectively.

A null pointer constant or value of type nullptr_t may be converted to nullptr_t.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types capable of
holding object pointers (7.22.1.4), simple assignment (6.5.16.1), the nullptr_t type (7.21.2).

50 Language §63.24

1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.4 Lexical elements

Syntax
token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each universal-character-name that cannot be one of the above
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an
identifier, a constant, a string literal, or a punctuator. A single universal character name shall match
one of the other preprocessing token categories.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The categories of
tokens are: keywords, identifiers, constants, string literals, and punctuators. A preprocessing token
is the minimal lexical element of the language in translation phases 3 through 6. The categories of
preprocessing tokens are: header names, identifiers, preprocessing numbers, character constants,
string literals, punctuators, and both single universal character names as well as single non-white-
space characters that do not lexically match the other preprocessing token categories.”® Ifa ' ora "
character matches the last category, the behavior is undefined. Preprocessing tokens can be separated
by white space; this consists of comments (described later), or white-space characters (space, horizontal
tab, new-line, vertical tab, and form-feed), or both. As described in 6.10, in certain circumstances
during translation phase 4, white space (or the absence thereof) serves as more than preprocessing
token separation. White space may appear within a preprocessing token only as part of a header
name or between the quotation characters in a character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing token.
There is one exception to this rule: header name preprocessing tokens are recognized only within #
include and #embed preprocessing directives, in __has_include and __has_embed expressions, as
well as in implementation-defined locations within #pragma directives. In such contexts, a sequence
of characters that could be either a header name or a string literal is recognized as the former.

EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not
a valid floating or integer constant token), even though a parse as the pair of preprocessing tokens 1
and Ex might produce a valid expression (for example, if Ex were a macro defined as +1). Similarly,
the program fragment 1E1 is parsed as a preprocessing number (one that is a valid floating constant
token), whether or not E is a macro name.

EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint
on increment operators, even though the parse x ++ + ++ y might yield a correct expression.

79 An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.4.3); it cannot occur in source
files.

§64 Language 51

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5), floating
constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.4), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), preprocessing directives (6.10),
preprocessing numbers (6.4.8), string literals (6.4.5).

52 Language §64

N3096 working draft — April 1, 2023 ISO/TEC 9899:2023 (E)
6.41 Keywords
Syntax
keyword: one of
alignas enum short void
alignof extern signed volatile
auto false sizeof while
bool float static —Atomic
break for static_assert —BitInt
case goto struct —Complex
char if switch —Decimall28
const inline thread_local _Decimal32
constexpr int true _Decimalé64
continue long typedef —Generic
default nullptr typeof _Imaginary
do register typeof_unqual —Noreturn
double restrict union
else return unsigned

Semantics

The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords
except in an attribute token, and shall not be used otherwise. The keyword _Imaginary is reserved
for specifying imaginary types.”®

The following table provides alternate spellings for certain keywords. These can be used wherever
the keyword can.”

Keyword Alternative Spelling
alignas —Alignas
alignof _Alignof
bool _Bool
static_assert _Static_assert
thread_local _Thread_local

The spelling of these keywords, their alternate forms, and of false and true inside expressions that
are subject to the # and ## preprocessing operators is unspecified.”®

6.4.2 Identifiers

6.4.2.1 General
Syntax
identifier:

identifier-start
identifier identifier-continue

identifier-start:
nondigit
XID_Start character
universal-character-name of class XID_Start

790ne possible specification for imaginary types appears in Annex G.
7 These alternative keywords are obsolescent features and should not be used for new code and development.

70)The intent of this specification is to allow but not force the implementation of the corresponding feature by means of a
predefined macro.

§64.2.1 Language 53

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

identifier-continue:
digit
nondigit
XID_Continue character
universal-character-name of class XID_Continue

nondigit: one of

Z>5 0
owo T
- Natk-2s)
ooao o
aAm-= @
WV T n =h
- o+
cxTec =
< < R
= u s .
X X X x
<r<~
N =N3

digit: one of
0123456789

Semantics

An XID_Start character is an implementation-defined character whose corresponding code point
in ISO/IEC 10646 has the XID_Start property. An XID_Continue character is an implementation-
defined character whose corresponding code point in ISO/IEC 10646 has the XID_Continue property.
An identifier is a sequence of one identifier start character followed by 0 or more identifier continue
characters, which designates one or more entities as described in 6.2.1. Lowercase and uppercase
letters are distinct. There is no specific limit on the maximum length of an identifier.

The character classes XID_Start and XID_Continue are Derived Core Properties as described by
UAX #4477, Each character and universal character name in an identifier shall designate a character
whose encoding in ISO/IEC 10646 has the XID_Continue property. The initial character (which
may be a universal character name) shall designate a character whose encoding in ISO/IEC 10646
has the XID_Start property. An identifier shall conform to Normalization Form C as specified in
ISO/IEC 10646. Annex D provides an overview of the conforming identifiers.

NOTE 1 Uppercase and lowercase letters are considered different for all identifiers.

NOTE 2 In translation phase 4 (4), the term identifier also includes those preprocessing tokens (6.4.8) differentiated as
keywords (6.4.1) in the later translation phase 7 (7).

When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing
token could be converted to either a keyword or an identifier, it is converted to a keyword except in
an attribute token.

Some identifiers are reserved.

— All identifiers that begin with a double underscore (__) or begin with an underscore (_)
followed by an uppercase letter are reserved for any use, except those identifiers which are
lexically identical to keywords.”®

— All identifiers that begin with an underscore are reserved for use as identifiers with file scope
in both the ordinary and tag name spaces.

Other identifiers may be reserved, see 7.1.3.

If the program declares or defines an identifier in a context in which it is reserved (other than as
allowed by 7.1.4), the behavior is undefined.

77)On systems that cannot accept extended characters in external identifiers, an encoding of the universal-character-name
may be used in forming such identifiers. For example, some otherwise unused character or sequence of characters may be
used to encode the u in a universal character name.

78)This allows a reserved identifier that matches the spelling of a keyword to be used as a macro name by the program.

54 Language §64.2.1

10

11

12

13

14

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

If the program defines a reserved identifier or standard attribute token described in 6.7.12.1 as a
macro name, or removes (with #undef) any macro definition of an identifier in the first group listed
above or standard attribute token described in 6.7.12.1, the behavior is undefined.

Some identifiers may be potentially reserved. A potentially reserved identifier is an identifier which is
not reserved unless made so by an implementation providing the identifier (7.1.3) but is anticipated
to become reserved by an implementation or a future version of this document. An identifier that
this document describes as optional:

— If it is defined as a macro it is reserved.
— Otherwise, if the definition is given in clauses 1 to 6 it is reserved.

— Otherwise, it is potentially reserved.

Recommended Practice

Implementations are encouraged to issue a diagnostic message when a potentially reserved identifier
is declared or defined for any use that is not implementation-compatible (see below) in a context
where the potentially reserved identifier may be reserved under a conforming implementation. This
brings attention to a potential conflict when porting a program to a future revision of this document.

An implementation-compatible use of a potentially reserved identifier is a declaration of an external
name where the name is provided by the implementation as an external name and where the
declaration declares an object or function with a type that is compatible with the type of the object
or function provided by the implementation under that name.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial characters
in an identifier; the limit for an external name (an identifier that has external linkage) may be more
restrictive than that for an internal name (a macro name or an identifier that does not have external
linkage). The number of significant characters in an identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers differ
only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.4), reserved library
identifiers (7.1.3), use of library functions (7.1.4), attributes (6.7.12.1).

6.4.2.2 Predefined identifiers

Semantics

The identifier __func_ shall be implicitly declared by the translator as if, immediately following
the opening brace of each function definition, the declaration

\ static const char __func__[] = "function-name";
L

appeared, where function-name is the name of the lexically-enclosing function.”)

This name is encoded as if the implicit declaration had been written in the source character set and
then translated into the execution character set as indicated in translation phase 5.

EXAMPLE Consider the code fragment:

#include <stdio.h>

void myfunc(void)

{
printf("%ss\n", _func_);
/* ... x/

}

79)Since the name —func_ is reserved for any use by the implementation (7.1.3), if any other identifier is explicitly declared
using the name __func__, the behavior is undefined.

§64.22 Language 55

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Each time the function is called, it will print to the standard output stream:

[]
\ myfunc
L |

Forward references: function definitions (6.9.1).

6.4.3 Universal character names

Syntax

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

Constraints
A universal character name shall not designate a code point where the hexadecimal value is:

— less than 00AOQ other than 0024 ($), 0040 (@), or 0060 (*);
— in the range D800 through DFFF inclusive; or
— greater than 10FFFF0).

Description

Universal character names may be used in identifiers, character constants, and string literals to
designate characters that are not in the basic character set.

Semantics

The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier
(as specified by ISO/IEC 10646) is nnnnnnnn.8Y Similarly, the universal character name \unnnn
designates the character whose four-digit short identifier is nnunn (and whose eight-digit short
identifier is 0000nnnn).

80)The disallowed characters are the characters in the basic character set and the code positions reserved by ISO/IEC 10646
for control characters, the character DELETE, the S-zone (reserved for use by UTF-16), and characters too large to be encoded
by ISO/IEC 10646. Disallowed universal character escape sequences can still be specified with hexadecimal and octal escape
sequences (6.4.4.4).

8DShort identifiers for characters were first specified in ISO/IEC 10646-1:1993/ Amd 9:1997.

56 Language §6.4.3

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.4.4 Constants

Syntax
1 constant:

integer-constant
floating-constant
enumeration-constant
character-constant
predefined-constant

Constraints

2 Each constant shall have a type and the value of a constant shall be in the range of representable
values for its type.

Semantics
3 Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax
1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixXopt
binary-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant ' op¢ digit

octal-constant:
0
octal-constant ' oy octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit-sequence

binary-constant:
binary-prefix binary-digit
binary-constant ' op¢ binary-digit

hexadecimal-prefix: one of
0x 0X

binary-prefix: one of
ob 0B

§64.4.1 Language 57

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence

’

opt hexadecimal-digit

hexadecimal-digit: one of

binary-digit: one of
01

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
unsigned-suffix bit-precise-int-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt
bit-precise-int-suffix unsigned-suffixopt

bit-precise-int-suffix: one of
wb WB

unsigned-suffix: one of
udl

long-suffix: one of
1L

long-long-suffix: one of
1L

Description

An integer constant begins with a digit, but has no period or exponent part. It may have a prefix that
specifies its base and a suffix that specifies its type. An optional separating single quote character
(") in an integer or floating constant is called a digit separator. Digit separators are ignored when
determining the value of the constant.

58 Language §64.4.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

3 EXAMPLE The following integer constants use digit separators; the comment associated with each
constant shows the equivalent constant without digit separators.

0b11’10'11°01 /* 0b11101101 */
'1'2 /* character constant "1’ followed by integer constant 2,
not the integer constant 12 x/
11722 /% 1122 */
Ox'FFFF'FFFF /x invalid hexadecimal constant (' cannot appear after 0x) */
0x1'2’3"4AB'C’'D /* 0x1234ABCD =/

4 A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively. A binary
constant consists of the prefix 0b or 0B followed by a sequence of the digits 0 or 1.

Semantics

5 The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of a
hexadecimal constant, base 16; that of a binary constant, base 2. The lexically first digit is the most

significant.
6 The type of an integer constant is the first of the corresponding list in which its value can be
represented.
Octal, Hexadecimal or Binary
Suffix Decimal Constant Constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uor U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int
lor L long int long int
long long int unsigned long int
long long int
unsigned long long int
Both uor U unsigned long int unsigned long int
and lor L unsigned long long int unsigned long long int
1lor LL long long int long long int
unsigned long long int
Both uor U unsigned long long int unsigned long long int
and 1lor LL
wb or WB _BitInt(N) where the width N _BitInt(N) where the width N
is the smallest N greater than is the smallest N greater than
1 which can accommodate 1 which can accommodate
the value and the sign bit. the value and the sign bit.
Both uor U unsigned _BitInt(N) where the | unsigned _BitInt(N) where the
and wb or WB || width N is the smallest N width N is the smallest N
greater than 0 which can greater than 0 which can
accommodate the value. accommodate the value.

If an integer constant that does not have suffixes wb, WB, uwb, or UNB cannot be represented by any
type in its list, it may have an extended integer type, if the extended integer type can represent its
value. If all the types in the list for the constant are signed, the extended integer type shall be signed.
If all the types in the list for the constant are unsigned, the extended integer type shall be unsigned.

§64.4.1 Language 59

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

If the list contains both signed and unsigned types, the extended integer type may be signed or
unsigned. If an integer constant cannot be represented by any type in its list and has no extended
integer type, then the integer constant has no type.

EXAMPLE 1 The wb suffix results in an _BitInt that includes space for the sign bit even if the
value of the constant is positive or was specified in hexadecimal or octal notation.

-3wb /x Yields an _BitInt(3) that is then negated; two value
bits, one sign bit x/

-0x3wb /* Yields an _BitInt(3) that is then negated; two value
bits, one sign bit x*/

3wb /* Yields an _BitInt(3); two value bits, one sign bit */

3uwb /* Yields an unsigned _BitInt(2) */

-3uwb /* Yields an unsigned _BitInt(2) that is then negated,
resulting in wraparound */

Forward references: preprocessing numbers (6.4.8), numeric conversion functions (7.24.1).

6.4.4.2 Floating constants
Syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-part,p floating-suffixopt
digit-sequence exponent-part floating-suffix,pt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-suffixop:
hexadecimal-prefix hexadecimal-digit-sequence
binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceop . digit-sequence
digit-sequence .

exponent-part:
e signgp digit-sequence
E signop digit-sequence

sign: one of

digit-sequence:
digit
digit-sequence

opt dlglt

60 Language §6.4.4.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceqpy . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
P signop digit-sequence
P signop digit-sequence

floating-suffix: one of
f LF L df dd dl DF DD DL

Constraints
A floating suffix df, dd, dl, DF, DD, or DL shall not be used in a hexadecimal floating constant.

Description

A floating constant has a significand part that may be followed by an exponent part and a suffix that
specifies its type. The components of the significand part may include a digit sequence representing
the whole-number part, followed by a period (.), followed by a digit sequence representing the
fraction part. Digit separators (6.4.4.1) are ignored when determining the value of the constant. The
components of the exponent part are an e, E, p, or P followed by an exponent consisting of an
optionally signed digit sequence. Either the whole-number part or the fraction part has to be present;
for decimal floating constants, either the period or the exponent part has to be present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the digit sequence
in the exponent part is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating
constants, the exponent indicates the power of 2 by which the significand part is to be scaled. For
decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a
power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner. For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly
rounded.

An unsuffixed floating constant has type double. If suffixed by a floating suffix it has a type
according to the following table:

Suffixes for floating constants

Suffix Type
f, F float
1, L long double
df, DF | _Decimal32
dd, DD | _Decimalé64
dl, DL | _Decimall28

The values of floating constants may be represented in greater range and precision than that required
by the type (determined by the suffix); the types are not changed thereby. See 5.2.4.2.2 regarding
evaluation formats. 52

82)Hexadecimal floating constants can be used to obtain exact values in the semantic type that are independent of the

§6.4.4.2 Language 61

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Floating constants of decimal floating type that have the same numerical value but different quantum
exponents have distinguishable internal representations. The value shall be correctly rounded as
specified in IEC 60559. The coefficient ¢ and the quantum exponent ¢ of a finite converted decimal
floating-point number (see 5.2.4.2.3) are determined as follows:

— q is set to the value of sign,; digit-sequence in the exponent part, if any, or to 0, otherwise.

— If there is a fractional constant, ¢ is decreased by the number of digits to the right of the period
and the period is removed to form a digit sequence.

— cis set to the value of the digit sequence (after any period has been removed).

— Rounding required because of insufficient precision or range in the type of the result will
round c to the full precision available in the type, and will adjust ¢ accordingly within the
limits of the type, provided the rounding does not yield an infinity (in which case the result
is an appropriately signed internal representation of infinity). If the full precision of the type
would require g to be smaller than the minimum for the type, then ¢ is pinned at the minimum
and c is adjusted through the subnormal range accordingly, perhaps to zero.

Floating constants are converted to internal format as if at translation-time. The conversion of a
floating constant shall not raise an exceptional condition or a floating-point exception at execution
time. All floating constants of the same source form 89 shall convert to the same internal format
with the same value.

EXAMPLE Following are floating constants of type _Decimal64 and their values as triples (s, ¢, ¢).
Note that for _Decimal64, the precision (maximum coefficient length) is 16 and the quantum
exponent range is —398 < g < 369.

0.dd (+1,0,0)
0.00dd (+1,0,-2)
123.dd (+1,123,0)
1.23E3dd (+1,123,1)
1.23E+3dd (+1,123,1)
12.3E+7dd (+1,123,6)
12.0dd (+1,120,-1)
12.3dd (+1,123,-1)
0.00123dd (+1,123,-5)
1.23E-12dd (+1,123,—-14)
1234.5E-4dd (+1,12345, —5)
OE+7dd (+1,0,7)

12345678901234567890.dd (+1,1234567890123457,4) assuming default rounding and
DEC_EVAL_METHOD is 0 or 189

1234E-400dd (+1, 12, —398) assuming default rounding and DEC_EVAL_METHOD is 0
or1l

1234E-402dd (41,0, —398) assuming default rounding and DEC_EVAL_METHOD is 0
orl

1000.dd (+1,1000,0)

.0001dd (+1,1,—4)

1000.e06dd (+1,1000,0)

.0001e0dd (+1,1,—4)

1000.0dd (+1,10000, —1)

0.0001dd (+1,1,—4)

1000.00dd (+1,100000, —2)

00.0001dd (+1,1,—4)

evaluation format. Casts produce values in the semantic type, though depend on the rounding mode and may raise the
inexact floating-point exception.

83)1,23,1.230, 123e-2, 123e-02, and 1.23L are all different source forms and thus need not convert to the same internal
format and value.

62 Language §6.4.4.2

10

11

12

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

001000.dd (+1, 1000, 0)
001000.0dd (+1,10000, —1)
001000.00dd (+1, 100000 —2)
00.00dd (+1,0,-2)
00.dd (+1, o 0)

.00dd (+1,0,—2)
00.00e-5dd (+1,0,-7)
00.e-5dd (+1,0,-5)
.00e-5dd (+1,0,-7)

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant cannot be
represented exactly in its evaluation format; the implementation should then proceed with the
translation of the program.

The translation-time conversion of floating constants should match the execution-time conversion
of character strings by library functions, such as strtod, given matching inputs suitable for both
conversions, the same result format, and default execution-time rounding. 85)

NOTE1 Floating constants do not include a sign and are negated by the unary - operator (6.5.3.3) which negates the rounded
value of the constant. In contrast, the numeric conversion functions in the strto family (7.24.1.5, 7.24.1.6) may include the
sign as part of the input value and convert and round the negated input; Annex F requires this behavior. Negating before
rounding and negating after rounding might yield different results, depending on the rounding direction and whether the
results are correctly rounded. For example, the results are the same when both are correctly rounded using rounding to

nearest or rounding toward zero, but the results are different when they are inexact and correctly rounded using rounding
toward positive infinity or rounding toward negative infinity.

Conversions yielding exact results require no rounding, so are not affected by the order of negating and rounding. For
types with radix 10, decimal floating constants expressed within the precision and range of the evaluation format convert
exactly. For types whose radix is a power of 2, hexadecimal floating constants expressed within the precision and range of the
evaluation format convert exactly.

Forward references: preprocessing numbers (6.4.8), numeric conversion functions (7.24.1), the
strto function family (7.24.1.5, 7.24.1.6).

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:
identifier

Semantics

An identifier declared as an enumeration constant for an enumeration without a fixed underlying
type has either type int or the enumerated type, as defined in 6.7.2.2. An identifier declared
as an enumeration constant for an enumeration with a fixed underlying type has the associated
enumerated type.

An enumeration constant may be used in an expression (or constant expression) wherever a value
of an integer type may be used.

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants
Syntax

character-constant:
encoding-prefixopt

’ ’

c-char-sequence

89 That is, assuming the default translation rounding-direction mode is not changed by an FENV_DEC_ROUND pragma (7.6.3).
8)The specification for the library functions recommends more accurate conversion than required for floating constants
(see 7.24.1.5).

§64.44 Language 63

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

encoding-prefix: one of
ug u u L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ', backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
ANV
\a\b\f\n\r\t\v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed in single-
quotes, as in 'x'. A UTF-8 character constant is the same, except prefixed by u8. A wchar_t character
constant is prefixed by the letter L. A UTF-16 character constant is prefixed by the letter u. A UTF-32
character constant is prefixed by the letter U. Collectively, wchar_t, UTF-16, and UTF-32 character
constants are called wide character constants. With a few exceptions detailed later, the elements of
the sequence are any members of the source character set; they are mapped in an implementation-
defined manner to members of the execution character set.

The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer
values are representable according to the following table of escape sequences:

single quote ’ \’
double quote " \"
question mark ? \7?
backslash \ \\
octal character \octal digits

hexadecimal character \x hexadecimal digits

64 Language §64.44

10

11

12

13

14

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

The double-quote " and question-mark ? are representable either by themselves or by the escape
sequences \" and \?, respectively, but the single-quote ' and the backslash \ shall be represented,
respectively, by the escape sequences \ ' and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part of the
construction of a single character for an integer character constant or of a single wide character for a
wide character constant. The numerical value of the octal integer so formed specifies the value of
the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape sequence
are taken to be part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the hexadecimal integer
so formed specifies the value of the desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can constitute
the escape sequence.

In addition, characters not in the basic character set are representable by universal character names
and certain non-graphic characters are representable by escape sequences consisting of the back-
slash \ followed by a lowercase letter: \a, \b, \f, \n, \r, \'t, and \v.%%)

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of representable values
for the corresponding type:

Prefix | Corresponding Type
none | unsigned char

us char8_t

L the unsigned type corresponding to wchar_t
u charlé_t

u char32_t

A UTF-8, UTF-16, or UTFE-32 character constant shall not contain more than one character.’”) The
value shall be representable with a single UTF-8, UTF-16, or UTF-32 code unit, respectively.

Semantics

An integer character constant has type int. The value of an integer character constant containing
a single character that maps to a single value in the literal encoding (6.2.9) is the numerical value
of the representation of the mapped character in the literal encoding interpreted as an integer.
The value of an integer character constant containing more than one character (e.g., "ab’), or
containing a character or escape sequence that does not map to a single value in the literal encoding,
is implementation-defined. If an integer character constant contains a single character or escape
sequence, its value is the one that results when an object with type char whose value is that of the
single character or escape sequence is converted to type int.

A UTF-8 character constant has type char8_t. If the UTF-8 character constant is not produced
through a hexadecimal or octal escape sequence, the value of a UTF-8 character constant is equal to
its ISO/IEC 10646 code point value, provided that the code point value can be encoded as a single
UTEF-8 code unit. Otherwise, the value of the UTF-8 character constant is the numeric value specified
in the hexadecimal or octal escape sequence.

A UTEF-16 character constant has type charl6_t which is an unsigned integer type defined in the
<uchar.h> header. If the UTF-16 character constant is not produced through a hexadecimal or octal
escape sequence, the value of a UTF-16 character constant is equal to its ISO/IEC 10646 code point
value, provided that the code point value can be encoded as a single UTF-16 code unit. Otherwise,
the value of the UTF-16 character constant is the numeric value specified in the hexadecimal or octal
escape sequence.

A UTEF-32 character constant has type char32_t which is an unsigned integer type defined in the

86)The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash, the result is not a
token and a diagnostic is required. See “future language directions” (6.11.4).
87)For example u8’ab’ violates this constraint.

§64.44 Language 65

15

16
17

18

19

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

<uchar.h> header. If the UTF-32 character constant is not produced through a hexadecimal or octal
escape sequence, the value of a UTF-32 character constant is equal to its ISO/IEC 10646 code point
value, provided that the code point value can be encoded as a single UTF-32 code unit. Otherwise,
the value of the UTF-32 character constant is the numeric value specified in the hexadecimal or octal
escape sequence.

A wchar_t character constant prefixed by the letter L has type wchar_t, an integer type defined in
the <stddef.h> header. The value of a wchar_t character constant containing a single multibyte
character that maps to a single member of the extended execution character set is the wide character
corresponding to that multibyte character in the implementation-defined wide literal encoding
(6.2.9). The value of a wchar_t character constant containing more than one multibyte character or a
single multibyte character that maps to multiple members of the extended execution character set,
or containing a multibyte character or escape sequence not represented in the extended execution
character set, is implementation-defined.

EXAMPLE 1 The construction "\0’ is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use eight bits for objects that have type char. In an

implementation in which type char has the same range of values as signed char, the integer

character constant '\xFF' has the value —1; if type char has the same range of values as unsigned
char, the character constant '\xFF’ has the value +255.

EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction ’'\x123’
specifies an integer character constant containing only one character, since a hexadecimal escape
sequence is terminated only by a non-hexadecimal character. To specify an integer character constant
containing the two characters whose values are '\x12’ and '3’, the construction '\0223’ can be
used, since an octal escape sequence is terminated after three octal digits. (The value of this two-
character integer character constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction
L"\1234" specifies the implementation-defined value that results from the combination of the values
0123 and '4".

Forward references: common definitions <stddef.h> (7.21), the mbtowc function (7.24.7.2), Uni-
code utilities <uchar. h> (7.30).

6.4.4.5 Predefined constants

Syntax
predefined-constant:
false
true
nullptr
Description

Some keywords represent constants of a specific value and type.

The keywords false and true are constants of type bool with a value of 0 for false and 1 for
true®.

The keyword nullptr represents a null pointer constant. Details of its type are described in 7.21.2.

6.4.5 String literals

Syntax
string-literal:
encoding-prefixopt "' s-char-sequenceopt "

8)The constants false and true promote to type int, see 6.3.1.1. When used for arithmetic, in translation phase 4, they are
signed values and the result of such arithmetic is consistent with the results of later translation phases.

66 Language §6.4.5

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence

Constraints

If a sequence of adjacent string literal tokens includes prefixed string literal tokens, the prefixed
tokens shall all have the same prefix.

Description

A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,
asin "xyz". A UTF-8 string literal is the same, except prefixed by u8. A wchar_t string literal is the
same, except prefixed by L. A UTF-16 string literal is the same, except prefixed by u. A UTF-32 string
literal is the same, except prefixed by U. Collectively, wchar_t, UTF-16, and UTF-32 string literals are
called wide string literals.

The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF-8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote ’ is representable either by itself or by the escape
sequence \ ', but the double-quote " shall be represented by the escape sequence \".

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of adjacent
character and identically-prefixed string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens has an encoding prefix, the resulting multibyte character
sequence is treated as having the same prefix; otherwise, it is treated as a character string literal.

In translation phase 7, a byte or code of value zero is appended to each multibyte character sequence
that results from a string literal or literals. % The multibyte character sequence is then used to
initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence corresponding to the literal encoding (6.2.9). For UTF-8
string literals, the array elements have type char8_t, and are initialized with the characters of the
multibyte character sequence, as encoded in UTF-8. For wide string literals prefixed by the letter
L, the array elements have type wchar_t and are initialized with the sequence of wide characters
corresponding to the wide literal encoding. For wide string literals prefixed by the letter u or U,
the array elements have type charl6_t or char32_t, respectively, and are initialized sequence of
wide characters corresponding to UTF-16 and UTF-32 encoded text, respectively. The value of a
string literal containing a multibyte character or escape sequence not represented in the execution
character set is implementation-defined. Any hexadecimal escape sequence or octal escape sequence
specified in a u8, u, or U string specifies a single char8_t, char16_t, or char32_t value and may
result in the full character sequence not being valid UTF-8, UTF-16, or UTF-32.

It is unspecified whether these arrays are distinct provided their elements have the appropriate
values. If the program attempts to modify such an array, the behavior is undefined.

EXAMPLE 1 This pair of adjacent character string literals

| "\x12" "3"

89) A string literal might not be a string (see 7.1.1), because a null character can be embedded in it by a \0 escape sequence.

§6.4.5 Language 67

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

produces a single character string literal containing the two characters whose values are "\x12"’ and
"3’, because escape sequences are converted into single members of the execution character set just
prior to adjacent string literal concatenation.

EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"

L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

i L"abc"

Likewise, each of the sequences

nan ||b|| u"c"
ngn uubu nen
u"a" ||b|| u'c"

u"a uubu u"c"

is equivalent to

i u"abc"

Forward references: common definitions <stddef.h> (7.21), the mbstowcs function (7.24.8.1),
Unicode utilities <uchar.h> (7.30).

6.4.6 Punctuators

Syntax
punctuator: one of
L1 ¢) {1} ->
++ -- & *x + - ~ |
/ % << >> < > <= >= == I= ~ | && ||
? ;
= k= = %= 4= == <<= >>= §&= "= | =
, # ##
< > <% %> % %:%

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance. Depending on
context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

In all aspects of the language, the six tokens””
<: > <% %> % %i%:

behave, respectively, the same as the six tokens
[1 { } # ##

except for their spelling.”V

9 These tokens are sometimes called “digraphs”.
“DThus [and <: behave differently when “stringized” (see 6.10.4.2), but can otherwise be freely interchanged.

68 Language §6.4.6

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Forward references: expressions (6.5), declarations (6.7), preprocessing directives (6.10), statements
(6.8).

6.4.7 Header names

Syntax

header-name:
< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
the new-line character and >

g-char-sequence:
g-char
g-char-sequence g-char

g-char:
any member of the source character set except
the new-line character and "

Semantics

The sequences in both forms of header names are mapped in an implementation-defined manner to
headers or external source file names as specified in 6.10.2.

If the characters ', \, ", //, or /* occur in the sequence between the < and > delimiters, the behavior
is undefined. Similarly, if the characters ', \, //, or /* occur in the sequence between the " delimiters,
the behavior is undefined.?

Header name preprocessing tokens are recognized only within #include and #embed preprocessing
directives, in —_has_include and __has_embed expressions, as well as in implementation-defined
locations within #pragma directives.”®

EXAMPLE The following sequence of characters:

0x3<1l/a.h>1le2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token
delimited by a { on the left and a } on the right).

| {0X3H<H1H/HaH . HhH>}{1e2}
\ {#}{include} {<1l/a.h>} \
\ {#}{define} {const}{.}{member}{@}{$} ‘

9)Thus, sequences of characters that resemble escape sequences cause undefined behavior.
9)For an example of a header name preprocessing token used in a #pragma directive, see 6.10.10.

§6.4.7 Language 69

1

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers

Syntax

pp-number:
digit
. digit
pp-number identifier-continue
pp-number ' digit
pp-number ' nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description
A preprocessing number begins with a digit optionally preceded by a period (.) and may be followed
by valid identifier characters and the character sequences e+, e-, E+, E-, p+, p-, P+, or P-.

Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value; it acquires both after a successful conversion
(as part of translation phase 7) to a floating constant token or an integer constant token.

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters /* introduce a
comment. The contents of such a comment are examined only to identify multibyte characters and
to find the characters */ that terminate it.**

Except within a character constant, a string literal, or a comment, the characters // introduce a
comment that includes all multibyte characters up to, but not including, the next new-line character.
The contents of such a comment are examined only to identify multibyte characters and to find the
terminating new-line character.

EXAMPLE
"a//b" // four-character string literal
#include "//e" // undefined behavior
/] */ // comment, not syntax error
f = g/**//h; // equivalent to f = g / h;
//\
i(); // part of a two-line comment
/\
/ 30); // part of a two-line comment
#define glue(x,y) x##y
glue(/,/) k(); // syntax error, not comment
/x//%/ 1(); // equivalent to 1();
m = n//**/0

+ p; // equivalent to m = n + p;

9 Thus, /* ...*/ comments do not nest.

70 Language §64.9

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.5 Expressions

An expression is a sequence of operators and operands that specifies computation of a value, or that
designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.”

The grouping of operators and operands is indicated by the syntax.”® Except as specified later, side
effects and value computations of subexpressions are unsequenced.””)

Some operators (the unary operator ~, and the binary operators <<, >>, & *, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

The effective type of an object for an access to its stored value is the declared type of the object, if
any.”® If a value is stored into an object having no declared type through an lvalue having a type
that is not a non-atomic character type, then the type of the lvalue becomes the effective type of the
object for that access and for subsequent accesses that do not modify the stored value. If a value
is copied into an object having no declared type using memcpy or memmove, or is copied as an array
of character type, then the effective type of the modified object for that access and for subsequent
accesses that do not modify the value is the effective type of the object from which the value is
copied, if it has one. For all other accesses to an object having no declared type, the effective type of
the object is simply the type of the lvalue used for the access.

An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:*

— a type compatible with the effective type of the object,
— a qualified version of a type compatible with the effective type of the object,

— atype that is the signed or unsigned type corresponding to the effective type of the object,

%)This paragraph renders undefined statement expressions such as

i=++1+ 1;
ali++] = i;

while allowing

9)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), generic selection parentheses () (6.5.1.1), subscripting brackets codel[] (6.5.2.1), function-call
parentheses () (6.5.2.2), and the conditional operator ?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each
subclause by the syntax for the expressions discussed therein.

9)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately
sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.

%) Allocated objects have no declared type.

9)The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

§6.5 Language 71

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evalua-
tion method.!® The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted
expressions. Otherwise, whether and how expressions are contracted is implementation-defined.!*V

Operators involving decimal floating types are evaluated according to the semantics of IEC 60559,
including production of results with the preferred quantum exponent as specified in IEC 60559.

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.26.2).

6.5.1 Primary expressions

Syntax
primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

Constraints

The identifier in an identifier primary expression shall have a visible declaration as an ordinary
identifier that declares an object or a function.!%?

Semantics

An identifier primary expression designating an object is an lvalue. An identifier primary expression
designating a function is a function designator.

A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.4.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

A parenthesized expression is a primary expression. Its type, value, and semantics are identical to
those of the unparenthesized expression.

A generic selection is a primary expression. Its type, value, and semantics depend on the selected
generic association, as detailed in the following subclause.

Forward references: declarations (6.7).

6.5.1.1 Generic selection
Syntax
generic-selection:
—Generic (assignment-expression , generic-assoc-list)

generic-assoc-list:
generic-association

100)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression might
also omit the raising of floating-point exceptions.

10D This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple
C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.

102) An identifier designating an enumeration constant is a primary expression through the constant production, not the
identifier production.

72 Language §65.1.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

generic-assoc-list , generic-association
generic-association:

type-name : assignment-expression

default : assignment-expression

Constraints

A generic selection shall have no more than one default generic association. The type name in a
generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an lvalue conversion,'®)
array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics

The controlling expression of a generic selection is not evaluated. If a generic selection has a generic
association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue, a
function designator, or a void expression.

EXAMPLE A cbrt type-generic macro could be implemented as follows:

i #define cbrt(X) _Generic((X),
\ long double: chrtl,
\ default: cbrt,

P

float: cbrtf
) (X)

7.27 shows how such a macro could be implemented with the required rounding properties.

6.5.2 Postfix operators

Syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listop;)
postfix-expression . identifier
postfix-expression =-> identifier
postfix-expression ++
postfix-expression = -
compound-literal

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

103) An Ivalue conversion drops type qualifiers.

§6.5.2 Language 73

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to complete object fype”, the other expression shall
have integer type, and the result has type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted designation of
an element of an array object. The definition of the subscript operator [] is that EL[E2] is identical
to (x((E1)+(E2))). Because of the conversion rules that apply to the binary + operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2-th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n > 2) with dimensions ¢ x j x --- X k, then E (used as other than an lvalue) is
converted to a pointer to an (n — 1)-dimensional array with dimensions j x --- x k. If the unary *
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n — 1)-dimensional array, which itself is converted into a pointer if used as other than an
lvalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration

| int x[31[5]; |

Here x is a 3 x 5 array of objects of type int; more precisely, x is an array of three element objects,
each of which is an array of five objects of type int. In the expression x[1], which is equivalent to

(x((x)+(1))), x is first converted to a pointer to the initial array of five objects of type int. Then i
is adjusted according to the type of x, which conceptually entails multiplying i by the size of the
object to which the pointer points, namely an array of five int objects. The results are added and
indirection is applied to yield an array of five objects of type int. When used in the expression

x[11[j], that array is in turn converted to a pointer to the first of the objects of type int, so x[1]1[j]

yields an int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.6.2).

6.5.2.2 Function calls
Constraints

The expression that denotes the called function'® shall have type pointer to function returning
void or returning a complete object type other than an array type.

The number of arguments shall agree with the number of parameters. Each argument shall have a
type such that its value may be assigned to an object with the unqualified version of the type of its
corresponding parameter

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-separated
list of expressions is a function call. The postfix expression denotes the called function. The list of
expressions specifies the arguments to the function.

An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.'®

If the expression that denotes the called function has type pointer to function returning an object
type, the function call expression has the same type as that object type, and has the value determined
as specified in 6.8.6.4. Otherwise, the function call has type void.

104)Most often, this is the result of converting an identifier that is a function designator.

105 A function can change the values of its parameters, but these changes cannot affect the values of the arguments. On the
other hand, it is possible to pass a pointer to an object, and the function can then change the value of the object pointed to. A
parameter declared to have array or function type is adjusted to have a pointer type as described in 6.7.6.3.

74 Language §6.5.22

10

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

The arguments are implicitly converted, as if by assignment, to the types of the corresponding
parameters, taking the type of each parameter to be the unqualified version of its declared type. The
ellipsis notation in a function prototype declarator causes argument type conversion to stop after the
last declared parameter, if present. The integer promotions are performed on each trailing argument,
and trailing arguments that have type float are promoted to double. These are called the default
argument promotions. No other conversions are performed implicitly.

If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.'®

Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

EXAMPLE In the function call

| (xpfIF101) (F20), 3() + f4())

the functions f1, f2, 3, and f4 can be called in any order. All side effects have to be completed
before the function pointed to by pf[f1()] is called.

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), the return statement
(6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the -> operator shall have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member of a structure
or union object. The value is that of the named member,'%” and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

A postfix expression followed by the -> operator and an identifier designates a member of a structure
or union object. The value is that of the named member of the object to which the first expression
points, and is an Ivalue.!%® If the first expression is a pointer to a qualified type, the result has the
so-qualified version of the type of the designated member.

Accessing a member of an atomic structure or union object results in undefined behavior.®”

One special guarantee is made to simplify the use of unions: if a union contains several structures
that share a common initial sequence (see below), and if the union object currently contains one of
these structures, it is permitted to inspect the common initial part of any of them anywhere that
a declaration of the completed type of the union is visible. Two structures share a common initial

106)In other words, function executions do not interleave with each other.

107)1f the member used to read the contents of a union object is not the same as the member last used to store a value in the
object the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called type punning). This might be a non-value representation.

109)f &E is a valid pointer expression (where & is the address of operator, which generates a pointer to its operand), the
expression (&E) ->MOS is the same as E.MOS.

109 For example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a
member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

§6.5.23 Language 75

ISO/IEC 9899:2023 (E) working draft — April 1, 2023

N3096

sequence if corresponding members have compatible types (and, for bit-fields, the same widths) for a

sequence of one or more initial members.

EXAMPLE1 If f is a function returning a structure or union, and x is a member of that structure or

union, f() .x is a valid postfix expression but is not an lvalue.

EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:
s.i int
s.ci const int
cs.1 const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
P on;
struct {
int type;
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
Tou;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... x/
if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)
/* ... X/

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };
struct t2 { int m; };
int f(struct tl *pl, struct t2 *p2)

{
if (pl->m < 0)
p2->m = -p2->m;
return pl->m;
}
int g()
{

union {
struct tl1 s1;
struct t2 s2;
Tou;
/* ... %/
return f(&u.sl, &u.s2);

76 Language

§6.5.2.3

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

| } |

Forward references: address and indirection operators (6.5.3.2), structure and union specifiers
(6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The result of the postfix ++ operator is the value of the operand. As a side effect, the value of the
operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an
indeterminately sequenced function call, the operation of postfix ++ is a single evaluation. Postfix

++ on an object with atomic type is a read-modify-write operation with memory_order_seq_cst
memory order semantics.!!?

The postfix - - operator is analogous to the postfix ++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals

Syntax
compound-literal:
(storage-class-specifiersop type-name) braced-initializer
storage-class-specifiers:
storage-class-specifier
storage-class-specifiers storage-class-specifier
Constraints

The type name shall specify a complete object type or an array of unknown size, but not a variable
length array type.

All the constraints for initializer lists in 6.7.10 also apply to compound literals.

If the compound literal is associated with file scope or block scope (see ??) the storage-class specifiers
SC (possibly empty)!'V, type name T, and initializer list, if any, shall be such that they are valid
specifiers for an object definition in file scope or block scope, respectively, of the following form,

\ SC typeof(T) ID = { IL };

10)Where a pointer to an atomic object can be formed and E has integer type, E++ is equivalent to the following code
sequence where T is the type of E:

T xaddr = &E;
T old = xaddr;
T new;

do {

new = old + 1;
} while (!atomic_compare_exchange_strong(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.16.2.
TIDTf the storage-class specifiers contain the same storage-class specifier more than once, the following constraint is violated.

§6.5.25 Language 77

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

where ID is an identifier that is unique for the whole program and where IL is a (possibly empty)
initializer list with nested structure, designators, values and types as the initializer list of the
compound literal. All the constraints for storage class specifiers in 6.7.1 also apply correspondingly
to compound literals. If the compound literal is associated with function prototype scope, constraints
as if in block scope apply.

Semantics

For acompound literal associated with function prototype scope, the type is determined as if in block
scope and no object is created; if it is a compound literal constant it is evaluated at translation time;
if it is not a compound literal constant, neither the compound literal as a whole nor any of the
initializers are evaluated. Otherwise, a compound literal provides an unnamed object whose value,
type, storage duration and other properties are as if given by the definition syntax in the constraints;
if the storage duration is automatic, the lifetime of the instance of the unnamed object is the current
execution of the enclosing block.!'?) If the storage-class specifiers are absent or contain constexpr,
static, register, or thread_local the behavior is as if the object were declared and initialized
in the corresponding scope with these storage-class specifiers; if another storage-class specifier is
present, the behavior is undefined. If the storage-class specifier constexpr is present, the initializer
is evaluated at translation time. Otherwise, if the storage duration is automatic, the initializer is
evaluated at each evaluation of the compound literal; if the storage duration is static or thread the
initializer is (as if) evaluated once prior to program startup.

The value of the compound literal is that of an Ivalue corresponding to the unnamed object.

All the semantic rules for initializer lists in 6.7.10 also apply to compound literals.!'?)

String literals, and compound literals with const-qualified types, including those specified with
constexpr, need not designate distinct objects.!'¥

EXAMPLE 1 Consider the following 2 functions:

int f(intx);

int g(char x para[f((int[27]){ 0, })1) {
/* ... x/
return 0;

Here, each call to g creates an unnamed object of type int[27] to determine the variably-modified
type of para for the duration of the call. During that determination, a pointer to the object is passed
into a call to the function f. If a pointer to the object is kept by f, access to that object is possible
during the whole execution of the call to g. The lifetime of the object ends with the end of the call to
g; for any access after that, the behavior is undefined.

EXAMPLE 2 The file scope definition

| int *p = (int [1){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and
the second, four. The expressions in this compound literal are required to be constant. The unnamed
object has static storage duration.

EXAMPLE 3 In contrast, in

[
\ void f(void)

\ {

112)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an Ivalue.

113)For example, subobjects without explicit initializers are initialized to zero.

19 This allows implementations to share storage for string literals and constant compound literals with the same or
overlapping representations.

78 Language §6.5.25

12

13

14

15

16

17

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

‘ int *p;

\ Jx. . %/ \
| p = (int [2]){*p};

\ Jx. .. %/

| |

p is assigned the address of the first element of an array of two ints, the first having the value
previously pointed to by p and the second, zero. The expressions in this compound literal need not
be constant. The unnamed object has automatic storage duration.

EXAMPLE 4 Initializers with designations can be combined with compound literals. Structure
objects created using compound literals can be passed to functions without depending on member
order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 5 A read-only compound literal can be specified through constructions like:

[
\ (const float []){1le0, lel, le2, le3, le4, le5, le6}

EXAMPLE 6 The following three expressions have different meanings:

"/tmp/ fileXXXXXX"
(char [1){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but need not be modifiable;
the last two have automatic storage duration when they occur within the body of a function, and the
first of these two is modifiable.

EXAMPLE 7 Like string literals, const-qualified compound literals can be placed into read-only
memory and can even be shared. For example,

\ (const char []){"abc"} == "abc"

might yield 1 if the literals” storage is shared.

EXAMPLE 8 Since compound literals are unnamed, a single compound literal cannot specify a
circularly linked object. For example, there is no way to write a self-referential compound literal that
could be used as the function argument in place of the named object endless_zeros below:

struct int_list { int car; struct int_list xcdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 9 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)

{
struct s xp = 0, xq;
int j = 0;

§6.5.25 Language 79

18

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

\ again:

\ q=p, p==&((struct s){ j++ });
\ if (j < 2) goto again;

\ return p == q & q->i == 1;

\ }

L

The function f () always returns the value 1.

Note that if an iteration statement were used instead of an explicit goto and a label, the lifetime of
the unnamed object would be the body of the loop only, and on entry next time around p would
have indeterminate representation, which would result in undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.10).

6.5.3 Unary operators
Syntax

unary-expression:
postfix-expression
++ Unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
alignof (type-name)

unary-operator: one of
& *x + - ~ 1

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the new value of
the operand after incrementation. The expression ++E is equivalent to (E+=1), where the value 1
is of the appropriate type. See the discussions of additive operators and compound assignment
for information on constraints, types, side effects, and conversions and the effects of operations on
pointers.

The prefix - - operator is analogous to the prefix ++ operator, except that the value of the operand is
decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators
Constraints

The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an Ivalue that designates an object that is not a bit-field and is not declared with the
register storage-class specifier.

The operand of the unary * operator shall have pointer type.

Semantics

The unary & operator yields the address of its operand. If the operand has type “type”, the result has
type “pointer to type”. If the operand is the result of a unary * operator, neither that operator nor

80 Language §6.5.3.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a + operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

The unary * operator denotes indirection. If the operand points to a function, the result is a function
designator; if it points to an object, the result is an lvalue designating the object. If the operand has
type “pointer to type”, the result has type “type”. If an invalid value has been assigned to the pointer,
the behavior of the unary * operator is undefined.!*®

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unary + or - operator shall have arithmetic type; of the ~ operator, integer type;
of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the unary - operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression ~E is equivalent to the maximum value representable in
that type minus E.

The result of the logical negation operator ! is 0 if the value of its operand compares unequal to
0, 1 if the value of its operand compares equal to 0. The result has type int. The expression !E is
equivalent to (0==E).

6.5.3.4 The sizeof and alignof operators
Constraints

The sizeof operator shall not be applied to an expression that has function type or an incomplete
type, to the parenthesized name of such a type, or to an expression that designates a bit-field member.
The alignof operator shall not be applied to a function type or an incomplete type.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. The size is determined from the type of the operand. The result
is an integer. If the type of the operand is a variable length array type, the operand is evaluated;
otherwise, the operand is not evaluated and the result is an integer constant.

The alignof operator yields the alignment requirement of its operand type. The operand is not
evaluated and the result is an integer constant expression. When applied to an array type, the result
is the alignment requirement of the element type.

When sizeof is applied to an operand that has type char, unsigned char, or signed char, (or
a qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.''® When applied to an operand that has structure or

115 Thus, &+E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). Itis always true thatif Eisa
function designator or an lvalue that is a valid operand of the unary & operator, *&E is a function designator or an lvalue
equal to E. If P is an Ivalue and T is the name of an object pointer type, * (T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, and the address of an object after the end of its lifetime.

116)When applied to a parameter declared to have array or function type, the sizeof operator yields the size of the adjusted

§6.5.34 Language 81

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

union type, the result is the total number of bytes in such an object, including internal and trailing
padding.

The value of the result of both operators is implementation-defined, and its type (an unsigned
integer type) is size_t, defined in <stddef.h> (and other headers).

EXAMPLE 1 A principal use of the sizeof operator is in communication with routines such as
storage allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of an
object to allocate and return a pointer to void. For example:

extern void *xalloc(size_t);
double *dp = alloc(sizeof x*dp);

The implementation of the alloc function presumably ensures that its return value is aligned
suitably for conversion to a pointer to double.

EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:

\ sizeof array / sizeof array[0]

EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a
function:

#include <stddef.h>

size_t fsize3(int n)

{
char b[n+3]; // variable length array
return sizeof b; // execution time sizeof
}
int main(void)
{
size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;
)

Forward references: common definitions <stddef.h> (7.21), declarations (6.7), structure and union
specifiers (6.7.2.1), type names (6.7.7), array declarators (6.7.6.2).

6.5.4 Cast operators

Syntax

cast-expression:
unary-expression
(type-name) cast-expression

Constraints
Unless the type name specifies a void type, the type name shall specify atomic, qualified, or
unqualified scalar type, and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of 6.5.16.1, shall be
specified by means of an explicit cast.

A pointer type shall not be converted to any floating type. A floating type shall not be converted to
any pointer type. The type nullptr_t shall not be converted to any type other than void, bool or a

(pointer) type (see 6.9.1).

82 Language §6.5.4

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

pointer type. If the target type is nullptr_t, the cast expression shall be a null pointer constant or
have type nullptr_t.

Semantics
Size expressions and typeof operators contained in a type name used with a cast operator are
evaluated whenever the cast expression is evaluated.

Preceding an expression by a parenthesized type name converts the value of the expression to the
unqualified, non-atomic version of the named type. This construction is called a cast.!'”) A cast that
specifies no conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater range or precision than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type and removes any extra range and precision.

Forward references: equality operators (6.5.9), function declarators (6.7.6.3), simple assignment
(6.5.16.1), type names (6.7.7).

6.5.5 Multiplicative operators
Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints
Each of the operands shall have arithmetic type. The operands of the % operator shall have integer
type.

If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the second; the
result of the % operator is the remainder. In both operations, if the value of the second operand is
zero, the behavior is undefined.

When integers are divided, the result of the / operator is the algebraic quotient with any fractional
part discarded.!® If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a;
otherwise, the behavior of both a/b and a%b is undefined.

6.5.6 Additive operators

Syntax

additive-expression:
multiplicative-expression

additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

17 A cast does not yield an Ivalue.
118)This is often called “truncation toward zero”.

§6.5.6 Language 83

10

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a
complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object
types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
If both operands have arithmetic type, the usual arithmetic conversions are performed on them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the subtraction of the second
operand from the first.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.
In other words, if the expression P points to the i-th element of an array object, the expressions
(P)+N (equivalently, N+ (P)) and (P) -N (where N has the value n) point to, respectively, the ¢ + n-th
and i — n-th elements of the array object, provided they exist. Moreover, if the expression P points to
the last element of an array object, the expression (P)+1 points one past the last element of the array
object, and if the expression Q points one past the last element of an array object, the expression
(Q) -1 points to the last element of the array object. If the pointer operand and the result do not point
to elements of the same array object or one past the last element of the array object, the behavior is
undefined. If the addition or subtraction produces an overflow, the behavior is undefined. If the
result points one past the last element of the array object, it shall not be used as the operand of a
unary * operator that is evaluated.

When two pointers are subtracted, both shall point to elements of the same array object, or one past
the last element of the array object; the result is the difference of the subscripts of the two array
elements. The size of the result is implementation-defined, and its type (a signed integer type) is
ptrdiff_t defined in the <stddef.h> header. If the result is not representable in an object of that
type, the behavior is undefined. In other words, if the expressions P and Q point to, respectively, the
i-th and j-th elements of an array object, the expression (P) - (Q) has the value i — j provided the
value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an element of
an array object or one past the last element of an array object, and the expression Q points to the last
element of the same array object, the expression ((Q)+1) - (P) has the same value as ((Q) - (P))+1
and as - ((P) - ((Q)+1)), and has the value zero if the expression P points one past the last element
of the array object, even though the expression (Q)+1 does not point to an element of the array
object.!1?)

119 Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the
integer expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally
pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference
between the character pointers is similarly divided by the size of the object originally pointed to.

84 Language §6.5.6

11

12

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
intn =4, m= 3;
int a[n][m];
int (*p)[m] = a; // p == &a[0]
p +=1; // p == &all]
(xp)[2] = 99; // alll[2] == 99
n=p-a; // n==1

}

If array a in the above example were declared to be an array of known constant size, and pointer p
were declared to be a pointer to an array of the same known constant size (pointing to a), the results
would be the same.

Forward references: array declarators (6.7.6.2), common definitions <stddef . h> (7.21).

6.5.7 Bitwise shift operators
Syntax
shift-expression:
additive-expression

shift-expression << additive-expression
shift-expression >> additive-expression

Constraints
Each of the operands shall have integer type.

Semantics

The integer promotions are performed on each of the operands. The type of the result is that of the
promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has
an unsigned type, the value of the result is E1 x 252, wrapped around. If E1 has a signed type and
nonnegative value, and E1 x 22 is representable in the result type, then that is the resulting value;
otherwise, the behavior is undefined.

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of
E1/2%2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression shift-expression
relational-expression >= shift-expression

A
1]

Constraints
One of the following shall hold:

— both operands have real type; or

When viewed in this way, an implementation need only provide one extra byte (which can overlap another object in the
program) just after the end of the object to satisfy the “one past the last element” requirements.

§6.5.8 Language 85

3

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— both operands are pointers to qualified or unqualified versions of compatible object types.

If either operand has decimal floating type, the other operand shall not have standard floating type.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are performed.
Positive zeros compare equal to negative zeros.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

When two pointers are compared, the result depends on the relative locations in the address space
of the objects pointed to. If two pointers to object types both point to the same object, or both point
one past the last element of the same array object, they compare equal. If the objects pointed to
are members of the same aggregate object, pointers to structure members declared later compare
greater than pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values. All pointers to members of the same union object compare equal. If the expression
P points to an element of an array object and the expression Q points to the last element of the same
array object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is
undefined.

Each of the operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.!?”) The result has type int.

6.5.9 Equality operators

Syntax

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression = relational-expression

Constraints
One of the following shall hold:

— both operands have arithmetic type;
— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void;

— both operands have type nullptr_t;
— one operand has type nullptr_t and the other is a null pointer constant; or,

— one operand is a pointer and the other is a null pointer constant or has type nullptr_t.

If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

120)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, “if a is less than b, compare 1 to c; otherwise, compare 0 to c”.

86 Language §6.5.9

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Semantics

The == (equal to) and != (not equal to) operators are analogous to the relational operators except for
their lower precedence!?) Each of the operators yields 1 if the specified relation is true and 0 if it is
false. The result has type int. For any pair of operands, exactly one of the relations is true.

If both of the operands have arithmetic type, the usual arithmetic conversions are performed.
Positive zeros compare equal to negative zeros. Values of complex types are equal if and only if both
their real parts are equal and also their imaginary parts are equal. Any two values of arithmetic
types from different type domains are equal if and only if the results of their conversions to the
(complex) result type determined by the usual arithmetic conversions are equal. If both operands
have type nullptr_t or one operand has type nullptr_t and the other is a null pointer constant,
they compare equal.

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant or has type nullptr_t, they compare equal if the former is a null pointer. If one
operand is a pointer to an object type and the other is a pointer to a qualified or unqualified version
of void, the former is converted to the type of the latter.

Two pointers compare equal if and only if both are null pointers, both are pointers to the same object
(including a pointer to an object and a subobject at its beginning) or function, both are pointers to
one past the last element of the same array object, or one is a pointer to one past the end of one array
object and the other is a pointer to the start of a different array object that happens to immediately
follow the first array object in the address space.!??)

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6.5.10 Bitwise AND operator

Syntax

AND-expression:
equality-expression
AND-expression & equality-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result
is set if and only if each of the corresponding bits in the converted operands is set).

6.5.11 Bitwise exclusive OR operator

Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

Constraints
Each of the operands shall have integer type.

12)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

122Two objects can be adjacent in memory because they are adjacent elements of a larger array or adjacent members
of a structure with no padding between them, or because the implementation chose to place them so, even though they
are unrelated. If prior invalid pointer operations (such as accesses outside array bounds) produced undefined behavior,
subsequent comparisons also produce undefined behavior.

§6.5.11 Language 87

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the * operator is the bitwise exclusive OR of the operands (that is, each bit in the result
is set if and only if exactly one of the corresponding bits in the converted operands is set).

6.5.12 Bitwise inclusive OR operator

Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the result
is set if and only if at least one of the corresponding bits in the converted operands is set).

6.5.13 Logical AND operator
Syntax
logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.

Semantics
The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it yields 0. The
result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.

6.5.14 Logical OR operator
Syntax
logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

Constraints
Each of the operands shall have scalar type.

Semantics
The | | operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it yields 0.
The result has type int.

Unlike the bitwise | operator, the || operator guarantees left-to-right evaluation; if the second
operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand compares unequal to 0, the second operand is not evaluated.

88 Language §6.5.14

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.5.15 Conditional operator
Syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints
The first operand shall have scalar type.

One of the following shall hold for the second and third operands'®:

— both operands have arithmetic type;

— both operands have compatible structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— both operands have nullptr_t type;

— one operand is a pointer and the other is a null pointer constant or has type nullptr_t; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

If either of the second or third operands has decimal floating type, the other operand shall not have
standard floating type, complex type, or imaginary type.

Semantics

The first operand is evaluated; there is a sequence point between its evaluation and the evaluation
of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;
the result is the value of the second or third operand (whichever is evaluated), converted to the type
described below.!2%

If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has the type of one operand. If
both operands have void type, the result has void type.

If both the second and third operands are pointers, the result type is a pointer to a type qualified
with all the type qualifiers of the types referenced by both operands; if one is a null pointer constant
(other than a pointer) or has type nullptr_t and the other is a pointer, the result type is the pointer
type; if both the second and third operands have nullptr_t type, the result also has that type.
Furthermore, if both operands are pointers to compatible types or to differently qualified versions of
compatible types, the result type is a pointer to an appropriately qualified version of the composite
type; if one operand is a null pointer constant, the result has the type of the other operand; otherwise,
one operand is a pointer to void or a qualified version of void, in which case the result type is a
pointer to an appropriately qualified version of void.

EXAMPLE The common type that results when the second and third operands are pointers is
determined in two independent stages. The appropriate qualifiers, for example, do not depend on
whether the two pointers have compatible types.

Given the declarations

123)]f a second or third operand of type nullptr_t is used and the other operand is not a pointer and does not have type
nullptr_t itself, a constraint is violated even if that other operand is a null pointer constant such as 0.
124) A conditional expression does not yield an lvalue.

§6.5.15 Language 89

ISO/IEC 9899:2023 (E) working draft — April 1, 2023

N3096

const void xc_vp;
void *vp;

const int *c_ip;
volatile int *v_ip;
int xip;

const char xc_cp;

the third column in the following table is the common type that is the result of a conditional
expression in which the first two columns are the second and third operands (in either order):

c_vp c_ip const void x

v_ip © volatile int x*

c_ip v_ip const volatile int x
vp c_cp const void *

ip c_ip const int *

vp ip void =

6.5.16 Assignment operators
Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= k= /= %= += - <<= >>= &&= = | =

Constraints
An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

An assignment operator stores a value in the object designated by the left operand. An assignment
expression has the value of the left operand after the assignment,'? but is not an lvalue. The type of
an assignment expression is the type the left operand would have after Ivalue conversion. The side
effect of updating the stored value of the left operand is sequenced after the value computations of

the left and right operands. The evaluations of the operands are unsequenced.

6.5.16.1 Simple assignment
Constraints
One of the following shall hold!?9:

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right operand

has arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type

compatible with the type of the right operand;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left operand has all

the qualifiers of the type pointed to by the right operand;

125 The implementation is permitted to read the object to determine the value but is not required to, even when the object

has volatile-qualified type.

126)The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in
6.3.2.1) that changes lvalues to “the value of the expression” and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).

90 Language

§6.5.16.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) one operand is a pointer to an object type,
and the other is a pointer to a qualified or unqualified version of void, and the type pointed to
by the left operand has all the qualifiers of the type pointed to by the right operand;

— the left operand has an atomic, qualified, or unqualified version of the nullptr_t type and
the right operand is a null pointer constant or its type is nullptr_t!?”);

— the left operand is an atomic, qualified, or unqualified pointer, and the right operand is a null
pointer constant or its type is nullptr_t; or

— the left operand has type atomic, qualified, or unqualified bool, and the right operand is a
pointer or its type is nullptr_t.

Semantics
2 Insimple assignment (=), the value of the right operand is converted to the type of the assignment
expression and replaces the value stored in the object designated by the left operand. 2

3 If the value being stored in an object is read from another object that overlaps in any way the storage
of the first object, then the two objects shall occupy exactly the same storage and shall have qualified
or unqualified versions of a compatible type; otherwise, the behavior is undefined.

4 EXAMPLE1 In the program fragment

int f(void);

char c;

/x ... %/

if ((c = f()) == -1)
/*x ... %/

the int value returned by the function could be truncated when stored in the char, and then
converted back to int width prior to the comparison. In an implementation in which “plain”
char has the same range of values as unsigned char (and char is narrower than int), the result
of the conversion cannot be negative, so the operands of the comparison can never compare equal.
Therefore, for full portability, the variable c would be declared as int.

5 EXAMPLE 2 In the fragment:

char c;
int i;
long 1;

the value of i is converted to the type of the assignment expression ¢ = i, that is, char type. The
value of the expression enclosed in parentheses is then converted to the type of the outer assignment
expression, that is, long int type.

6 EXAMPLE 3 Consider the fragment:

const char xxcpp;

char x*p;

const char c = 'A’;

cpp = &p; // constraint violation
xcpp = &c; // valid

xp = 0; // valid

127)The assignment of an object of type nullptr_t with a value of another type, even if the value is a null pointer constant,
is a constraint violation.
128) As described in 6.2.6.1, a store to an object with atomic type is done with memory_order_seq_cst semantics.

§6.5.16.1 Language 91

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

The first assignment is unsafe because it would allow the following valid code to attempt to change
the value of the const object c.

6.5.16.2 Compound assignment

Constraints

For the operators += and -= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after Ivalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator.

If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics

A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression E1 =
Elop (E2), except that the Ivalue E1 is evaluated only once, and with respect to an indeterminately

sequenced function call, the operation of a compound assignment is a single evaluation. If E1 has an

atomic type, compound assignment is a read-modify-write operation with memory_order_seq_cst

memory order semantics.

NOTE 1 Where a pointer to an atomic object can be formed and E1 and E2 have integer type, this is equivalent to the
following code sequence where T1 is the type of E1 and T2 is the type of E2:

Tl xaddr = &E1;
T2 val = (E2);
T1 old = *addr;
T1 new;
do {
new = old op val;
} while ('atomic_compare_exchange_strong(addr, &old, new));

with new being the result of the operation.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during discarded
evaluations of new would also be discarded to satisfy the equivalence of E1 op= E2 and E1 = E1 op (E2). For example, if
Annex F is in effect, the floating types involved have IEC 60559 binary formats, and FLT_EVAL_METHOD is 0, the equivalent
code would be:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/* ... x/
fenv_t fenv;
Tl xaddr = &E1;
T2 val = E2;
T1 old = xaddr;
Tl new;
feholdexcept (&fenv);
for (;;) {
new = old op val;
if (atomic_compare_exchange_strong(addr, &old, new))
break;
feclearexcept (FE_ALL_EXCEPT) ;
)

feupdateenv (&fenv);

If FLT_EVAL_METHOD is not 0, then T2 is expected to be a type with the range and precision to which E2 is evaluated to satisfy
the equivalence.

92 Language §6.5.16.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.5.17 Comma operator

Syntax
expression:

assignment-expression

expression , assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a sequence point
between its evaluation and that of the right operand. Then the right operand is evaluated; the result
has its type and value.'?

EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot
appear in contexts where a comma is used to separate items in a list (such as arguments to functions
or lists of initializers). On the other hand, it can be used within a parenthesized expression or within
the second expression of a conditional operator in such contexts. In the function call

\ f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.10).

129) A comma operator does not yield an lvalue.

§6.5.17 Language 93

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.6 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and accordingly
may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call, or comma
operators, except when they are contained within a subexpression that is not evaluated.'>"

Each constant expression shall evaluate to a constant that is in the range of representable values for
its type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating expression
is evaluated in the translation environment, the arithmetic range and precision shall be at least as
great as if the expression were being evaluated in the execution environment. '3V

A compound literal with storage-class specifier constexpr is a compound literal constant, as is a
postfix expression that applies the . member access operator to a compound literal constant of
structure or union type, even recursively. A compound literal constant is a constant expression with
the type and value of the unnamed object.

An identifier that is:

— an enumeration constant,
— a predefined constant, or

— declared with storage-class specifier constexpr and has an object type,

is a named constant, as is a postfix expression that applies the . member access operator to a named
constant of structure or union type, even recursively. For enumeration and predefined constants,
their value and type are defined in the respective clauses; for constexpr objects, such a named
constant is a constant expression with the type and value of the declared object.

An integer constant expression'3? shall have integer type and shall only have operands that are
integer constants, named and compound literal constants of integer type, character constants,
sizeof expressions whose results are integer constants, alignof expressions, and floating, named,
or compound literal constants of arithmetic type that are the immediate operands of casts. Cast
operators in an integer constant expression shall only convert arithmetic types to integer types,
except as part of an operand to the typeof operators, sizeof operator, or alignof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression shall
be, or evaluate to, one of the following:

— anamed constant,

— a compound literal constant,

130)The operand of a typeof (6.7.2.5), sizeof, or alignof operator is usually not evaluated (6.5.3.4).

13D The use of evaluation formats as characterized by FLT_EVAL_METHOD and DEC_EVAL_METHOD also applies to evaluation in
the translation environment.

132) An integer constant expression is required in contexts such as the size of a bit-field member of a structure, the value of
an enumeration constant, and the size of a non-variable length array. Further constraints that apply to the integer constant
expressions used in conditional-inclusion preprocessing directives are discussed in 6.10.1.

94 Language §6.6

10

11

12

13

14

15

16

17

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

— an arithmetic constant expression,
— anull pointer constant,
— an address constant, or

— an address constant for a complete object type plus or minus an integer constant expression.

An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, floating constants, named or compound literal constants of arithmetic type, char-
acter constants, sizeof expressions whose results are integer constants, and alignof expressions.
Cast operators in an arithmetic constant expression shall only convert arithmetic types to arithmetic
types, except as part of an operand to the typeof operators, sizeof operator, or alignof operator.

An address constant is a null pointer'®, a pointer to an lvalue designating an object of static storage
duration, or a pointer to a function designator; it shall be created explicitly using the unary &
operator or an integer constant cast to pointer type, or implicitly using an expression of array or
function type.

The array-subscript [] and member-access -> operator, the address & and indirection * unary
operators, and pointer casts may be used in the creation of an address constant, but the value of an
object shall not be accessed by use of these operators.!3%

A structure or union constant is a named constant or compound literal constant with structure or
union type, respectively.

An implementation may accept other forms of constant expressions; however, they are not an integer
constant expression.!3

Starting from a structure or union constant, the member-access . operator may be used to form a
named constant or compound literal constant as described above.

If the member-access operator . accesses a member of a union constant, the accessed member shall
be the same as the member that is initialized by the union constant’s initializer.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions!®).

Forward references: array declarators (6.7.6.2), initialization (6.7.10).

133) A named constant or compound literal constant of integer type and value zero is a null pointer constant. A named
constant or compound literal constant with a pointer type and a value null is a null pointer but not a null pointer constant; it
may only be used to initialize a pointer object if its type implicitly converts to the target type.

134)Named constants or compound literal constants with arithmetic type, including names of constexpr objects, are valid in
offset computations such as array subscripts or in pointer casts, as long as the expressions in which they occur form integer
constant expressions. In contrast, names of other objects, even if const-qualified and with static storage duration, are not
valid.

139 For example, in the statement int arr_or_vla[(int)+1.0];, while possible to be computed by some implementations
as an array with a size of one, still results in a variable length array declaration of automatic storage duration.

130)Thus, in the following initialization,

[
static int i =2 || 1/ ©;

the expression is a valid integer constant expression with value one.

§6.6 Language 95

1

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.7 Declarations

Syntax

declaration:
declaration-specifiers init-declarator-listop; ;
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
static_assert-declaration
attribute-declaration
declaration-specifiers:
declaration-specifier attribute-specifier-sequenceqpy
declaration-specifier declaration-specifiers
declaration-specifier:
storage-class-specifier
type-specifier-qualifier
function-specifier
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator
declarator = initializer
attribute-declaration:
attribute-specifier-sequence ;

Constraints

A declaration other than a static_assert or attribute declaration shall declare at least a declarator
(other than the parameters of a function or the members of a structure or union), a tag, or the
members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— a typedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— enumeration constants and tags may be redeclared as specified in 6.7.2.2 and 6.7.2.3, respec-
tively.

All declarations in the same scope that refer to the same object or function shall specify compatible
types.

In an underspecified declaration all declared identifiers that do not have a prior declaration shall be
ordinary identifiers.

Semantics

A declaration specifies the interpretation and properties of a set of identifiers. A definition of an
identifier is a declaration for that identifier that for:

— an object, causes storage to be reserved for that object,
— a function, includes the function body'*”,
— an enumeration constant, is the first (or only) declaration of the identifier, or

— atypedef name, is the first (or only) declaration of the identifier.

137) Function definitions have a different syntax, described in 6.9.1.

96 Language §6.7

10

11

12

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

The declaration specifiers consist of a sequence of specifiers, followed by an optional attribute
specifier sequence. The declaration specifiers indicate the linkage, storage duration, and part of
the type of the entities that the declarators denote. The init declarator list is a comma-separated
sequence of declarators, each of which may have additional type information, or an initializer, or
both. The declarators contain the identifiers (if any) being declared. The optional attribute specifier
sequence in a declaration appertains to each of the entities declared by the declarators of the init
declarator list.

If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer. In the case of
function parameters, it is the adjusted type (see 6.7.6.3) that is required to be complete.

The optional attribute specifier sequence terminating a sequence of declaration specifiers appertains
to the type determined by the preceding sequence of declaration specifiers. The attribute specifier
sequence affects the type only for the declaration it appears in, not other declarations involving the
same type.

Except where specified otherwise, the meaning of an attribute declaration is implementation-defined.

EXAMPLE In the declaration for an entity, attributes appertaining to that entity may appear at the
start of the declaration and after the identifier for that declaration.

\ [[deprecated]] void f [[deprecated]] (void); // valid

A declaration such that the declaration specifiers contain no type specifier or that is declared with
constexpr is said to be underspecified. If such a declaration is not a definition, if it declares no or
more than one ordinary identifier, if the declared identifier already has a declaration in the same
scope, or if the declared entity is not an object, the behavior is undefined.

Forward references: declarators (6.7.6), enumeration specifiers (6.7.2.2), initialization (6.7.10), stor-
age class specifiers (6.7.1), type inference (6.7.9), type names (6.7.7), type qualifiers (6.7.3).

6.7.1 Storage-class specifiers

Syntax

storage-class-specifier:
auto
constexpr
extern
register
static
thread_local
typedef

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except
that:

— thread_local may appear with static or extern,
— auto may appear with all the others except typedef!®®, and

— constexpr may appear with auto, register, or static.

In the declaration of an object with block scope, if the declaration specifiers include thread_local,
they shall also include either static or extern. If thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

138)See “future language directions” (6.11.5).

§6.7.1 Language 97

8

9

10

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

thread_local shall not appear in the declaration specifiers of a function declaration. auto shall
only appear in the declaration specifiers of an identifier with file scope or along with other storage
class specifiers if the type is to be inferred from an initializer.

An object declared with storage-class specifier constexpr or any of its members, even recursively,
shall not have an atomic type, or a variably modified type, or a type that is volatile or restrict
qualified. An initializer of floating type shall be evaluated with the translation-time floating-point
environment. The declaration shall be a definition and shall have an initializer.!*® The value of
any constant expressions or of any character in a string literal of the initializer shall be exactly
representable in the corresponding target type; no change of value shall be applied'4?.

If an object or subobject declared with storage-class specifier constexpr has pointer, integer, or
arithmetic type, any explicit initializer value for it shall be null'*V, an integer constant expression,
or an arithmetic constant expression, respectively. If the object declared has real floating type, the
initializer shall have integer or real floating type. If the object declared has imaginary type, the
initializer shall have imaginary type. If the initializer has decimal floating type, the object declared
shall have decimal floating type and the conversion shall preserve the quantum of the initializer. If
the initializer has real type and a signaling NaN value, the unqualified versions of the type of the
initializer and the corresponding real type of the object declared shall be compatible.

EXAMPLE 1

struct s { void *p; };

constexpr struct s A = { nullptr };

constexpr struct s B = A;

/* Although the expression A.p is not a null pointer constant,
only a null pointer, the only explicit initializer in the
initialization of B is A, not A.p, so no constraint is
violated by that initialization. */

EXAMPLE 2

void f (void) {
constexpr float f = 1.0f;
constexpr float g = 3.0f;
fesetround (FE_TOWARDSZERO); // does not affect
// initialization of "h", below
constexpr float h = f / g;
7l ooc

Semantics
Storage-class specifiers specify various properties of identifiers and declared features:
— storage duration (static in block scope, thread_local, auto, register),
— linkage (extern, static and constexpr in file scope, typedef),
— value (constexpr), and
— type (typedef).

The meanings of the various linkages and storage durations were discussed in 6.2.2 and 6.2.4,
typedef is discussed in 6.7.8, and type inference using auto is discussed in 6.7.9.

139) All assignment expressions of such an initializer, if any, are constant expressions or string literals, see 6.7.10.

140)In the context of arithmetic conversions, 6.3.1 describes the details of changes of value that occur if values of arithmetic
expressions are stored in the objects that for example have a different signedness, excess precision or quantum exponent.
Whenever such a change of value is necessary, the constraint is violated.

14DThe named constant or compound literal constant corresponding to an object declared with storage-class specifier
constexpr and pointer type is a constant expression with a value null, and thus a null pointer and an address constant. Thus,
such a named constant is a valid initializer for other constexpr declarations, provided the pointer types match accordingly.
However, even if it has type voidx it is not a null pointer constant.

98 Language §6.7.1

11

12

13

14

15

16

17

18

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined!?).

The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, including recursively for any aggregate or union member objects.

If auto appears with another storage-class specifier, or if it appears in a declaration at file scope, it is
ignored for the purposes of determining a storage duration or linkage. In this case, it indicates only
that the declared type may be inferred.

An object declared with a storage-class specifier constexpr has its value permanently fixed at
translation-time; if not yet present, a const-qualification is implicitly added to the object’s type. The
declared identifier is considered a constant expression of the respective kind, see 6.6.

NOTE 1 An object declared in block scope with a storage-class specifier constexpr and without static has automatic
storage duration, the identifier has no linkage, and each instance of the object has a unique address obtainable with & (if it is
not declared with the register specifier), if any. Such an object in file scope has static storage duration, the corresponding

identifier has internal linkage, and each translation unit that sees the same textual definition implements a separate object
with a distinct address.

NOTE 2 The constraints for constexpr objects are intended to enforce checks for portability at translation time.

constexpr unsigned int minusOne = -1; // constraint violation

constexpr unsigned int uint_max = -1U; // ok

constexpr double onethird = 1.0/3.0; // possible constraint violation
constexpr double onethirdtrunc = (double)(1.0/3.0); // ok

constexpr _Decimal32 small = DEC64_TRUE_MIN x 0; // constraint violation

If a truncation of excess precision changes the value in the initializer of onethird, a constraint is violated and a diagnostic is
required. In contrast to that, the explicit conversion in the initializer for onethirdtrunc ensures that the definition is valid.
Similarly, the initializer of small has a quantum exponent that is larger than the largest possible quantum exponent for
_Decimal32.

NOTE 3 Similarly, implementation-defined behavior related to the char type of the elements of the string literal "\xFF"
may cause constraint violations at translation time:

{ "\xFF", }; // ok

{ u8"\xFF", }; // ok

{ "\xFF", }; // possible constraint
// violation

constexpr char string[]
constexpr char8_t u8string[]
constexpr unsigned char ucstring[]

In both the string and ucstring initializers, the initializer is a (brace-enclosed) string literal of type char. If the type char is
capable of representing negative values and its width is 8, then the code above is equivalent to:

constexpr char string[] = { 0, }; // ok
constexpr char8_t u8string[] ={ 255, 0, }; // ok
constexpr unsigned char ucstring[] { 0, }; // constraint violation

The hexadecimal escape sequence results in a value of 255. For an initializer of type char, it is converted to a signed 8-bit
integer, making a value of -1. A negative value does not fit within the range of values for unsigned char, and therefore
the initialization of ucstring is a constraint violation under the previously stated implementation conditions. In the case
where char is not capable of representing negative values, the original snippet is equivalent to the following and there is no
constraint violation.

constexpr char string[] { 255, 0, }; // ok
constexpr char8_t u8string[] = { 255, 0, }; // ok
constexpr unsigned char ucstring[] { 255, 0, }; // ok

142)The implementation can treat any register declaration simply as an auto declaration. However, whether or not
addressable storage is used, the address of any part of an object declared with storage-class specifier register cannot be
computed, either explicitly (by use of the unary & operator as discussed in 6.5.3.2) or implicitly (by converting an array name
to a pointer as discussed in 6.3.2.1). Thus, the only operator that can be applied to an array declared with storage-class
specifier register is sizeof and the typeof operators.

§6.7.1 Language 99

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

19 EXAMPLE 3 An identifier declared with the constexpr specifier may have its value used in
constant expressions:

constexpr int K = 47;
enum {

A = K, // valid, constant initialization
}
constexpr int L = K; // valid, constexpr initialization
static int b =K + 1; // valid, static initialization
int array[K]; // not a VLA

20 EXAMPLE 4 An object declared with the constexpr specifier stores the exact value of its initializer,
no implicit value change is applied:

#include <float.h>

constexpr int A = 42LL; // valid, 42 always fits in an int
constexpr signed short B = ULLONG_MAX; // constraint violation, value never
// fits
constexpr float C = 47u; // valid, exactly representable
// in float

#if FLT_MANT_DIG > 24

constexpr float D = 536900000; // constraint violation if float is
// IEC 60559 binary32

#endif

#if (FLT_MANT_DIG == DBL_MANT_DIG) \
&& (0 <= FLT_EVAL_METHOD) \
&& (FLT_EVAL_METHOD <= 1)
constexpr float E = 1.0 / 3.0; // only valid if double expressions
// and float objects have the same
// precision
#endif

#if FLT_EVAL_METHOD ==
constexpr float F = 1.0f / 3.0f; // valid, same type and precision
#else
constexpr float F = (float)(1.0f / 3.0f); // needs cast to truncate the
// excess precision
#endif

21 EXAMPLE 5 This recursively applies to initializers for all elements of an aggregate object declared
with the constexpr specifier:

constexpr static unsigned short array[] = {
3000, // valid, fits in unsigned short range
300000, // constraint violation if short is 16-bit
-1 // constraint violation, target type is unsigned
+
struct S {
int x, y;
+
constexpr struct S s = {
.x = INT_MAX, // valid
.y = UINT_MAX, // constraint violation
+

Forward references: type definitions (6.7.8), type definitions (6.7.9).

100 Language §6.7.1

1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.7.2 Type specifiers

Syntax

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_BitInt (constant-expression)
bool
_Complex
_Decimal32
_Decimalé64
_Decimall28
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name
typeof-specifier

Constraints

Except where the type is inferred (6.7.9), at least one type specifier shall be given in the declaration
specifiers in each declaration, and in the specifier-qualifier list in each member declaration and type
name. Each list of type specifiers shall be one of the following multisets (delimited by commas,
when there is more than one multiset per item); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short, signed short, short int, or signed short int

— unsigned short, or unsigned short int

— 1int, signed, or signed int

— unsigned, or unsigned int

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— long long, signed long long, long long int, or signed long long int
— unsigned long long, or unsigned long long int

— _BitInt(constant-expression), or signed _BitInt(constant-expression)
— unsigned _BitInt(constant-expression)

— float

— double

— long double

§6.7.2 Language 101

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— _Decimal32

— _Decimalé4

— _Decimall28

— bool

— float _Complex

— double _Complex

— long double _Complex
— atomic type specifier

— struct or union specifier
— enum specifier

— typedef name

— typeof specifier

The type specifier _Complex shall not be used if the implementation does not support complex
types, and the type specifiers _Decimal32, _Decimal64, and _Decimall28 shall not be used if the
implementation does not support decimal floating types (see 6.10.9.3).

The parenthesized constant expression that follows the _BitInt keyword shall be an integer constant
expression N that specifies the width (6.2.6.2) of the type. The value of N for unsigned _BitInt
shall be greater than or equal to 1. The value of N for _BitInt shall be greater than or equal to 2.
The value of N shall be less than or equal to the value of BITINT_MAXWIDTH (see 5.2.4.2.1).

Semantics

Specifiers for structures, unions, enumerations, atomic types, and typeof specifiers are discussed in
6.7.2.1 through 6.7.2.5. Declarations of typedef names are discussed in 6.7.8. The characteristics of
the other types are discussed in 6.2.5.

For a declaration such that the declaration specifiers contain no type specifier a mechanism to infer
the type from an initializer is discussed in 6.7.9. In such a declaration, optional elements, if any,
of a sequence of declaration specifiers appertain to the inferred type (for qualifiers and attribute
specifiers) or to the declared objects (for alignment specifiers).

Each of the comma-separated multisets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifier int designates the same type as signed int or the
same type as unsigned int.

Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2), structure and
union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.8).

6.7.2.1 Structure and union specifiers

Syntax

struct-or-union-specifier:
struct-or-union attribute-specifier-sequenceqp identifierqpe { member-declaration-list }
struct-or-union attribute-specifier-sequenceqp, identifier

struct-or-union:
struct
union

member-declaration-list:
member-declaration
member-declaration-list member-declaration

102 Language §6.7.2.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

member-declaration:
attribute-specifier-sequenceqp, specifier-qualifier-list member-declarator-listop: ;
static_assert-declaration

specifier-qualifier-list:
type-specifier-qualifier attribute-specifier-sequenceopt
type-specifier-qualifier specifier-qualifier-list

type-specifier-qualifier:
type-specifier
type-qualifier
alignment-specifier

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator
declaratoropy = constant-expression

Constraints

A member declaration that does not declare an anonymous structure or anonymous union shall
contain a member declarator list.

A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

The expression that specifies the width of a bit-field shall be an integer constant expression with a
nonnegative value that does not exceed the width of an object of the type that would be specified
were the colon and expression omitted!*?. If the value is zero, the declaration shall have no
declarator.

A bit-field shall have a type that is a qualified or unqualified bool, signed int, unsigned int, a
bit-precise integer type, or other implementation-defined type. It is implementation-defined whether
atomic types are permitted.

An attribute specifier sequence shall not appear in a struct-or-union specifier without a member
declaration list, except in a declaration of the form:

struct-or-union attribute-specifier-sequence identifier ;

The attributes in the attribute specifier sequence, if any, are thereafter considered attributes of the
struct or union whenever it is named.

Semantics

As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is
allocated in an ordered sequence, and a union is a type consisting of a sequence of members whose
storage overlap.

Structure and union specifiers have the same form. The keywords struct and union indicate that
the type being specified is, respectively, a structure type or a union type.

143)While the number of bits in a bool object is at least CHAR_BIT, the width of a bool is just 1 bit.

§6.7.2.1 Language 103

10

11

12

13

14

15

16

17

18

19

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

The optional attribute specifier sequence in a struct-or-union specifier appertains to the structure
or union type being declared. The optional attribute specifier sequence in a member declaration
appertains to each of the members declared by the member declarator list; it shall not appear if the
optional member declarator list is omitted. The optional attribute specifier sequence in a specifier
qualifier list appertains to the type denoted by the preceding type specifier qualifiers. The attribute
specifier sequence affects the type only for the member declaration or type name it appears in, not
other types or declarations involving the same type.

The member declaration list is a sequence of declarations for the members of the structure or union.
If the member declaration list does not contain any named members, either directly or via an
anonymous structure or anonymous union, the behavior is undefined'*¥.

A member of a structure or union may have any complete object type other than a variably modified
type.'*> In addition, a member may be declared to consist of a specified number of bits (including a
sign bit, if any). Such a member is called a bit-field 14°; its width is preceded by a colon.

A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits'#”). If the value 0 or 1 is stored into a nonzero-width bit-field of type bool, the value
of the bit-field shall compare equal to the value stored; a bool bit-field has the semantics of a bool.

An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.1*® As a special case, a bit-field structure member with a width of zero indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are members of the containing
structure or union, keeping their structure or union layout. This applies recursively if the containing
structure or union is also anonymous.

Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides),
and vice versa. The members of a union object overlap in such a way that pointers to them when
converted to pointers to character type point to the same byte. There may be unnamed padding at
the end of a union object, but not at its beginning.

There may be unnamed padding at the end of a structure or union.

149 For further rules affecting compatibility and completeness of structure or union types, see 6.2.7 and 6.7.2.3.

145 A structure or union cannot contain a member with a variably modified type because member names are not ordinary
identifiers as defined in 6.2.3.

146)The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field
objects.

147) As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is
implementation-defined whether the bit-field is signed or unsigned. This includes an int type specifier produced us-
ing the typeof specifiers (6.7.2.5).

148) An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

104 Language §6.7.2.1

20

21

22

23

24

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or ->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object being accessed; the offset of the array shall remain that of the flexible array member, even if
this would differ from that of the replacement array. If this array would have no elements, it behaves
as if it had one element but the behavior is undefined if any attempt is made to access that element
or to generate a pointer one past it.

EXAMPLE 1 The following declarations illustrate the behavior when an attribute is written on a
tag declaration:

struct [[deprecated]] S; // valid, [[deprecated]] appertains to struct S
void f(struct S x*s); // valid, the struct S type has the [[deprecated]]
// attribute
struct S { // valid, struct S inherits the [[deprecated]] attribute
int a; // from the previous declaration
Fi
void g(struct [[deprecated]] S s); // invalid

EXAMPLE 2 The following illustrates anonymous structures and unions:

struct v {
union { // anonymous union
struct { int i, j; }; // anonymous structure
struct { long k, 1; } w;
}
int m;
}ovl;
vl.i = 2; // valid
vl.k = 3; // invalid: 1inner structure is not anonymous
vl.w.k = 5; // valid

EXAMPLE 3 After the declaration:

\ struct s { int n; double d[]; };

the structure struct s has a flexible array member d. A typical way to use this is:

int m = /x some value x/;
struct s xp = malloc(sizeof(struct s) + sizeof(double [m]));

and assuming that the call to malloc succeeds, the object pointed to by p behaves, for most purposes,
as if p had been declared as:

i struct { int n; double d[m]; } *p;

(there are circumstances in which this equivalence is broken; in particular, the offsets of member d
might not be the same).

Following the above declaration:

struct s t1 = { 0 }; // valid

struct s t2 = {1, { 4.2 }}; // invalid

tl.n = 4; // valid

tl.d[0] = 4.2; // might be undefined behavior

§6.7.2.1 Language 105

25

26

27

28

29

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

The initialization of t2 is invalid (and violates a constraint) because struct s is treated as if it did
not contain member d. The assignment to t1.d[0] is probably undefined behavior, but it is possible
that

\ sizeof(struct s) >= offsetof(struct s, d) + sizeof(double)

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly
conforming code.

After the further declaration:

\ struct ss { int n; };

the expressions:

sizeof(struct s) >= sizeof(struct ss)
sizeof(struct s) >= offsetof(struct s, d)

are always equal to 1.

If sizeof (double) is 8, then after the following code is executed:

struct s xsl;
struct s *s2;
sl = malloc(sizeof(struct s) + 64);
s2 malloc(sizeof(struct s) + 46);

and assuming that the calls to malloc succeed, the objects pointed to by s1 and s2 behave, for most
purposes, as if the identifiers had been declared as:

struct { int n; double d[8]; } xs1;
struct { int n; double d[5]; } x*s2;

Following the further successful assignments:

sl
s2

malloc(sizeof(struct s) + 10);
malloc(sizeof(struct s) + 6);

they then behave as if the declarations were:

\ struct { int n; double d[1]; } *s1, *s2:

and:
double *dp;
dp = &(s1->d[0]); // valid
xdp = 42; // valid
dp = &(s2->d[0]); // valid
xdp = 42; // undefined behavior

The assignment:

i *S1l = *52;

only copies the member n; if any of the array elements are within the first sizeof (struct s) bytes
of the structure, they are set to an indeterminate representation, that may or may not coincide with a
copy of the representation of the elements of the source array.

EXAMPLE 4 Because members of anonymous structures and unions are considered to be members
of the containing structure or union, struct s in the following example has more than one named
member and thus the use of a flexible array member is valid:

106 Language §6.7.2.1

1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

struct s {
struct { int i; };
int all;

}

Forward references: declarators (6.7.6), tags (6.7.2.3).

6.7.2.2 Enumeration specifiers
Syntax
enum-specifier:
enum attribute-specifier-sequenceqp; identifierop: enum-type-specifier opt
{ enumerator-list }
enum attribute-specifier-sequenceop: identifierop: enum-type-specifier opt
{ enumerator-list , }
enum identifier enum-type-specifieropt
enumerator-list:
enumerator
enumerator-list , enumerator
enumerator:
enumeration-constant attribute-specifier-sequenceqpt
enumeration-constant attribute-specifier-sequenceopy = constant-expression
enum-type-specifier:
1 specifier-qualifier-list

All enumerations have an underlying type. The underlying type can be explicitly specified using an
enum type specifier and is its fixed underlying type. If it is not explicitly specified, the underlying
type is the enumeration’s compatible type, which is either char or a standard or extended signed or
unsigned integer type.

Constraints

For an enumeration with a fixed underlying type, the integer constant expression defining the value
of the enumeration constant shall be representable in that fixed underlying type. If the value of
an enumeration constant without a defining constant expression for an enumeration with fixed
underlying type is obtained by adding 1 to the previous enumeration constant, the value of that
previous enumeration constant shall not be the maximum value of the underlying type.

For an enumeration without a fixed underlying type, the expression that defines the value of an
enumeration constant shall be an integer constant expression. For all the integer constant expressions
which make up the values of the enumeration constants, there shall be a type capable of representing
all the values that is a standard or extended signed or unsigned integer type, or char.

If an enum type specifier is present, then the longest possible sequence of tokens that can be
interpreted as a specifier qualifier list is interpreted as part of the enum type specifier. It shall name
an integer type that is neither an enumeration nor a bit-precise integer type. The underlying type of
the enumeration is the unqualified, non-atomic version of the type specified by the type specifiers in
the specifier qualifier list.!4)

An enum specifier of the form

enum identifier enum-type-specifier

may not appear except in a declaration of the form

enum identifier enum-type-specifier ;

149 The specifier qualifier list is not a context listed in 6.7.5 as permitted for alignment specifiers, so the presence of an

alignment specifier in the list violates a constraint.

§6.7.2.2 Language 107

10
11

12

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

unless it is immediately followed by an opening brace, an enumerator list (with an optional ending
comma), and a closing brace.

If two enum specifiers that include an enum type specifier declare the same type, the underlying
types shall be compatible.

Semantics

The optional attribute specifier sequence in the enum specifier appertains to the enumeration; the
attributes in that attribute specifier sequence are thereafter considered attributes of the enumeration
whenever it is named. The optional attribute specifier sequence in the enumerator appertains to that
enumerator.

The identifiers in an enumerator list are declared as constants of the types specified below and may
appear wherever such are permitted.’>” An enumerator with = defines its enumeration constant as
the value of the constant expression. If the first enumerator has no =, the value of its enumeration
constant is zero. Each subsequent enumerator with no = defines its enumeration constant as the
value of the constant expression obtained by adding 1 to the value of the previous enumeration
constant. (The use of enumerators with = may produce enumeration constants with values that
duplicate other values in the same enumeration.) The enumerators of an enumeration are also
known as its members.

The type for the members of an enumeration is called the enumeration member type.

During the processing of each enumeration constant in the enumerator list, the type of the enumera-
tion constant shall be:

— the previously declared type, if it is a redeclaration of the same enumeration constant; or,
— the enumerated type, for an enumeration with fixed underlying type; or,

— 1int, if there are no previous enumeration constants in the enumerator list and no explicit =
with a defining integer constant expression; or,

— int, if given explicitly with = and the value of the integer constant expression is representable
by an int; or,

— the type of the integer constant expression, if given explicitly with = and if the value of the
integer constant expression is not representable by int; or,

— the type of the value from the previous enumeration constant with one added to it. If such
an integer constant expression would overflow or wraparound the value of the previous
enumeration constant from the addition of one, the type takes on either:

— asuitably sized signed integer type, excluding the bit-precise signed integer types, capable
of representing the value of the previous enumeration constant plus one; or,

— a suitably sized unsigned integer type, excluding the bit-precise unsigned integer types,
capable of representing the value of the previous enumeration constant plus one.

A signed integer type is chosen if the previous enumeration constant being added is of signed
integer type. An unsigned integer type is chosen if the previous enumeration constant is of
unsigned integer type. If there is no suitably sized integer type described previously which
can represent the new value, then the enumeration has no type which can represent all its
values.'®)

For all enumerations without a fixed underlying type, each enumerated type shall be compatible
with char, a signed or an unsigned integer type that is not a bool or a bit-precise integer type. The

150)Thus, the identifiers of enumeration constants declared in the same scope are all required to be distinct from each other
and from other identifiers declared in ordinary declarators.
15 Therefore, a constraint has been violated.

108 Language §6.7.22

13

14

15

16

17

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

choice of type is implementation-defined!®?, but shall be capable of representing the values of all
the members of the enumeration'®?.

Enumeration constants can be redefined in the same scope with the same value as part of a redecla-
ration of the same enumerated type.

The enumeration member type for an enumerated type without fixed underlying type upon comple-
tion is:

— int if all the values of the enumeration are representable as an int; or,

— the enumerated type.'>¥

The enumeration member type for an enumerated type with fixed underlying type is the enumerated
type. The enumerated type is compatible with the underlying type of the enumeration. After possible
lvalue conversion a value of the enumerated type behaves the same as the value with the underlying
type, in particular with all aspects of promotion, conversion, and arithmetic.Conversion to the
enumerated type has the same semantics as conversion to the underlying type.!>®

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;

cp = &col;
if (xcp != burgundy)
/*x ... %/

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as
a pointer to an object that has that type. The enumerated values are in the set {0, 1, 20, 21}.

EXAMPLE Even if the value of an enumeration constant is generated by the implicit addition of
one, an enumeration with a fixed underlying type does not exhibit typical overflow behavior:

#include <limits.h>

enum us : unsigned short {
us_max = USHRT_MAX,
us_violation, /* Constraint violation:
USHRT_MAX + 1 would wraparound. */
us_violation_2 = us_max + 1, /x Maybe constraint violation:
USHRT_MAX + 1 may be promoted to "int", and
result is too wide for the
underlying type. */
us_wraparound_to_zero = (unsigned short) (USHRT_MAX + 1) /x Okay:
conversion done in constant expression
before conversion to underlying type:
unsigned semantics okay. */

I8

enum ui : unsigned int {
ui_max = UINT_MAX,
ui_violation, /x Constraint violation:
UINT_MAX + 1 would wraparound. x*/

152) An implementation can delay the choice of which integer type until all enumeration constants have been seen.

1539)For further rules affecting compatibility and completeness of enumerated types see 6.2.7 and 6.7.2.3.

159)The integer type selected during processing of the enumerator list (before completion) of the enumeration may not be the
same as the compatible implementation-defined integer type selected for the completed enumeration.

155 This means in particular that if the compatible type is bool, values of the enumerated type behave in all aspects the same
as bool, conversion to the enumerated type behaves the same as bool (6.3.1.2), and the members only have values false
and true. If it is a signed integer type and the constant expression of an enumeration constant overflows, a constraint for
constant expressions (6.6) is violated.

§6.7.22 Language 109

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

ui_no_violation = ui_max + 1, /* Okay: Arithmetic performed as typical
unsigned integer arithmetic: conversion
from a value that is already 0 to 0. x*/
ui_wraparound_to_zero = (unsigned int) (UINT_MAX + 1) /x Okay: conversion
done in constant expression before conversion to
underlying type: unsigned semantics okay. x/
}i

int main () {
// Same as return 0;
return ui_wraparound_to_zero + us_wraparound_to_zero;

18 EXAMPLE The following fragment:

#include <limits.h>

enum E1: short;

enum E2: short;

enum E3; /x Constraint violation: E3 forward declaration. */
enum E4 : unsigned long long;

enum E1 : short { mll, ml2 };
enum E1 x = mll;

enum E2 : long { m21, m22 }; /*x Constraint violation: different underlying types
*/

enum E3 {

m31,

m32,

m33 = sizeof(enum E3) /x Constraint violation: E3 is not complete here. x*/
}
enum E3 : int; /x Constraint violation: E3 previously had no underlying type x*/

enum E4 : unsigned long long {
m40 = sizeof(enum E4),
m41l = ULLONG_MAX,
m42 /x Constraint violation: unrepresentable value (wraparound) x*/

enum E5 y; /* Constraint violation: incomplete type */
enum E6 : long int z; /x Constraint violation: enum-type-specifier
with identifier in declarator */
enum E7 : long int = 0; /% Syntax violation:
enum-type-specifier with initializer */

demonstrates many of the properties of multiple declarations of enumerations with underlying
types. Particularly, enum E3 is declared and defined without an underlying type first, therefore a
redeclaration with an underlying type second is a violation. Because it not complete at that time

within its enumerator list, sizeof (enum E3) is a constraint violation within the enum E3 definition.
enum E4 is complete as it is being defined, therefore sizeof (enum E4) is not a constraint violation.

19 EXAMPLE The following fragment:

110

enum no_underlying {
al

}i

int main (void) {
int a = _Generic(ao0,

Language §6.7.22

20

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

int: 2,
unsigned char: 1,
default: 0

D3

int b = _Generic((enum no_underlying)a0,
int: 2,
unsigned char: 1,
default: 0

D5

return a + b;

}

demonstrates the implementation-defined nature of the underlying type of enumerations using
generic selection (6.5.1.1). The value of a after its initialization is 2. The value of b after its initializa-
tion is implementation-defined: the enumeration must be compatible with a type large enough to fit
the values of its enumeration constants. Because the only value is 0 for a0, b may hold any of 2, 1,
or 0.

Now, consider a similar fragment, but using a fixed underlying type:

enum underlying : unsigned char {
b0
b8
int main (void) {
int a = _Generic (b0,
int: 2,
unsigned char: 1,
default: 0
);
int b = _Generic((enum underlying)b0,
int: 2,
unsigned char: 1,
default: 0
N
return 0;
}

Here, we are guaranteed that a and b are both initialized to 1. This makes enumerations with a fixed
underlying type more portable.

EXAMPLE Enumerations with a fixed underlying type must have their braces and the enumerator
list specified as part of their declaration if they are not a standalone declaration:

void f1 (enum a : long b); /x Constraint violation =/
void f2 (enum c : long { x } d);
enum e : int f3(); /x Constraint violation x*/

typedef enum t u; /* Constraint violation: forward declaration of t. */
typedef enum v : short W; /x Constraint violation */
typedef enum q : short { s } R;

struct sl {
int x;
enum e : int : 1; /x Constraint violation x*/
int y;

}

enum forward; /x Constraint violation x*/
extern enum forward fwd_val®; /x Constraint violation: incomplete type */
extern enum forwardx fwd_ptr0; /* Constraint violation: enums cannot be

§6.7.2.2 Language 111

21

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

used like other incomplete types x/
extern intx fwd_ptr0; /x Constraint violation: incompatible
with incomplete type. */

enum forwardl : int;
extern enum forwardl fwd_vall;
extern int fwd_vall;
extern enum forwardlx fwd_ptrl;
extern intx fwd_ptrl;

int main () {
enum e : short;
enum e : short f = 0; /x Constraint violation x/
enum g : short { y } h =y;
return 0;

EXAMPLE Enumerations with a fixed underlying type are complete when the enum type specifier
for that specific enumeration is complete. The enumeration e in this snippet:

\ enum e : typeof ((enum e : short { A })0, (short)0);

enum e is considered complete by the first opening brace within the typeof in this snippet.

Forward references: generic selection (6.5.1.1), tags (6.7.2.3), declarations (6.7), declarators (6.7.6),
function declarators (6.7.6.3), type names (6.7.7).

6.7.2.3 Tags
Constraints

Where two declarations that use the same tag declare the same type, they shall both use the same
choice of struct, union, or enum. If two declarations of the same type have a member-declaration
or enumerator-list, one shall not be nested within the other and both declarations shall fulfill
all requirements of compatible types (6.2.7) with the additional requirement that corresponding
members of structure or union types shall have the same (and not merely compatible) types.

A type specifier of the form

enum identifier
without an enumerator list shall only appear after the type it specifies is complete.
A type specifier of the form

struct-or-union attribute-specifier-sequencep, identifier

shall not contain an attribute specifier sequence!*.

Semantics

All declarations of structure, union, or enumerated types that have the same scope and use the same
tag declare the same type.

Irrespective of whether there is a tag or what other declarations of the type are in the same trans-
lation unit, the type (except enumerated types with a fixed underlying type) is incomplete until
immediately after the closing brace of the list defining the content for the first time and complete
thereafter.

Enumerated types with fixed underlying type (6.7.2.2) are complete immediately after their first
associated enum type specifier ends.

EXAMPLE 1 The following example shows allowed redeclarations of the same structure, union, or
enumerated type in the same scope:

156) As specified in 6.7.2.1 above, the type specifier may be followed by a ; or a member declaration list.

112 Language §6.7.23

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

struct foo { struct { int x; }; };
struct foo { struct { int x; }; };
union bar { int x; float y; };
union bar { int x; float y; };
typedef struct q { int x; } q_t;
typedef struct q { int x; } q_t;
void foo(void)

{
struct S { int x; };
struct T { struct S s; };
struct S { int x; };
struct T { struct S s; };
}
enum X { A=1, B=1+11};
enum X { B=2, A=11};

8 EXAMPLE 2 The following example shows invalid redeclarations of the same structure, union, or
enumerated type in the same scope:

struct foo { int (xp)[31; };
struct foo { int (xp)[1; }; // member has different type

union bar { int x; float y; };
union bar { int z; float y; }; // member has different name

union purr { int x; float y; };

union purr { float y; int x; }; // members have different order
// Above only valid if each union "purr" is in

// two different translation units

’

typedef struct { int x; } g_t
} g_t; // not the same type

typedef struct { int x;
struct S { int x; };

void foo(void)

{
struct T { struct S s; };
struct S { int x; };
struct T { struct S s; }; // struct S not the same type
}
enum X { A=1, B=21};
enum X { A=1, B=3}; // different enumeration constant
enum R { C =1 };
enum Q { C =1 }; // conflicting enumeration constant
enum Q { C = C }; // ok!

9 Two declarations of structure, union, or enumerated types which are in different scopes or use
different tags declare distinct types. Each declaration of a structure, union, or enumerated type
which does not include a tag declares a distinct type.

10 A type specifier of the form
struct-or-union attribute-specifier-sequenceqp: identifierope { member-declaration-list }
or
enum attribute-specifier-sequence,p identifierop; enum-type-specifierop, { enumerator-list '}

or

§6.7.23 Language 113

11

12

13

14

15

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

enum attribute-specifier-sequenceqp, identifierop enum-type-specifierop, { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content,
or enumeration content. If an identifier is provided'®, the type specifier also declares the identifier to
be the tag of that type. The optional attribute specifier sequence appertains to the structure, union,
or enumerated type being declared; the attributes in that attribute specifier sequence are thereafter
considered attributes of the structure, union, or enumerated type whenever it is named.

A declaration of the form

struct-or-union attribute-specifier-sequence,p identifier ;
or

enum identifier enum-type-specifier ;

specifies a structure, union, or enumerated type and declares the identifier as a tag of that type'®®.

The optional attribute specifier sequence appertains to the structure or union type being declared;
the attributes in that attribute specifier sequence are thereafter considered attributes of the structure
or union type whenever it is named.

If a type specifier of the form
struct-or-union attribute-specifier-sequencep identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a
tag is visible, then it declares an incomplete structure or union type, and declares the identifier as
the tag of that type.!*®

If a type specifier of the form

struct-or-union attribute-specifier-sequencep, identifier
or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is
visible, then it specifies the same type as that other declaration, and does not redeclare the tag.

EXAMPLE 3 This mechanism allows declaration of a self-referential structure.

struct tnode {

int count;

struct tnode xleft, x*right;
};

specifies a structure that contains an integer and two pointers to objects of the same type. Once this
declaration has been given, the declaration

\ struct tnode s, xsp; ‘

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With
these declarations, the expression sp->left refers to the left struct tnode pointer of the object
to which sp points; the expression s.right->count designates the count member of the right
struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

i typedef struct tnode TNODE; i
\ struct tnode { \
\ int count; \

I57)1f there is no identifier, the type can, within the translation unit, only be referred to by the declaration of which it is a part.
Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef name to declare
objects having the specified structure, union, or enumerated type.

158) A similar construction for an enum that does not contain a fixed underlying type does not exist. Enumerations with a
fixed underlying type are always complete after the enum type specifier.

114 Language §6.7.23

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

\ TNODE *left, xright;
\ };

\ TNODE s, xsp;

L

EXAMPLE 4 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct sl { struct s2 xs2p; /*x ... x/ }; // D1
struct s2 { struct sl xslp; /* ... %/ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already
declared as a tag in an enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared
in D2. To eliminate this context sensitivity, the declaration

\ struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then
completes the specification of the new type.

Forward references: declarators (6.7.6), type definitions (6.7.8).

6.7.2.4 Atomic type specifiers
Syntax
atomic-type-specifier:
—Atomic (type-name)

Constraints

Atomic type specifiers shall not be used if the implementation does not support atomic types (see
6.10.9.3).

The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, or a qualified type.

Semantics

The properties associated with atomic types are meaningful only for expressions that are Ivalues.
If the _Atomic keyword is immediately followed by a left parenthesis, it is interpreted as a type
specifier (with a type name), not as a type qualifier.

6.7.2.5 Typeof specifiers
Syntax
typeof-specifier:
typeof (typeof-specifier-arqument)
typeof_unqual (typeof-specifier-argument)
typeof-specifier-argument:
expression
type-name

The typeof and typeof_unqual tokens are collectively called the typeof operators.

Constraints
The typeof operators shall not be applied to an expression that designates a bit-field member.

§6.7.25 Language 115

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Semantics

The typeof specifier applies the typeof operators to an expression (6.5) or a type name. If the typeof
operators are applied to an expression, they yield the type of their operand!'™). Otherwise, they
designate the same type as the type name with any nested typeof specifier evaluated.'®” If the type
of the operand is a variably modified type, the operand is evaluated; otherwise, the operand is not
evaluated.

The result of the typeof_unqual operator is the non-atomic unqualified type that would result from
the typeof operator!®). The typeof operator preserves all qualifiers.

EXAMPLE 1 Type of an expression.

typeof (1+1) main () {
return 0;

}

is equivalent to this program:

int main () {
return 0;

}

EXAMPLE 2 The following program:

const _Atomic int purr = 0;
const int meow = 1;
const charx const animals[] = {

"aardvark",
"bluejay",
"catte",

}

typeof_unqual(meow) main (int argc, charx argv[]) {
typeof_unqual(purr) plain_purr;
typeof (_Atomic typeof(meow)) atomic_meow;
typeof (animals) animals_array;
typeof_unqual(animals) animals2_array;
return 0;

is equivalent to this program:

const _Atomic int purr = 0;
const int meow = 1;
const charx const animals[] = {
"aardvark",
"bluejay",
"catte",

};

int main (int argc, charx argv[]) {
int plain_purr;
const _Atomic int atomic_meow;
const charx const animals_array[3];
const charx animals2_array[3];
return 0;

15)When applied to a parameter declared to have array or function type, the typeof operators yield the adjusted (pointer)
type (see 6.9.1).

160)If the typeof specifier argument is itself a typeof specifier, the operand will be evaluated before evaluating the current
typeof operator. This happens recursively until a typeof specifier is no longer the operand.

161)_Atomic (type-name), with parentheses, is considered an _Atomic-qualified type.

116 Language §6.7.25

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

|}

8 EXAMPLE 3 The equivalence between sizeof and typeof’s deduction of the type means this
program has no constraint violations:

int main (int argc, charx argv[]) {
static_assert(sizeof (typeof(’'p’)) == sizeof(int));
static_assert(sizeof(typeof(’'p’)) == sizeof(’'p’));
static_assert(sizeof(typeof((char)’'p’)) == sizeof(char))
static_assert(sizeof (typeof((char)’'p’)) == sizeof((char)’p’));
static_assert(sizeof(typeof("meow")) == sizeof(char[5]));
static_assert(sizeof(typeof("meow")) == sizeof("meow"));
static_assert(sizeof (typeof(argc)) == sizeof(int));
static_assert(sizeof(typeof(argc)) == sizeof(argc));
static_assert(sizeof(typeof(argv)) == sizeof(charxx));
static_assert(sizeof (typeof(argv)) == sizeof(argv));
static_assert(sizeof(typeof_unqual(’p’)) == sizeof(int));
static_assert(sizeof (typeof_unqual(’'p’)) == sizeof(’p’));
static_assert(sizeof(typeof_unqual((char)’'p’)) == sizeof(char));
static_assert(sizeof (typeof_unqual((char)’'p’)) == sizeof((char)’'p’));
static_assert(sizeof (typeof_unqual("meow")) == sizeof(char[5]));
static_assert(sizeof(typeof_unqual("meow")) == sizeof("meow"));
static_assert(sizeof(typeof_unqual(argc)) == sizeof(int));
static_assert(sizeof (typeof_unqual(argc)) == sizeof(argc));
static_assert(sizeof(typeof_unqual(argv)) == sizeof(charxx));
static_assert(sizeof(typeof_unqual(argv)) == sizeof(argv));
return 0;

}

9 EXAMPLE 4 The following program with nested typeof(...):

int main (int argc, charx[]) {
float val = 6.0f;
return (typeof(typeof_unqual(typeof(argc))))val;

¥

is equivalent to this program:

int main (int argc, charx[]) {
float val = 6.0f;
return (int)val;

10 EXAMPLES5 Variable length arrays with typeof operators performs the operation at execution time
rather than translation time.

#include <stddef.h>

size_t vla_size (int n) {
typedef char vla_type[n + 3];
vla_type b; // variable length array
return sizeof(
typeof_unqual(b)
); // execution-time sizeof, translation-time typeof operation

}

int main () {
return (int)vla_size(10); // vla_size returns 13

}

§6.7.25 Language 117

11

12

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

EXAMPLE 6 Nested typeof operators, arrays, and pointers do not perform array to pointer decay.

int main () {
typeof (typeof (const charx)[4]) y = {

a ’

"p,

ew

Ildll
}; // 4-element array of "pointer to const char"
return 0;

EXAMPLE 7 Function, pointer, and array types may be substituted with typeof operations.

void f(int);

typeof (f(5)) g(double x) { // g has type "void(double)"
printf("value %g\n", Xx);

}

typeof(g)* h; // h has type "void(x)(double)"

typeof(true ? g : NULL) k; // k has type "void(x) (double)"

void j(double A[5], typeof(A)*x B); // j has type "void(doublex, doublexx)"

extern typeof(double[]) D; // D has an incomplete type
typeof (D) C = { 0.7, 99 }; // C has type "double[2]"

typeof(D) D = { 5, 8.9, 0.1, 99 }; // D is now completed to "double[4]"
typeof (D) E; // E has type "double[4]" from D’'s completed type

6.7.3 Type qualifiers

Syntax
type-qualifier:
const
restrict
volatile
_Atomic
Constraints

Types other than pointer types whose referenced type is an object type and (possibly multi-
dimensional) array types with such pointer types as element type shall not be restrict-qualified.

The _Atomic qualifier shall not be used if the implementation does not support atomic types
(see 6.10.9.3).

The type modified by the _Atomic qualifier shall not be an array type or a function type.

Semantics

The properties associated with qualified types are meaningful only for expressions that are lval-
162)
ues.

If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly, via one or more typeof specifiers, or via one or more typedefs, the behavior
is the same as if it appeared only once. If other qualifiers appear along with the _Atomic qualifier
the resulting type is the so-qualified atomic type.

162The implementation can place a const object that is not volatile in a read-only region of storage. Moreover, the
implementation need not allocate storage for such an object if its address is never used.

118 Language §6.7.3

10

11

12

13

14

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

If an attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue with non-volatile-qualified
type, the behavior is undefined.!®®

An object that has volatile-qualified type may be modified in ways unknown to the implementation
or have other unknown side effects. Therefore, any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as described in 5.1.2.3. Furthermore,
at every sequence point the value last stored in the object shall agree with that prescribed by the
abstract machine, except as modified by the unknown factors mentioned previously.!®¥ What
constitutes an access to an object that has volatile-qualified type is implementation-defined.

An object that is accessed through a restrict-qualified pointer has a special association with that
pointer. This association, defined in 6.7.3.1 below, requires that all accesses to that object use, directly
or indirectly, the value of that pointer.!®® The intended use of the restrict qualifier (like the
register storage class) is to promote optimization, and deleting all instances of the qualifier from
all preprocessing translation units composing a conforming program does not change its meaning
(i.e., observable behavior), unless _Generic is used to distinguish whether or not a type has that
qualifier.

If the specification of an array type includes any type qualifiers, both the array and the element type
are so-qualified. If the specification of a function type includes any type qualifiers, the behavior is
undefined.!¢®

For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect the
specified type.

EXAMPLE 1 An object declared

\ extern const volatile int real_time_clock;

might be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

const struct s { int mem; } cs = { 1 };

struct s ncs; // the object ncs is modifiable

typedef int A[2][3];

const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of const int
int *pi;

const int x*pci;

ncs = cs; // valid
CS = ncs; // violates modifiable lvalue constraint for =
pi = &ncs.mem; // valid

pi = &cs.mem; // violates type constraints for =
pci = &cs.mem; // valid
pi = al[0]; // invalid: al[0@] has type “const int x”

EXAMPLE 3 The declaration

163)This applies to those objects that behave as if they were defined with qualified types, even if they are never actually
defined as objects in the program (such as an object at a memory-mapped input/output address).

164) A volatile declaration can be used to describe an object corresponding to a memory-mapped input/output port or an
object accessed by an asynchronously interrupting function. Actions on objects so declared are not allowed to be “optimized
out” by an implementation or reordered except as permitted by the rules for evaluating expressions.

169 For example, a statement that assigns a value returned by malloc to a single pointer establishes this association between
the allocated object and the pointer.

160)This can occur with typedef s. Note that this rule does not apply to the _Atomic qualifier, and that qualifiers do not
have any direct effect on the array type itself, but affect conversion rules for pointer types that reference an array type.

§6.7.3 Language 119

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

\ _Atomic volatile int *p;

specifies that p has the type “pointer to volatile atomic int”, a pointer to a volatile-qualified atomic
type.

6.7.3.1 Formal definition of restrict

Let D be a declaration of an ordinary identifier that provides a means of designating an object P as a
restrict-qualified pointer to type T.

If D appears inside a block and does not have storage class extern, let B denote the block. If D
appears in the list of parameter declarations of a function definition, let B denote the associated block.
Otherwise, let B denote the block of main (or the block of whatever function is called at program
startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some sequence point in
the execution of B prior to the evaluation of E) modifying P to point to a copy of the array object into
which it formerly pointed would change the value of E.!) Note that “based” is defined only for
expressions with pointer types.

During each execution of B, let L be any lvalue that has &L based on P. If L is used to access the
value of the object X that it designates, and X is also modified (by any means), then the following
requirements apply: T shall not be const-qualified. Every other lvalue used to access the value of

X shall also have its address based on P. Every access that modifies X shall be considered also to
modify P, for the purposes of this subclause. If P is assigned the value of a pointer expression E that
is based on another restricted pointer object P2, associated with block B2, then either the execution
of B2 shall begin before the execution of B, or the execution of B2 shall end prior to the assignment.
If these requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program that would correspond to
the lifetime of an object with scalar type and automatic storage duration associated with B.

A translator is free to ignore any or all aliasing implications of uses of restrict.

EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using one of a, b, or ¢, and that object is modified anywhere in the
program, then it is never accessed using either of the other two.

EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int x restrict q)
{
while (n-- > 0)
*p++ = xQ++;
)

assert that, during each execution of the function, if an object is accessed through one of the pointer
parameters, then it is not also accessed through the other. The translator can make this no-aliasing
inference based on the parameter declarations alone, without analyzing the function body.

The benefit of the restrict qualifiers is that they enable a translator to make an effective dependence
analysis of function f without examining any of the calls of f in the program. The cost is that the
programmer has to examine all those calls to ensure that none give undefined behavior. For example,
the second call of f in g has undefined behavior because each of d[1] through d[49] is accessed
through both p and q.

167)In other words, E depends on the value of P itself rather than on the value of an object referenced indirectly through P.
For example, if identifier p has type (int xxrestrict), then the pointer expressions p and p+1 are based on the restricted
pointer object designated by p, but the pointer expressions *p and p[1] are not.

120 Language §6.7.3.1

10

11

12

13

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

void g(void)
{

extern int d[100];

f(50, d + 50, d); // valid

f(50, d + 1, d); // undefined behavior
}

EXAMPLE 3 The function parameter declarations

void h(int n, int * restrict p, int x restrict q, int * restrict r)
{
int i;
for (i =0; i < n; i++)
plil = qlil + r[il;
}

illustrate how an unmodified object can be aliased through two restricted pointers. If a and b are
disjoint arrays, a call of the form h(100, a, b, b) has defined behavior, because array b is not
modified within function h.

EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish be-
tween a function call and an equivalent nested block. With one exception, only “outer-to-inner”
assignments between restricted pointers declared in nested blocks have defined behavior.

{
int * restrict pl;
int * restrict ql;
pl = ql; // undefined behavior
{
int * restrict p2 = pl; // valid
int * restrict q2 = ql; // valid
pl = g2; // undefined behavior
p2 = q2; // undefined behavior
¥
}

The one exception allows the value of a restricted pointer to be carried out of the block in which it
(or, more precisely, the ordinary identifier used to designate it) is declared when that block finishes
execution. For example, this permits new_vector to return a vector.

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)
{
vector t;
t.n =n;
t.v = malloc(n * sizeof(float));
return t;
}

EXAMPLE 5 Suppose that a programmer knows that references of the form p[i] and q[j] are
never aliases in the body of a function:

\ void f(int n, int *p, int xq) { /* ... %/ }

There are several ways that this information could be conveyed to a translator using the restrict
qualifier. Example 2 shows the most effective way, qualifying all pointer parameters, and can be
used provided that neither p nor q becomes based on the other in the function body. A potentially
effective alternative is:

§6.7.3.1 Language 121

14

15

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

\ void f(int n, int * restrict p, int * const q) { /* ... */ }

Again, it is possible for a translator to make the no-aliasing inference based on the parameter
declarations alone, though now it must use subtler reasoning: that the const-qualification of q
precludes it becoming based on p. There is also a requirement that q is not modified, so this
alternative cannot be used for the function in Example 2, as written.

EXAMPLE 6 Another potentially effective alternative is:

[
\ void f(int n, int *p, int const x restrict q) { /x ... %/ }
L

Again, it is possible for a translator to make the no-aliasing inference based on the parameter
declarations alone, though now it must use even subtler reasoning: that this combination of
restrict and const means that objects referenced using q cannot be modified, and so no modified
object can be referenced using both p and q.

EXAMPLE 7 The least effective alternative is:

\ void f(int n, int * restrict p, int xq) { /x ... %/ }

Here the translator can make the no-aliasing inference only by analyzing the body of the function
and proving that q cannot become based on p. Some translator designs may choose to exclude this
analysis, given availability of the more effective alternatives above. Such a translator is required
to assume that aliases are present because assuming that aliases are not present may result in an
incorrect translation. Also, a translator that attempts the analysis may not succeed in all cases and
consequently need to conservatively assume that aliases are present.

6.7.4 Function specifiers
Syntax
function-specifier:
inline
—Noreturn

Constraints
Function specifiers shall be used only in the declaration of an identifier for a function.
An inline definition of a function with external linkage shall not contain a definition of a modifiable

object with static or thread storage duration, and shall not contain a reference to an identifier with
internal linkage.

In a hosted environment, no function specifier(s) shall appear in a declaration of main.

Semantics

A function specifier may appear more than once; the behavior is the same as if it appeared only
once.

A function declared with an inline function specifier is an inline function. Making a function an
inline function suggests that calls to the function be as fast as possible.!®® The extent to which such
suggestions are effective is implementation-defined.!®)

Any function with internal linkage can be an inline function. For a function with external linkage,
the following restrictions apply: If a function is declared with an inline function specifier, then it

169)By using, for example, an alternative to the usual function call mechanism, such as “inline substitution”. Inline
substitution is not textual substitution, nor does it create a new function. Therefore, for example, the expansion of a macro
used within the body of the function uses the definition it had at the point the function body appears, and not where the
function is called; and identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a single
address, regardless of the number of inline definitions that occur in addition to the external definition.

169 For example, an implementation might never perform inline substitution, or might only perform inline substitutions to
calls in the scope of an inline declaration.

122 Language §6.7.4

10

11

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

shall also be defined in the same translation unit. If all the file scope declarations for a function in a
translation unit include the inline function specifier without extern, then the definition in that
translation unit is an inline definition. An inline definition does not provide an external definition for
the function and does not forbid an external definition in another translation unit. Inline definitions
provide an alternative to external definitions, which a translator may use to implement any call to
the function in the same translation unit. It is unspecified whether a call to the function uses the
inline definition or the external definition.!””

A function declared with a _Nereturn function specifier shall not return to its caller. The attribute
[[noreturn]] provides similar semantics. The _Noreturn function specifier is an obsolescent
feature (6.7.12.6).

Recommended practice

The implementation should produce a diagnostic message for a function declared with a _Noreturn
function specifier that appears to be capable of returning to its caller.

EXAMPLE 1 The declaration of an inline function with external linkage can result in either an
external definition, or a definition available for use only within the translation unit. A file scope
declaration with extern creates an external definition. The following example shows an entire
translation unit.

inline double fahr(double t)

{
return (9.0 * t) / 5.0 + 32.0;
}
inline double cels(double t)
{
return (5.0 * (t - 32.0)) / 9.0;
}
extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)

{
/* A translator may perform inline substitutions x/
return is_fahr ? cels(temp): fahr(temp);

Note that the definition of fahr is an external definition because fahr is also declared with extern,
but the definition of cels is an inline definition. Because cels has external linkage and is referenced,
an external definition has to appear in another translation unit (see 6.9); the inline definition and the
external definition are distinct and either can be used for the call.

Forward references: function definitions (6.9.1).

6.7.5 Alignment specifier

Syntax

alignment-specifier:
alignas (type-name)
alignas (constant-expression)

Constraints

An alignment specifier shall appear only in the declaration specifiers of a declaration, or in the
specifier-qualifier list of a member declaration, or in the type name of a compound literal. An

170)Since an inline definition is distinct from the corresponding external definition and from any other corresponding inline
definitions in other translation units, all corresponding objects with static storage duration are also distinct in each of the
definitions.

§6.7.5 Language 123

1

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

alignment specifier shall not be used in conjunction with either of the storage-class specifiers
typedef or register, nor in a declaration of a function or bit-field.

The constant expression shall be an integer constant expression. It shall evaluate to a valid funda-
mental alignment, or to a valid extended alignment supported by the implementation for an object
of the storage duration (if any) being declared, or to zero.

An object shall not be declared with an over-aligned type with an extended alignment requirement
not supported by the implementation for an object of that storage duration.

The combined effect of all alignment specifiers in a declaration shall not specify an alignment that is
less strict than the alignment that would otherwise be required for the type of the object or member
being declared.

Semantics
The first form is equivalent to alignas (alignof (type-name)).

The alignment requirement of the declared object or member is taken to be the specified alignment.
An alignment specification of zero has no effect.””) When multiple alignment specifiers occur in a
declaration, the effective alignment requirement is the strictest specified alignment.

If the definition of an object has an alignment specifier, any other declaration of that object shall
either specify equivalent alignment or have no alignment specifier. If the definition of an object does
not have an alignment specifier, any other declaration of that object shall also have no alignment
specifier. If declarations of an object in different translation units have different alignment specifiers,
the behavior is undefined.

6.7.6 Declarators

Syntax

declarator:
pointerop direct-declarator

direct-declarator:
identifier attribute-specifier-sequenceqpt
(declarator)
array-declarator attribute-specifier-sequenceqpt
function-declarator attribute-specifier-sequenceqpt

array-declarator:
direct-declarator [type-qualifier-listop, assignment-expressionqpt 1
direct-declarator [static type-qualifier-listop assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listope *]

function-declarator:
direct-declarator (parameter-type-list,p;)

pointer:

* attribute-specifier-sequencep; type-qualifier-listop;

* attribute-specifier-sequenceop; type-qualifier-listop pointer
type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier
parameter-type-list:

parameter-list

parameter-list ,

171) An alignment specification of zero also does not affect other alignment specifications in the same declaration.

124 Language §6.7.6

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

parameter-list:
parameter-declaration
parameter-list , parameter-declaration
parameter-declaration:
attribute-specifier-sequenceqp declaration-specifiers declarator
attribute-specifier-sequence,p declaration-specifiers abstract-declaratorpy

Semantics

Each declarator declares an identifier for a single object, function, or type, within a declaration. The
preceding specifiers indicate the type, storage class, or other properties of the identifier or identifiers
being declared. Each declarator specifies one declaration and names it and/or modifies the type of
the specifiers with operators such as * (pointer to) and () (function returning).

A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of
declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

In the following subclauses, consider a declaration
TD1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

If, in the declaration “T D1”, D1 has the form
identifier attribute-specifier-sequenceqpy

then the type specified for ident is T and the optional attribute specifier sequence appertains to the
entity that is declared.

If, in the declaration “T D1”, D1 has the form
(D)

then ident has the type specified by the declaration “T D”. Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators may be
altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function
declarators that modify an arithmetic, structure, union, or void type, either directly or via one or
more typedef s.

Forward references: array declarators (6.7.6.2), type definitions (6.7.8).

6.7.6.1 Pointer declarators
Semantics
If, in the declaration “T D1”, D1 has the form

* attribute-specifier-sequenceop type-qualifier-listpe D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T”. For each type
qualifier in the list, ident is a so-qualified pointer. The optional attribute specifier sequence appertains
to the pointer and not the object pointed to.

For two pointer types to be compatible, both shall be identically qualified and both shall be pointers
to compatible types.

EXAMPLE The following pair of declarations demonstrates the difference between a “object pointer
to a constant value” and a “constant pointer to an object value”.

§6.7.6.1 Language 125

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

const int *ptr_to_constant;
int *xconst constant_ptr;

The contents of any object pointed to by ptr_to_constant cannot be modified through that pointer,
but ptr_to_constant itself can be changed to point to another object. Similarly, the contents of
the int pointed to by constant_ptr can be modified, but constant_ptr itself always points to the
same location.

The declaration of the constant pointer constant_ptr can be clarified by including a definition for
the type “pointer to int”.

typedef int *int_ptr;
const int_ptr constant_ptr;

declares constant_ptr as an object that has type “const-qualified pointer to int”.

6.7.6.2 Array declarators
Constraints

In addition to optional type qualifiers and the keyword static, the [and] may delimit an expres-
sion or *. If they delimit an expression (which specifies the size of an array), the expression shall
have an integer type. If the expression is a constant expression, it shall have a value greater than
zero. The element type shall not be an incomplete or function type. The optional type qualifiers and
the keyword static shall appear only in a declaration of a function parameter with an array type,
and then only in the outermost array type derivation.

If an identifier is declared as having a variably modified type, it shall be an ordinary identifier (as
defined in 6.2.3), have no linkage, and have either block scope or function prototype scope. If an
identifier is declared to be an object with static or thread storage duration, it shall not have a variable
length array type.

Semantics
If, in the declaration “T D1”, D1 has one of the forms:

D [type-qualifier-list,p. assignment-expressionqp, 1 attribute-specifier-sequenceopt

D [static type-qualifier-list,y,, assignment-expression 1 attribute-specifier-sequenceqpt
D [type-qualifier-list static assignment-expression 1 attribute-specifier-sequenceqpt
D [type-qualifier-listopr *] attribute-specifier-sequenceopt

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list array of T”.17217%) The optional attribute specifier
sequence appertains to the array. (See 6.7.6.3 for the meaning of the optional type qualifiers and the
keyword static.)

If the size is not present, the array type is an incomplete type. If the size is * instead of being an
expression, the array type is a variable length array type of unspecified size, which can only be used in
declarations or type names with function prototype scope!'’%; such arrays are nonetheless complete
types. If the size is an integer constant expression and the element type has a known constant
size, the array type is not a variable length array type; otherwise, the array type is a variable length
array type. (Variable length arrays with automatic storage duration are a conditional feature that
implementations need not support; see 6.10.9.3.)

If the size is an expression that is not an integer constant expression: if it occurs in a declaration at
function prototype scope, it is treated as if it were replaced by *; otherwise, each time it is evaluated
it shall have a value greater than zero. The size of each instance of a variable length array type does
not change during its lifetime. Where a size expression is part of the operand of a typeof or sizeof
operator and changing the value of the size expression would not affect the result of the operator, it

172)When several “array of” specifications are adjacent, a multidimensional array is declared.
173)The array is considered identically qualified to T according to 6.2.5.
79 Thus, * can be used only in function declarations that are not definitions (see 6.7.6.3).

126 Language §6.7.6.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

is unspecified whether or not the size expression is evaluated. Where a size expression is part of the
operand of an alignof operator, that expression is not evaluated.

For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size specifiers shall have
the same constant value. If the two array types are used in a context which requires them to be
compatible, it is undefined behavior if the two size specifiers evaluate to unequal values.

EXAMPLE 1

\ float fa[ll], *afp[l7];

declares an array of float numbers and an array of pointers to float numbers.

EXAMPLE 2 Note the distinction between the declarations

extern int xx;
extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of unknown
size (an incomplete type), the storage for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified
types.

extern int n;
extern int m;
void fcompat(void)
{
int a[n][6]1[m];
int (xp)[4]1[n+1];
int c[n]l[n][6][m];
int (*r)[n][n][n+1];
p = a; // invalid: not compatible because 4 '= 6
r=c; // compatible, but defined behavior only if
// n==6 and m == n+l
}

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope
or function prototype scope. Array objects declared with the thread_local, static, or extern
storage-class specifier cannot have a variable length array (VLA) type. However, an object declared
with the static storage-class specifier can have a VM type (that is, a pointer to a VLA type). Finally,
all identifiers declared with a VM type have to be ordinary identifiers and cannot, therefore, be
members of structures or unions.

extern int n;

int A[n]; // invalid: file scope VLA
extern int (xp2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM
void fvla(int m, int C[m][m]); // valid: VLA with prototype scope
void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{
typedef int VLA[m][m]; // valid: block scope typedef VLA
struct tag {
int (xy)[nl]; // invalid: 'y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier
¥i
int D[m]; // valid: auto VLA

§6.7.6.2 Language 127

10

11

12

13

14

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

\ static int E[m]; // invalid: static block scope VLA

\ extern int F[m]; // invalid: F has linkage and is VLA

\ int (xs)[m]; // valid: auto pointer to VLA

\ extern int (xr)[m]; // invalid: r has linkage and points to VLA
\ static int (xq)[m] = &B; // valid: q is a static block pointer to VLA
|

L

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.10).

6.7.6.3 Function declarators
Constraints
A function declarator shall not specify a return type that is a function type or an array type.

The only storage-class specifier that shall occur in a parameter declaration is register.

After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
If, in the declaration “T D1”, D1 has the form

D (parameter-type-listop,) attribute-specifier-sequenceqpt

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list function returning the unqualified, non-atomic
version of T”. The optional attribute specifier sequence appertains to the function type.

A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

A declaration of a parameter as “array of type” shall be adjusted to “qualified pointer to type”, where
the type qualifiers (if any) are those specified within the [and] of the array type derivation. If the
keyword static also appears within the [and] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

A declaration of a parameter as “function returning type” shall be adjusted to “pointer to function
returning type”, as in 6.3.2.1.

If the list terminates with an ellipsis (.. .), no information about the number or types of the
parameters after the comma is supplied. 7>

The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

The storage class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition. The optional attribute specifier sequence in a parameter declaration appertains to the
parameter.

For a function declarator without a parameter type list: the effect is as if it were declared with a
parameter type list consisting of the keyword void. A function declarator provides a prototype for
the function.

For two function types to be compatible, both shall specify compatible return types. Moreover,
the parameter type lists shall agree in the number of parameters and in use of the final ellipsis;

175 The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.

128 Language §6.7.6.3

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

corresponding parameters shall have compatible types. In the determination of type compatibility
and of a composite type, each parameter declared with function or array type is taken as having the
adjusted type and each parameter declared with qualified type is taken as having the unqualified
version of its declared type.

15 EXAMPLE 1 The declaration

| int f(void), *fip(), (xpfi)();

declares a function f with no parameters returning an int, a function fip with no parameters
returning a pointer to an int, and a pointer pfi to a function with no parameters returning an
int. It is especially useful to compare the last two. The binding of *fip() is *(fip()), so that the
declaration suggests, and the same construction in an expression requires, the calling of a function
fip, and then using indirection through the pointer result to yield an int. In the declarator (*pfi)
(), the extra parentheses are necessary to indicate that indirection through a pointer to a function
yields a function designator, which is then used to call the function; it returns an int.

16 If the declaration occurs outside of any function, the identifiers have file scope and external linkage.
If the declaration occurs inside a function, the identifiers of the functions f and fip have block
scope and either internal or external linkage (depending on what file scope declarations for these
identifiers are visible), and the identifier of the pointer pfi has block scope and no linkage.

17 EXAMPLE 2 The declaration

\ int (xapfi[3]) (int *x, int xy);

declares an array apf1i of three pointers to functions returning int. Each of these functions has two
parameters that are pointers to int. The identifiers x and y are declared for descriptive purposes
only and go out of scope at the end of the declaration of apfi.

18 EXAMPLE 3 The declaration

| int (+fpfi(int (+)(long), int))(int, ...);

declares a function fpfi that returns a pointer to a function returning an int. The function fpfi has
two parameters: a pointer to a function returning an int (with one parameter of type long int),
and an int. The pointer returned by fpfi points to a function that has one int parameter and
accepts zero or more additional arguments of any type.

19 EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double Xx);

int main(void)

{
double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int 1 = 0; i < n; i++)
for (int j = 0, k = n¥xm+300; j < k; j++)
// a 1s a pointer to a VLA with nxm+300 elements
alill[j] += x;
}

20 EXAMPLE 5 The following are all compatible function prototype declarators.

§6.7.6.3 Language 129

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

double maximum(int n, int m, double a[n][m]);
double maximum(int n, int m, double a[x][x*]);
double maximum(int n, int m, double a[]1[x*]);
double maximum(int n, int m, double a[1[m]);

as are:

void f(double (* restrict a)[5]);

void f(double a[restrict][5]);

void f(double a[restrict 3][5]);

void f(double a[restrict static 3]1[5]);

(Note that the last declaration also specifies that the argument corresponding to a in any call to f
can be expected to be a non-null pointer to the first of at least three arrays of 5 doubles, which the
others do not.)

Forward references: function definitions (6.9.1), type names (6.7.7).

6.7.7 Type names
Syntax
type-name:
specifier-qualifier-list abstract-declaratorop;
abstract-declarator:
pointer
pointeropt direct-abstract-declarator
direct-abstract-declarator:
(abstract-declarator)
array-abstract-declarator attribute-specifier-sequenceqpy
function-abstract-declarator attribute-specifier-sequencept
array-abstract-declarator:
direct-abstract-declaratorope [type-qualifier-listp assignment-expressionpt 1
direct-abstract-declaratoropy [static type-qualifier-listop assignment-expression]
direct-abstract-declaratorop, [type-qualifier-list static assignment-expression]
direct-abstract-declaratoropy [* 1

function-abstract-declarator:
direct-abstract-declaratorop, (parameter-type-listop;)

Semantics

In several contexts, it is necessary to specify a type. This is accomplished using a type name, which is
syntactically a declaration for a function or an object of that type that omits the identifier.'”® The
optional attribute specifier sequence in a direct abstract declarator appertains to the preceding array
or function type. The attribute specifier sequence affects the type only for the declaration it appears
in, not other declarations involving the same type.

EXAMPLE The constructions

(a) int

(b) int x

(c) int *[3]

(d) int (*)[3]
(e) int (*)[*]
(f) int *()

(9) int (%) (void)

176) As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no parameters”, rather
than redundant parentheses around the omitted identifier.

130 Language §6.7.7

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

\ (h) int (xconst [])(unsigned int, ...)

name respectively the types

(a) (a) int,

(b) pointer to int,

(c) array of three pointers to int,

(d) pointer to an array of three int s,

(e) pointer to a variable length array of an unspecified number of int s,
(f) function with no parameters returning a pointer to int,

(g) pointer to function with no parameters returning an int, and

(h) array of an unspecified number of constant pointers to functions, each with one parameter

that has type unsigned int and an unspecified number of other parameters, returning an int.

6.7.8 Type definitions

Syntax

typedef-name:
identifier

Constraints
If a typedef name specifies a variably modified type then it shall have block scope.

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an identifier to be
a typedef name that denotes the type specified for the identifier in the way described in 6.7.6. Any
array size expressions associated with variable length array declarators and typeof operators are
evaluated each time the declaration of the typedef name is reached in the order of execution. A
typedef declaration does not introduce a new type, only a synonym for the type so specified. That
is, in the following declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers in T
(known as T), and the identifier in D has the type “derived-declarator-type-list T” where the derived-
declarator-type-list is specified by the declarators of D. A typedef name shares the same name space
as other identifiers declared in ordinary declarators. If the identifier is redeclared in an enclosed
block, the type of the inner declaration shall not be inferred (6.7.9).

EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;

extern KLICKSP xmetricp;
range Xx;

range z, *zp;

§6.7.8 Language 131

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

are all valid declarations. The type of distance is int, that of metricp is “pointer to function with
no parameters returning int”, and that of x and z is the specified structure; zp is a pointer to such a
structure. The object distance has a type compatible with any other int object.

EXAMPLE 2 After the declarations

typedef struct sl { int x; } t1, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to by tpl are compatible. Type t1 is also compatible with type
struct sl1, but not compatible with the types struct s2, t2, the type pointed to by tp2, or int.

EXAMPLE 3 The following obscure constructions

typedef signed int t;

typedef int plain;

struct tag {
unsigned t:4;
const t:5;
plain r:5;

}

declare a typedef name t with type signed int, a typedef name plain with type int, and a
structure with three bit-field members, one named t that contains values in the range [0, 15], an
unnamed const-qualified bit-field which (if it could be accessed) would contain values in the range
[-16,+15], and one named r that contains values in one of the ranges [0, 31] or [—16, +15]. (The
choice of range is implementation-defined.) The first two bit-field declarations differ in that
unsigned is a type specifier (which forces t to be the name of a structure member), while const is a
type qualifier (which modifies t which is still visible as a typedef name). If these declarations are
followed in an inner scope by

t f(t (t));
long t;

then a function f is declared with type “function returning signed int with one unnamed parame-
ter with type pointer to function returning signed int with one unnamed parameter with type
signed int”, and an identifier t with type long int.

EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three
of the following declarations of the signal function specify exactly the same type, the first without
making use of any typedef names.

typedef void fv(int), (xpfv)(int);

void (*signal(int, void (x)(int))) (int);
fv xsignal(int, fv x);
pfv signal(int, pfv);

EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed
at the time the typedef name is defined, not each time it is used:

void copyt(int n)

{
typedef int B[n]; // B is n ints, n evaluated now
n += 1;
B a; // a is n ints, n without +=1
int b[n]; // a and b are different sizes
for (int 1 = 1; i < n; i++)

al[i-1] = b[i];
)

132 Language §6.7.8

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.7.9 Type inference

Constraints
A declaration for which the type is inferred shall contain the storage-class specifier auto.

Semantics
For such a declaration that is the definition of an object the init-declarator shall have the form

direct-declarator = assignment-expression

The inferred type of the declared object is the type of the assignment expression after lvalue, array
to pointer or function to pointer conversion, additionally qualified by qualifiers and amended by
attributes as they appear in the declaration specifiers, if any.!””) Implementations need not accept a
direct declarator that is not of the form

identifier attribute-specifier-sequenceopt

optionally enclosed in balanced pairs of parentheses; if a direct declarator of a different form is
accepted, the behavior is implementation-defined.”®

NOTE 1 Such a declaration that also defines a structure or union type violates a constraint. Here, the identifier x which is
not ordinary but in the name space of the structure type is declared.

‘ auto p = (struct { int x; } %)0;

Even a forward declaration of a structure tag

struct s;
auto p = (struct s { int x; } *)0;

would not change that situation. A direct use of the structure definition as the type specifier ensures the validity of the
declaration.

I 1
\ struct s { int x; } * p = 0;

EXAMPLE 1 Consider the following file scope definitions:

static auto a = 3.5;
auto p = &a;

They are interpreted as if they had been written as:

static double a = 3.5;
double * p = &a;

So effectively a is a double and p is a doublex. Note that the restrictions on the syntax of such
declarations does not allow the declarator to be *p, but that the final type here nevertheless is a
pointer type.

EXAMPLE 2 The scope of the identifier for which the type is inferred only starts after the end of
the initializer (6.2.1), so the assignment expression cannot use the identifier to refer to the object or
function that is declared, for example to take its address. Any use of the identifier in the initializer is
invalid, even if an entity with the same name exists in an outer scope.

[|
| { |
\ double a = 7;
\ double b = 9;
| { |
| |

double b = b * b; // undefined, uses uninitialized

17 The scope rules as described in 6.2.1 also prohibit the use of the identifier of the declarator within the assignment

expression.
1791t is commended that implementations that accept different forms of direct declarators follow the syntax and semantics
of the corresponding feature in ISO/IEC IS 14882.

§6.7.9 Language 133

1

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

// variable without address
printf("%g\n", a); // valid, uses "a" from outer scope, prints 7
auto a = a x a; // invalid, "a" from outer scope is not

// visible during initialization

h
{
auto b = a *x a; // valid, uses "a" from outer scope
auto a = b; // valid, "a" from outer scope not visible now
/] ...
printf("%sg\n", a); // valid, uses "a" from inner scope, prints 49
h
//

EXAMPLE 3 In the following, declarations of pA and gA are valid. The type of A after array-to-
pointer conversion is a pointer type, and gA is a pointer to array.

double A[3] = { 0 };
auto pA = A;
auto gA = &A;

EXAMPLE 4 Type inference can be used to capture the type of a call to a type-generic function. It
ensures that the same type as the argument x is used.

#include <tgmath.h>
auto y = cos(x);

If instead the type of y is explicitly specified to a different type than x, a diagnosis of the mismatch
is not enforced.

EXAMPLE 5 A type-generic macro that generalizes the div functions (7.24.6.2) is defined and used
as follows.

#define div (X, Y) _Generic((X)+(Y),\
int: div,\
long: ldiv,\
long long: 1ldiv) ((X), (Y))
auto z = div(x, y);
auto q = z.quot;
auto r = z.rem;

EXAMPLE 6 Definitions of objects with inferred type are valid in all contexts that allow the initial-
izer syntax as described. In particular they can be used to ensure type safety of for-loop controlling
expressions.

for (auto i = j; i < 2xj; ++i) {
77 oo
)

Here, regardless of the integer rank or signedness of the type of j, i will have the non-atomic
unqualified type of j. So, after lvalue conversion and possible promotion, the two operands of the <
operator in the controlling expression are guaranteed to have the same type, and, in particular, the
same signedness.

6.7.10 Initialization

Syntax
braced-initializer:

{1}

{ initializer-list }

134 Language §6.7.10

10

11

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

{ initializer-list , }

initializer:
assignment-expression
braced-initializer

initializer-list:
designationep initializer
initializer-list , designationep, initializer

designation:
designator-list =

designator-list:
designator
designator-list designator
designator:
[constant-expression 1]
. identifier

An empty brace pair ({}) is called an empty initializer and is referred to as empty initialization.

Constraints

No initializer shall attempt to provide a value for an object not contained within the entity being
initialized.

The type of the entity to be initialized shall be an array of unknown size or a complete object type.

An entity of variable length array type shall not be initialized except by an empty initializer. An
array of unknown size shall not be initialized by an empty initializer.

All the expressions in an initializer for an object that has static or thread storage duration or is
declared with the constexpr storage-class specifier shall be constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

If a designator has the form
[constant-expression 1

then the current object (defined below) shall have array type and the expression shall be an integer
constant expression. If the array is of unknown size, any nonnegative value is valid.

If a designator has the form
. identifier

then the current object (defined below) shall have structure or union type and the identifier shall be
the name of a member of that type.

Semantics

An initializer specifies the initial value stored in an object. For objects with atomic type additional
restrictions apply, see 7.17.2 and 7.17.8.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate representation even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its representation is
indeterminate. If an object that has static or thread storage duration is not initialized explicitly, or
any object is initialized with an empty initializer, then it is subject to default initialization, which
initializes an object as follows:

§6.7.10 Language 135

12

13
14

15

16

17

18

19

20

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— if it has pointer type, it is initialized to a null pointer;

— if it has decimal floating type, it is initialized to positive zero, and the quantum exponent is
implementation-defined!'”);

— if it has arithmetic type, and it does not have decimal floating type, it is initialized to (positive
or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

— if it is a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits.

The initializer for a scalar shall be a single expression, optionally enclosed in braces, or it shall be
an empty initializer. If the initializer is not the empty initializer, the initial value of the object is
that of the expression (after conversion); the same type constraints and conversions as for simple
assignment apply, taking the type of the scalar to be the unqualified version of its declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

The initializer for a structure or union object shall be either an initializer list as described below, or a
single expression that has compatible structure or union type. In the latter case, the initial value of
the object, including unnamed members, is that of the expression.!8?

An array of character type may be initialized by a character string literal or UTE-8 string literal,
optionally enclosed in braces. Successive bytes of the string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with a qualified or unqualified wchar_t, charl6_t, or
char32_t may be initialized by a wide string literal with the corresponding encoding prefix (L, u, or
U, respectively), optionally enclosed in braces. Successive wide characters of the wide string literal
(including the terminating null wide character if there is room or if the array is of unknown size)
initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members.

Each brace-enclosed initializer list has an associated current object. When no designations are present,
subobjects of the current object are initialized in order according to the type of the current object:
array elements in increasing subscript order, structure members in declaration order, and the first
named member of a union.!8!) In contrast, a designation causes the following initializer to begin
initialization of the subobject described by the designator. Initialization then continues forward in
order, beginning with the next subobject after that described by the designator.!8?)

Each designator list begins its description with the current object associated with the closest sur-
rounding brace pair. Each item in the designator list (in order) specifies a particular member of its
current object and changes the current object for the next designator (if any) to be that member.!33)
The current object that results at the end of the designator list is the subobject to be initialized by the
following initializer.

The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject;'8¥ all subobjects that are not

179) A representation with all bits zero results in a decimal floating-point zero with the most negative exponent.

180)If the object being initialized does not have automatic storage duration, this case violates a constraint unless the expression
is a named constant or compound literal constant (6.6).

I8DIf the initializer list for a subaggregate or contained union does not begin with a left brace, its subobjects are initialized as
usual, but the subaggregate or contained union does not become the current object: current objects are associated only with
brace-enclosed initializer lists.

182) A fter a union member is initialized, the next object is not the next member of the union; instead, it is the next subobject of
an object containing the union.

183)Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with the surrounding
brace pair. Note, too, that each separate designator list is independent.

184 Any initializer for the subobject which is overridden and so not used to initialize that subobject might not be evaluated at
all.

136 Language §6.7.10

21

22

23

24

25

26

27

28

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

initialized explicitly are subject to default initialization.

If the aggregate or union contains elements or members that are aggregates or unions, these rules
apply recursively to the subaggregates or contained unions. If the initializer of a subaggregate or
contained union begins with a left brace, the initializers enclosed by that brace and its matching right
brace initialize the elements or members of the subaggregate or the contained union. Otherwise, only
enough initializers from the list are taken to account for the elements or members of the subaggregate
or the first member of the contained union; any remaining initializers are left to initialize the next
element or member of the aggregate of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are elements or members of an
aggregate, or fewer characters in a string literal used to initialize an array of known size than there
are elements in the array, the remainder of the aggregate is subject to default initialization.

If an array of unknown size is initialized, its size is determined by the largest indexed element with
an explicit initializer. The array type is completed at the end of its initializer list.

The evaluations of the initialization list expressions are indeterminately sequenced with respect to
one another and thus the order in which any side effects occur is unspecified.'®>

EXAMPLE 1 Provided that <complex.h> has been #included, the declarations

int i = 3.5;
double complex c =5 + 3 * I;

define and initialize i with the value 3 and c with the value 5.0 + ¢3.0.
EXAMPLE 2 The declaration

| int x(1 ={1, 3,5}

defines and initializes x as a one-dimensional array object that has three elements, as no size was
specified and there are three initializers.

EXAMPLE 3 The declaration

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array
object y[0]), namely y[0][0], y[0][1],and y[0][2]. Likewise the next two lines initialize y[1]
and y[2]. The initializer ends early, so y[3] is initialized with zeros. Precisely the same effect could
have been achieved by

int y[4][3] = {
1, 3, 5,2, 4,6, 3,5, 7
i

The initializer for y [0] does not begin with a left brace, so three items from the list are used. Likewise
the next three are taken successively for y[1] and y[2].

EXAMPLE 4 The declaration

int z[4]1[3] = {
{1y {2} {3} {41}
}

initializes the first column of z as specified and initializes the rest with zeros.

189)n particular, the evaluation order need not be the same as the order of subobject initialization.

§6.7.10 Language 137

29

30

31

32

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

EXAMPLE 5 The declaration

| struct { int a[3], b; }wll ={ {1}, 2}

is a definition with an inconsistently bracketed initialization. It defines an array with two element
structures: w[0].a[0] is1and w[1].a[0] is 2; all the other elements are zero.

EXAMPLE 6 The declaration

short q[4][3]1[2] = {
{1},
{2, 31},
{4,561}
}

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional ar-
ray object: q[0]1[0][0]is1,q[1]1[0][0]is2,q[1][0][1]is3, and 4,5, and 6 initialize q[2]1[0][0],
ql2]1[6]1[1],and q[2]1[1]1[0], respectively; all the rest are zero. The initializer for q[0] [0] does
not begin with a left brace, so up to six items from the current list could be used. There is only one,
so the values for the remaining five elements are initialized with zero. Likewise, the initializers
for q[1][0] and q[2][0] do not begin with a left brace, so each uses up to six items, initializing
their respective two-dimensional subaggregates. If there had been more than six items in any of the
lists, a diagnostic message would have been issued. The same initialization result could have been
achieved by:

short q[4]1[3][2] = {
1, 0, 0, 0, 0, O,
2, 3, 0, 0, 0,0,
4, 5, 6
};
or by:
short q[4]1[3][2] = {
{
{11},
+
{
{2, 31,
+
{
{4, 51},
{6},
)
}

in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less
likely to cause confusion.

EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given
the declaration

[
\ typedef int A[]; // OK - declared with block scope

the declaration

| Aa={1,2} b={3 4,5}

is identical to

138 Language §6.7.10

33

34

35

36

37

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

| intall ={1,2}, bll={3, 4,5}

due to the rules for incomplete types.
EXAMPLE 8 The declaration

\ char s[] = "abc", t[3] = "abc"; \

defines “plain” char array objects s and t whose elements are initialized with character string
literals. This declaration is identical to

’

i char s[]
|

{ I, Ibl' ICI’ I\OI }, i
tr] = { |

a
lal, Ibl, ICI };

The contents of the arrays are modifiable. On the other hand, the declaration

i char xp = "abc"; i

defines p with type “pointer to char” and initializes it to point to an object with type “array of char”
with length 4 whose elements are initialized with a character string literal. If an attempt is made to
use p to modify the contents of the array, the behavior is undefined.

EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using
designators:

enum { member_one, member_two };
const char xnm[] = {
[member_two] = "member two",
[member_one] = "member one",

i

EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their
order:

[|
\ div_t answer = {.quot = 2, .rem = -1 }; \
L |

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer
lists might be misunderstood:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] =2 };

EXAMPLE 12

struct T {
int k;
int 1;
i
struct S {
int i;
struct T t;
Ia
struct T x = {.1 = 43, .k = 42, };

void f(void)

{

struct S 1

I
-~
=
-

I
X
~+
—~

I
N
=
-

§6.7.10 Language 139

38

39

40

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

| } |

The value of 1. t.k is 42, because implicit initialization does not override explicit initialization.

EXAMPLE 13 Space can be “allocated” from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] =8, 6, 4, 2, 0
+

In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it
is less than ten, some of the values provided by the first five initializers will be overridden by the
second five.

EXAMPLE 14 Any member of a union can be initialized:

\ union { /* ... %/ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.21).

6.7.11 Static assertions

Syntax

static_assert-declaration:
static_assert (constant-expression , string-literal) ;
static_assert (constant-expression) ;

Constraints
The constant expression shall compare unequal to 0.

Semantics

The constant expression shall be an integer constant expression. If the value of the constant expres-
sion compares unequal to 0, the declaration has no effect. Otherwise, the constraint is violated and
the implementation shall produce a diagnostic message which should include the text of the string
literal, if present.

Forward references: diagnostics (7.2).

6.7.12 Attributes

Attributes specify additional information for various source constructs such as types, objects,
identifiers, or blocks. They are identified by an attribute token, which can either be a attribute prefixed
token (for implementation-specific attributes) or a standard attribute specified by an identifier (for
attributes specified in this document).

Support for any of the standard attributes specified in this document is implementation-defined
and optional. For an attribute token (including an attribute prefixed token) not specified in this
document, the behavior is implementation-defined. Any attribute token that is not supported by the
implementation is ignored.

Attributes are said to appertain to some source construct, identified by the syntactic context where
they appear, and for each individual attribute, the corresponding clause constrains the syntactic
context in which this appurtenance is valid. The attribute specifier sequence appertaining to some
source construct shall contain only attributes that are allowed to apply to that source construct.

In all aspects of the language, a standard attribute specified by this document as an identifier attr
and an identifier of the form __attr__ shall behave the same when used as an attribute token,
except for the spelling.!8¢)

186)Thus, the attributes [[nodiscard]] and [[__nodiscard__1] canbe freely interchanged. Implementations are encour-
aged to behave similarly for attribute tokens (including attribute prefixed tokens) they provide.

140 Language §6.7.12

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

For all standard attributes specified by this document, the current value when its token sequence is
given to the __has_c_attribute conditional inclusion expression (6.10.1) is written in the associated
subclause for that attribute. A history of those values can be found in Annex M (Annex M.1).

Recommended practice
It is recommended that implementations support all standard attributes as defined in this document.

6.7.12.1 General
Syntax

attribute-specifier-sequence:

attribute-specifier-sequenceop: attribute-specifier
attribute-specifier:

[[attribute-list 1]
attribute-list:

attributeopt

attribute-list , attributeqp
attribute:

attribute-token attribute-argument-clausep
attribute-token:

standard-attribute

attribute-prefixed-token
standard-attribute:

identifier

attribute-prefixed-token:

attribute-prefix :: identifier
attribute-prefix:

identifier
attribute-argument-clause:

(balanced—token—sequenceopt)
balanced-token-sequence:

balanced-token

balanced-token-sequence balanced-token
balanced-token:

(balanced—token—sequenceopt)

[balanced-token-sequencept 1

{ balanced-token-sequenceop }

any token other than a parenthesis, a bracket, or a brace

Constraints
The identifier in a standard attribute shall be one of:

deprecated maybe_unused noreturn unsequenced
fallthrough nodiscard _Noreturn reproducible
Semantics

An attribute specifier that contains no attributes has no effect. The order in which attribute tokens
appear in an attribute list is not significant. If a keyword (6.4.1) that satisfies the syntactic require-
ments of an identifier (6.4.2) is contained in an attribute token, it is considered an identifier. A strictly
conforming program using a standard attribute remains strictly conforming in the absence of that
attribute.'®”

NOTE 1 For each standard attribute, the form of the balanced token sequence, if any, will be specified.

187)Standard attributes specified by this document can be parsed but ignored by an implementation without changing the
semantics of a correct program; the same is not true for attributes not specified by this document.

§6.7.12.1 Language 141

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

Recommended Practice

Each implementation should choose a distinctive name for the attribute prefix in an attribute
prefixed token. Implementations should not define attributes without an attribute prefix unless it is
a standard attribute as specified in this document.

EXAMPLE 1 Suppose that an implementation chooses the attribute prefix hal and provides specific
attributes named daisy and rosie.

[[deprecated, hal::daisy]] double ninel000(double);
[[deprecated]] [[hal::daisy]] double ninelG00(double);
[[deprecated]] double ninel000 [[hal::daisy]] (double);

Then all the following declarations should be equivalent aside from the spelling:

[[—deprecated—, __hal__::__daisy__]1] double ninel000(double);
[[—deprecated—]] [[__hal__::__daisy__]] double ninelG00(double);
[[—deprecated—]] double ninelGOO [[__hal__::__daisy__1] (double);

These use the alternate spelling that is required for all standard attributes and recommended for
prefixed attributes. These may be better-suited for use in header files, where the use of the alternate
spelling avoids naming conflicts with user-provided macros.

EXAMPLE 2 For the same implementation, the following two declarations are equivalent, because
the ordering inside attribute lists is not important.

[[hal::daisy, hal::rosie]l] double nine999(double);
[[hal::rosie, hal::daisy]] double nine999(double);

On the other hand the following two declarations are not equivalent, because the ordering of
different attribute specifiers may affect the semantics.

[[hal::daisyl] [[hal::rosie]] double nine999(double);
[[hal::rosie]] [[hal::daisy]] double nine999(double); // may have different semantics

6.7.12.2 The nodiscard attribute

Constraints

The nodiscard attribute shall be applied to a function or to the definition of a structure, union, or
enumerated type. If an attribute argument clause is present, it shall have the form:

(string-literal)

Semantics

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202311L
when given nodiscard as the pp-tokens operand if the implementation supports the attribute.

A name or entity declared without the nodiscard attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked after the first declaration that marks it.

Recommended Practice

A nodiscard call is a function call expression that calls a function previously declared with attribute
nodiscard, or whose return type is a structure, union, or enumerated type marked with attribute
nodiscard. Evaluation of a nodiscard call as a void expression (6.8.3) is discouraged unless explicitly
cast to void. Implementations are encouraged to issue a diagnostic in such cases. This is typically
because immediately discarding the return value of a nodiscard call has surprising consequences.

The diagnostic message should include text provided by the string literal within the attribute
argument clause of any nodiscard attribute applied to the name or entity.

EXAMPLE 1

142 Language §6.7.12.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

struct [[nodiscard]] error_info { /*...x*/ };

struct error_info enable_missile_safety_mode(void);

void launch_missiles(void);

void test_missiles(void) {
enable_missile_safety_mode();
launch_missiles();

A diagnostic for the call to enable_missile_safety_mode is encouraged.
EXAMPLE 2

[[nodiscard]] int important_func(void);
void call(void) {
int i = important_func();

}

No diagnostic for the call to important_func is encouraged despite the value of i not being used.
EXAMPLE 3

[[nodiscard("must check armed state")]]
bool arm_detonator(int within);

void call(void) {
arm_detonator(3);
detonate();

A diagnostic for the call to arm_detonator using the string literal "must check armed state"
from the attribute argument clause is encouraged.

6.7.12.3 The maybe_unused attribute
Constraints

The maybe_unused attribute shall be applied to the declaration of a structure, a union, a typedef
name, an object, a structure or union member, a function, an enumeration, an enumerator, or a label.
No attribute argument clause shall be present.

Semantics
The maybe_unused attribute indicates that a name or entity is possibly intentionally unused.

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202311L
when given maybe_unused as the pp-tokens operand if the implementation supports the attribute.

A name or entity declared without the maybe_unused attribute can later be redeclared with the
attribute and vice versa. An entity is considered marked with the attribute after the first declaration
that marks it.

Recommended Practice
For an entity marked maybe_unused, implementations are encouraged not to emit a diagnostic that
the entity is unused, or that the entity is used despite the presence of the attribute.

EXAMPLE

[[maybe_unused]] void f([[maybe_unused]] int i) {
[[maybe_unused]] int j = i + 100;
assert(j);

Implementations are encouraged not to diagnose that j is unused, even if NDEBUG is defined.

§6.7.123 Language 143

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.7.12.4 The deprecated attribute

Constraints

The deprecated attribute shall be applied to the declaration of a structure, a union, a typedef name,
an object, a structure or union member, a function, an enumeration, or an enumerator.

If an attribute argument clause is present, it shall have the form:

(string-literal)

Semantics

The deprecated attribute can be used to mark names and entities whose use is still allowed, but is
discouraged for some reason.!8®)

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202311L
when given deprecated as the pp-tokens operand if the implementation supports the attribute.

A name or entity declared without the deprecated attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked with the attribute after the first declaration that
marks it.

Recommended Practice

Implementations should use the deprecated attribute to produce a diagnostic message in case the
program refers to a name or entity other than to declare it, after a declaration that specifies the
attribute, when the reference to the name or entity is not within the context of a related deprecated
entity. The diagnostic message should include text provided by the string literal within the attribute
argument clause of any deprecated attribute applied to the name or entity.

EXAMPLE

struct [[deprecated]] S {

int a;
}
enum [[deprecated]] E1 {
one
+
enum E2 {
two [[deprecated("use 'three’ instead")l]],
three
}

[[deprecated]] typedef int Foo;

void fl(struct S s) { // Diagnose use of S
int i = one; // Diagnose use of E1
int j = two; // Diagnose use of two: "use 'three’ instead"
int k = three;
Foo f; // Diagnose use of Foo

}

[[deprecated]] void f2(struct S s) {
int i = one;
int j = two;
int k = three;
Foo f;
}

struct [[deprecated]] T {

189)In particular, deprecated is appropriate for names and entities that are obsolescent, insecure, unsafe, or otherwise unfit
for purpose.

144 Language §6.7.124

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

\ Foo f; |
\ struct S s; \
| |
L |

i

Implementations are encouraged to diagnose the use of deprecated entities within a context which
is not itself deprecated, as indicated for function f1, but not to diagnose within function f2 and
struct T, as they are themselves deprecated.

6.7.12.5 The fallthrough attribute
Constraints

The attribute token fallthrough shall only appear in an attribute declaration (6.7); such a dec-
laration is a fallthrough declaration. No attribute argument clause shall be present. A fallthrough
declaration may only appear within an enclosing switch statement (6.8.4.2). The next block item
(6.8.2) that would be encountered after a fallthrough declaration shall be a case label or default
label associated with the innermost enclosing switch statement and, if the fallthrough declaration is
contained in an iteration statement, the next statement shall be part of the same execution of the
secondary block of the innermost enclosing iteration statement.

Semantics

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202311L
when given fallthrough as the pp-tokens operand if the implementation supports the attribute.

Recommended Practice

The use of a fallthrough declaration is intended to suppress a diagnostic that an implementation
might otherwise issue for a case or default label that is reachable from another case or default
label along some path of execution. Implementations are encouraged to issue a diagnostic if a
fallthrough declaration is not dynamically reachable.

EXAMPLE

void f(int n) {
void g(void), h(void), i(void);
switch (n) {
case 1: /x diagnostic on fallthrough discouraged x*/
case 2:
g();
[[fallthroughl]];
case 3: /x diagnostic on fallthrough discouraged x*/
do {
[[fallthrough]]; /* constraint violation: next statement is not
part of the same secondary block execution x/
} while(false);
case 6:
do {
[[fallthroughl]l; /* constraint violation: next statement is not
part of the same secondary block execution x*/
} while (n--);
case 7:
while (false) {
[[fallthroughl]l; /* constraint violation: next statement is not
part of the same secondary block execution */
¥
case 5:
h();
case 4: /x fallthrough diagnostic encouraged */
i();
[[fallthroughl]l; /* constraint violation x/

§6.7.12.5 Language 145

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.7.12.6 The noreturn and _Noreturn attributes
Description

When _Noreturn is used as an attribute token (instead of a function specifier), the constraints and

semantics are identical to that of the noreturn attribute token. Use of _Noreturn as an attribute

token is an obsolescent feature!®?.

Constraints
The noreturn attribute shall be applied to a function. No attribute argument clause shall be present.

Semantics

The first declaration of a function shall specify the noreturn attribute if any declaration of that
function specifies the noreturn attribute. If a function is declared with the noreturn attribute in
one translation unit and the same function is declared without the noreturn attribute in another
translation unit, the behavior is undefined.

If a function f is called where f was previously declared with the noreturn attribute and f eventually
returns, the behavior is undefined.

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202311L
when given noreturn as the pp-tokens operand if the implementation supports the attribute.

Recommended Practice

The implementation should produce a diagnostic message for a function declared with a noreturn
attribute that appears to be capable of returning to its caller.

EXAMPLE

[[noreturn]] void f(void) {
abort(); // ok
}

[[noreturn]] void g(int i) { // causes undefined behavior if i <= 0
if (i > 0) abort();
}

[[noreturn]] int h(void);

Implementations are encouraged to diagnose the definition of g () because it is capable of returning
to its caller. Implementations are similarly encouraged to diagnose the declaration of h() because it
appears capable of returning to its caller due to the non-void return type.

6.7.12.7 Standard attributes for function types
Constraints
The identifier in a standard function type attribute shall be one of:

unsequenced reproducible

An attribute for a function type shall be applied to a function declarator'? or to a type specifier that
has a function type. The corresponding attribute is a property of the function type.!”" No attribute
argument clause shall be present.

189 [[_Noreturn]] and [[noreturn]] are equivalent attributes to support code that includes <stdnoreturn.h>, because
that header defines noreturn as a macro that expands to _Noreturn.

190)That is, they appear in the attributes right after the closing parenthesis of the parameter list, independently of whether
the function type is, for example, used directly to declare a function or whether it is used in a pointer to function type.

19D1f several declarations of the same function or function pointer are visible, regardless whether an attribute is present
at several or just one of the declarators, it is attached to the type of the corresponding function definition, function pointer
object, or function pointer value.

146 Language §6.7.12.7

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Description

The main purpose of the function type properties and attributes defined in this clause is to provide
the translator with information about the access of objects by a function such that certain properties
of function calls can be deduced; the properties distinguish read operations (stateless and inde-
pendent) and write operations (effectless, idempotent and reproducible) or a combination of both
(unsequenced). Although semantically attached to a function type, the attributes described are not
part of the prototype of such a annotated function, and redeclarations and conversions that drop
such an attribute are valid and constitute compatible types. Conversely, if a definition that does not
have the asserted property is accessed by a function declaration or a function pointer with a type
that has the attribute, the behavior is undefined.!*?

To allow reordering of calls to functions as they are described here, possible access to objects with a
lifetime that starts before or ends after a call has to be restricted; effects on all objects that are accessed
during a function call are restricted to the same thread as the call and the based-on relation between
pointer parameters and lvalues (6.7.3.1) models the fact that objects do not change inadvertently
during the call. In the following, an operation is said to be sequenced during a function call if it is
sequenced after the start of the function call'®® and before the call terminates. An object definition
of an object X in a function f escapes if an access to X happens while no call to f is active. An object
is local to a call to a function f if its lifetime starts and ends during the call or if it is defined by f
but does not escape. A function call and an object X synchronize if all accesses to X that are not
sequenced during the call happen before or after the call. Execution state that is described in the
library clause, such as the floating-point environment, conversion state, locale, input/output streams,
external files or errno are considered as objects for the purposes of these attributes; operations that
access this state, even indirectly, are considered as Ivalue conversions for the purposes of these
attributes, and operations that allow to change this state account as store operations.

A function definition f is stateless if any definition of an object of static or thread storage duration in
f orin a function that is called by f is const but not volatile qualified.

An object X is observed by a function call if both synchronize, if X is not local to the call, if X has a
lifetime that starts before the function call and if an access of X is sequenced during the call; the last
value of X, if any, that is stored before the call is said to be the value of X that is observed by the
call. A function pointer value f is independent if for any object X that is observed by some call to f
through an Ivalue that is not based on a parameter of the call, then all accesses to X in all calls to
f during the same program execution observe the same value; otherwise if the access is based on
a pointer parameter, there shall be a unique such pointer parameter P such that any access to X
shall be to an lvalue that is based on P. A function definition is independent if the derived function
pointer value is independent.

A store operation to an object X that is sequenced during a function call such that both synchronize
is said to be observable if X is not local to the call, if the lifetime of X ends after the call, if the stored
value is different from the value observed by the call, if any, and if it is the last value written before
the termination of the call. An evaluation of a function call'® is effectless if any store operation
that is sequenced during the call is the modification of an object that synchronizes with the call; if
additionally the operation is observable, there shall be a unique pointer parameter P of the function
such that any access to X shall be to an lvalue that is based on P. A function pointer value f is
effectless if any evaluation of a function call that calls f is effectless. A function definition is effectless
if the derived function pointer value is effectless.

An evaluation F is idempotent if a second evaluation of E can be sequenced immediately after the
original one without changing the resulting value, if any, or the observable state of the execution.
A function pointer value f is idempotent if any evaluation of a function call'®® that calls f is

192)That is, the fact that a function has one of these properties is in general not determined by the specification of the
translation unit in which it is found; other translation units and specific run time conditions also condition the possible
assertion of the properties.

199)The initializations of the parameters is sequenced during the function call.

199 This considers the evaluation of the function call itself, not the evaluation of a full function call expression. Such an
evaluation is sequenced after all evaluations that determine f and the call arguments, if any, have been performed.

195)This considers the evaluation of the function call itself, not the evaluation of a full function call expression. Such an
evaluation is sequenced after all evaluations that determine f and the call arguments, if any, have been performed.

§6.7.12.7 Language 147

10

11

12

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

idempotent. A function definition is idempotent if the derived function pointer value is idempotent.

A function is reproducible if it is effectless and idempotent; it is unsequenced if it is stateless, effectless,
idempotent and independent.!?®

NOTE1 The synchronization requirements with respect to any accessed object X for the independence of functions provide
boundaries up to which a function call may safely be reordered without changing the semantics of the program. If X is
const but not volatile qualified the reordering is unconstrained. If it is an object that is conditioned in an initialization
phase, for a single threaded program a synchronization is provided by the sequenced before relation and the reordering
may, in principle, move the call just after the initialization. For a multi-threaded program, synchronization guarantees can be
given by calls to synchronizing functions of the <threads.h> header or by an appropriate call to atomic_thread_fence at
the end of the initialization phase. If a function is known to be independent or effectless, adding restrict qualifications to
the declarations of all pointer parameters does not change the semantics of any call. Similarly, changing the memory order to
memory_order_relaxed for all atomic operations during a call to such a function preserves semantics.

NOTE 2 In general the functions provided by the <math.h> header do not have the properties that are defined above; many
of them change the floating-point state or errno when they encounter an error (so they have observable side effects) and the
results of most of them depend on execution-wide state such as the rounding direction mode (so they are not independent).
Whether a particular C library function is reproducible or unsequenced additionally often depends on properties of the
implementation, such as implementation-defined behavior for certain error conditions.

Recommended Practice

If possible, it is recommended that implementations diagnose if an attribute of this clause is applied
to a function definition that does not have the corresponding property. It is recommended that appli-
cations that assert the independent or effectless properties for functions qualify pointer parameters
with restrict.

Forward references: errors <errno.h> (7.5), floating-point environment <fenv. h> (7.6), localiza-
tion <locale.h> (7.11), mathematics <math.h> (7.12), fences (7.17.4), input/output <stdio.h>
(7.23), threads <threads.h> (7.28), extended multibyte and wide character utilities <wchar.h>
(7.31).

6.7.12.7.1 The reproducible type attribute
Description

The reproducible type attribute asserts that a function or pointed-to function with that type is
reproducible.

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202311L
when given reproducible as the pp-tokens operand if the implementation supports the attribute.

EXAMPLE 1 The attribute in the following function declaration asserts that two consecutive calls
to the function will result in the same return value. Changes to the abstract state during the call are
possible as long as they are not observable, but no other side effects will occur. Thus the function
definition may for example use local objects of static or thread storage duration to keep track of the
arguments for which the function has been called and cache their computed return values.

i size_t hash(char const[static 32]) [[reproducible]];

6.7.12.7.2 The unsequenced type attribute
Description

The unsequenced type attribute asserts that a function or pointed-to function with that type is
unsequenced.

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202311L
when given unsequenced as the pp-tokens operand if the implementation supports the attribute.

NOTE 1 The unsequenced type attribute asserts strong properties for such a function, in particular that certain sequencing
requirements for function calls can be relaxed without affecting the state of the abstract machine. Thereby, calls to such
functions are natural candidates for optimization techniques such as common subexpression elimination, local memoization
or lazy evaluation.

19) A function call of an unsequenced function can be executed as early as the function pointer value, the values of the
arguments and all objects that are accessible through them, and all values of globally accessible state have been determined,
and it can be executed as late as the arguments and the objects they possibly target are unchanged and as any of its return
value or modified pointed-to arguments are accessed.

148 Language §6.7.12.7.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

NOTE 2 A proof of validity of the annotation of a function type with the unsequenced attribute may depend on the property
if a derived function pointer escapes the translation unit or not. For a function with internal linkage where no function
pointer escapes the translation unit, all calling contexts are known and it is possible, in principle, to prove that no control flow
exists such that a library function is called with arguments that trigger an exceptional condition. For a function with external
linkage such a proof may not be possible and the use of such a function then has to ensure that no exceptional condition
results from the provided arguments.

NOTE 3 The unsequenced property does not necessarily imply that the function is reentrant or that calls can be executed
concurrently. This is because an unsequenced function can read from and write to objects of static storage duration, as long
as no change is observable after a call terminates.

EXAMPLE 1 The attribute in the following function declaration asserts that it doesn’t depend on
any modifiable state of the abstract machine. Calls to the function can be executed out of sequence
before the return value is needed and two calls to the function with the same argument value will
result in the same return value.

\ bool tendency(signed char) [[unsequenced]];

Therefore such a call for a given argument value needs only to be executed once and the returned
value can be reused when appropriate. For example, calls for all possible argument values can be
executed during program startup and tabulated.

EXAMPLE 2 The attribute in the following function declaration asserts that it doesn’t depend on
any modifiable state of the abstract machine. Within the same thread, calls to the function can be
executed out of sequence before the return value is needed and two calls to the function will result
in the same pointer return value. Therefore such a call needs only to be executed once in a given
thread and the returned pointer value can be reused when appropriate. For example, a single call
can be executed during thread startup and the return value p and the value of the object *p of type
toto const can be cached.

typedef struct toto toto;
toto constx toto_zero(void) [[unsequenced]];

EXAMPLE 3 The unsequenced property of a function f can be locally asserted within a function
g that uses it. For example the library function sqrt is in generally not unsequenced because a
negative argument will raise a domain error and because the result may depend on the rounding
mode. Nevertheless in contexts similar to the following function a user can prove that it will not be
called with invalid arguments, and, that the floating-point environment has the same value for all
calls.

#include <math.h>
#include <fenv.h>

inline double distance (double const x[static 2]) [[reproducible]] {
#pragma FP_CONTRACT OFF
#pragma FENV_ROUND FE_TONEAREST
// We assert that sqrt will not be called with invalid arguments
// and the result only depends on the argument value.
extern typeof(sqrt) [[unsequenced]] sqrt;
return sqrt(x[0]*x[0] + x[1]*x[1]);

The function distance potentially has the side effect of changing the floating-point environment.
Nevertheless the floating environment is thread local, thus a change to that state outside the function
is sequenced with the change within and additionally the observed value is restored when the
function returns. Thus this side effect is not observable for a caller. Overall the function distance
is stateless, effectless and idempotent and in particular it is reproducible as the attribute indicates.
Because the function can be called in a context where the floating-point environment has different
state, distance is not independent and thus it is also not unsequenced. Nevertheless, adding an
unsequenced attribute where this is justified may introduce optimization opportunities.

§6.7.12.7.2 Language 149

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

double g (double y[static 1], double const x[static 2]) {
// We assert that distance will not see different states of the floating
// point environment.
extern double distance (double const x[static 2]) [[unsequenced]];
y[0] = distance(x);

return distance(x); // replacement by y[0] is valid

150 Language §6.7.12.7.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.8 Statements and blocks

Syntax

1 statement:
labeled-statement
unlabeled-statement
unlabeled-statement:
expression-statement
attribute-specifier-sequenceop: primary-block
attribute-specifier-sequenceqp jump-statement
primary-block:
compound-statement
selection-statement
iteration-statement

secondary-block:
statement

Semantics

2 A statement specifies an action to be performed. Except as indicated, statements are executed in
sequence. The optional attribute specifier sequence appertains to the respective statement.

3 Ablock is either a primary block, a secondary block, or the block associated with a function definition;
it allows a set of declarations and statements to be grouped into one syntactic unit. Whenever a
block B appears in the syntax production as part of the definition of an enclosing block A, scopes of
identifiers and lifetimes of objects that are associated with B do not extend to the parts of A that are
outside of B. The initializers of objects that have automatic storage duration, and any size expressions
and typeof operators in declarations of ordinary identifiers with block scope, are evaluated and
the values are stored in the objects (the representation of objects without an initializer becomes
indeterminate) each time the declaration is reached in the order of execution, as if it were a statement,
and within each declaration in the order that declarators appear.

4 A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

5 NOTE Each of the following is a full expression:

— a full declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),
— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).
6.8.1 Labeled statements

Syntax

1 label:
attribute-specifier-sequence,p, identifier :

§6.8.1 Language 151

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

attribute-specifier-sequence,,; case constant-expression :

attribute-specifier-sequence,p; default :
labeled-statement:

label statement

Constraints
A case or default label shall appear only in a switch statement. Further constraints on such labels
are discussed under the switch statement.

Label names shall be unique within a function.

Semantics

Any statement or declaration in a compound statement may be preceded by a prefix that declares an
identifier as a label name. The optional attribute specifier sequence appertains to the label. Labels in
themselves do not alter the flow of control, which continues unimpeded across them.

Forward references: the goto statement (6.8.6.1), the switch statement (6.8.4.2) .

6.8.2 Compound statement

Syntax

compound-statement:
{ block-item-listop; }
block-item-list:

block-item
block-item-list block-item
block-item:
declaration
unlabeled-statement
label
Semantics

A compound statement that is a function body together with the parameter type list and the optional
attribute specifier sequence between them forms the block associated with the function definition
in which it appears. Otherwise, it is a block that is different from any other block. A label shall be
translated as if it were followed by a null statement.

6.8.3 Expression and null statements

Syntax
expression-statement:
expressionopt ;
attribute-specifier-sequence expression ;
Semantics
The attribute specifier sequence appertains to the expression. The expression in an expression
statement is evaluated as a void expression for its side effects.!”)
A null statement (consisting of just a semicolon) performs no operations.

EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value can be made explicit by converting the expression to a void expression by
means of a cast:

i int p(int);
\ /% ... %/

197)Such as assignments, and function calls which have side effects.

152 Language §6.8.3

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

\ (void)p(0);

EXAMPLE 2 In the program fragment

char x*s;
/*x ... x/
while (*s++ != '\0’)

’

a null statement is used to supply an empty loop body to the iteration statement.

Forward references: iteration statements (6.8.5).

6.8.4 Selection statements

Syntax

selection-statement:
if (expression) secondary-block
if (expression) secondary-block else secondary-block
switch (expression) secondary-block

Semantics

A selection statement selects among a set of secondary blocks depending on the value of a controlling
expression.

6.8.4.1 The if statement
Constraints
The controlling expression of an if statement shall have scalar type.

Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0. In the
else form, the second substatement is executed if the expression compares equal to 0. If the first
substatement is reached via a label, the second substatement is not executed.

An else is associated with the lexically nearest preceding if that is allowed by the syntax.

6.8.4.2 The switch statement
Constraints
The controlling expression of a switch statement shall have integer type.

If a switch statement has an associated case or default label within the scope of an identifier with
a variably modified type, the entire switch statement shall be within the scope of that identifier.!*®

The expression of each case label shall be an integer constant expression and no two of the case
constant expressions associated to the same switch statement shall have the same value after
conversion. There may be at most one default label associated to a switch statement. (Any
enclosed switch statement may have a defau'lt label or case constant expressions with values that
duplicate case constant expressions in the enclosing switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the switch body,
depending on the value of a controlling expression, and on the presence of a default label and the
values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement.

The integer promotions are performed on the controlling expression. The constant expression in
each case label is converted to the promoted type of the controlling expression. If a converted value
matches that of the promoted controlling expression, control jumps to the statement or declaration

198)That is, the declaration either precedes the switch statement, or it follows the last case or default label associated with
the switch that is in the block containing the declaration.

§6.8.4.2 Language 153

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

following the matched case label. Otherwise, if there is a default label, control jumps to the
statement or declaration following the default label. If no converted case constant expression
matches and there is no default label, no part of the switch body is executed.

Implementation limits

As discussed in 5.2.4.1, the implementation may limit the number of case values in a switch
statement.

EXAMPLE In the artificial program fragment

switch (expr)
{
int i = 4;
f(i);
case 0:
i=17;
/*x falls through into default code */
default:
printf("%sd\n", i);

}

the object whose identifier is i exists with automatic storage duration (within the block) but is never
initialized, and thus if the controlling expression has a nonzero value, the call to the printf function
will access an object with an indeterminate representation. Similarly, the call to the function f cannot
be reached.

6.8.5 Iteration statements

Syntax
iteration-statement:
while (expression) secondary-block
do secondary-block while (expression) ;
for (expressiongp: ; expressiongp: ; expressionep:) secondary-block
for (declaration expressionopt ; expressiongp:) secondary-block
Constraints

The controlling expression of an iteration statement shall have scalar type.

Semantics

An iteration statement causes a secondary block called the loop body to be executed repeatedly until
the controlling expression compares equal to 0. The repetition occurs regardless of whether the loop
body is entered from the iteration statement or by a jump'%?.

An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression?’?), and none of the following operations are performed in its
body, controlling expression or (in the case of a for statement) its expression-32°V:

— input/output operations

— accessing a volatile object

— synchronization or atomic operations.

6.8.5.1 The while statement
The evaluation of the controlling expression takes place before each execution of the loop body.

199)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is clause-1 (6.8.5.3) of a for statement.

200) An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.

20DThis is intended to allow compiler transformations such as removal of empty loops even when termination cannot be
proven.

154 Language §6.8.5.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.8.5.2 The do statement
The evaluation of the controlling expression takes place after each execution of the loop body.

6.8.5.3 The for statement
The statement

\ for (clause-1; expression-2; expression-3) statement \
L |

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before
each execution of the loop body. The expression expression-3 is evaluated as a void expression after
each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares
is the remainder of the declaration and the entire loop, including the other two expressions; it is
reached in the order of execution before the first evaluation of the controlling expression. If clause-1
is an expression, it is evaluated as a void expression before the first evaluation of the controlling
expression.??

Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero
constant.

6.8.6 Jump statements
Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expressionop: ;
Semantics

A jump statement causes an unconditional jump to another place.

6.8.6.1 The goto statement

Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing function. A
goto statement shall not jump from outside the scope of an identifier having a variably modified
type to inside the scope of that identifier.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label in the
enclosing function.

EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements.
The following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached
by continue statements, for example.)

i /* ... X/ i
\ goto first_time; \
| for (;;) { |
| |

// determine next operation

202)Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in the loop; the
controlling expression, expression-2, specifies an evaluation made before each iteration, such that execution of the loop
continues until the expression compares equal to 0; and expression-3 specifies an operation (such as incrementing) that is
performed after each iteration.

§6.8.6.1 Language 155

4

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

/* .. %/

if (need to reinitialize) {
// reinitialize-only code
/* .. %/

first_time:
// general initialization code
/* .. %/
continue;

}

// handle other operations

/* .. ox/

}

EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably
modified types. A jump within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{
double a[n];
aljl = 4.4;
lab3:
aljl = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
aljl =5.5;
lab4:
aljl = 6.6;
}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement
Constraints
A continue statement shall appear only in or as a loop body.

Semantics

A continue statement causes a jump to the loop-continuation portion of the innermost enclosing
iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... x/) { do { for (/x ... x/) {
/* ... %/ /* ... %/ /* ... */
continue; continue; continue;
/* ... *x/ /*x ... x/ /*x ... */

contin: contin:; contin:

} } while (/* ... */); }

unless the continue statement shown is in an enclosed iteration statement (in which case it is

interpreted within that statement), it is equivalent to goto contin; 2.

6.8.6.3 The break statement
Constraints
A break statement shall appear only in or as a switch body or loop body.

Semantics
A break statement terminates execution of the innermost enclosing switch or iteration statement.

203)Following the contin: label in the 2nd example is a null statement. The null statement in the first and third example is
implied by the label (6.8.2).

156 Language §6.8.6.3

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.8.6.4 The return statement
Constraints

A return statement with an expression shall not appear in a function whose return type is void. A
return statement without an expression shall only appear in a function whose return type is void.

Semantics

A return statement terminates execution of the current function and returns control to its caller. A
function may have any number of return statements.

If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.?¥)

EXAMPLE In:

struct s { double i; } f(void);
union {
struct {
int f1;
struct s f2;
} ul;
struct {
struct s f3;
int f4;
}ouz;
} g

struct s f(void)

{
return g.ul.f2;

}

/* ... %/
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly
(without using a function call to fetch the value).

209The return statement is not an assignment. The overlap restriction of 6.5.16.1 does not apply to the case of function
return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

§6.8.6.4 Language 157

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.9 External definitions

Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

The storage-class specifier register shall not appear in the declaration specifiers in an external
declaration. The storage-class specifier auto shall only appear in the declaration specifiers in an
external declaration if the type is inferred.

There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
there shall be exactly one external definition for the identifier in the translation unit, unless it is:

— part of the operand of a sizeof operator whose result is an integer constant;
— part of the operand of an alignof operator whose result is an integer constant;

— or, part of the operand of any typeof operator whose result is not a variably modified type.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which
consists of a sequence of external declarations. These are described as “external” because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that also
causes storage to be reserved for an object or a function named by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a typeof operator whose result is not a variably modified type,
or a sizeof or alignof operator whose result is an integer constant expression), somewhere in the
entire program there shall be exactly one external definition for the identifier; otherwise, there shall
be no more than one.?*

6.9.1 Function definitions

Syntax
function-definition:
attribute-specifier-sequenceqp, declaration-specifiers declarator function-body

function-body:
compound-statement

Constraints

The identifier declared in a function definition (which is the name of the function) shall have a
function type, as specified by the declarator portion of the function definition.

The return type of a function shall be void or a complete object type other than array type.

205 Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.

158 Language §69.1

10

11
12

13

14

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

If the parameter list consists of a single parameter of type void, the parameter declarator shall not
include an identifier.

Semantics
The optional attribute specifier sequence in a function definition appertains to the function.

The declarator in a function definition specifies the name of the function being defined and the
types (and optionally the names) of all the parameters; the declarator also serves as a function
prototype for later calls to the same function in the same translation unit. The type of each parameter
is adjusted as described in 6.7.6.3.

If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

The parameter type list, the attribute specifier sequence of the declarator that follows the parameter
type list, and the compound statement of the function body form a single block.2’® Each parameter
has automatic storage duration; its identifier, if any?"”, is an lvalue.?’® The layout of the storage for
parameters is unspecified.

On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

After all parameters have been assigned, the compound statement of the function body is executed.

Unless otherwise specified, if the } that terminates the function body is reached, and the value of the
function call is used by the caller, the behavior is undefined.

NOTE1 In a function definition, the type of the function and its prototype cannot be inherited from a typedef:

typedef int F(void); // type F is “function with no parameters
// returning int”

F f, g; // f and g both have type compatible with F

Ff{/« ... x/} // WRONG: syntax/constraint error

Fg() {/x ... x/ } // WRONG: declares that g returns a function

int f(void) { /x ... *x/ } // RIGHT: f has type compatible with F

int g() { /x ... %/ } // RIGHT: g has type compatible with F

F xe(void) { /* ... %/ } // e returns a pointer to a function

F x((e))(void) { /* ... x/ } // same: parentheses irrelevant

int (xfp)(void); // fp points to a function that has type F

F *Fp; // Fp points to a function that has type F

EXAMPLE 1 In the following:

extern int max(int a, int b)

{

return a > b ? a: b;

}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function
declarator; and

\ {returna > b ? a: b; }
L

200)The visibility scope of a parameter in a function definition starts when its declaration is completed, extends to following
parameter declarations, to possible attributes that follow the parameter type list, and then to the entire function body. The
lifetime of each instance of a parameter starts when the declaration is evaluated starting a call and ends when that call
terminates.

207) A parameter that has no declared name is inaccessible within the function body.

208) A parameter identifier cannot be redeclared in the function body except in an enclosed block.

§69.1 Language 159

15

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

is the function body.

EXAMPLE 2 To pass one function to another, one might say

int f(void);
/* ... %/
g(f);

Then the definition of g might read

void g(int (xfuncp) (void))
{

/* .. %/

(xfuncp)(); /* or funcp(); ...x/
}

or, equivalently,

void g(int func(void))
{

/* ... %/

func(); /* or (xfunc)(); ...x*x/
}

6.9.2 External object definitions

Semantics

If the declaration of an identifier for an object has file scope and an initializer, or has file scope and
storage-class specifier thread_local, the declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and without
the storage-class specifier extern or thread_local, constitutes a tentative definition. If a translation
unit contains one or more tentative definitions for an identifier, and the translation unit contains no
external definition for that identifier, then the behavior is exactly as if the translation unit contains a
file scope declaration of that identifier, with the composite type as of the end of the translation unit,
with an empty initializer and a type determined as follows:

— if the composite type as of the end of the translation unit is an array of unknown size, then an
array of size one with the composite element type;

— otherwise, the composite type at the end of the translation unit.

If the declaration of an identifier for an object is a tentative definition and has internal linkage, the
declared type shall not be an incomplete type.

160 Language §6.9.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

4 EXAMPLE1

int il = 1; // definition, external linkage

static int i2 = 2; // definition, internal linkage

extern int i3 = 3; // definition, external linkage

int i4; // tentative definition, external linkage

static int i5; // tentative definition, internal linkage

int il; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement

int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int il; // refers to previous, whose linkage is external

extern int i2; // refers to previous, whose linkage is internal

extern int i3; // refers to previous, whose linkage is external

extern int i4; // refers to previous, whose linkage is external

extern int i5; // refers to previous, whose linkage is internal

5 EXAMPLE 2 If at the end of the translation unit containing

| int i[];

the array i still has incomplete type, the implicit initializer causes it to have one element, which is
set to zero on program startup.

§69.2 Language 161

ISO/IEC 9899:2023 (E) working draft — April 1, 2023

6.10 Preprocessing directives

Syntax
preprocessing-file:
8roUPopt
group:
group-part
group group-part
group-part:
if-section
control-line
text-line
non-directive
if-section:
if-group elif-groupsqp; else-groupop, endif-line
if-group:
1if constant-expression new-line groupop:
ifdef identifier new-line grouppt
ifndef identifier new-line groupgpt
elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line groupopt
elifdef identifier new-line groupgp
elifndef identifier new-line grouppt
else-group:
else new-line groupgpt
endif-line:

+*

endif new-line

control-line:

include pp-tokens new-line

embed pp-tokens new-line

define identifier replacement-list new-line

define identifier Iparen ...) replacement-list new-line

undef identifier new-line
line pp-tokens new-line
error pp-tokensop new-line
warning pp-tokens,p: new-line
pragma pp-tokens,p, new-line
new-line

HoH oHOHE B OHH R W HERR

text-line:
pp-tokensqpy new-line

non-directive:
pp-tokens new-line

Iparen:
a (character not immediately preceded by white space

replacement-list:
pp-tokenspt

162 Language

define identifier lparen identifier-listop) replacement-list new-line

define identifier Iparen identifier-list , ...) replacement-list new-line

N3096

§6.10

N3096 working draft — April 1, 2023

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

identifier-list:
identifier
identifier-list , identifier

pp-parameter:
pp-parameter-name pp-parameter-clauseopt

pp-parameter-name:
pp-standard-parameter
pp-prefixed-parameter

pp-standard-parameter:
identifier

pp-prefixed-parameter:
identifier :: identifier

pp-parameter-clause:
(' pp-balanced-token-sequencept)

pp-balanced-token-sequence:
pp-balanced-token
pp-balanced-token-sequence pp-balanced-token

pp-balanced-token:
(pp-balanced-token-sequencept)
[pp-balanced-token-sequenceqp:]
{ pp-balanced-token-sequenceqp; }

ISO/IEC 9899:2023 (E)

any pp-token other than a parenthesis, a bracket, or a brace

embed-parameter-sequence:
pp-parameter
embed-parameter-sequence pp-parameter

Description

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following
constraints: The first token in the sequence is a # preprocessing token that (at the start of translation
phase 4) is either the first character in the source file (optionally after white space containing no
new-line characters) or that follows white space containing at least one new-line character. The last

token in the sequence is the first new-line character that follows the first token in the sequence.

209

209)

)Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic significance, as all

white space is equivalent except in certain situations during preprocessing (see the # character string literal creation operator

§6.10 Language

163

10

11

12

13

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

A new-line character ends the preprocessing directive even if it occurs within what would otherwise
be an invocation of a function-like macro.

A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of
the directive names appearing in the syntax.

Some preprocessing directives take additional information using preprocessor parameters. A
preprocessing parameter (pp-parameter) shall be either a preprocessor prefixed parameter (identified by
a pp-prefixed-parameter, for implementation-defined preprocessor parameters) or a preprocessor
standard parameter (identified with a pp-standard-parameter, for pp-parameters specified by this
document).

In all aspects, a preprocessor standard parameter specified by this document as an identifier
pp—param and an identifier of the form __pp_param_ shall behave the same when used as a
preprocessor parameter, except for the spelling.

EXAMPLE 1 Thus, the preprocessor parameters on the two binary resource inclusion directives
(6.10.3.1):

#embed "boop.h" limit(5)
#embed "boop.h" __limit__(5)

behave the same, and can be freely interchanged. Implementations are encouraged to behave
similarly for preprocessor parameters (including preprocessor prefixed parameters) they provide.

When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any sequence of
preprocessing tokens to occur between the directive name and the following new-line character.

Constraints

The only white-space characters that shall appear between preprocessing tokens within a prepro-
cessing directive (from just after the introducing # preprocessing token through just before the
terminating new-line character) are space and horizontal-tab (including spaces that have replaced
comments or possibly other white-space characters in translation phase 3).

A preprocessor parameter shall be either a preprocessor standard parameter, or an implementation-
defined preprocessor prefixed parameter?'?).

Semantics

The implementation can process and skip sections of source files conditionally, include other source
files, and replace macros. These capabilities are called preprocessing, because conceptually they occur
before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated.

EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it
does not begin with a # at the start of translation phase 4, even though it will do so after the macro
EMPTY has been replaced.

The execution of a non-directive preprocessing directive results in undefined behavior.

6.10.1 Conditional inclusion
Syntax

defined-macro-expression:
defined identifier

in 6.10.4.2, for example).
210) An unrecognized preprocessor prefixed parameter is a constraint violation, except within has_embed expressions (6.10.1).

164 Language §6.10.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

defined (identifier)
h-preprocessing-token:
any preprocessing-token other than >
h-pp-tokens:
h-preprocessing-token
h-pp-tokens h-preprocessing-token
header-name-tokens:
string-literal
< h-pp-tokens >
has-include-expression:
—has_include (header-name)
__has_include (header-name-tokens)
has-embed-expression:
—has_embed (header-name embed-parameter-sequenceopt)
—has_embed (header-name-tokens pp-balanced-token-sequencept)
has-c-attribute-express:
—has_c_attribute (pp-tokens)

The #if and #elif directives are collectively known as the conditional expression inclusion prepro-
cessing directives. The conditional expression inclusion preprocessing directives, #ifdef, #ifndef,
#elifdef, and #elifndef directives are collectively known as the conditional inclusion preprocessing
directives.

Constraints

The expression that controls conditional inclusion shall be an integer constant expression except that:
identifiers (including those lexically identical to keywords) are interpreted as described below?!)
and it may contain zero or more defined macro expressions, has_include expressions, has_embed
expressions, and/or has_c_attribute expressions as unary operator expressions.

A defined macro expression evaluates to 1 if the identifier is currently defined as a macro name (that
is, if it is predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive with the same subject identifier), 0 if it is not.

The second form of the has_include expression and has_embed expression is considered only if the
first form does not match, in which case the preprocessing tokens are processed just as in normal
text.

The header or source file identified by the parenthesized preprocessing token sequence in each
contained has_include expression is searched for as if that preprocessing token were the pp-tokens
in a #include directive, except that no further macro expansion is performed. Such a directive shall
satisfy the syntactic requirements of a #include directive. The has_include expression evaluates to
1 if the search for the source file succeeds, and to 0 if the search fails.

The resource (6.10.3.1) identified by the header-name preprocessing token sequence in each contained
has_embed expression is searched for as if those preprocessing token were the pp-tokens in a #embed
directive, except that no further macro expansion is performed. Such a directive shall satisfy the
syntactic requirements of a #embed directive. The has_embed expression evaluates to:

— __STDC_EMBED_NOT_FOUND_, if the search fails or if any of the embed parameters in the
embed parameter sequence specified are not supported by the implementation for the #embed
directive; or,

— __STDC_EMBED_FOUND__, if the search for the resource succeeds and all embed parameters in
the embed parameter sequence specified are supported by the implementation for the #embed
directive and the resource is not empty; or,

21D Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not

macro names — there simply are no keywords, enumeration constants, etc.

§6.10.1 Language 165

10

11

12

13

14

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— __STDC_EMBED_EMPTY__, if the search for the resource succeeds and all embed parameters in
the embed parameter sequence specified are supported by the implementation for the #embed
directive and the resource is empty.

NOTE1 Unrecognized preprocessor prefixed parameters in has_embed expressions are not a constraint violation and instead
cause the expression to be evaluate to 0, as specified above.

Each has_c_attribute expression is replaced by a nonzero pp-number matching the form of an integer
constant if the implementation supports an attribute with the name specified by interpreting the
pp-tokens as an attribute token, and by 0 otherwise. The pp-tokens shall match the form of an
attribute token.

Each preprocessing token that remains (in the list of preprocessing tokens that will become the
controlling expression) after all macro replacements have occurred shall be in the lexical form of a
token (6.4).

Semantics

The #ifdef, #ifndef, #elifdef, and #elifndef directives, and the defined conditional inclusion
operator, shall treat __has_include, __has_embed and __has_c_attribute as if they were the
name of defined macros. The identifiers __has_include, __has_embed, and __has_c_attribute
shall not appear in any context not mentioned in this subclause.

Preprocessing directives of the forms

if constant-expression new-line groupyp:
elif constant-expression new-line grouppt

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-
ling constant expression are replaced (except for those macro names modified by the defined unary
operator), just as in normal text. If the token defined is generated as a result of this replacement
process or use of the defined unary operator does not match one of the two specified forms prior
to macro replacement, the behavior is undefined. After all replacements due to macro expansion
and evaluations of defined macro expressions, has_include expressions, has_embed expressions,
and has_c_attribute expressions have been performed, all remaining identifiers other than true
(including those lexically identical to keywords such as false) are replaced with the pp-number 0,
true is replaced with pp-number 1, and then each preprocessing token is converted into a token.
The resulting tokens compose the controlling constant expression which is evaluated according
to the rules of 6.6. For the purposes of this token conversion and evaluation, all signed integer
types and all unsigned integer types act as if they have the same representation as, respectively, the
types intmax_t and uintmax_t defined in the header <stdint.h>. 2!? This includes interpreting
character constants, which may involve converting escape sequences into execution character set
members. Whether the numeric value for these character constants matches the value obtained
when an identical character constant occurs in an expression (other than within a #if or #elif
directive) is implementation-defined?'.

Also, whether a single-character character constant may have a negative value is implementation-
defined.

Preprocessing directives of the forms

ifdef identifier new-line groupop:
ifndef identifier new-line groupop:

212)Thus, on an implementation where INT_MAX is 0x7FFF and UINT_MAX is OxFFFF, the constant 0x8000 is signed and
positive within a #if expression even though it would be unsigned in translation phase 7.

213)Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate to the same
value in these two contexts.

#if 'z’ - 'a’ == 25
if ('z’' - 'a' == 25)

166 Language §6.10.1

15

16

17

18

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

elifdef identifier new-line group,p,
elifndef identifier new-line groupgp:

check whether the identifier is or is not currently defined as a macro name. Their conditions
are equivalent to #if defined identifier, #if !defined identifier, #elif defined identifier, and
#elif !defined identifier respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls
is skipped: directives are processed only through the name that determines the directive to keep
track of the level of nested conditionals; the rest of the directives” preprocessing tokens are ignored,
as are the other preprocessing tokens in the group. Only the first group whose control condition
evaluates to true (nonzero) is processed; any following groups are skipped and their controlling
directives are processed as if they were in a group that is skipped. If none of the conditions evaluates
to true, and there is a #else directive, the group controlled by the #else is processed; lacking a
#else directive, all the groups until the #endif are skipped. 2%

EXAMPLE This demonstrates a way to include a header file only if it is available.

#if __has_include(<optional.h>)
include <optional.h>
define have_optional 1
#elif __has_include(<experimental/optional.h>)
include <experimental/optional.h>
define have_optional 1
define have_experimental_optional 1
#endif
#ifndef have_optional
define have_optional 0
#endif
EXAMPLE

/* Fallback for compilers not yet implementing this feature. */
#ifndef __has_c_attribute

#define __has_c_attribute(x) 0

#endif /x __has_c_attribute */

#if __has_c_attribute(fallthrough)

/* Standard attribute is available, use it. */
#define FALLTHROUGH [[fallthrough]]

#elif __has_c_attribute(vendor::fallthrough)
/* Vendor attribute is available, use it. *x/
#define FALLTHROUGH [[vendor::fallthrough]]
#else

/* Fallback implementation. */

#define FALLTHROUGH

#endif

EXAMPLE

#ifdef _STDC__

#define TITLE "ISO C Compilation"
#elifndef __cplusplus

#define TITLE "Non-ISO C Compilation"

#else

/*x C++ x/

#define TITLE "C++ Compilation”
#endif

219 As indicated by the syntax, no preprocessing tokens are allowed to follow a #else or #endif directive before the
terminating new-line character. However, comments can appear anywhere in a source file, including within a preprocessing
directive.

§6.10.1 Language 167

19

20

21

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

EXAMPLE 1 A combination of __FILE__ (6.10.9.1) and —_has_embed could be used to check for
support of specific implementation extensions for the #embed (6.10.3.1) directive’s parameters.

#if __has_embed (__FILE__ ext::token(0xB055))

#define DESCRIPTION "Supports extended token embed parameter™

#else

#define DESCRIPTION "Does not support extended token embed parameter"
#endif

EXAMPLE 2 The snippet below uses __has_embed to check for support of a specific
implementation-defined embed parameter, and otherwise uses standard behavior to produce the
same effect.

void parse_into_s(shortx ptr, unsigned charx ptr_bytes, unsigned long long size);

int main () {
#if __has_embed ("bits.bin" ds9000::element_type(short))
/* Implementation extension: create short integers from the x*/
/* translation environment resource into */
/* a sequence of integer constants */
short meow[] = {
#embed "bits.bin" ds9000::element_type(short)
58
#elif __has_embed ("bits.bin")
/* no support for implementation-specific x*/
/* ds9000: :element_type(short) parameter x/
const unsigned char meow_bytes[] = {
#embed "bits.bin"
18
short meow[sizeof (meow_bytes) / sizeof(short)] = {};
/* parse meow_bytes into short values by-hand! x/
parse_into_s(meow, meow_bytes, sizeof(meow_bytes));
#else
#error "cannot find bits.bin resource"
#endif
return (int) (meow[0] + meow[(sizeof(meow) / sizeof(xmeow)) - 11);

}

EXAMPLE 3 If the search for the resource is successful, this resource is always considered empty
due to the limit (0) embed parameter, including in __has_embed expressions.

int main () {

#if __has_embed(<infinite-resource> limit(0)) ==
// if <infinite-resource> exists, this
// token sequence is always taken.

return 0;

#else
// the 'infinite-resource’ resource does not exist
#error "The resource does not exist"

#endif

)

Forward references: macro replacement (6.10.4), source file inclusion (6.10.2), mandatory macros
(6.10.9.1), largest integer types (7.22.1.5).

6.10.2 Source file inclusion

Constraints

A #include directive shall identify a header or source file that can be processed by the implementa-
tion.

168 Language §6.10.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Semantics
A preprocessing directive of the form

include < h-char-sequence > new-line

searches a sequence of implementation-defined places for a header identified uniquely by the
specified sequence between the < and > delimiters, and causes the replacement of that directive
by the entire contents of the header. How the places are specified or the header identified is
implementation-defined.

A preprocessing directive of the form

include " g-char-sequence " new-line

causes the replacement of that directive by the entire contents of the source file identified by
the specified sequence between the " delimiters. The named source file is searched for in an
implementation-defined manner. If this search is not supported, or if the search fails, the directive is
reprocessed as if it read

include < h-char-sequence > new-line
with the identical contained sequence (including > characters, if any) from the original directive.
A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting after
all replacements shall match one of the two previous forms.?’® The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or more nondig-
its or digits (6.4.2.1) followed by a period (.) and a single nondigit. The first character shall not be a
digit. The implementation may ignore distinctions of alphabetical case and restrict the mapping to
eight significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see 5.2.4.1).

EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

EXAMPLE 2 This illustrates macro-replaced #include directives:

#if VERSION ==
#define INCFILE "versl.h"
#elif VERSION ==
#define INCFILE "vers2.h" // and so on
#else
#define INCFILE "versN.h"
#endif
#include INCFILE

Forward references: macro replacement (6.10.4).

215 Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 5.1.1.2);

thus, an expansion that results in two string literals is an invalid directive.

§6.10.2 Language 169

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.10.3 Binary resource inclusion

6.10.3.1 #embed preprocessing directive
Description

A resource is a source of data accessible from the translation environment. An embed parameter is a
single preprocessor parameter in the embed parameter sequence. It has an implementation resource
width, which is the implementation-defined size in bits of the located resource. It also has a resource
width, which is either:

— the number of bits as computed from the optionally-provided limit embed parameter
(6.10.3.2), if present; or,

— the implementation resource width.

An embed parameter sequence is a whitespace-delimited list of preprocessor parameters which may
modify the result of the replacement for the #embed preprocessing directive.

Constraints

An #embed directive shall identify a resource that can be processed by the implementation as a
binary data sequence given the provided embed parameters.

Embed parameters not specified in this document shall be implementation-defined. Implementation-
defined embed parameters may change the below-defined semantics of the directive; otherwise,
#embed directives which do not contain implementation-defined embed parameters shall behave as
described in this document.

A resource is considered empty when its resource width is zero.

Let embed element width be either:

— an integer constant expression greater than zero determined by an implementation-defined
embed parameter; or,

— CHAR_BIT (5.2.4.2.1).

The result of (resource width) % (embed element width) shall be zero?'®).

Semantics

The expansion of a #embed directive is a token sequence formed from the list of integer constant
expressions described below. The group of tokens for each integer constant expression in the list
is separated in the token sequence from the group of tokens for the previous integer constant
expression in the list by a comma. The sequence neither begins nor ends in a comma. If the list of
integer constant expressions is empty, the token sequence is empty. The directive is replaced by its
expansion and, with the presence of certain embed parameters, additional or replacement token
sequences.

A preprocessing directive of the form
embed < h-char-sequence > embed-parameter-sequence,p; new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the spec-
ified sequence between the < and >. The search for the named resource is done in an implementation-
defined manner.

A preprocessing directive of the form

embed " g-char-sequence " embed-parameter-sequence,p; new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the
specified sequence between the " delimiters. The search for the named resource is done in an

216 This constraint helps ensure data is neither filled with padding values nor truncated in a given environment, and helps
ensure the data is portable with respect to usages of memcpy (7.26.2.1) with character type arrays initialized from the data.

170 Language §6.10.3.1

10

11

12

13

14

15

16

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

implementation-defined manner. If this search is not supported, or if the search fails, the directive is
reprocessed as if it read

embed < h-char-sequence > embed-parameter-sequenceop new-line

with the identical contained g-char-sequence (including > characters, if any) from the original
directive.

Either form of the #embed directive specified previously behaves as specified below. The values of
the integer constant expressions in the expanded sequence are determined by an implementation-
defined mapping of the resource’s data. Each integer constant expression’s value is in the range
from 0 to (2¢mbed element width) _ 1 inclusive.?!”) If:

— the list of integer constant expressions is used to initialize an array of a type compatible with
unsigned char, or compatible with char if char cannot hold negative values; and,

— the embed element width is equal to CHAR_BIT (5.2.4.2.1),

then the contents of the initialized elements of the array are as-if the resource’s binary data is fread
(7.23.8.1) into the array at translation time.

A preprocessing directive of the form
embed pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
embed in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting after
all replacements shall match one of the two previous forms?'®. The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single resource name preprocessing token is implementation-defined.

An embed parameter with a preprocessor parameter token that is one of the following is a standard
embed parameter:

limit prefix suffix if_empty

The significance of these standard embed parameters is specified below.

Recommended practice

The #embed directive is meant to translate binary data in a resource to a sequence of integer constant
expressions in a way that preserves the value of the resource’s bit stream where possible.

A mechanism similar to, but distinct from, the implementation-defined search paths used for source
file inclusion (6.10.2) is encouraged.

Implementations should take into account translation-time bit and byte orders as well as execution-
time bit and byte orders to more appropriately represent the resource’s binary data from the directive.
This maximizes the chance that, if the resource referenced at translation time through the #embed
directive is the same one accessed through execution-time means, the data that is e.g. fread or
similar into contiguous storage will compare bit-for-bit equal to an array of character type initialized
from an #embed directive’s expanded contents.

EXAMPLE 1 Placing a small image resource.

#include <stddef.h>

void have_you_any_wool(const unsigned charx, size_t);

217)For example, an embed element width of 8 will yield a range of values from 0 to 255, inclusive.
218)Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 5.1.1.2);
thus, an expansion that results in two string literals is an invalid directive.

§6.10.3.1 Language 171

17

18

19

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

int main (int, charx[]) {

static const unsigned char baa_baa[] = {
#embed "black sheep.ico"

+

have_you_any_wool(baa_baa, sizeof(baa_baa));

return O;

EXAMPLE 2 This snippet:

int main (int, charx[]) {
static const unsigned char coefficients[] = {
#embed "only 8 bits.bin" // potential constraint violation

};

return 0;

may violate the constraint that (resource width) % (embed element width) must be 0. The 8 bits

might not be evenly divisible by the embed element width (e.g., on a system where CHAR_BIT is 16).

Issuing a diagnostic in this case may aid in portability by calling attention to potentially incompatible
expectations between implementations and their resources.

EXAMPLE 3 Initialization of non-arrays.

int main () {
/* Braces may be kept or elided as per normal initialization rules x/
int i = {
#embed "i.dat"
}; /+ valid if i.dat produces 1 value,
i value is [0' 2(embedelementwidth)) */
int i2 =
#embed "i.dat"
; /x 12 value is [0, 2~ (embed element width)) */
struct s {
double a, b, c;
struct { double e, f, g; };
double h, i, j;
}i
struct s x = {
/* initializes each element in order according to initialization
rules with comma-separated list of integer constant expressions
inside of braces x*/
#embed "s.dat"
}i

return 0;

Non-array types can still be initialized since the directive produces a comma-delimited list of integer
constant expressions, a single integer constant expression, or nothing.

EXAMPLE 4 Equivalency of bit sequence and bit order between a translation-time read and an
execution-time read of the same resource/file.

\ #include <string.h>
\ #include <stddef.h>
\ #include <stdio.h>

int main(void) {

172 Language §6.10.3.1

5

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

static const unsigned char embed_data[] = {
#embed <data.dat>

i

const size_t f_size = sizeof(embed_data);
unsigned char f_data[f_size];

FILEx f_source = fopen("data.dat", "rb");
if (f_source == NULL);

return 1;

charx f_ptr = (charx)&f_data[0];

if (fread(f_ptr, 1, f_size, f_source) != f_size) {
fclose(f_source);
return 1;

}

fclose(f_source);

int is_same = memcmp(&embed_data[0], f_ptr, f_size);

// if both operations refers to the same resource/file at

// execution time and translation time, "is_same" should be 0
return is_same == 0 ? 0 : 1;

6.10.3.2 limit parameter
Constraints
The limit standard embed parameter may appear zero times or one time in the embed parameter
sequence. Its preprocessor argument clause shall be present and have the form:
(constant-expression)

and shall be an integer constant expression. The integer constant expression shall not evaluate to a
value less than 0.

The token defined shall not appear within the constant expression.

Semantics

The embed parameter with a preprocessor parameter token limit denotes a balanced preprocessing
token sequence that will be used to compute the resource width. Independently of any macro
replacement done previously (e.g. when matching the form of #embed), the constant expression is
evaluated after the balanced preprocessing token sequence is processed as in normal text, using
the rules specified for conditional inclusion (6.10.1), with the exception that any defined macro
expressions are not permitted.

The resource width is:

— 0, if the integer constant expression evaluates to 0; or,

— the implementation resource width if it is less than the embed element width multiplied by
the integer constant expression; or,

— the embed element width multiplied by the integer constant expression, if it is less than or
equal to the implementation resource width.

EXAMPLE 1 Checking the first 4 elements of a sound resource.

#include <assert.h>

int main (int, charx[]) {

static const char sound_signature[] = {
#embed <sdk/jump.wav> limit(2+2)

}

static_assert((sizeof(sound_signature) / sizeof(*sound_signature)) == 4,

§6.10.3.2 Language 173

6

7

8

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

"There should only be 4 elements in this array.");

// verify PCM WAV resource

assert(sound_signature[0] == 'R’);
assert(sound_signature[l] == 'I");
assert(sound_signature[2] == 'F’);
assert(sound_signature[3] == 'F');
assert(sizeof(sound_signature) == 4);
return 0;

EXAMPLE 2 Similar to a previous example, except it illustrates macro expansion specifically done
for the limit (. ..) parameter.

#include <assert.h>
#define TWO_PLUS_TWO 2+2

int main (int, charx[]) {
const char sound_signature[] = {
/* the token sequence within the parentheses
for the "limit" parameter undergoes macro
expansion, at least once, resulting in
#embed <sdk/jump.wav> limit(2+2)
x/
#embed <sdk/jump.wav> limit(TWO_PLUS_TWO)
};
static_assert((sizeof(sound_signature) / sizeof(xsound_signature)) == 4,
"There should only be 4 elements in this array.");

// verify PCM WAV resource

assert(sound_signature[0] == 'R’);
assert(sound_signature[l] == 'I");
assert(sound_signature[2] == 'F');
assert(sound_signature[3] == 'F’);
assert(sizeof(sound_signature) == 4);
return 0;

EXAMPLE 3 A potential constraint violation from a resource that may not have enough information
in an environment that has a CHAR_BIT greater than 24.

int main (int, charx[]) {
const unsigned char arr[] = {
#embed "24_bits.bin" limit(1l) // may be a constraint violation

};

return O;

EXAMPLE 4 Resources interfacing with certain implementations may have an infinite stream of
data, such as the </owo/uwurandom> resource used in the snippet below:

174

int main (int, charx[]) {
const unsigned char arr[] = {
#embed </owo/uwurandom> limit(513)

};

return 0;

Language §6.10.3.2

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

\ }

The limit parameter may help process only a portion of that information and prevent exhaustion
of an implementation’s internal resources when processing such data.

6.10.3.3 suffix parameter

Constraints

The suffix standard embed parameter may appear zero times or one time in the embed parameter
sequence. Its preprocessor argument clause shall be present and have the form:

(pp-balanced-token-sequencept)

Semantics

The embed parameter with a preprocessing parameter token suffix denotes a balanced preprocess-
ing token sequence within its preprocessor argument clause that will be placed immediately after
the result of the associated #embed directive’s expansion.

If the resource is empty, then suffix has no effect and is ignored.

EXAMPLE 1 Extra elements added to array initializer.

#include <string.h>

#ifndef SHADER_TARGET
#define SHADER_TARGET "edith-impl.glsl"
#endif

extern charx null_term_shader_data;

void fill_in_data () {
const char internal_data[] = {
#embed SHADER_TARGET \
suffix(,)
0

I

strcpy(null_term_shader_data, internal_data);

6.10.3.4 prefix parameter
Constraints

The prefix standard embed parameter may appear zero times or one time in the embed parameter
sequence. Its preprocessor parameter clause shall be present and have the form:

(pp-balanced-token-sequencept)

Semantics

The embed parameter with a preprocessor parameter token prefix denotes a balanced preprocessing
token sequence within its preprocessor argument clause that will be placed immediately before the
result of the associated #embed directive’s expansion, if any.

If the resource is empty, then prefix has no effect and is ignored.

EXAMPLE 1 A null-terminated character array with prefixed and suffixed additional tokens when
the resource is not empty, providing null termination and a byte order mark.

i #include <assert.h>
\ #include <string.h>
|
|
|

#ifndef SHADER_TARGET
#define SHADER TARGET "ches.glsl"

§6.10.34 Language 175

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

#endif
extern charx merp;

void init_data () {
const char whl[] = {

#embed SHADER_TARGET \
prefix (OxEF, OxBB, OxBF,) /% UTF-8 BOM */ \
suffix(,)

0
};

// always null terminated,
// contains BOM if not-empty

int is_good = (sizeof(whl) == 1 && whl[0] == '\0Q’)
|| (Wwhl[0®] == ’\XEF’ && whl[1] == ’\xBB’
& whl1[2] == ’'\xBF' && whl[sizeof(whl) - 1] == ’'\0’);

assert(is_good);
strcpy(merp, whl);

6.10.3.5 if_empty parameter

Constraints

The if_empty standard embed parameter may appear zero times or one time in the embed parameter
sequence. Its preprocessor argument clause shall be present and have the form:

(pp-balanced-token-sequenceqpt)

Semantics

The embed parameter with a preprocessing parameter token if_empty denotes a balanced pre-
processing token sequence within its preprocessor argument clause that will replace the #embed
directive entirely.

If the resource is not empty, then if_empty has no effect and is ignored.

EXAMPLE 1 If the search for the resource is successful, this resource is always considered empty
due to the 1imit(0) embed parameter. This program always returns 0, even if the resource is
searched for and found successfully by the implementation and has an implementation resource
width greater than 0.

int main () {
return

#embed <some_resource> limit(0) prefix(1l) if_empty(0)
// becomes:
// return 0;

EXAMPLE 2 An example similar to using the suffix embed parameter, but changed slightly.

#include <string.h>

#ifndef SHADER TARGET
#define SHADER TARGET "edith-impl.glsl"
#endif

extern charx null_term_shader_data;

void fill_in_data () {
const char internal_data[] = {
#embed SHADER_TARGET \
suffix(, 0) \

176 Language §6.10.3.5

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

if_empty(0)
}i

strcpy(null_term_shader_data, internal_data);

EXAMPLE 3 This resource is considered empty due to the Limit(0) embed parameter, meaning
an if_empty expression replaces the directive as specified above. A constraint is still violated if the
search for the resource is unsuccessful.

int main () {
return
#embed <infinite-resource> limit(0) if_empty(45540)

becomes:

int main () {
return 45540;
}

6.10.4 Macro replacement

Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the same
number, ordering, spelling, and white-space separation, where all white-space separations are
considered identical.

An identifier currently defined as an object-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is an object-like macro definition and the two
replacement lists are identical. Likewise, an identifier currently defined as a function-like macro
shall not be redefined by another #define preprocessing directive unless the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

There shall be white space between the identifier and the replacement list in the definition of an
object-like macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments
(including those arguments consisting of no preprocessing tokens) in an invocation of a function-like
macro shall equal the number of parameters in the macro definition. Otherwise, there shall be at
least as many arguments in the invocation as there are parameters in the macro definition (excluding
the ...). There shall exist a) preprocessing token that terminates the invocation.

The identifiers __VA_ARGS__ and __VA_OPT__ shall occur only in the replacement-list of a function-
like macro that uses the ellipsis notation in the parameters.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one name
space for macro names. Any white-space characters preceding or following the replacement list of
preprocessing tokens are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a prepro-
cessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

§6.10.4 Language 177

10

11

12

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

defines an object-like macro that causes each subsequent instance of the macro name?'?) to be replaced
by the replacement list of preprocessing tokens that constitute the remainder of the directive. The
replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier Iparen identifier-listope) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration
in the identifier list until the new-line character that terminates the #define preprocessing directive.
Each subsequent instance of the function-like macro name followed by a (as the next preprocessing
token introduces the sequence of preprocessing tokens that is replaced by the replacement list
in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching) preprocessing token, skipping intervening matched pairs of left and
right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms
the list of arguments for the function-like macro. The individual arguments within the list are
separated by comma preprocessing tokens, but comma preprocessing tokens between matching
inner parentheses do not separate arguments. If there are sequences of preprocessing tokens within
the list of arguments that would otherwise act as preprocessing directives,???) the behavior is
undefined.

If there is a . .. in the identifier-list in the macro definition, then the trailing arguments (if any),
including any separating comma preprocessing tokens, are merged to form a single item: the variable
arguments. The number of arguments so combined is such that, following merger, the number of
arguments is one more than the number of parameters in the macro definition (excluding the . ..),
except that if there are as many arguments as named parameters, the macro invocation behaves as if
a comma token has been appended to the argument list such that variable arguments are formed
that contain no pp-tokens.

6.10.4.1 Argument substitution
Syntax

va-opt-replacement:
—VA_OPT__ (pp-tokensopt)

Description

Argument substitution is a process during macro expansion in which identifiers corresponding to
the parameters of the macro definition and the special constructs __VA_ARGS__ and __VA_OPT__
are replaced with token sequences from the arguments of the macro invocation and possibly of the
argument of the feature __VA_OPT__. The latter process allows to control a substitute token sequence
that is only expanded if the argument list that corresponds to a trailing . . . of the parameter list is
present and has a non-empty substitution.

Constraints

The identifier __VA_OPT__ shall always occur as part of the preprocessing token sequence va-opt-
replacement; its closing) is determined by skipping intervening pairs of matching left and right
parentheses in its pp-tokens. The pp-tokens of a va-opt-replacement shall not contain __VA_OPT__.
The pp-tokens shall form a valid replacement list for the current function-like macro.

29Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences
possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they are never scanned for macro names or
parameters.

220)Despite the name, a non-directive is a preprocessing directive.

178 Language §6.10.4.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Semantics

After the arguments for the invocation of a function-like macro have been identified, argument
substitution takes place. A va-opt-replacement is treated as if it were a parameter. For each parameter
in the replacement list that is neither preceded by a # or ## preprocessing token nor followed by a
preprocessing token, the preprocessing tokens naming the parameter are replaced by a token
sequence determined as follows:

— If the parameter is of the form va-opt-replacement, the replacement preprocessing tokens are
the preprocessing token sequence for the corresponding argument, as specified below.

— Otherwise, the replacement preprocessing tokens are the preprocessing tokens of the corre-
sponding argument after all macros contained therein have been expanded. The argument’s
preprocessing tokens are completely macro replaced before being substituted as if they formed
the rest of the preprocessing file with no other preprocessing tokens being available.

EXAMPLE 1

#define LPAREN() (

#define G(Q) 42

#define F(R, X, ...) _VA_OPT__(G R X))

int x = F(LPAREN(), 0, <:-); // replaced by int x = 42;

An identifier __VA_ARGS__ that occurs in the replacement list is treated as if it were a parameter,
and the variable arguments form the preprocessing tokens used to replace it.

The preprocessing token sequence for the corresponding argument of a va-opt-replacement is
defined as follows. If a (hypothetical) substitution of __VA_ARGS__ as neither an operand of # nor
consists of no preprocessing tokens, the argument consists of a single placemarker preprocessing
token (6.10.4.3, 6.10.4.4). Otherwise, the argument consists of the results of the expansion of the
contained pp-tokens as the replacement list of the current function-like macro before removal of
placemarker tokens, rescanning, and further replacement.

NOTE1 The placemarker tokens are removed before stringization (6.10.4.2), and can be removed by rescanning and further
replacement (6.10.4.4).

EXAMPLE 2
#define F(...) f(0 —_VA_OPT__(,) —VA_ARGS__)
#define G(X, ...) f(0, X —_VA_OPT__(,) —VA_ARGS__)
#define SDEF(sname, ...) S sname _VA_OPT__(= { _VA_ARGS__ })

#define EMP

F(a, b, c) // replaced by f(0, a, b, c)
F() // replaced by f(0)

F (EMP) // replaced by f(0)

G(a, b, c) // replaced by f(0, a, b, c)
G(a,) // replaced by f(0, a)

G(a) // replaced by f(0, a)

SDEF (foo) ; // replaced by S foo;

SDEF(bar, 1, 2); // replaced by S bar = { 1, 2 };

#define H1(X, ...) X __VA_OPT__(##) _VA_ARGS__
// error: ## on line above
// may not appear at the beginning of a replacement
// list (6.10.4.3)

#define H2(X, Y, ...) —VA_OPT__(X ## Y,) —_VA_ARGS—

H2(a, b, c, d) // replaced by ab, c, d

§6.10.4.1 Language 179

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

#define H3(X, ...) #__VA_OPT__ (X##X X##X)

H3(, 0) // replaced by ""

#define H4(X, ...) _VA_OPT__(a X ## X) ## b
H4(, 1) // replaced by a b

#define H5A(...) —VA_OPT—()/*x/—_VA_OPT—()
#define H5B(X) a ## X ## b

#define H5C(X) H5B (X)

H5C(H5A()) // replaced by ab

6.10.4.2 The # operator
Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed by a
parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing token, both
are replaced by a single character string literal preprocessing token that contains the spelling of the
preprocessing token sequence for the corresponding argument (excluding placemarker tokens). Let
the stringizing argument be the preprocessing token sequence for the corresponding argument with
placemarker tokens removed. Each occurrence of white space between the stringizing argument’s
preprocessing tokens becomes a single space character in the character string literal. White space
before the first preprocessing token and after the last preprocessing token composing the stringizing
argument is deleted. Otherwise, the original spelling of each preprocessing token in the stringizing
argument is retained in the character string literal, except for special handling for producing the
spelling of string literals and character constants: a \ character is inserted before each " and \
character of a character constant or string literal (including the delimiting " characters), except that
it is implementation-defined whether a \ character is inserted before the \ character beginning a
universal character name. If the replacement that results is not a valid character string literal, the
behavior is undefined. The character string literal corresponding to an empty stringizing argument
is "". The order of evaluation of # and ## operators is unspecified.

6.10.4.3 The ## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for
either form of macro definition.

Semantics

If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed
by a ## preprocessing token, the parameter is replaced by the corresponding argument’s preprocess-
ing token sequence; however, if an argument consists of no preprocessing tokens, the parameter is
replaced by a placemarker preprocessing token instead.??!)

For both object-like and function-like macro invocations, before the replacement list is reexamined
for more macro names to replace, each instance of a ## preprocessing token in the replacement list
(not from an argument) is deleted and the preceding preprocessing token is concatenated with the
following preprocessing token. Placemarker preprocessing tokens are handled specially: concatena-
tion of two placemarkers results in a single placemarker preprocessing token, and concatenation
of a placemarker with a non-placemarker preprocessing token results in the non-placemarker pre-
processing token. If the result is not a valid preprocessing token, the behavior is undefined. The
resulting token is available for further macro replacement. The order of evaluation of ## operators is
unspecified.

22)Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within
translation phase 4.

180 Language §6.10.4.3

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

4 EXAMPLE In the following fragment:

#define hash_hash # ## #

#define mkstr(a) # a

#define in_between(a) mkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char p[] = "x ## y";

The expansion produces, at various stages:

join(x, y)

in_between(x hash_hash y)
in_between(x ## y)
mkstr(x ## vy)

"X ## Y

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs,
but this new token is not the ## operator.

6.10.4.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted and # and ## processing has
taken place, all placemarker preprocessing tokens are removed. The resulting preprocessing token
sequence is then rescanned, along with all subsequent preprocessing tokens of the source file, for
more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any
nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement even
if they are later (re)examined in contexts in which that macro name preprocessing token would
otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a prepro-
cessing directive even if it resembles one, but all pragma unary operator expressions within it are
then processed as specified in 6.10.10 below.

4 EXAMPLE There are cases where it is not clear whether a replacement is nested or not. For example,
given the following macro definitions:

#define f(a) axg
#define g(a) f(a)

the invocation

\ f(2)(9)

could expand to either

| 2+ (9)

or

i 2x9xg

Strictly conforming programs are not permitted to depend on such unspecified behavior.

§6.10.4.4 Language 181

6

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

6.10.4.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #undef directive is
encountered or (if none is encountered) until the end of the preprocessing translation unit. Macro
definitions have no significance after translation phase 4.

A preprocessing directive of the form
undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified
identifier is not currently defined as a macro name.

EXAMPLE 1 The simplest use of this facility is to define a “manifest constant”, as in

#define TABSIZE 100

int table[TABSIZE];

EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its
arguments. It has the advantages of working for any compatible types of the arguments and
of generating in-line code without the overhead of function calling. It has the disadvantages of
evaluating one or the other of its arguments a second time (including side effects) and generating
more code than a function if invoked several times. It also cannot have its address taken, as it has
none.

| #define max(a, b) ((a) > (b) 7 (a): (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3

#define f(a) f(x *x (a))

#undef x

#define x 2

#define g f

#define z z[0]

#define h g(\~{ }

#define m(a) a(w)

#define w 0,1

#define t(a) a

#define p() int

#define q(x) x

#define r(x,y) x ## vy

#define str(x) # x

f(y+l) + f(f(z)) % t(t(g)(0) + t)(1);

g(x+(3,4)-w) | h5) &m

(f)~m(m);

p() ila()]1 = { a(1), r(2,3), r(4,), r(,5), r(,) };

char c[2][6] = { str(hello), str() };
results in

f(2 * (y+1)) + (2 = (f(2 * (z[0]))
f(2 * (2+(3,4)-0,1)) | (2 = (\~{ }
int i[] = { 1, 23, 4, 5, };

char c[2][6] = { "hello", "" };

)

-
~+
—
=

% (2 * (0)
)) &

)
5) f(2 * (

(<]

v
>

3

EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens,
the sequence

182 Language §6.10.4.5

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

#define str(s) # s

#define xstr(s) str(s)

#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
X ## s, x ## t)

#define INCFILE(n) vers ## n

#define glue(a, b) a ## b

#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW LOwW ", world"
debug(1l, 2);

fputs(str(strncmp("abc\0d", "abc", '\4’) // this goes away
== 0) str(: @\n), s);

#include xstr(INCFILE(2).h)

glue(HIGH, LOW);

xglue (HIGH, LOW)

results in
pr‘intf("x" ||1|| "o %d, XII ||2|| "o o/oS”, Xl, XZ);
fputs(
"strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" ": @\n",
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);

fputs(

"strncmp (\"abc\\0d\", \"abc\", '"\\4’) == 0: @\n",

s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello, world"

Space around the # and ## tokens in the macro definition is optional.

EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),
t(10,,), t(,11,), t(,,12), t(,,) }

results in

int j[] = { 123, 45, 67, 89,
le, 11, 12, };

EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define 0BJ_LIKE (1-1)
#define OBJ_LIKE /* white space x/ (1-1) /x other x/
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a) (/* note the white space */ \
a /x other stuff on this line
*/)

§6.10.4.5 Language 183

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

But the following redefinitions of the preceding definitions are invalid:

#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, _VA_ARGS__)
#define showlist(...) puts(#_—_VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))
debug("Flag");
debug ("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):
printf("x is %d but y is %d", x, y));

6.10.5 Line control

Constraints
The string literal of a #line directive, if present, shall be a character string literal.

Semantics

The line number of the current source line is one greater than the number of new-line characters read
or introduced in translation phase 1 (5.1.1.2) while processing the source file to the current token.

If a preprocessing token (in particular __LINE__) spans two or more physical lines, it is unspecified
which of those line numbers is associated with that token. If a preprocessing directive spans two or
more physical lines, it is unspecified which of those line numbers is associated with the preprocessing
directive. If a macro invocation spans multiple physical lines, it is unspecified which of those line
numbers is associated with that invocation. The line number of a preprocessing token is independent
of the context (in particular, as a macro argument or in a preprocessing directive). The line number
of a__LINE__in a macro body is the line number of the macro invocation.

A preprocessing directive of the form
line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a
source line that has a line number as specified by the digit sequence (interpreted as a decimal integer,
ignoring any optional digit separators (6.4.4.1) in the digit sequence). The digit sequence shall not
specify zero, nor a number greater than 2147483647.

A preprocessing directive of the form

line digit-sequence " s-char-sequenceyp; " new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

A preprocessing directive of the form
line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after

184 Language §6.10.5

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting after
all replacements shall match one of the two previous forms and is then processed as appropriate.???)

Recommended practice

The line number associated with a pp-token should be the line number of the first character of the
pp-token. The line number associated with a preprocessing directive should be the line number of
the line with the first # token. The line number associated with a macro invocation should be the
line number of the first character of the macro name in the invocation.

6.10.6 Diagnostic directives
Semantics
A preprocessing directive of either form

error pp-tokensop new-line
warning pp-tokens.p: new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of
preprocessing tokens.

6.10.7 Pragma directive
Semantics
A preprocessing directive of the form

pragma pp-tokensop new-line

where the preprocessing token STDC does not immediately follow pragma in the directive (prior to
any macro replacement)??® causes the implementation to behave in an implementation-defined man-
ner. The behavior might cause translation to fail or cause the translator or the resulting program to
behave in a non-conforming manner. Any such pragma that is not recognized by the implementation
is ignored.

If the preprocessing token STDC does immediately follow pragma in the directive (prior to any macro
replacement), then no macro replacement is performed on the directive, and the directive shall have
one of the following forms??¥ whose meanings are described elsewhere:

standard-pragma:
pragma STDC FP_CONTRACT on-off-switch
pragma STDC FENV_ACCESS on-off-switch
pragma STDC FENV_DEC_ROUND dec-direction
pragma STDC FENV_ROUND direction
pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

direction: one of
FE_DOWNWARD FE_TONEAREST FE_TONEARESTFROMZERO
FE_TOWARDZERO FE_UPWARD FE_DYNAMIC

dec-direction: one of
FE_DEC_DOWNWARD FE_DEC_TONEAREST FE_DEC_TONEARESTFROMZERO

222)Because a new-line is explicitly included as part of the #line directive, the number of new-line characters read while

processing to the first pp-token can be different depending on whether the implementation uses a one-pass preprocessor.
Therefore, there are two possible values for the line number following a directive of the form #line __LINE__ new-line.
223) An implementation is not required to perform macro replacement in pragmas, but it is permitted except for in standard
pragmas (where STDC immediately follows pragma). If the result of macro replacement in a non-standard pragma has the
same form as a standard pragma, the behavior is still implementation-defined; an implementation is permitted to behave as
if it were the standard pragma, but is not required to.
24 See “future language directions” (6.11.6).

§6.10.7 Language 185

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

FE_DEC_TOWARDZERO FE_DEC_UPWARD FE_DEC_DYNAMIC

Forward references: the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma
(7.6.1), the FENV_DEC_ROUND pragma (7.6.3), the FENV_ROUND pragma (7.6.2), the
CX_LIMITED_RANGE pragma (7.3.4).

6.10.8 Null directive

Semantics

A preprocessing directive of the form
new-line

has no effect.

6.10.9 Predefined macro names

The values of the predefined macros listed in the following subclauses?®® (except for —_ FILE__ and
—LINE_) remain constant throughout the translation unit.

None of these macro names nor the identifiers defined, __has_c_attribute, __has_include
, or __has_embed shall be the subject of a #define or a #undef preprocessing directive. Any
other predefined macro names: shall begin with a leading underscore followed by an uppercase
letter; or, a second underscore; or, shall be any of the identifiers alignas, alignof, bool, false,
static_assert, thread_local, or true.

The implementation shall not predefine the macro —_cplusplus, nor shall it define it in any standard
header.

Forward references: standard headers (7.1.2).

6.10.9.1 Mandatory macros
The following macro names shall be defined by the implementation:

—DATE__ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).22®)

—LINE__ The presumed line number (within the current source file) of the current source line (an
integer constant).?20)

—STDC__ The integer constant 1, intended to indicate a conforming implementation.

__STDC_EMBED_NOT_FOUND__, __STDC_EMBED_FOUND__, __STDC_EMBED_EMPTY__ The integer con-
stants 0, 1, and 2, respectively.

—STDC_HOSTED_ The integer constant 1 if the implementation is a hosted implementation or the
integer constant 0 if it is not.

—STDC_UTF_16_— The integer constant 1, intended to indicate that values of type charl6_t are
UTF-16 encoded.

—STDC_UTF_32__ The integer constant 1, intended to indicate that values of type char32_t are
UTE-32 encoded.

25)See “future language directions” (6.11.7).
226)The presumed source file name and line number can be changed by the #line directive.

186 Language §6.10.9.1

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

—_STDC_VERSION_ The integer constant 202311L.22")

—TIME__ The time of translation of the preprocessing translation unit: a character string literal of
the form "hh:mm:ss" as in the time generated by the asctime function. If the time of
translation is not available, an implementation-defined valid time shall be supplied.

Forward references: the asctime function (7.29.3.1).

6.10.9.2 Environment macros
The following macro names are conditionally defined by the implementation:

—STDC_IS0_10646__ An integer constant of the form yyyymmL (for example, 202012L). If this
symbol is defined, then every character in the Unicode required set, when stored in an
object of type wchar_t, has the same value as the short identifier of that character. The
Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along
with all amendments and technical corrigenda, as of the specified year and month. If
some other encoding is used, the macro shall not be defined and the actual encoding
used is implementation-defined.

—STDC_MB_MIGHT_NEQ_WC__ The integer constant 1, intended to indicate that, in the encoding for
wchar_t, a member of the basic character set need not have a code value equal to its
value when used as the lone character in an integer character constant.

Forward references: common definitions (7.21), Unicode utilities (7.30).

6.10.9.3 Conditional feature macros
The following macro names are conditionally defined by the implementation:

—_STDC_ANALYZABLE__ The integer constant 1, intended to indicate conformance to the specifica-
tions in Annex L (Analyzability).

—STDC_IEC_60559_BFP_ The integer constant 202311L, intended to indicate conformance to
Annex F (IEC 60559 floating-point arithmetic) for binary floating-point arithmetic.

—STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications
in Annex F (IEC 60559 floating-point arithmetic) for binary floating-point arithmetic. Use
of this macro is an obsolescent feature.

—STDC_IEC_60559_DFP_ The integer constant 202311L, intended to indicate support of decimal
floating types and conformance to Annex F (IEC 60559 floating-point arithmetic) for
decimal floating-point arithmetic.

—STDC_IEC_60559_COMPLEX__ The integer constant 202311L, intended to indicate conformance
to the specifications in Annex G (IEC 60559 compatible complex arithmetic).

—STDC_IEC_60559_TYPES__ The integer constant 202311L, intended to indicate conformance to
the specification in Annex H (IEC 60559 interchange and extended types).

—STDC_IEC_559_COMPLEX__ The integer constant 1, intended to indicate adherence to the specifi-
cations in Annex G (IEC 60559 compatible complex arithmetic). Use of this macro is an
obsolescent feature.

—STDC_LIB_EXT1__ The integer constant 202311L, intended to indicate support for the extensions
defined in Annex K (Bounds-checking interfaces).

—STDC_NO_ATOMICS__ The integer constant 1, intended to indicate that the implementation does
not support atomic types (including the _Atomic type qualifier) and the <stdatomic.h>
header.

)See Annex M for the values in previous revisions. The intention is that this will remain an integer constant of type
long int that is increased with each revision of this document.

227

§6.10.9.3 Language 187

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

—STDC_NO_COMPLEX__ The integer constant 1, intended to indicate that the implementation does
not support complex types or the <complex.h>header.

—STDC_NO_THREADS__ The integer constant 1, intended to indicate that the implementation does
not support the <threads . h> header.

—STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation does not
support variable length arrays with automatic storage duration. Parameters declared
with variable length array types are adjusted and then define objects of automatic storage
duration with pointer types. Thus, support for such declarations is mandatory.

NOTE 1 The intention for the macros __STDC_LIB_EXT1__, __STDC_IEC_660559_BFP__, __STDC_IEC_60559_DFP__,
— STDC_IEC_60559_COMPLEX__, and __STDC_IEC_60559_TYPES__, with the value 202311L, is that this will remain an
integer constant of type long int that is increased with each revision of this document.

An implementation that defines __STDC_NO_COMPLEX__ shall not define __STDC_IEC_60559_COMPLEX__
or __STDC_IEC_559_COMPLEX__.

6.10.10 Pragma operator
Semantics
A unary operator expression of the form:

—Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.

EXAMPLE A directive of the form:

[1
‘ #pragma listing on "..\listing.dir"

can also be expressed as:

| —Pragma ("listing on \"..\\listing.dir\"") |

The latter form is processed in the same way whether it appears literally as shown, or results from
macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #Xx)
#define PRAGMA(x) _Pragma (#x)

LISTING (..\listing.dir)

188 Language §6.10.10

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

6.11 Future language directions
6.11.1 Floating types

Future standardization may include additional floating types, including those with greater range,
precision, or both than long double.

6.11.2 Linkages of identifiers

Declaring an identifier with internal linkage at file scope without the static or constexpr storage-
class specifier is an obsolescent feature.

6.11.3 External names

Restriction of the significance of an external name to fewer than 255 characters (considering each
universal character name or extended source character as a single character) is an obsolescent feature
that is a concession to existing implementations.

6.11.4 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other characters may
be used in extensions.

6.11.5 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration specifiers in
a declaration is an obsolescent feature.

6.11.6 Pragma directives
Pragmas whose first preprocessing token is STDC are reserved for future standardization.

6.11.7 Predefined macro names
Macro names beginning with __STDC_ are reserved for future standardization.

Uses of the __STDC_IEC_559__ and __STDC_IEC_559_COMPLEX__ macros are obsolescent features.

§6.11.7 Language 189

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

7. Library

7.1 Introduction

7.1.1 Definitions of terms

A string is a contiguous sequence of characters terminated by and including the first null character.
The term multibyte string is sometimes used instead to emphasize special processing given to
multibyte characters contained in the string or to avoid confusion with a wide string. A pointer to
a string is a pointer to its initial (lowest addressed) character. The length of a string is the number
of bytes preceding the null character and the value of a string is the sequence of the values of the
contained characters, in order.

The decimal-point character is the character used by functions that convert floating-point numbers
to or from character sequences to denote the beginning of the fractional part of such character
sequences.??® Tt is represented in the text and examples by a period, but may be changed by the
setlocale function.

A null wide character is a wide character with code value zero.

A wide string is a contiguous sequence of wide characters terminated by and including the first null
wide character. A pointer to a wide string is a pointer to its initial (lowest addressed) wide character.
The length of a wide string is the number of wide characters preceding the null wide character and the
value of a wide string is the sequence of code values of the contained wide characters, in order.

A shift sequence is a contiguous sequence of bytes within a multibyte string that (potentially) causes
a change in shift state (see 5.2.1.1). A shift sequence shall not have a corresponding wide character;
it is instead taken to be an adjunct to an adjacent multibyte character.??) In this clause, “white-space
character” refers to (execution) white-space character as defined by isspace. “White-space wide
character” refers to (execution) white-space wide character as defined by iswspace.

Forward references: character handling (7.4), the setlocale function (7.11.1.1).

7.1.2 Standard headers

Each library function is declared in a header,>*” whose contents are made available by the #include
preprocessing directive. The header declares a set of related functions, plus any types and addi-
tional macros needed to facilitate the use of such related functions. In addition to the provisions
given in this clause, an implementation that defines __STDC_IEC_60559_BFP__, __STDC_IEC_559__
, or __STDC_IEC_60559_DFP__ shall conform to the specifications in Annex F, one that defines
—STDC_IEC_60559_COMPLEX__ or __STDC_IEC_559_COMPLEX__ shall conform to the specifications
in Annex G, one that defines __STDC_IEC_60559_TYPES__ shall conform to the specifications in
Annex H and one that defines __STDC_LIB_EXT1__ shall conform to the specifications in Annex
K, and those Annexes should be read as if they were merged into the parallel structure of named
subclauses of this clause. Declarations of types described here or in Annex K shall not include type
qualifiers, unless explicitly stated otherwise.

An implementation that does not support decimal floating types (6.10.9.3) need not support inter-
faces or aspects of interfaces that are specific to these types.

The standard headers are?3)

228)The functions that make use of the decimal-point character are the numeric conversion functions (7.24.1, 7.31.4.1) and the
formatted input/output functions (7.23.6, 7.31.2).

29)For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN_MAX are thus required to be large enough to
count all the bytes in any complete multibyte character plus at least one adjacent shift sequence of maximum length. Whether
these counts provide for more than one shift sequence is the implementation’s choice.

230) A header is not necessarily a source file, nor are the< and > delimited sequences in header names necessarily valid source
file names.

21 The headers <complex.h>, <stdatomic.h>, and <threads.h> are conditional features that implementations need not
support; see 6.10.9.3.

190 Library §7.1.2

N3096

<assert.h>
<complex.h>

working draft — April 1, 2023

<setjmp.h>
<signal.h>

ISO/IEC 9899:2023 (E)

<stdlib.h>
<stdnoreturn.h>

<ctype.h> <stdalign.h> <string.h>
<errno.h> <stdarg.h> <tgmath.h>
<fenv.h> <stdatomic.h> <threads.h>
<float.h> <stdbit.h> <time.h>
<inttypes.h> <stdbool. h> <uchar.h>
<is0646.h> <stdckdint.h> <wchar.h>
<limits.h> <stddef.h> <wctype.h>
<locale.h> <stdint.h>

<math.h> <stdio.h>

If a file with the same name as one of the above < and > delimited sequences, not provided as part of
the implementation, is placed in any of the standard places that are searched for included source
files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including

<assert.h>depends on the definition of NDEBUG (see 7.2). If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However, if
an identifier is declared or defined in more than one header, the second and subsequent associated
headers may be included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion of the
header or when any macro defined in the header is expanded.

Some standard headers define or declare identifiers that had not been present in previous versions
of this document. To allow implementations and users to adapt to that situation, they also define a
version macro for feature test of the form __STDC_VERSION_XXXX_H__ which expands to 202311L,
where XXXX is the all-caps spelling of the corresponding header <xxxx.h>.

Any definition of an object-like macro described in this clause or Annex F, Annex G, Annex H, and
Annex K shall expand to code that is fully protected by parentheses where necessary, so that it
groups in an arbitrary expression as if it were a single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in Annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and optionally
declares or defines identifiers listed in its associated future library directions subclause and identifiers
which are always reserved either for any use or for use as file scope identifiers.

— All potentially reserved identifiers (including ones listed in the future library directions) that
are provided by an implementation with an external definition are reserved for any use. An
implementation shall not provide an external definition of a potentially reserved identifier
unless that identifier is reserved for a use where it would have external linkage.?*? All other
potentially reserved identifiers that are provided by an implementation (including in the
form of a macro) are reserved for any use when the associated header is included. No other
potentially reserved identifiers are reserved.??)

— Each macro name in any of the following subclauses (including the future library directions)
is reserved for use as specified if any of its associated headers is included; unless explicitly
stated otherwise (see 7.1.4).

232) Al library functions have external linkage.
23) A potentially reserved identifier becomes a reserved identifier when an implementation begins using it or a future
standard reserves it, but is otherwise available for use by the programmer.

§7.13 Library 191

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

— All identifiers with external linkage in any of the following subclauses (including the future
library directions) and errno are always reserved for use as identifiers with external linkage?*.

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as a macro name and as an identifier with file scope in
the same name space if any of its associated headers is included.

7.1.4 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed descrip-
tions that follow:

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer
to non-modifiable storage when the corresponding parameter is not const-qualified) or a type
(after default argument promotion) not expected by a function with a variable number of
arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if
the pointer did point to the first element of such an array) are valid.?"

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.?®
The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.?>”)

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called. ¥

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in conditional expression inclusion preprocessing directives.

24 The list of reserved identifiers with external linkage includes math_errhandling, setjmp, va_copy, and va_end.

25 This includes, for example, passing a valid pointer that points one-past-the-end of an array along with a size of 0, or
using any valid pointer with a size of 0.

236)This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.

237)Such macros might not contain the sequence points that the corresponding function calls do.

238)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can
provide special semantics for such names. For example, the identifier _-BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

| #undef abs |

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

192 Library §7.14

N3096 working draft — April 1, 2023 ISO/IEC 9899:2023 (E)

Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

There is a sequence point immediately before a library function returns.

The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration. 3%

Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly
or indirectly via the function’s non-const arguments. 9 Implementations may share their own
internal objects between threads if the objects are not visible to users and are protected against data
races.

Unless otherwise specified, library functions shall perform all operations solely within the current
thread if those operations have effects that are visible to users.?*!)

EXAMPLE The function atoi can be used in any of several ways:

— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char xstr;

/* ... x/

i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi

const char xstr;

/*x ... %/

i = atoi(str);

or

#include <stdlib.h>
const char xstr;

/*x ... %/

i = (atoi)(str);

— by explicit declaration

extern int atoi(const char x);
const char xstr;

/*x ... %/

i = atoi(str);

29Thus, a signal handler cannot, in general, call standard library functions.

240)This means, for example, that an implementation is not permitted to use a static object for internal purposes without
synchronization because it could cause a data race even in programs that do not explicitly share objects between threads.
Similarly, an implementation of memcpy is not permitted to copy bytes beyond the specified length of the destination object
and then restore the original values because it could cause a data race if the program shared those bytes between threads.
24D)This allows implementations to parallelize operations if there are no visible side effects.

§7.14 Library 193

ISO/IEC 9899:2023 (E) working draft — April 1, 2023 N3096

7.2 Diagnostics <assert.h>

The header <assert . h> defines the assert and __STDC_VERSION_ASSERT_H__ macros and refers
to another macro,

\ NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a