
Delimited escape sequences
Document #: N2785
Date: 2021-07-28
Project: Programming Language C
Audience: Application programmers
Proposal category: New feature
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Aaron Ballman <aaron@aaronballman.com>

Abstract

We propose an additional, clearly delimited syntax for octal, hexadecimal and universal
character name escape sequences to clearly delimit the boundaries of the escape sequence.
WG21 has shown an interest in adjusting this feature, and this proposal is intended to keep C
and C++ in alignment. This feature is a pure extension to the language that should not impact
existing code.

Motivation

universal-character-name escape sequences

As their name does not indicate, universal-character-name escape sequences represent Uni-
code scalar values, using either 4, or 8 hexadecimal digits, which is either 16 or 32 bits.
However, the Unicode codespace is limited to 0-0x10FFFF, and all currently assigned code-
points can be written with 5 or less hexadecimal digits (Supplementary Private Use Area-B
non-withstanding). As such, the ~50% of codepoints that need 5 hexadecimal digits to be
expressed are currently a bit awkward to write: \U0001F1F8.

Octal and hexadecimal escape sequences have variable length

\1, \01, \001 are all valid escape sequences. \17 is equivalent to "0x0F" while \18 is equivalent
to "0x01" "8"

While octal escape sequences accept 1 to 3 digits as arguments, hexadecimal sequences
accept an arbitrary number of digits applying the maximal much principle.

This is how the Microsoft documentation describes this problem:

1

mailto:corentin.jabot@gmail.com
mailto:aaron@aaronballman.com
https://docs.microsoft.com/en-us/cpp/c-language/octal-and-hexadecimal-character-specifications?view=msvc-160


Unlike octal escape constants, the number of hexadecimal digits in an escape
sequence is unlimited. A hexadecimal escape sequence terminates at the
first character that is not a hexadecimal digit. Because hexadecimal digits
include the letters a through f, caremust be exercised tomake sure the escape
sequence terminates at the intended digit. To avoid confusion, you can place
octal or hexadecimal character definitions in a macro definition:

#define Bell '\x07'

For hexadecimal values, you can break the string to show the correct value
clearly:

"\xabc" /* one character */
"\xab" "c" /* two characters */

As this documentation suggests, there are workarounds to this problem. However, neither
solution completely solves the maintenance issue. It may not be clear why a string literal uses
literal concatenation, so a future refactoring of the code may accidentally combine the strings.
Further, literal concatenation is not a common pattern for arbitrary string literal uses.

Status of P2290R1 [2] in WG21

Lastly, we propose this feature for C for compatibility with the C++ proposal P2290R1 [2]. This
feature is presented to the C committee to ensure that either C adopts it (for consistency)
or does not object to C++ using this syntax. We hope that if C should adopt this feature in
the future, it would do so with both the same syntax and semantics as what is proposed in
P2290R1 [2]. Our hope is that WG14 will be interested in adopting this feature for C23 based
on the merits of the feature. However, we recognize that WG14 may not be ready to adopt
this proposal yet, and so our secondary goal is to identify concerns WG14 has with the feature
to ensure that future work in this area within C is done in a way that is compatible with C++.
We don’t believe there is much room for different designs for this functionality, but we want
to make sure WG21 doesn’t pick curly braces while WG14 picks parentheses or other such
superficial incompatibilities.

EWG took the following straw poll in July 2021:

We would like to adopt this for C++23, assuming the Core wording is improved
in the paper and assuming SG22 / WG14 intend to avoid divergence in C.
SF F N A SA

1 10 0 0 0

2

https://wg21.link/P2290R1
https://wg21.link/P2290R1
https://wg21.link/P2290R1


Proposed solution

We propose new syntaxes \u{}, \o{}, \x{} usable in places where \u, \x, \nnn currently are.
\o{} accepts an arbitrary number of octal digits and \u{} and \x{} accept an arbitrary number
of hexadecimal digit.

The values represented by these new syntaxes would, of course have the same requirements
as existing escape sequences:

\u{nnnn} must represent a valid Unicode scalar value.

\x{nnnn} and \o{nnnn} must represent a value that can be represented in a single code unit
of the encoding of string or character literal they are a part of.

Note that "\x{4" "2}" would not be valid as escape sequences are replaced before string
concatenation, which we think is the right design.

We explicitly do not allow digit separators in these digit sequences. This is to avoid a parsing
ambiguity for character literals where ' already has special meaning, as in: '\u12'34'.

Should existing forms be deprecated?

No (we are not in the business of breakings everyone’s code)!

Impact on existing implementations

No compiler currently accepts \x{ or \u{ as valid syntax. Furthermore, while \o is currently
reserved for implementations, no tested implementation (GCC, Clang, MSVC, ICC, TCC, Tendra)
makes use of it.

Identifiers

Universal character names can appear as part of identifiers, and the proposed new syntax to
spell universal characters names would be applied to identifiers for consistency.

Prior art and alternatives considered

\u{} is a valid syntax in rust and javascript. The syntax is identical to that of P2071R0 [1]

\x{} is a bit more novel - It is present in Perl and some regex syntaxes. However, most
languages (python, D, Perl, javascript, rust, PHP) specify hexadecimal sequences to be exactly
2 hexadecimal digits long (\xFF), which sidestep the issues described in this paper.

Most languages surveyed follow in C and C++ footstep for the syntax of octal numbers (no
braces, 1-3 digits), so this would be novel indeed.

As such, for consistency with other C++ proposals and existing art, we have not considered
other syntaxes.

3

https://wg21.link/P2071R0


Impact on EBCDIC programs

In some EBCDIC encodings, the { } characters might not be avaible. This was raised in the
context of the filetag pragma such that xCl users often have to specify the encoding of a
source file.

??=pragma filetag ("IBM-1047")

In this specific context, hexadecimal and octal sequences are not useful - the string is not
evaluated. Universal characters name s can be specified but, universal characters name s exclude
most of the basic Latin 1 characters used to specify encodings. Encoding names are designed
to safe for inter exchange and as such avoid non-basic-latin characters [1] [2], making the
proposed feature of limited usefulness in the context of pragma filetag [3].

After this initial pragma, most code targeting EBCDIC platforms can use braces. Otherwise,
users can either use the pre-existing syntaxes or use trigraphs.

Given the existing syntax for delimiting lists of elements with curly braces in C already (enu-
merations, initialization, structure members, etc) and the expectation that delimited escape
sequence use is expected to be vanishingly rare in pragmas and identifiers, we believe delim-
iting with { and } is not an undue burden for implementers or users.

Wording

6.4.3 Universal character names

Syntax

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

simple-hexadecimal-digit-sequence:
hexadecimal-digit
simple-hexadecimal-digit-sequence hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad
\u{ simple-hexadecimal-digit-sequence }

[Editor’s note: Remove The following paragraph in red]

Constraints

A universal character name shall not specify a character whose short identifier is less than
00A0 other than 0024 ($), 0040 (
@), or 0060 (
‘), nor one in the range D800 through DFFF inclusive.

4



Description Universal character names may be used in identifiers, character constants, and
string literals to designate characters that are not in the basic character set.

Semantics Theuniversal character name \Unnnnnnnndesignates the characterwhose eight-digit
short identifier (as specified by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal character
name \unnnn designates the character whose four-digit short identifier is nnnn (and whose
eight-digit short identifier is 0000nnnn).

[Editor’s note: Remove footnote 79]

A universal character name designates the character in ISO/IEC 10646 whose code point is
the hexadecimal number represented by the sequence of hexadecimal digits in the universal
character name. That code point shall not be in the range D800 through DFFF inclusive, nor
less than 00A0, except for 0024 ($), 0040 (@), or 0060 (‘) [Editor’s note: Attach footnote 78
here] .

6.4.4.4 Character constants

Syntax

numeric-escape-sequence:
octal-escape-sequence
hexadecimal-escape-sequence

simple-octal-digit-sequence:
octal-digit
simple-octal-digit-sequence octal-digit

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
\o{ simple-octal-digit-sequence }

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit
\x{ simple-hexadecimal-digit-sequence }

[Editor’s note: Edit: Paragraph 5-7 as follow]

The octal digits that follow the backslash in an octal escape sequence are taken to be part of
the construction of a single character for an integer character constant or of a single wide
character for a wide character constant. The numerical value of the octal integer so formed
specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer character
constant or of a single wide character for a wide character constant. The numerical value
of the hexadecimal integer so formed specifies the value of the desired character or wide
character.

5



Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

References

[1] Tom Honermann and Peter Bindels. P2071R0: Named universal character escapes. https:
//wg21.link/p2071r0, 1 2020.

[2] Corentin Jabot. P2290R1: Delimited escape sequences. https://wg21.link/p2290r1, 6
2021.

[1] I. McDonald IANA Charset MIB
https://tools.ietf.org/html/rfc3808

[2] UNICODE CHARACTER MAPPING MARKUP LANGUAGE
https://www.unicode.org/reports/tr22/tr22-8.html#Charset_Alias_Matching

[3] #pragma filetag - z/OS XL C/C++ User’s Guide
https://www.ibm.com/docs/en/zos/2.3.0?topic=descriptions-pragma-filetag

[Unicode] Unicode 13
http://www.unicode.org/versions/Unicode13.0.0/

6

https://wg21.link/p2071r0
https://wg21.link/p2071r0
https://wg21.link/p2290r1
https://tools.ietf.org/html/rfc3808
https://www.unicode.org/reports/tr22/tr22-8.html#Charset_Alias_Matching
https://www.ibm.com/docs/en/zos/2.3.0?topic=descriptions-pragma-filetag
http://www.unicode.org/versions/Unicode13.0.0/

	1 Abstract
	2 Motivation
	2.1 universal-character-name escape sequences
	2.2 Octal and hexadecimal escape sequences have variable length
	2.3 Status of P2290R1 P2290R1 in WG21

	3 Proposed solution
	3.1 Should existing forms be deprecated?
	3.2 Impact on existing implementations
	3.3 Identifiers

	4 Prior art and alternatives considered
	5 Impact on EBCDIC programs
	6 Wording
	6.1 6.4.3 Universal character names
	6.2 6.4.4.4 Character constants

	7 References

