
Proposal for C2x

WG14 N2764

Title: The noreturn attribute

Author, affiliation: Aaron Ballman, Intel

Date: 2021-06-21

Proposal category: New features

Target audience: General developers, compiler/tooling developers

Abstract: C11 added support for the _Noreturn function type specifier whereas C++11 added support

for the [[noreturn]] attribute. This proposal attempts to bring the two features into cross-language

alignment.

Prior art: C++

The noreturn attribute
Reply-to: Aaron Ballman (aaron@aaronballman.com)
Document No: N2764
Date: 2021-06-21

Summary of Changes

N2764

• Added a value for __has_c_attribute.

• Support [[_Noreturn]] in code including <stdnoreturn.h>.

N2700

• Proposes deprecating _Noreturn and noreturn when adding [[noreturn]].

N2410

• Original proposal.

Introduction
Some functions are defined to never return back to the caller. For instance, functions that terminate the

program by calling abort() or _Exit(), or functions that call longjmp() to resume execution

elsewhere. There are advantages to program readability and performance when the user is able to mark

these functions as not returning. To support this case, C++11 adopted an attribute spelled

[[noreturn]] in 2008 [WG21 N2761], while C11 adopted a function specifier spelled _Noreturn to

do the same in 2010 [N1478].

Rationale
Now that C2x has support for attributes using the same syntax as C++ [N2269], the _Noreturn function

specifier may be a point of confusion for users, especially ones who write function declarations in a

header file included in both a C and C++ translation unit. The _Noreturn keyword will not be known to

a C++ implementation and the [[noreturn]] attribute will not be known to a C implementation,

despite the semantics of the concept being the same between languages.

Proposal
This paper proposes adding a new attribute, spelled [[noreturn]] and deprecates use of _Noreturn.

N2410 attempted to specify _Noreturn to be a predefined macro that expands to [[noreturn]] and

change the definition of the noreturn macro <stdnoreturn.h> to do the same. However, because

_Noreturn is a function specifier, we cannot migrate user code in this way because the potential exists

to break code. Consider the following conforming C17 declaration:

void _Noreturn func(void);

If _Noreturn (or the noreturn macro from <stdnoreturn.h>) were to expand to [[noreturn]]

when written in this position, the declaration would become invalid because [[noreturn]] applies to

function declarations but is written as applying to the void return type instead.

[[noreturn]]
This paper proposes adding a new attribute spelled [[noreturn]]. The [[noreturn]] attribute is

used to specify that a function does not return execution to its caller. It has the same semantics as the

current _Noreturn function specifier in that it is undefined behavior to return from a function marked

[[noreturn]], with the recommendation that implementations diagnose such a situation.

_Noreturn
The _Noreturn function specifier keyword is being deprecated by this proposal.

noreturn and <stdnoreturn.h>
The noreturn macro and <stdnoreturn.h> headers are being deprecated by this proposal. The

noreturn macro continues to expand to _Noreturn. To ease transition to newer language standards,

[[_Noreturn]] is supported as an alias for [[noreturn]] so that a program using [[noreturn]]

while including <stdnoreturn.h> will have the expected semantics. However, this is an obsolescent

feature as it is only intended to be used for transition purposes. Once <stdnoreturn.h> is removed

from the standard, the need for supporting [[_Noreturn]] vanishes.

Standard library interfaces
The standard library interfaces that currently use the _Noreturn keyword will instead use the

[[noreturn]] attribute.

Proposed Wording
The wording proposed is a diff from N2596. Green text is new text, while red text is deleted text.

Drafting note: I did not add wording for the Future Language Directions or Future Library Directions

clauses about the new obsolescent features as I am under the impression those words are typically

added editorially from the existing standards text.

Modify 6.7.4p8: Drafting note: the cross reference is to let the reader know there’s a replacement

already available.

A function declared with a _Noreturn function specifier shall not return to its caller. The _Noreturn

function specifier is an obsolescent feature (6.7.11.6).

Delete 6.7.4p12:

EXAMPLE 2

_Noreturn void f () {

 abort(); // ok

}

_Noreturn void g (int i) { // causes undefined behavior if i <= 0

 if (i > 0) abort();

}

Modify 6.7.11.1p2:

The identifier in a standard attribute shall be one of:

deprecated fallthrough maybe_unused nodiscard noreturn _Noreturn

Add a new subclause after 6.7.11.5:

Drafting note: I would like the UB in paragraph 4 to be the C equivalent of C++’s “ill-formed, no

diagnostic required” so that it’s clear that this isn’t just your garden variety UB. The example was

extended from the previous example to clarify that “appears to be capable” also applies to non-void

return types. Also, this drafting takes N2557 into account and does not add a restriction on appearing

multiple times in an attribute list.

Drafting note: The value used for __has_c_attribute is a placeholder that is to be replaced by the editors

with the year and month the proposal is accepted into the working draft.

6.7.11.6 The noreturn and _Noreturn attributes

Description

1 When _Noreturn is used as an attribute token (instead of a function specifier), the constraints and

semantics are identical to that of the noreturn attribute token. Use of _Noreturn as an attribute

token is an obsolescent feature. x)

x) [[_Noreturn]] and [[noreturn]] are equivalent attributes to support code that includes

<stdnoreturn.h>, because that header defines noreturn as a macro that expands to _Noreturn.

Constraints

2 The noreturn attribute shall be applied to the identifier in a function declaration. No attribute

argument clause shall be present.

Semantics

3 The first declaration of a function shall specify the noreturn attribute if any declaration of that

function specifies the noreturn attribute. If a function is declared with the noreturn attribute in one

translation unit and the same function is declared without the noreturn attribute in another

translation unit, the behavior is undefined.

4 If a function f is called where f was previously declared with the noreturn attribute and f eventually

returns, the behavior is undefined.

5 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value YYYYMML

when given noreturn as the pp-tokens operand.

Recommended Practice

6 The implementation should produce a diagnostic message for a function declared with a noreturn

attribute that appears to be capable of returning to its caller.

7 EXAMPLE 1

 [[noreturn]] void f(void) {

 abort(); // ok

 }

 [[noreturn]] void g(int i) { // causes undefined behavior if i <= 0

 if (i > 0) abort();

 }

 [[noreturn]] int h(void);

Implementations are encouraged to diagnose the definition of g() because it is capable of returning to

its caller. Implementations are similarly encouraged to diagnose the declaration of h() because it

appears capable of returning to its caller due to the non-void return type.

Modify 7.13.2.1p1:

#include <setjmp.h>

 _Noreturn[[noreturn]] void longjmp(jmp_buf env, int val);

Modify 7.22.4.1p1:

#include <stdlib.h>

 _Noreturn[[noreturn]] void abort(void);

Modify 7.22.4.4p1:

#include <stdlib.h>

 _Noreturn[[noreturn]] void exit(int status);

Modify 7.22.4.5p1:

#include <stdlib.h>

 _Noreturn[[noreturn]] void _Exit(int status);

Modify 7.22.4.7p1:

#include <stdlib.h>

 _Noreturn[[noreturn]] void quick_exit(int status);

Add a new paragraph 7.23p2:

2 The noreturn macro and the <stdnoreturn.h> header are obsolescent features.

Modify 7.26.5.5p1:

#include <threads.h>

 _Noreturn[[noreturn]] void thrd_exit(int res);

References
[N1478]

Supporting the ‘noreturn’ property in C1x. David Svoboda. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n1478.htm

[N2269]

Attributes in C. Aaron Ballman. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2269.pdf

[WG21 N2761]

Towards support for attributes in C++. Jens Maurer, Michael Wong. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf

