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Introduction

Array types with static or dynamic bound can be used instead of pointers for safe
programming because compilers can use length information encoded in the type to
detect errors. In fact, a pointer to an array is nothing else than a bounded pointer
type  and  existing  compilers  can  already  add  run-time  checks  to  detect  out-of-
bounds accesses.  Still,  there a  missing features and loose ends which prevent
programmers and tools from making optimal use of array types in C. 

Example:

void foo(int n, double (*x)[n])
{
  (*x)[n] = 1; // invalid access can be detected at run-time
}

In  the  following  simple  proposals  are  listed,  which – if  adopted  into  C -  would
strengthen  safe  programming  using  array  types.  They  address  loose  ends
regarding arrays in general,  function arguments declared as arrays, and flexible
array members (FAM). Most of these proposal were proposed before (cf. [1,2] and
N-documents referred to in the text). They are collected here to demonstrate that a
much better and consistent integration of array types in C is still possible with only
relatively minor changes to the language.

2. Function Arguments Declared as Arrays

2.1 Consistent Declarations [N2074]

Require  the  length  expression  for  pointers  arguments  declared  as  array  to  be
consistent across function declarations.

Example:

void foo(int n, char *x);
void foo(int n, char x[n]);
void foo(int n, char x[3]);

Rationale: Making inconsistent length specifiers a constraint violation would help
diagnose bugs.



2.2 Bounds Checking

Treat the length specifier for a function parameter declared as an array as a real
bound, i.e. it should be UB to access the array beyond this bound (at least as long
as the pointer is used directly and is not cast to another pointer type before).

Example:

int foo(int n, char x[n])
{
   x[n] = 1; // becomes UB
}

Rationale: Currently, the array argument is adjusted to a pointer and the length
information then becomes meaningless.  On the other  hand,  if  the bound is  not
respected this always hints at a programming error. Making accesses beyond the
specified bound undefined would make it possible for compilers to reject this code
either already at compile or to add run-time checks. Note that is is possible to get a
similar  effect  by passing a pointer  to an array as in the example  shown in the
introduction, but this would not help existing code and has less convenient syntax.

2.3 C++ Header Compatibility

In C++ accept at least first level VLA syntax in function prototypes declared with C
calling convention. (This affects C++ but is listed here for completeness.)

Example:

extern „C“ void foo(int n, double a[n]); // should be legal

Rationale:  VLAs are supported by some C++ compilers as an extension. There
were previous attempts to introduce them into the C++ standard, but this did not
progress to the unsolved C++ specific questions. Still, support for first-level VLAs in
function prototypes would already improve interoperability between both languages.
Compilers  and  tools  could  also  use  this  information  for  analysis,  but  a  simple
implementation could simply ignore the length parameter.



2.4 Forward Declaration of Arguments

Allow forward declaration of arguments in a function prototype.

Example:

void foo(size_t len; char buf[static len], int len);

Rationale:  With the recent removal of K&R function definitions, it is impossible to
use a later  parameter  in  a length specifier.  The syntax for  forward declarations
already exists as an extension in GCC. An alternative that was proposed could be
to allow referring to later arguments in length expressions. Although this might be
more  elegant,  it  also is  more  complicated,  as  it  may  require  more complicated
changes  to  parsers,  could  cause  backwards  compatibility  issues,  and  requires
dealing with mutual dependencies between parameters [1]:

int n = 3;
void foo(char x[n], int n); // would change meaning
void foo(char (*x)[sizeof(*y))], char (*y)[sizeof(*x)]);

// mutual dependency 

2.5 Prototypes in the Standard Library

Amend standard library function where a pointer argument could be declared as an 
array with length specifier
.

Example:

char* strncpy(size_t n; char dst[static n], const char* src);

Rationale:  In  line with  the C2X charter  [N2611],  this  would make the API self-
documenting and allow tools to diagnose bound violations at compile-time or at run-
time. One could consider extending this syntax also to void pointers.



2.6  Reduced Type Confusion I

Make applying  sizeof (and possible  also  typeof and  _Generic)  to  function
parameters declared as arrays an obsolescent feature. 

Example:

void foo(double x[4])
{

double y[4];
_Static_assert(sizeof x == sizeof y, “Fail!”); // !

}

Rationale: sizeof applied to a pointer argument declared as an array returns the
size of the pointer but not of the array. This is confusing and error-prone, especially
when such operations are hidden in macros. Some compiler already warn about
this. 

2.7 Reduced Type Confusion II

Add a new keyword / syntax that causes the type of the parameter declared as an
array to remain an array type, i.e. not be adjusted to a pointer [N1990].

Example:

void foo(double x[:4])
{

double y[4];
_Static_assert(sizeof x == sizeof y, “Fail!”); // ok.

}

Rationale: It would then be possible to treat the argument as a proper array and all
issues  caused  by  the  adjustment  to  a  pointer  is  avoided  (no  loss  of  length
information, bounds can be checked, etc.) 



3 Arrays and VLAs

3.1 The lengthof Operator [N2529]

Add a  lengthof operator that returns the length of an array type and yields a
compile-time error when not applied to an array type. As an exception, it  might
make sense to allow the lengthof operator also on pointer arguments declared
as arrays.

Example:

int N = 7;
double arr[N];
size_t len = lengthof arr;

Rationale: To obtain the length of an array it is possible to use a macro based on
sizeof but this is error prone. There is currently no way to query the length of a
parameter declared as an array type with length specifier which is adjusted to a
pointer, so this would be a useful extension.

3.2 Mandatory VLAs

Make VLAs mandatory again.

Example::

void foo(int n, double (*x)[n])
{
  (*x)[n] = 1; // invalid access can be detected at run-time
}

Rationale: While  VLAs  and  variably  modified  types  are  widely  supported  by
compilers, they are an optional part of the language. This makes it difficult to use
them in standard (or other) APIs and may also discourage programmers from using
them in their own code. Making them mandatory sends a clear message that   their
use for safe programming is encouraged. Security concerns about their use only
affect automatic VLAs on the stack (e.g. not other variably modified types) and can
already be addressed using compile-time analysis.



3.3 VLAs in Aggregates [2,  N1990]

Add a feature that makes it possible to store pointers to VLAs in an aggregate.

Example:

struct foo {
  int n;
  float (*x)[.n + 1];
} f;

Here,  *(f.x) would  then  have  type  float[x.n  +  1] where  the  length
expression is evaluated whenever f.x is evaluated. The length expressions which
are  allowed  should  be  restricted  to  avoid  side  effects  (e.g.  similar  to  const
expressions 6.6p3).

Rationale:  VLAs are not fully integrated into the type system as they can not be
used in  aggregate types.  This  prevents  their  use in  data structures where they
would be most useful. The suggested syntax reuses existing syntax for designators
in initializers, which avoids problems with scoping and fits well with the fact that
members of structures live in their own namespace. 

3.4 Wide Pointer Types [1]

Add wide (fat) pointer types that also store the dimensions of the array.

Examples:

int N = 7:
double a[10][N][3];

double (*x)[:][:][:] = &a; // assumed shape

(*x)[3][3][2] = 1.; // access could be checked
double (*y)[10][7][3] = x; // bounds could be checked

void f(double z[:][:][:]);
f(a);

Rationale:  Pointers to VLAs are very powerful because the length is explicit but
sometimes this is inconvenient. This extension is simple to implement by packing
dimensions and pointer in a wide pointer object. Wide pointers then have a different
and larger representation than regular pointer types but could still be converted to a
void pointer or other array types of the same shape and element type.



3.5 Array Slices [3]

Support array slices and vector operations on them.

Example:

int a[10][5], b[10][5], c[10][5];

b[:][:] = c[:][:] = 3;
a[:][:] = b[:][:] + c[:][:];

int d[5][5];
d[0:5][:] = a[0:2:10][:] + b[0:5][:] + c[5:10][:];

Rationale:  This  would  make  many  operations  on  arrays  more  convenient  to
describe and less error prone to use.

3.5 Wide Pointers II

Add a wide pointer type that can reference slices.

Examples:

double a[10] = { 0., 1., 2., 3., 4., 5., 6., 7., 8., 9. };

double (*x)[::] = &a[4:2:10]; // points to 4., 6., 8.

Rationale:  A more  sophisticated  version  of  a  wide  pointer  that  allows  strided
access of sub-ranges can also be implemented easily and would be very useful for
numerical programming.

3.7 Zero Size Arrays

Define behavior for zero size arrays.

Examples:

int g[0];
size_t n = 0;
int f[n];
double (*p)[n];

Rationale:  Corner cases in numerical code would be better support by allowing
zero sized arrays. Some compilers already support these as an extension.



3.7 Longjmp

Specify that longjmp is not allowed to leak memory used by VLAs.

Example:

jmp_buf env;

void g(void) { longjmp(env, 1); }

void h(void)
{
  int n = 3;
  int a[n]; // may remain allocated
  g();
}

void f(void)
{
  if (0 == setjmp(env)) g();
}

Rationale: As the VLA could be defined in an intermediate function, the use of both
VLAs and longjmp in the same code base appears dangerous. Compilers should
either allocate VLAs on the stack (most do) or implement a proper stack unwinding
scheme for longjmp.

4. Flexible Array Members

4.1 Incomplete Types

Specify  that  structures  with  a  FAM (with  unknown  size)  are  incomplete  types.
Support old use cases which would become invalid  as obsolescent  features.

Examples:

struct foo { double a; char str[]; }; // FAM
sizeof(foo); // FAM is ignored, deprecate!
struct foo x, y;
x = y; // FAM is ignored, deprecate!

Rationale: The real size of a structure with FAM is unknown. This is the definition
of an incomplete type. Such structures are currently treated as having a regular
complete structure type and the FAM is silently ignored in most cases. This allows
error prone use of sizeof and structure assignment.



4.3 Length Specifier

Adopt the syntax proposed in 3.3 for VLAs to allow specification of the length of a
FAM. A structure with a FAM with a length specifier then has a known but variable
size similar to a VLA and is a complete type of variable length.

Example:

struct foo2 { int len; char x[.len]; }; // FAM with bound

size_t len = 5;
size_t size = sizeof((struct foo2){ .len = len }); 
struct foo2* p = xmalloc(size);
p->n = len;
p->x[4] = ‘a’; // VLA of size 5, access checked

Rationale: Computing the size of a structure with FAM is error prone as it requires
explicit addition of the size of the array which is otherwise ignored.  Also with size
information accesses to FAM can be checked.

4.2 Initialization

Allow the initialization of a FAM or the length to complete the structure type.

Example (continued):

struct foo x = { 1.3, “bar” }; // initialization
char c = x.str[3]; // char array of size 4

struct foo2 y = { 3, “str” }; // compile-time error!
struct foo2 z = { .len = 10 }; // allocate enough space
z.str[5] = ‘a’;

Rationale:  Initialization  would  be  a  safe  way  to  allocate  the  correct  size  for
automatic  or  global  variables.  This  would  work  exactly  as  for  conventional
incomplete  arrays  that  are  completed  by  assignment.  If  a  length  specifier  is
provided space can be allocated for automatic variables and the initialization could
be checked to not overflow the array.



4.3 Generalized Flexible Member

Generalize the FMA to any type which is incomplete or of variable size.

Example:

struct foo_priv; // incomplete type
struct foo { 
  int x;
  struct foo_priv y; // allow!
}; // struct foo also incomplete

struct foo *p = foo_alloc();
p->x = 1; // access of x possible
foo_fun(&p->y); // taking the address of y possible
sizeof(struct foo); // error!

Rationale: Based on the changes above this would be a relatively straight-forward
and consistent extension that would enable other interesting use cases and make
flexible members are proper part of C’s type system.

5. Conclusion

We summarized several idea on how to better integrate arrays into C’s type system.
This would strengthen safe programming with C as arrays can enable compile-time
and run-time bounds checking. Support  for numerical  programming can also be
improved.  While  most  proposals  are  very  simple,  some  would  require  some
additional  work.  Still,  all  proposals  build  on  existing  concepts  and  can  be
implemented with relatively minor changes to the language.
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