
Proposal for C2x

WG14 N2626

Title: Digit separators

Author, affiliation: Aaron Ballman, Intel

Date: 2020-12-15

Proposal category: New features

Target audience: C programmers, mixed C and C++ source bases

Abstract: Literals, especially binary or hexadecimal ones, can be easier to read if there are visual

separators in the literal denoting specific boundaries, such as 0x0000'FFFF'FFFF'0000. This proposes

adding digit separators for literals using the same syntax as C++.

Prior Art: C++, Intel ICC, EDG, Microsoft Visual Studio

Digit separators
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N2626

Date: 2020-12-15

Summary of Changes
N2626

• Added an example

• Removed some unnecessary mentions of “optional”

• Added additional wording for TS 18661-3 (N2601) integration

N2606

• Original proposal

Introduction and Rationale
Long numeric literals can be difficult to read. For instance, at a glance, it may be difficult to tell the

magnitude difference between 234345323 and 23434442. Having a visual indication makes it clearer that

one of these numbers is shorter than the other: 2'3434'5323 compared to 2343'4442. This can be

especially important for binary or hexadecimal literals, which often have digits grouped by octet or

nibble. For instance, a digit separator makes it clear that this value is larger than a 32-bit number can

hold: 0x1'11111111, which would be harder to notice by inspection without the digit separator as in

0x111111111. Digit separators give programmers a portable mechanism to make their code more

readable.

Proposal
The syntax of digit separators is ripe for bikeshed discussions about what character to use as the separator

token. The most common suggestions from the community are to use underscore (_), a single quote ('),

or whitespace as these seem like they would not produce any lexical ambiguities. However, two of these

suggestions turn out to have usability issues in practice.

Use of whitespace is problematic because it becomes unwieldy to support in the preprocessor when you

start to consider all the circumstances under which you could form a pp-number token, as in:

 // foo.h

 2

 // foo.c

 int main(void) {

 return 1

 #include "foo.h"

 /* This doesn’t seem like fun any longer. */

 3;

 }

Additionally, there are practical concerns with this approach. For example, text editors commonly treat

whitespace as word boundaries for purposes of selecting text with double clicks or syntax highlighting.

There are also potential ambiguities with a hexadecimal literal like 0x123 a (does the a require a lookup

for a macro identifier or is it part of the hexadecimal constant?).

Use of an underscore character is also problematic, but only for C++. C++ has the ability for users to

define custom literal suffixes [WG21 N2765], and these suffixes are required to be named with a legal

C++ identifier, which includes the underscore character. Using an underscore as a digit separator then

becomes ambiguous for a construct like 0x1234_a (does the _a require a lookup for a user-defined literal

suffix or is it part of the hexadecimal constant?).

While there are other digit separators that could be used, this proposal recommends using ' (the single

quote character) as the digit separator, as is done in C++. This separator can be placed in any numeric

literal or preprocessor number, including floating-point and hexadecimal floating-point literals, which is

consistent with the feature in C++.

It is not proposed for the strto* family of functions from the C Standard Library to support digit

separators at this time. These functions accept a literal prefix like 0x because that carries semantic

information about how to interpret the text as a number. Digit separators do not carry any semantic

information and cannot help a machine to determine the value of a constant. It is also unclear what

amount of code would be invalidated by assuming previously invalid inputs to now be valid. Until there is

implementation experience, the safest approach is to disallow digit separators from the conversion

functions.

Digit separators are allowed within a #line directive (which uses the digit-sequence grammar

production) to ensure that the preprocessor does not need a special lexing mode which handles digit

sequences in a #line directive differently from using digit sequences in a preprocessor constant

expression.

Prior Art
C++ adopted the ' digit separator in C++14 [WG21 N3781] and this feature is intended to be compatible

with the same functionality in C++. There is not prior art for supporting digit separators in the strto*

family of conversion functions in the “C” locale, but there is experience with parsing thousands separators

in non-C locales that could conflict with support for single-quote digit separators in other positions

[POSIX, Linux].

The Intel ICC, EDG, and Microsoft Visual Studio C compilers currently support the ' digit separator to

form numeric constants when compiling C code.

Proposed Wording
The wording proposed is a diff from the committee draft of WG14 N2573 with N2549 (Allow for binary

integer constants) and N2601 (C2X proposal - TS 18661-3 annex update 3) applied. Green text is new

text, while red text is deleted text.

Modify 6.4.4.1p1:

integer-constant:

 decimal-constant integer-suffixopt

 octal-constant integer-suffixopt

 hexadecimal-constant integer-suffixopt

 binary-constant integer-suffixopt

decimal-constant:

 nonzero-digit

 decimal-constant 'opt digit

octal-constant:
 0

 octal-constant 'opt octal-digit

hexadecimal-constant:

 hexadecimal-prefix hexadecimal-digit-sequence

 hexadecimal-constant hexadecimal-digit

binary-constant:

 binary-prefix binary-digit

 binary-constant 'opt binary-digit

hexadecimal-prefix: one of
 0x 0X

binary-prefix: one of
 0b 0B

hexadecimal-digit-sequence:

 hexadecimal-digit

 hexadecimal-digit-sequence 'opt hexadecimal-digit

…

Modify 6.4.4.1p2: Drafting note: this introduces the term “digit separator” as a term of art that gets used

elsewhere in the proposed changes.

An integer constant begins with a digit, but has no period or exponent part. It may have a prefix that

specifies its base and a suffix that specifies its type. An optional separating single quote character (') in

an integer or floating constant is called a digit separator. Digit separators are ignored when determining

the value of the constant.

Add an example to 6.4.4.1:

EXAMPLE The following integer constants use digit separators; the comment associated with each

constant shows the equivalent constant without digit separators.

0b11'10'11'01 /* 0b11101101 */

1'2 /* 12 */

11'22 /* 1122 */

0xFFFF'FFFF /* 0xFFFFFFFF */

0x1'2'3'4'A'B'C'D /* 0x1234ABCD */

Modify 6.4.4.2p1:

floating-constant:

 decimal-floating-constant

 hexadecimal-floating-constant

…

digit-sequence:

 digit

 digit-sequence 'opt digit

…

hexadecimal-digit-sequence:

 hexadecimal-digit

 hexadecimal-digit-sequence hexadecimal-digit

…

Modify 6.4.4.2p3:

A floating constant has a significand part that may be followed by an exponent part and a suffix that

specifies its type. The components of the significand part may include a digit sequence representing the

whole-number part, followed by a period (.), followed by a digit sequence representing the fraction part.

Digit separators (6.4.4.1) are ignored when determining the value of the constant. The components of the

exponent part are an e, E, p, or P followed by an exponent consisting of an optionally signed digit

sequence. Either the whole-number part or the fraction part has to be present; for decimal floating

constants, either the period or the exponent part has to be present.

Modify 6.4.8p1:

pp-number:

 digit

 . digit

 pp-number digit

 pp-number identifier-nondigit

 pp-number ' digit

 pp-number ' nondigit

 pp-number e sign

 pp-number E sign

 pp-number p sign

 pp-number P sign

 pp-number .

Modify 6.10.4p4:

… causes the implementation to behave as if the following sequence of source lines begins with a source

line that has a line number as specified by the digit sequence (interpreted as a decimal integer, ignoring

any optional digit separators (6.4.4.1) in the digit sequence).

Modify 7.22.1.5p3: Drafting note: p4 does not need to change because p3 eliminates digit separators

from the expected form of the subject sequence. The reference to 6.4.4.2 in p4 can safely ignore digit

separators.

The expected form of the subject sequence is an optional plus or minus sign, then one of the following:

 — a nonempty sequence of decimal digits optionally containing a decimal-point character, then an

optional exponent part as defined in 6.4.4.2, excluding any digit separators (6.4.4.1);

 — a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-point

character, then an optional binary exponent part as defined in 6.4.4.2, excluding any digit separators;

 …

Modify 7.22.1.6p3: Drafting note: p4 does not need to change because p3 eliminates digit separators

from the expected form of the subject sequence. The reference to 6.4.4.2 in p4 can safely ignore digit

separators.

The expected form of the subject sequence is an optional plus or minus sign, then one of the following:

 — a nonempty sequence of decimal digits optionally containing a decimal-point character, then an

optional exponent part as defined in 6.4.4.2, excluding any digit separators (6.4.4.1)

 …

Modify 7.22.1.7p3: Drafting note: p4 does not need to change because p3 eliminates digit separators

from the expected form of the subject sequence. The reference to 6.4.4.1 in p5 can safely ignore digit

separators.

If the value of base is zero, the expected form of the subject sequence is that of an integer constant as

described in 6.4.4.1, optionally preceded by a plus or minus sign, but not including an integer suffix or

any optional digit separators. If the value of base is between 2 and 36 (inclusive), the expected form of

the subject sequence is a sequence of letters and digits representing an integer with the radix specified by

base, optionally preceded by a plus or minus sign, but not including an integer suffix or any optional

digit separators. The letters from a (or A) through z (or Z) are ascribed the values 10 through 35; only

letters and digits whose ascribed values are less than that of base are permitted. If the value of base is 16,

the characters 0x or 0X may optionally precede the sequence of letters and digits, following the sign if

present.

Modify 7.29.4.1.1p3: Drafting note: p4 does not need to change because p3 eliminates digit separators

from the expected form of the subject sequence. The reference to 6.4.4.2 in p4 can safely ignore digit

separators.

The expected form of the subject sequence is an optional plus or minus sign, then one of the following:

 — a nonempty sequence of decimal digits optionally containing a decimal-point wide character, then an

optional exponent part as defined for the corresponding single-byte characters in 6.4.4.2, excluding any

digit separators (6.4.4.1);

 — a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-point

wide character, then an optional binary exponent part as defined in 6.4.4.2, excluding any digit separators

(6.4.4.1);

 …

Modify 7.29.4.1.2p3: Drafting note: p4 does not need to change because p3 eliminates digit separators

from the expected form of the subject sequence. The reference to 6.4.4.2 in p4 can safely ignore digit

separators.

The expected form of the subject sequence is an optional plus or minus sign, then one of the following:

 — a nonempty sequence of decimal digits optionally containing a decimal-point wide character, then an

optional exponent part as defined in 6.4.4.2, excluding any digit separators (6.4.4.1)

 …

Modify 7.29.4.1.3p3: Drafting note: p4 does not need to change because p3 eliminates digit separators

from the expected form of the subject sequence. The reference to 6.4.4.1 in p5 can safely ignore digit

separators.

If the value of base is zero, the expected form of the subject sequence is that of an integer constant as

described for the corresponding single-byte characters in 6.4.4.1, optionally preceded by a plus or minus

sign, but not including an integer suffix or any optional digit separators. If the value of base is between 2

and 36 (inclusive), the expected form of the subject sequence is a sequence of letters and digits

representing an integer with the radix specified by base, optionally preceded by a plus or minus sign, but

not including an integer suffix or any optional digit separators. The letters from a (or A) through z (or Z)

are ascribed the values 10 through 35; only letters and digits whose ascribed values are less than that of

base are permitted. If the value of base is 16, the wide characters 0x or 0X may optionally precede the

sequence of letters and digits, following the sign if present.

Modify X.12.2p3: Drafting note: from N2601 on integrating TS 18661-3. This modification is

parenthetical because the definition of subject sequences from 7.22.1.6 already normatively require

ignoring the digit separators.

For implementations that support both binary and decimal floating types and a (binary or decimal) non-

arithmetic interchange format, the strtodN and strtodNx functions (and hence the strtoencdecdN

and strtoencbindN functions in X.12.4.2) shall accept subject sequences that have the form of

hexadecimal floating numbers (excluding any digit separators (6.4.4.1)) and otherwise meet the

requirements of subject sequences (7.22.1.6). …

Acknowledgements
I would like to recognize the following people for their help in this work: Erich Keane, Joseph Myers,

Robert Seacord, and Florian Weimer.

References
[WG21 N3781] Single-quotation-mark as a digit separator. Lawrence Crowl. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf

[WG21 N2765] User-defined literals. Daveed Vanevoorde. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2008/n2765.pdf

[N2549] Allow for binary integer constants. Jörg Wunsch. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2549.pdf

[POSIX] https://pubs.opengroup.org/onlinepubs/009695399/functions/strtol.html

[Linux] https://man7.org/linux/man-pages/man3/strtoul.3.html

	Summary of Changes
	N2626
	N2606

	Introduction and Rationale
	Proposal
	Prior Art
	Proposed Wording
	Acknowledgements
	References

