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A proposal for standard library support for executing a routine, guarding against compiler-unanticipated
failure and interruption (i.e. ‘signals’), with the possibility of recovering from the failure and con-
tinuing execution. This is a high level design, abstracting away for the majority of use cases any
need to care about POSIX signal handlers or Win32 structured exception handling.

A reference implementation written in C and C++ of the proposed library facility, with API docu-
mentation, can be found at https://github.com/ned14/quickcpplib/blob/master/include/signal_guard.hpp.
This specific edition has been in production use for over a year at the time of writing (with the
previous edition having had many years of use in production), and has proven to be quite popular
with some in the C/C++ ecosystem i.e. it has been lifted and borrowed by quite a few people, be-
cause it solves well an ever growing problem (see Introduction). It works well on Android, FreeBSD,
MacOS, Linux and Microsoft Windows on ARM, AArch64, x64 and x86.

Changes since P2069R0:
• Very minor changes to better suit a WG14 C audience.
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1 Introduction

There are three forms of failure handling currently supported in the C++ standard, and two in the
C standard:

1. Anticipated expected failure, which are usually handled with error codes/enums e.g. C++
std::error_code, C errno/feexcept(). This has the compiler emit code directly into the
hot path to handle the failure.

2. For C++ only, anticipated unexpected failure, which are usually handled with throws of
C++ exceptions. This has the compiler emit failure handling into cold path tables, which
are traversed by a runtime routine in the assumed unlikely event of a C++ exception being
thrown.

3. Unanticipated unexpected failure, where the compiler has quite literally not generated the
code to handle such a failure. This presents a unique problem of how to recover from such
failure, as the state of parts of the program may be unknowable.

C++ has made much progress on the first two forms of failure handling since its inception in the
1980s. However with respect to the third form, despite multiple unsuccessful attempts by many
eminent individuals at big changes, and many successful small improvements tinkering around the
edges, in today’s C++ standard we are not particularly dissimilar to where we were in the 4th
edition of original Unix in 1973 i.e. exactly as we were when C++ was first begun.

It is long overdue that the C and C++ standards modernise their support for handling of the third
form of failure of compiler-unanticipated interruption, better known as signals. This paper proposes
a modernisation which from consultation with the various stakeholders involved, this author believes
will satisfy C, C++, POSIX and the other major programming languages.
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1.1 Quick summary of the problem

What was sufficient in the 1970s falls down in many ways in the 2020s. To quickly recap the current
situation of why we need to modernise this situation for C++ 23 and C 2x:

1. Installing signal handlers on POSIX today is highly prone to surprise because they are global,
neither thread aware nor thread safe, and it is impossible for library code to safely modify
global signal handlers when it has no idea what other libraries, other kernel threads, or the
application, might have done, or currently be doing, to the global signal handlers.

2. Because POSIX is so awful on signals, all other platforms have much saner, proprietary,
alternatives, and there is no portable API which works equally everywhere.

3. Even though memory mapped i/o is not currently supported by standard C++, if WG21
chooses one day to adopt map_handle from [P1031] Low level file i/o (or any other similar
proposal), then reading and writing mapped memory may report ‘disk full’ via raising an
unanticipated interruption. We could do with a mechanism for trapping these very recoverable
unanticipated failures, and usefully handle such failure.

4. If WG21 chooses to adopt the ‘default fail fast’ OOM model as proposed by [P0709] Zero-
overhead deterministic exceptions, this would cause code which works with STL containers
configured with the default allocator to become not stack unwindable when OOM by the
container’s default allocator occurs. Some mechanism of recovering from non-stack-unwindable
OOM would therefore be very useful.

5. Testing whether your code correctly terminates the process via std::terminate() or abort
() under various conditions in unit test code is currently a lot of hassle, which is why most
codebases don’t bother doing this sort of testing. Making this sort of testing convenient would
be helpful.

6. The subset of C and C++ valid to call after a longjmp() called by a signal handler is currently
very limited: only reads of writes to variables of type volatile std::sig_atomic_t written
before the signal occurred is well defined code. This paper seeks to substantially expand that
subset of well defined code after a signal is handled.

1.2 Proposal specifics

This paper proposes a standard library function for calling a guarded routine in which unanticipated
interruption may occur. It is a function named signal_guard(), and it works on by setting up
guards for the signal mask supplied for the current kernel thread, storing a resumption point using
setjmp(), executing the guarded code section, and if that experiences an unanticipated failure a
longjmp() is performed from the signal handler to the resumption point, where an optional cleanup
routine may be invoked, followed by exiting the signal_guard() function normally. One thus
guards the guarded routine from unanticipated interruption, allowing one to recover and carry on
efficiently, and without conflicting with other kernel threads, or third party library code.

This design assumes that calling longjmp() from within a signal handler is legal. This is required
to be the case on POSIX, but may not be the case on other platforms. See later in this paper for a
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discussion.

One may specify which unanticipated interruptions ought to be guarded for the guarded routine:

• Process abort.

• Undefined memory access.

• Illegal instruction.

• Process interruption.

• Broken pipe.

• Segmentation fault.

• Floating point error.

• C++ out of memory (instead of throwing std::bad_alloc).

• C++ termination (somebody has called std::terminate()).

This is a subset of what could be available, and WG14/WG21 may wish to standardise all of what
POSIX provides (see later). However, the semantics of the less common options vary somewhat
more in non-POSIX implementations. The list above was chosen precisely because of the common
semantics between the major hosted implementations.

One can configure a callable to be called at the exact moment when the interruption occurs, in-
situ. This callable may be able to recover the problem, and resume execution from the point
of interruption by returning true. Alternatively, by returning false, it will cause execution to
longjmp() to just before the guarded routine was entered, and to call the previously described
cleanup handler.

It is possible to nest guarded sections within other guarded sections for the current kernel thread
arbitrarily, and without restriction of depth.

It is possible to thread safely install global handlers with well defined interactions with thread
locally installed handlers, and which are fine with dynamic libraries being loaded and unloaded
during which they install and uninstall library-specific handlers.

Finally, all this comes with both a C and C++ API, because POSIX and WG14 are very interested
in standardising these facilities for all C and POSIX, as everybody recognises that the current
situation is non ideal.

In case the above feature set looks familiar to Microsoft Windows programmers, this proposal
is actually standardising a subset of Win32 structured exception handling. Indeed, on Microsoft
Windows, the reference implementation is trivial, because Windows already implements almost
everything for you. I have already run this proposed design past the relevant folk within Microsoft’s
Visual C++ and kernel teams, and apart from concern about calling longjmp() from within a Win32
exception handler (see later), they have no objection to this proposal in principle for implementation
on Microsoft Windows.
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2 Example of use

The following is taken from the [P1031] Low level file i/o reference implementation of proposed
map_handle::write(), which is working code in production use right now. I have decluttered and
reformatted it a little, and added explanatory comments, otherwise it is identical.

1 /* This function implements synchronous gather write for map_handle,
2 which is an i/o handle working upon memory mapped storage.
3 Implementation is easy, simply memcpy() each buffer in the gather
4 buffer list into the mapped memory. However, if the disk runs out
5 of free space, a SIGBUS or equivalent shall be raised. We want to
6 trap that, and return it as an errc::no_space_on_device instead.
7 */
8 map_handle::io_result<map_handle::const_buffers_type>
9 map_handle::write(io_request<const_buffers_type> reqs, deadline /*d*/) noexcept

10 {
11 // const_buffers_type is a span<const_buffer_type>
12 // const_buffer_type is a span<const byte>
13 // io_request<T> supplies a const_buffers_type list of buffers to
14 // gather write, and an offset within the file at which to write them
15

16 // Where in memory we shall be writing to (addr is base of the map)
17 byte *addr = _addr + reqs.offset;
18

19 // Clamp the gather write to the end of the map (length is length of the map)
20 size_type togo = reqs.offset < _length ? static_cast<size_type>(_length - reqs.offset) : 0;
21

22 /* This signal_guard() function overload takes a bitfield of what
23 to guard against, a callable to be guarded, and a callable to be
24 called if the guarded callable is aborted. It returns whatever
25 the guarded callable, or the cleanup callable, returns, which in
26 this case is false for success, and true for failure.
27 */
28 if(signal_guard(signalc_set::undefined_memory_access,
29 [&] // The guarded section of code
30 {
31 for(size_t i = 0; i < reqs.buffers.size(); i++)
32 {
33 const_buffer_type &req = reqs.buffers[i];
34

35 // If this gather buffer’s size exceeds that of
36 // the bytes before end of map, truncate the
37 // buffers returned to those actually written.
38 if(req.size() > togo)
39 {
40 memcpy(addr, req.data(), togo);
41 // We wrote togo bytes, not req.size() bytes
42 req = {addr, togo};
43 // Truncate gather list to buffers written
44 reqs.buffers = {reqs.buffers.data(), i + 1};
45 // Return success
46 return false;
47 }
48 memcpy(addr, req.data(), req.size());
49 // Return where the buffer was written to
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50 req = {addr, req.size()};
51 // Ensure changes to the updated buffer is visible after signal
52 mem_flush_stores(&req, sizeof(req));
53 addr += req.size();
54 togo -= req.size();
55 }
56 // Return success
57 return false;
58 },
59 [&](const raised_signal_info *info) // the cleanup handler
60 {
61 // Retrieve the memory location associated with the failure
62 auto *causingaddr = (byte *) info->addr;
63

64 // This could be a undefined memory access not involving
65 // this map at all, if so, re-raise it.
66 if(causingaddr < _addr || causingaddr >= (_addr + _reservation))
67 {
68 // Not caused by this map, so re-raise it on this thread
69 thrd_raise_signal(info->signo, info->raw_info, info->raw_context);
70

71 // POSIX permit signal handlers to return, also the
72 // handler may be set to SIG_IGN, so if undefined
73 // memory access was not handled, abort.
74 abort();
75 }
76

77 // The guarded routine failed due to undefined memory
78 // access, so return true to cause no_space_on_device
79 // to be returned by the write() function.
80 return true;
81 }))
82 {
83 // If true was returned, we failed due to no space on device
84 return errc::no_space_on_device;
85 }
86 // Otherwise return buffers successfully written
87 return reqs.buffers;
88 }

3 Impact on the Standard

There are three major areas in which this proposal would impact the C++ standard.

Currently, the standard requires that no code which could execute non-trivial destructors be present
in the guarded section of code: longjmp() is permitted over automatic duration C++ objects if,
and only if [csetjmp.syn]:

A setjmp/longjmp call pair has undefined behavior if replacing the setjmp and longjmp

by catch and throw would invoke any non-trivial destructors for any automatic objects.

This restriction would be preserved if this proposal is adopted.
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As unanticipated interruptions may occur at any time, one must only call async signal safe POSIX
functions within guarded code, if one is on POSIX. POSIX.2017 requires the following functions to
be async signal safe1:

• _Exit()

• _exit()

• abort()

• accept()

• access()

• aio_error()

• aio_return()

• aio_suspend()

• alarm()

• bind()

• cfgetispeed()

• cfgetospeed()

• cfsetispeed()

• cfsetospeed()

• chdir()

• chmod()

• chown()

• clock_gettime()

• close()

• connect()

• creat()

• dup()

• dup2()

• execl()

• execle()

• execv()

• execve()

• faccessat()

• fchdir()

• fchmod()

• fchmodat()

• fchown()

• fchownat()

• fcntl()

• fdatasync()

• fexecve()

• ffs()

• fork()

• fstat()

• fstatat()

• fsync()

• ftruncate()

• futimens()

• getegid()

• geteuid()

• getgid()

• getgroups()

• getpeername()

• getpgrp()

• getpid()

• getppid()

• getsockname()

• getsockopt()

• getuid()

• htonl()

• htons()

• kill()

• link()

• linkat()

• listen()

• longjmp()

• lseek()

• lstat()

• memccpy()

• memchr()

• memcmp()

• memcpy()

• memmove()

• memset()

• mkdir()

• mkdirat()

• mkfifo()

• mkfifoat()

• mknod()

• mknodat()

• ntohl()

• ntohs()

• open()

• openat()

• pause()

• pipe()

• poll()

• posix_trace_event()

• pselect()

• pthread_kill()

• pthread_self()

• pthread_sigmask()

• raise()

• read()

• readlink()

• readlinkat()

• recv()

• recvfrom()

• recvmsg()

• rename()

• renameat()

• rmdir()

• select()

• sem_post()

• send()

• sendmsg()

• sendto()

• setgid()

• setpgid()

• setsid()

• setsockopt()

• setuid()

• shutdown()

• sigaction()

• sigaddset()

• sigdelset()

• sigemptyset()

• sigfillset()

• sigismember()

• siglongjmp()

• signal()

• sigpause()

• sigpending()

• sigprocmask()

• sigqueue()

• sigset()

• sigsuspend()

• sleep()

• sockatmark()

• socket()

• socketpair()

• stat()

• stpcpy()

• stpncpy()

• strcat()

• strchr()

• strcmp()

• strcpy()

• strcspn()

• strlen()

• strncat()

• strncmp()

• strncpy()

• strnlen()

• strpbrk()

• strrchr()

• strspn()

• strstr()

• strtok_r()

• symlink()

• symlinkat()

• tcdrain()

• tcflow()

• tcflush()

• tcgetattr()

• tcgetpgrp()

• tcsendbreak()

• tcsetattr()

• tcsetpgrp()

• time()

• timer_getoverrun()

1https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html
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• timer_gettime()

• timer_settime()

• times()

• umask()

• uname()

• unlink()

• unlinkat()

• utime()

• utimensat()

• utimes()

• wait()

• waitpid()

• wcpcpy()

• wcpncpy()

• wcscat()

• wcschr()

• wcscmp()

• wcscpy()

• wcscspn()

• wcslen()

• wcsncat()

• wcsncmp()

• wcsncpy()

• wcsnlen()

• wcspbrk()

• wcsrchr()

• wcsspn()

• wcsstr()

• wcstok()

• wmemchr()

• wmemcmp()

• wmemcpy()

• wmemmove()

• wmemset()

• write()

If this proposal is adopted, every relevant standard library function would need to specify in its
normative wording whether it guarantees async signal safety. This would need to be done carefully,
as when one is not on POSIX, then different lists of permitted versus non-permitted system calls
exist, depending on the system in question. For example, on Microsoft Windows, many of the
Win32 APIs which appear equivalent to POSIX ones in the list above are NOT async signal safe
because they call malloc() e.g. CreateFile(). If the impact of this on the standard is too great
to be feasible, an excellent intermediate stage is for every library function in the standard library
to indicate in its normative wording if it must not cause dynamic memory allocation (which must
include any userspace component of any system library APIs called) – as potential dynamic memory
allocation equals lack of async signal safety.

The last major impact on the standard is that we would need to greatly expand on what state can
be written by a guarded section, and what kinds of state can be legally read from after a signal
has been recovered from. In the current standard, the only legal kinds of state read are writes to
variables of type volatile std::sig_atomic_t, which is very limiting. You may have noticed the
use of a function mem_flush_stores() in the guarded section above. This function comes from
WG14 N2436 Memory region stores flush and reloads force, which proposes these functions:

1 enum memory_flush
2 {
3 memory_flush_none, //!< No main memory flushing.
4

5 memory_flush_retain, //!< Flush modified cache line in CPU out to main
6 //!!< memory, but retain as unmodified in cache.
7

8 memory_flush_evict //!< Flush modified cache line in CPU out to main
9 //!< memory, and evict completely from all caches.

10 };
11

12 /*! \brief Ensures that reload elimination does not happen for a region of
13 memory, optionally synchronising the region with main memory.
14

15 \return The kind of memory flush actually used.
16 \param data The beginning of the byte array to ensure loads from.
17 \param bytes The number of bytes to ensure loads from.
18 \param kind Whether to ensure loads from the region are from main memory.
19 \param order The atomic reordering constraints to apply to this operation.
20

21 \note ‘memory_flush_retain‘ has no effect for reloads from main memory,
22 it is the same as doing nothing. Only ‘memory_flush_evict‘ evicts all the
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23 cache lines for the region of memory, thus ensuring that subsequent loads
24 are from main memory. Note that if the cache line being reloaded is modified,
25 it will be flushed to main memory before being reloaded, thus destroying
26 any modified data there. You should therefore ensure that concurrent
27 actors never modify main memory with modified cache lines in your CPU.
28 */
29 memory_flush mem_force_reload_explicit(volatile char *data,
30 size_t bytes,
31 memory_flush kind,
32 memory_order order);
33

34 /*! \brief The same as ‘mem_force_reload_explicit()‘, but with
35 ‘kind‘ set to ‘memory_flush_none‘, and ‘order‘ set to ‘memory_order_acquire‘.
36 This does not reload loads from main memory, and prevents reads and writes
37 to this region subsequent to this operation being reordered to before this
38 operation.
39 */
40 memory_flush mem_force_reload(volatile char *data,
41 size_t bytes);
42

43 /*! \brief Ensures that dead store elimination does not happen for a region of
44 memory, optionally synchronising the region with main memory.
45

46 \return The kind of memory flush actually used.
47 \param data The beginning of the byte array to ensure stores to.
48 \param bytes The number of bytes to ensure stores to.
49 \param kind Whether to wait until all stores to the region reach main memory.
50 \param order The atomic reordering constraints to apply to this operation.
51

52 \warning On older Intel CPUs, due to lack of hardware support, we always execute
53 ‘memory_flush_evict‘ even if asked for ‘memory_flush_retain‘. This can produce
54 some very poor performance. Check the value returned to see what kind of flush
55 was actually performed.
56 */
57 memory_flush mem_flush_stores_explicit(volatile const char *data,
58 size_t bytes,
59 memory_flush kind,
60 memory_order order);
61

62 /*! \brief The same as ‘mem_flush_stores_explicit()‘, but with
63 ‘kind‘ set to ‘memory_flush_none‘, and ‘order‘ set to ‘memory_order_release‘.
64 This does not flush stores to main memory, and prevents reads and writes to
65 this region preceding this operation being reordered to after this operation.
66 */
67 memory_flush mem_flush_stores(volatile const char *data,
68 size_t bytes);

mem_flush_stores() is basically a fsync() for your compiler (and optionally for your CPU as well).
It tells the compiler to immediately flush any stores to the region of bytes specified, and not reorder
the stores to elsewhere, or perform dead store elimination.

This operation is very useful for signal guarded sections, because we can make it well defined in the
standard to read from variables whose representation bytes had mem_flush_stores() called upon
them, if no further writes between the flush operation and when the unanticipated interruption
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occurred. This makes practical the scope of code which you can write in a guarded signal section,
and which is well defined if a signal is raised.

N2436 had a weak straw poll in favour at the Ithaca WG14 meeting. The concern was not flaws
in the proposal, but rather that the proposal was too small to be worth the committee time on
standardisation. WG14 asked for a proposed normative wording for N2436, which I have yet to
draft (I felt this paper was more important to help WG14 understand a major use case for N2436).

4 Proposed Design

4.1 The C API

Note that this is C2x-targeted, so things like native bool types, nullptr and static_assert are
now valid C code.

1 #if defined(__cplusplus)
2 extern "C"
3 {
4 #endif
5

6 /*! \union raised_signal_info_value
7 \brief User defined value.
8 */
9 union raised_signal_info_value {

10 int int_value;
11 void *ptr_value;
12 #if defined(__cplusplus)
13 raised_signal_info_value() = default;
14 raised_signal_info_value(int v)
15 : int_value(v)
16 {
17 }
18 raised_signal_info_value(void *v)
19 : ptr_value(v)
20 {
21 }
22 #endif
23 };
24 // Make sure this type is C compatible
25 #if defined(__cplusplus)
26 static_assert(std::is_trivial<raised_signal_info_value>::value, "raised_signal_info_value is not

trivial!");
27 static_assert(std::is_trivially_copyable<raised_signal_info_value>::value, "raised_signal_info_value

is not trivially copyable!");
28 static_assert(std::is_standard_layout<raised_signal_info_value>::value, "raised_signal_info_value

does not have standard layout!");
29 #endif
30

31 //! Typedef to a system specific error code type
32 #ifdef _WIN32
33 typedef long raised_signal_error_code_t; // NTSTATUS
34 #else
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35 typedef int raised_signal_error_code_t; // errno
36 #endif
37

38 /*! \struct raised_signal_info
39 \brief A platform independent subset of ‘siginfo_t‘.
40 */
41 struct raised_signal_info
42 {
43 jmp_buf buf; //!< setjmp() buffer written on entry to guarded section
44 int signo; //!< The signal raised
45

46 //! The system specific error code for this signal, the ‘si_errno‘ code (POSIX)
47 //! or ‘NTSTATUS‘ code (Windows)
48 raised_signal_error_code_t error_code;
49 void *addr; //!< Memory location which caused fault, if appropriate
50 union raised_signal_info_value value; //!< A user-defined value
51

52 //! The OS specific ‘siginfo_t *‘ (POSIX) or ‘PEXCEPTION_RECORD‘ (Windows)
53 void *raw_info;
54 //! The OS specific ‘ucontext_t *‘ (POSIX) or ‘PCONTEXT‘ (Windows)
55 void *raw_context;
56 };
57

58 //! \brief The type of the guarded function.
59 typedef union raised_signal_info_value (*thrd_signal_guard_guarded_t)(union raised_signal_info_value

);
60

61 //! \brief The type of the function called to recover from a signal being raised in a
62 //! guarded section.
63 typedef union raised_signal_info_value (*thrd_signal_guard_recover_t)(const struct

raised_signal_info *);
64

65 //! \brief The type of the function called when a signal is raised. Returns true to continue
66 //! guarded code, false to recover.
67 typedef bool (*thrd_signal_guard_decide_t)(struct raised_signal_info *);
68

69 /*! \brief Installs a thread-local signal guard for the calling thread, and calls the guarded
70 function ‘guarded‘.
71 \return The value returned by ‘guarded‘, or ‘recovery‘.
72 \param signals The set of signals to guard against.
73 \param guarded A function whose execution is to be guarded against signal raises.
74 \param recovery A function to be called if a signal is raised.
75 \param decider A function to be called to decide whether to recover from the signal and continue
76 the execution of the guarded routine, or to abort and call the recovery routine.
77 \param value A value to supply to the guarded routine.
78 */
79 union raised_signal_info_value thrd_signal_guard_call(const sigset_t *signals,
80 thrd_signal_guard_guarded_t guarded,
81 thrd_signal_guard_recover_t recovery,
82 thrd_signal_guard_decide_t decider,
83 union raised_signal_info_value value);
84

85 /*! \brief Call the currently installed signal handler for a signal (POSIX), or raise a Win32
86 structured exception (Windows), returning false if no handler was called due to the currently
87 installed handler being ‘SIG_IGN‘ (POSIX).
88
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89 Note that on POSIX, we fetch the currently installed signal handler and try to call it directly.
90 This allows us to supply custom ‘raw_info‘ and ‘raw_context‘, and we do all the things which the
91 signal handler flags tell us to do beforehand [1]. If the current handler has been defaulted, we
92 enable the signal and execute ‘pthread_kill(pthread_self(), signo)‘ in order to invoke the
93 default handling.
94

95 Note that on Windows, ‘raw_context‘ is ignored as there is no way to override the context thrown
96 with a Win32 structured exception.
97

98 [1]: We currently do not implement alternative stack switching. If a handler requests that, we
99 simply abort the process. Code donations implementing support are welcome.

100 */
101 bool thrd_raise_signal(int signo, void *raw_info, void *raw_context);
102

103 /*! \brief On platforms where it is necessary (POSIX), installs, and potentially enables,
104 the global signal handlers for the signals specified by ‘guarded‘. Each signal installed
105 is threadsafe reference counted, so this is safe to call from multiple threads or instantiate
106 multiple times. On platforms with better than POSIX global signal support, this function does
107 nothing.
108

109 ## POSIX only
110 Any existing global signal handlers are replaced with a filtering signal handler, which
111 checks if the current kernel thread has installed a signal guard, and if so executes the
112 guard. If no signal guard has been installed for the current kernel thread, global signal
113 continuation handlers are executed. If none claims the signal, the previously
114 installed signal handler is called.
115

116 After the new signal handlers have been installed, the guarded signals are globally enabled
117 for all threads of execution. Be aware that the handlers are installed with ‘SA_NODEFER‘
118 to avoid the need to perform an expensive syscall when a signal is handled.
119 However this may also produce surprise e.g. infinite loops.
120

121 \warning This class is threadsafe with respect to other concurrent executions of itself,
122 but is NOT threadsafe with respect to other code modifying the global signal handlers.
123 */
124 void *signal_guard_create(const sigset_t *guarded);
125

126 /*! \brief Uninstall a previously installed signal guard.
127 */
128 bool signal_guard_destroyl(void *i);
129

130 /*! \brief Create a global signal continuation decider. Threadsafe with respect to
131 other calls of this function, but not reentrant i.e. modifying the global signal continuation
132 decider registry whilst inside a global signal continuation decider is racy. Called after
133 all thread local handling is exhausted. Note that what you can safely do in the decider
134 function is extremely limited, only async signal safe functions may be called.
135

136 \return An opaque pointer to the registered decider. ‘NULL‘ if ‘malloc‘ failed.
137 \param callfirst True if this decider should be called before any other. Otherwise
138 call order is in the order of addition.
139 \param decider A decider function, which must return ‘true‘ if execution is to resume,
140 ‘false‘ if the next decider function should be called.
141 \param value A user supplied value to set in the ‘raised_signal_info‘ passed to the
142 decider callback.
143 */
144 void *signal_guard_decider_create(const sigset_t *guarded,
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145 bool callfirst,
146 thrd_signal_guard_decide_t decider,
147 union raised_signal_info_value value);
148

149 /*! \brief Destroy a global signal continuation decider. Threadsafe with
150 respect to other calls of this function, but not reentrant i.e. do not call
151 whilst inside a global signal continuation decider.
152 \return True if recognised and thus removed.
153 */
154 bool signal_guard_decider_destroy(void *decider);
155

156 #if defined(__cplusplus)
157 }
158 #endif

4.2 C++ API

The C++ API reuses the structures from the C API, but reimplements the APIs to not dynamically
allocate memory, and thus be fully deterministic for thread local signal guards:

1 //! \brief The signals which are supported
2 enum class signalc
3 {
4 none = 0,
5

6 abort_process = SIGABRT, //!< The process is aborting (‘SIGABRT‘)
7 undefined_memory_access = SIGBUS, //!< Attempt to access a memory location which can’t exist
8 //!< (‘SIGBUS‘)
9 illegal_instruction = SIGILL, //!< Execution of illegal instruction (‘SIGILL‘)

10 interrupt = SIGINT, //!< The process is interrupted (‘SIGINT‘)
11 broken_pipe = SIGPIPE, //!< Reader on a pipe vanished (‘SIGPIPE‘)
12 segmentation_fault = SIGSEGV, //!< Attempt to access a memory page whose permissions disallow
13 //!< (‘SIGSEGV‘)
14 floating_point_error = SIGFPE, //!< Floating point error (‘SIGFPE‘)
15

16 /* C++ handlers
17 On all the systems I examined, all signal numbers are <= 30 in order to fit inside a sigset_t.
18 */
19 out_of_memory = 32, //!< A call to operator new failed, and a throw is about to occur
20 termination = 33, //!< A call to std::terminate() was made
21

22 _max_value
23 };
24

25 //! \brief Bitfield for the signals which are supported
26 BITFIELD_BEGIN_T(signalc_set, uint64_t){
27 none = 0,
28

29 //! The process is aborting (‘SIGABRT‘)
30 abort_process = (1ULL << static_cast<int>(signalc::abort_process)),
31 //! Attempt to access a memory location which can’t exist (‘SIGBUS‘)
32 undefined_memory_access = (1ULL << static_cast<int>(signalc::undefined_memory_access)),
33 //! Execution of illegal instruction (‘SIGILL‘)
34 illegal_instruction = (1ULL << static_cast<int>(signalc::illegal_instruction)),
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35 //! The process is interrupted (‘SIGINT‘)
36 interrupt = (1ULL << static_cast<int>(signalc::interrupt)),
37 //! Reader on a pipe vanished (‘SIGPIPE‘)
38 broken_pipe = (1ULL << static_cast<int>(signalc::broken_pipe)),
39 //! Attempt to access a memory page whose permissions disallow (‘SIGSEGV‘)
40 segmentation_fault = (1ULL << static_cast<int>(signalc::segmentation_fault)),
41 //! Floating point error (‘SIGFPE‘)
42 floating_point_error = (1ULL << static_cast<int>(signalc::floating_point_error)),
43

44 // C++ handlers
45 //! A call to operator new failed, and a throw is about to occur
46 out_of_memory = (1ULL << static_cast<int>(signalc::out_of_memory)),
47 //! A call to std::terminate() was made
48 termination = (1ULL << static_cast<int>(signalc::termination))
49 } BITFIELD_END(signalc_set)
50

51 /*! \brief On platforms where it is necessary (POSIX), installs, and potentially enables,
52 the global signal handlers for the signals specified by ‘guarded‘. Each signal installed
53 is threadsafe reference counted, so this is safe to call from multiple threads or instantiate
54 multiple times. It is also guaranteed safe to call from within static data init or deinit,
55 so a very common use case is simply to place an instance into global static data. This
56 ensures that dynamically loaded and unloaded shared objects compose signal guards appropriately.
57 On platforms with better than POSIX global signal support, this class does nothing.
58

59 ## POSIX only
60 Any existing global signal handlers are replaced with a filtering signal handler, which
61 checks if the current kernel thread has installed a signal guard, and if so executes the
62 guard. If no signal guard has been installed for the current kernel thread, global signal
63 continuation handlers are executed. If none claims the signal, the previously
64 installed signal handler is called.
65

66 After the new signal handlers have been installed, the guarded signals are globally enabled
67 for all threads of execution. Be aware that the handlers are installed with ‘SA_NODEFER‘
68 to avoid the need to perform an expensive syscall when a signal is handled.
69 However this may also produce surprise e.g. infinite loops.
70

71 \warning This class is threadsafe with respect to other concurrent executions of itself,
72 but is NOT threadsafe with respect to other code modifying the global signal handlers.
73 */
74 class signal_guard_install
75 {
76 public:
77 explicit signal_guard_install(signalc_set guarded);
78

79 ~signal_guard_install();
80

81 signal_guard_install(const signal_guard_install &) = delete;
82

83 signal_guard_install(signal_guard_install &&o) noexcept;
84

85 signal_guard_install &operator=(const signal_guard_install &) = delete;
86

87 signal_guard_install &operator=(signal_guard_install &&o) noexcept;
88 };
89

90 /*! \brief Install a global signal continuation decider.
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91

92 This is threadsafe with respect to concurrent instantiations of this type, but not reentrant
93 i.e. modifying the global signal continuation decider registry whilst inside a global signal
94 continuation decider is racy. Callable is called after
95 all thread local handling is exhausted. Note that what you can safely do in the decider
96 callable is extremely limited, only async signal safe functions may be called.
97

98 A ‘signal_guard_install‘ is always instanced for every global decider.
99 */

100 template <class T>
101 class signal_guard_global_decider
102 {
103 public:
104 /*! \brief Constructs an instance.
105

106 \param guarded The signal set for which this decider ought to be called.
107 \param f A callable with prototype ‘bool(raised_signal_info *)‘, which must return
108 ‘true‘ if execution is to resume, ‘false‘ if the next decider function should be called.
109 \param callfirst True if this decider should be called before any other. Otherwise
110 call order is in the order of addition.
111 */
112 template<class U>
113 requires(std::is_constructible<T, U>::value
114 && requires { std::declval<U>()((raised_signal_info *) 0)); })
115 signal_guard_global_decider(signalc_set guarded, U &&f, bool callfirst);
116

117 ~signal_guard_global_decider() = default;
118

119 signal_guard_global_decider(const signal_guard_global_decider &) = delete;
120

121 signal_guard_global_decider(signal_guard_global_decider &&o) noexcept = default;
122

123 signal_guard_global_decider &operator=(const signal_guard_global_decider &) = delete;
124

125 signal_guard_global_decider &operator=(signal_guard_global_decider &&o) noexcept;
126 };
127

128

129 /*! \brief Call the currently installed signal handler for a signal (POSIX), or raise a Win32
130 structured exception (Windows), returning false if no handler was called due to the currently
131 installed handler being ‘SIG_IGN‘ (POSIX).
132

133 Note that on POSIX, we fetch the currently installed signal handler and try to call it directly.
134 This allows us to supply custom ‘raw_info‘ and ‘raw_context‘, and we do all the things which the
135 signal handler flags tell us to do beforehand [1]. If the current handler has been defaulted, we
136 enable the signal and execute ‘pthread_kill(pthread_self(), signo)‘ in order to invoke the
137 default handling.
138

139 Note that on Windows, ‘raw_context‘ is ignored as there is no way to override the context thrown
140 with a Win32 structured exception.
141

142 [1]: We currently do not implement alternative stack switching. If a handler requests that, we
143 simply abort the process. Code donations implementing support are welcome.
144 */
145 bool thrd_raise_signal(signalc signo, void *raw_info = nullptr, void *raw_context = nullptr);
146
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147

148 //! \brief Thrown by the default signal handler to abort the current operation
149 class signal_raised : public std::exception
150 {
151 public:
152 //! Constructor
153 signal_raised(signalc code);
154

155 virtual const char *what() const noexcept override;
156 };
157

158 /*! Call a callable ‘f‘ with signals ‘guarded‘ protected for this thread only, returning whatever
159 ‘f‘ or ‘h‘ returns.
160

161 Firstly, how to restore execution to this context is saved, and ‘f(Args...)‘ is executed, returning
162 whatever ‘f(Args...)‘ returns if ‘f‘ completes execution successfully. This is usually inlined code
163 so it will be quite fast. No memory allocation is performed if a ‘signal_guard_install‘ for the
164 guarded signal set is already instanced. Approximate best case overhead:
165

166 - Linux: 28 CPU cycles (Intel CPU), 53 CPU cycles (AMD CPU)
167 - Windows: 36 CPU cycles (Intel CPU), 68 CPU cycles (AMD CPU)
168

169 If during the execution of ‘f‘, any one of the signals ‘guarded‘ is raised:
170

171 1. ‘c‘, which must have the prototype ‘bool(raised_signal_info *)‘, is called with the signal which
172 was raised. You can fix the cause of the signal and return ‘true‘ to continue execution, or else
173 return ‘false‘ to halt execution. Note that the variety of code you can call in ‘c‘ is extremely
174 limited, the same restrictions as for signal handlers apply.
175

176 2. If ‘c‘ returned ‘false‘, the execution of ‘f‘ is halted **immediately** without stack unwind, the
177 thread is returned to the state just before the calling of ‘f‘, and the callable ‘g‘ is called with
178 the specific signal which occurred. ‘g‘ must have the prototype ‘R(const raised_signal_info *)‘
179 where ‘R‘ is the return type of ‘f‘. ‘g‘ is called with this signal guard removed, though a signal
180 guard higher in the call chain may instead be active.
181

182 Obviously all state which ‘f‘ may have been in the process of doing will be thrown away, in
183 particular any stack allocated variables not marked ‘volatile‘ will have unspecified values. You
184 should therefore make sure that ‘f‘ never causes side effects, including the interruption in the
185 middle of some operation, which cannot be fixed by the calling of ‘h‘. The default ‘h‘ simply throws
186 a ‘signal_raised‘ C++ exception.
187

188 \note Note that on POSIX, if a ‘signal_guard_install‘ is not already instanced for the guarded set,
189 one is temporarily installed, which is not quick. You are therefore very strongly recommended, when
190 on POSIX, to call this function with a ‘signal_guard_install‘ already installed for all the signals
191 you will ever guard. ‘signal_guard_install‘ is guaranteed to be composable and be safe to use within
192 static data init, so a common use pattern is simply to place a guard install into your static data
193 init.
194 */
195 template<class F, class H, class C, class... Args>
196 requires(requires { std::declval<F>()(std::declval<Args>()...) }
197 && std::is_constructible<decltype(std::declval<F>()(std::declval<Args>()...)), decltype(std::

declval<H>()(std::declval<const raised_signal_info *>()))>::value
198 && std::is_constructible<bool, decltype(std::declval<C>()(std::declval<raised_signal_info *>()))

>::value)
199 inline decltype(std::declval<F>()(std::declval<Args>()...)) signal_guard(signalc_set guarded,
200 F &&f,
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201 H &&h,
202 C &&c,
203 Args &&... args);
204

205 //! \overload Defaults H to throwing an exception of ‘signal_raised‘
206 template <class F, class... Args>
207 requires(requires { std::declval<F>()(std::declval<Args>()...) })
208 inline decltype(std::declval<F>()(std::declval<Args>()...)) signal_guard(signalc_set guarded,
209 F &&f,
210 Args &&... args);
211

212 //! \overload Defaults C to aborting execution of the guarded section, and beginning cleanup
213 template<class F, class H, class... Args>
214 requires(requires { std::declval<F>()(std::declval<Args>()...) }
215 && std::is_constructible<decltype(std::declval<F>()(std::declval<Args>()...)), decltype(std::

declval<H>()(std::declval<const raised_signal_info *>()))>::value)
216 inline auto signal_guard(signalc_set guarded, F &&f, H &&h);

5 Design decisions, guidelines and rationale

Readers may be surprised to learn that the development of this paper began before all but one of my
preceding WG21 papers. It has taken quite a few years to lay the groundwork with the four major
stakeholders in signal handling (POSIX, WG14, WG21 and Microsoft) to ensure there would be no
immediate vetos. Also, there were multiple rounds of feedback from all four parties regarding design
and implementation, which resulted in a large design refactor of the reference implementation. The
refactored design then needed at least a year of empirical testing in production before it could be
presented here.

5.1 Function taking callable design

It was obvious that attempting to standardise an extension to try...catch along the lines of
MSVC’s __try and __except extensions implementing thread local signal handling was a non-
starter. A lesson was also taken from other attempts in the past to include signals into C++
try...catch, which foundered on the severe impact on codegen and optimisation if the compiler
must handle unanticipated interruption. It was felt that a better approach would be permitting the
compiler to optimise aggressively, and instead allow the programmer to annotate which writes of
program state must be well defined to read after signal raise. The compiler can then pessimise only
the annotated writes to that state, and nothing else.

The idea of a conventional function taking a guarded callable seemed reasonable, and it had the
advantage of working well with Windows’ structured exception handling. Making most of it inline-
defined in a header file reduced the runtime overhead down to dozens of CPU cycles, which then
made it sufficiently low overhead that it could reasonably guard a single pointer dereference, which
was a key objective of this proposed design.
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5.2 Separate handler install step

For those who have ever had the misfortune of working with them from library code, installing
POSIX signals have many problems:

1. Their handlers are installed globally for a process, which creates problems for third party
library code.

2. There is only the ‘current’ signal handler for a signal, which means that ‘filtering’ signal
handlers need to check whether the signal’s cause applies to the specific cases they were
installed for, and then call the previously installed signal handler.

3. If you install a handler, and then some other code then installs another handler, there is no
way to remove your handler because it is now managed by whomever replaced your handler.
This makes infeasible installing and removing POSIX signal handlers in dynamically loaded
and unloaded shared libraries.

4. Installation and removal of signal handlers is not thread safe.

5. Each thread has a signal mask, which determines which signals can be delivered to it. This
means that some signals get delivered to any random thread for which its bit is enabled in
that thread’s signal mask, which is unhelpful.

For those who have ever used structured exception handling on Microsoft Windows, you will in-
stantly agree that their stackable per-thread approach is the correct way to implement signals. Not
what POSIX does.

Implicit in the design presented above for standardisation is effectively stackable per-thread signal
handling i.e. what Microsoft Windows does, and indeed on Microsoft Windows, one implements
this facility using a trivially simple structured exception handling implementation, as the system
already implements everything for us.

On generic POSIX, however – and for the std::set_terminate() and std::set_new_handler()

support on all platforms – one must emulate stackable per-thread signal handling using the global
handlers. On generic POSIX, without using platform-specific extensions, this can be done by
replacing the global signal handlers with ones which:

1. Check if a signal_guard instance for the specific unanticipated failure is present for the calling
thread.

2. If so, invokes the guard.

3. If not, calls the previously installed global handler.

This implies that a thread local stack is kept of currently applicable signal_guard instances on
POSIX, and for the terminate and new global handlers on Windows as well.

Because of this non-trivial setup overhead on POSIX, and the problem of race conditions if you
modify the signal handlers outside of program bootstrap, we separate out global handler installation
into the signal_guard_install class. It would be expected that C++ programs would instance
that class somewhere in their static init, or like with C programs in their main(), however third party
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libraries can also instance that class in their static init2, as it is the combined set of signalc_set
from all the signal_guard_install class instances which is actually used.

In other words, it is safe in the proposed design to instance as many signal_guard_install objects
as you want, and to destruct them in any order. However be aware that on POSIX the final
signal_guard_install instance destruction for a given signal must abort the process if third party
code has replaced the handler we installed with another one, as it is not possible to safely deinstall
our handler.

(Aside: One would hope that if this proposal is standardised, POSIX implementations would in-
ternally implement a less broken solution to signal handling, and have this C++ support use that
internal implementation instead of the POSIX standard semantics)

5.3 Enabling global signal delivery

If the proposed facility is implemented only using existing POSIX facilities, then signal_guard_install

globally enables the installed signals for all threads in the process.

Enabling signal delivery for all threads means that the global signal handlers are called from all
threads. Obviously, our global signal handler implementation passes on the signal if it cannot find
a signal guard instance for the calling thread, however because we are installing a global, filtering
signal handler which is active for all threads, we must specify SA_NODEFER for the global handler i.e.
don’t disable the signal during signal handling. This is necessary to avoid deadlock, however the
corollary is that if the handler itself causes a signal, it’ll loop into itself forever, without termination.

Again, if this proposal were standardised, I would like to hope that POSIX implementations would
take the opportunity to substantially refactor how signals are implemented by their C runtime
support. I would strongly suggest replicating how Windows implements this, where there are both
globally installable AND stackable, per-thread, handlers, with the ability to deinstall a globally
installed handler without being the last piece of code to install a handler. The POSIX signal API
would then be a subset API for the true, internal, implementation. For more information, see
https://docs.microsoft.com/en-gb/windows/desktop/Debug/vectored-exception-handling.

5.4 Use of longjmp() to recover from signals

Calling longjmp() is legal from signal handlers on POSIX, so that is not a concern. All compilers
targeting POSIX therefore generate working code.

Whether it is legal to call longjmp() from a Win32 structured exception filter routine is however an
open question. About a year ago, I asked Billy O’Neal to connect me up with the relevant people
at Microsoft to find out an answer. A discussion by email resulted which lasted more than a week,
as people thought through all the reasons why it might not be safe.

The conclusion of that discussion is that it is currently believed that the current MSVC compiler is
probably fine with calling longjmp() from a Win32 structured exception filter invoked at any pointer

2Conveniently, all the major dynamic shared library implementations take a global mutex during static init, thus
ensuring that only one dynamic shared library can be in the process of being loaded, or unloaded, at any one time.
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within the assembler generated, though it should be stressed that no testing has been performed,
and that this is an expert opinion without evidence only. Future MSVC compilers may generate
code sequences which are not safe to call longjmp() from within, especially as they improve its
optimiser. I argued at the time that if GCC and clang manage fine with this, then surely so can
MSVC? However as not a compiler implementer, I am not well placed to say with confidence. WG21
feedback is welcome.

5.5 Async signal safe functions on Microsoft Windows

If the committee were to adopt this proposal, the POSIX implementations would have quite a bit
of work to improve their signal implementations. This is highly worth doing in any case, but the
implementation effort for them is obviously non-trivial.

One would have thought that the impact on Microsoft Windows would be minor given that they
have already implemented most of it. However, interestingly there is no internal list of async signal
safe functions on Microsoft Windows, and no requirements nor guarantees are made regarding signal
safety by any of the teams responsible for those APIs. Many of the Win32 functions are NOT async
signal safe, as the userspace portion of their implementation does async signal unsafe things, like
take locks, or dynamically allocate or free memory.

So whilst Microsoft would have little code to write in order to implement this proposal, they would
have a lot of work to build a list of async signal safe functions, publish it as part of their documen-
tation, and then stick to those guarantees in perpetuity. This is non-trivial implementation effort
of a different kind, but significant nonetheless.

6 Frequently Asked Questions

6.1 Why add extra signals to those currently standardised in <csignal>?

<csignal> already defines the Process abort, Illegal instruction, Process interruption, Segmentation
fault, and Floating point error signals. To those, this proposal adds:

1. Undefined memory access (SIGBUS)

Why? Segmentation faults occur when a program tries to access memory whose permissions
do not permit that access. Bus errors occur when a program tries to access memory in a way
which is not possible e.g. reading or writing an aligned object not at its proper alignment, or
an address range for which there are literally no lines in the address bus in the hardware. This
is subtly different to SIGSEGV, and I think it worth standardising support for it, especially now
that 64-bit addressed systems have become so prevalent (and these often only have 48 address
lines in hardware).

2. Broken pipe (SIGPIPE)

Why? Making use of third party library code may require you to enable delivery of SIGPIPE,
because said third party library code does not implement support for EPIPE, leaving you with
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zero alternative but to use SIGPIPE. This has happened to this author enough times in his
career that I think it worth adding to the standard, especially given that SIGPIPE has been
in POSIX for nearly forever.

It should be stressed that Broken pipe can be permitted to be meaningless on any particular
implementation of C++. It is more a case of ‘if your platform might send a Broken Pipe
unanticipated interruption, you can use this to recover from it’.

This proposal does not propose standardising into C++ these signals currently standardised by
POSIX.2017:

• SIGALRM

• SIGCHLD

• SIGCONT

• SIGHUP

• SIGKILL

• SIGQUIT

• SIGSTOP

• SIGTSTP

• SIGTTIN

• SIGTTOU

• SIGUSR1

• SIGUSR2

• SIGPOLL

• SIGPROF

• SIGSYS

• SIGTRAP

• SIGURG

• SIGVTALRM

• SIGXCPU

• SIGXFSZ

As mentioned earlier, I feel that these signals have poor portability across non-POSIX implemen-
tations, or are not worth standardising now. They can always be standardised later, if the need
arises.

6.2 What is the interaction with the existing library facility <csignal>?

On POSIX only, signal guard could be implemented using <csignal>, apart from the additional
signals described above, which are implemented by POSIX in any case. It is highly unlikely, however,
that anyone would actually do so when POSIX’s sigaction() is far superior to signal().

On non-POSIX, I would find it extremely unlikely that anybody would use <csignal> to implement
this facility as, in this author’s experience, <csignal> implementations have a very low quality of
implementation on non-POSIX platforms. To my knowledge, every non-toy non-POSIX system
has a proprietary mechanism by which the proposed signal_guard function could be completely
implemented to a high degree of quality.
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