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Abstract 
 
The C standard currently specifies that all pointers to an object become indeterminate values at the end of its lifetime. 
This pointer lifetime-end zap semantics permits some additional diagnostics and optimizations, some deployed and 
some hypothetical, but it is not consistent with long-standing usage, especially for a range of concurrent and sequential 
algorithms that rely on loads, stores, and equality comparisons of such pointers.   This paper collects some of these 
algorithms and discusses some possible resolutions, ranging from retaining the status quo to completely eliminating 
pointer lifetime-end zap. 
 

Introduction 
The C language has been used to implement low-level concurrent algorithms since at least the early 1980s, and C++ 
has been put to this use since its inception.  However, low-level concurrency capabilities did not officially enter either 
language until 2011.  Given about 30 years of independent evolution of C and C++ on the one hand and concurrency on 
the other, it should be no surprise that some corner cases were missed in the efforts to add concurrency to C11 and 
C++11. 
 
A number of long-standing and heavily used concurrent algorithms, a few of which are presented in the following 
sections, involve loading, storing, casting, and comparing pointers to objects which might have reached their lifetime 
end between the pointer being loaded and when it is stored, reloaded, casted, and compared, due to concurrent 
removal and freeing of the pointed-to object.  This is problematic given that the current standards and working drafts for 
both C and C++ do not permit reliable loading, storing, casting, or comparison of such pointers.  To quote Section 
6.2.4p2 (“Storage durations of objects”) of the ISO C standard: 
 

The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the end of its 
lifetime. 

 
However,  (1) concurrent algorithms that rely on loading, storing, casting, and comparing such pointer values have been 
used in production in large bodies of code for decades, (2) automatic recognition of these sorts of algorithms is still very 
much a research topic (even for small bodies of code), and (3) failures due to non-support of the loading, storing, and 
comparison of such pointers can lead to catastrophic and hard-to-debug failures in systems on which we all depend. 
We therefore need a solution that not only preserves valuable optimizations and debugging tools, but that also works for 
existing source code.  After all, any solution relying on changes to existing software systems would require that we have 
a way of locating the vulnerable algorithms, and we currently have no such thing. 
 
This is not a new issue: the above semantics has been in the standard since 1989, and one of the algorithms called out 
below was put forward in 1973. But its practical consequences will tend to become more severe as compilers do more 
optimisation, especially link-time optimisation. 
 

 



 

What Does the C Standard Say? 
This section refers to Working Draft N2310.  (Thanks to Martin Uecker for the initial analysis.) 
 
6.2.4p2 states that the value of a pointer becomes indeterminate when the object it references reaches the end of its 
lifetime: 
 

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved 
for it. An object exists, has a constant address [33], and retains its last-stored value throughout its lifetime [34]. If 
an object is referred to outside of its lifetime, the behavior is undefined.  The value of a pointer becomes 
indeterminate when the object it points to (or just past) reaches the end of its lifetime. 
 
[33] The term "constant address" means that two pointers to the object constructed at possibly different times 
will compare equal. The address can be different during two different executions of the same program. 
 
[34] In the case of a volatile object, the last store need not be explicit in the program. 

 
3.19.{2,3,4} define “indeterminate value”: 
 

indeterminate value: either an unspecified value or a trap representation 
 
unspecified value: valid value of the relevant type where this document imposes no requirements on which 
value is chosen in any instance.  Note 1 to entry: An unspecified value cannot be a trap representation. 
 
trap representation: an object representation that need not represent a value of the object type 

 
6.2.6.1p5 states that it is possible that loading a trap representation can result in undefined behavior: 
 

Certain object representations need not represent a value of the object type. If the stored value of an object has 
such a representation and is read by an lvalue expression that does not have character type, the behavior is 
undefined. If such a representation is produced by a side effect that modifies all or any part of the object by an 
lvalue expression that does not have character type, the behavior is undefined [51]. Such a representation is 
called a trap representation. 
 

Thus, after the end of an object lifetime,  the C standard no longer requires equality comparison of pointers to that 
object to be meaningful, as they may be unspecified values.   Further, depending on one’s interpretation of the notion of 
trap representation, which itself may be debatable but which is not the subject of this note, it may be that any load of 
such a pointer is undefined behavior.  
 
The above appears to be essentially unchanged since C99.  In C89/90 (ANSI /ISO 9899-1990), 6.1.2.4 Storage 
durations of objects stated something similar, for automatic storage duration objects: 
 

The value of a pointer that referred to an object with automatic storage duration that is no longer guaranteed to 
be reserved is indeterminate. 

 

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf


 
and in 7.10.3 Memory management functions for allocated storage-duration objects (which is called dynamic storage 
duration in C++). 
 
K&R (first edition) appears not to say anything analogous. 
 
The separation between object lifetime and storage duration in C++ is more pronounced than in C. Pointers to bytes of 
allocated storage, compared for equality (or lack thereof) is a supported operation; in particular, from C++17 subclause 
6.8 [basic.life], “using the pointer as if the pointer were of type void*, is well-defined”, and it is then possible to convert 
the pointer to a pointer to unsigned char and further to compare those pointers for equality. 

Rationale for pointer lifetime-end zap semantics 
There are several motivations one might have for the pointer lifetime-end zap semantics, some current, some 
hypothetical, and some historic.  

Diagnose, or Limit Damage From, Use-After-Free Bugs 
As far as we can determine, the most substantial current motivation for pointer lifetime-end zap is to limit damage from 
use-after-free bugs, especially in cases where the address of an automatic-storage-duration variable is taken but then 
mistakenly returned.  
 
Martin Uecker noted that some compilers will unconditionally return NULL in cases like this: 
 

extern void* foo(void) { 

        int aa; 

        void* a = &aa; 

        return a; 

} 

 
If this is a bug, and the return value is used for a load or store, returning NULL will make the bug easier to find than 
returning a pointer containing the bits that used to reference aa.  However,  as Hans Boehm noted, issuing a diagnostic 
would be even more friendly, and compilers can and do emit warnings in such cases, so this argument only really 
applies for codebases compiled without warnings. 
 
Florian Weimer adds that manually invalidating a pointer after a call to free() can be a useful diagnostic aid: 
 

free(a->ptr); 

a->ptr = (void *) (intptr_t) -1; 

 
We are not aware of current implementations that do this automatically, but they might exist. 
 
More general pointer lifetime-end zap behaviour, making copies of pointers to lifetime-ended objects NULL across the C 
runtime, seems unlikely to be practical in conventional implementations.  On the other hand, it is arguably desirable for 
debugging tools that detect erroneous use of pointers after object-lifetime-end to be permitted to do so as early as 
possible, at the first operation on such a pointer instead of when it is used for an access. 

 



 
 
 
 

Enable Optimization 
Another possible motivation for pointer lifetime-end zap is to enable optimization, e.g. of computations on pointers in 
cases where the compiler can see they are pointers to lifetime-ended objects.   It seems unlikely to us that this is a 
significant motivation. 

Permit implementation above hardware that traps on loads of pointers to 
lifetime-ended objects 
 
Modern commodity computer systems do not trap on loads of pointers to lifetime-ended objects, but some historic 
implementations may have: Intel 80286 for uses of “far pointers” in protected mode, and, according to Jones [The New 
C Standard, p467] the 68000.   If past implementations have, then there might be reasons for future implementations to 
do likewise, though this is rather speculative and should be balanced against the present problem of widespread code 
idioms that rely on the converse.  

Algorithms Relying on Indeterminate Pointers 
The following sections describe algorithms that rely on loading, storing, casting, and comparing indeterminate pointers. 
(Note that no one is advocating allowing dereferencing of indeterminate pointers.)  Many of these algorithms date back 
decades, and many of them appear in commonly used code.  It would therefore be good to obtain a solution that allows 
decent optimization and diagnostics while still avoiding invalidating such long-standing and difficult-to-locate algorithms. 
 

● Hazard pointer try_protect (Maged Michael) 
● LIFO Linked List push (Maged Michael) 
● Optimized Sharded Locks (Paul E. McKenney) 
● Checking realloc() return Value (Paul E. McKenney, but taken from one of Peter Sewell’s papers) 
● Identity-only pointers (Hans Boehm) 
● Weak pointers in Android (Hans Boehm) 

 
It is also worth noting that Kostya Serebryany reports that the Google sanitizer tools do not warn on loads, stores, casts, 
and comparisons of pointers to lifetime-ended objects because the number of false positives from doing so would be 
excessive.  In other words, code commonly does do some computation on such pointers, even if only to print them for 
debugging or logging.  

Hazard Pointer try_protect 
Typical reference-counting implementations suffer from performance and scalability limitations stemming from the need 
for reference-counted readers to concurrently update a shared counter, which results in memory contention, in turn 
resulting in the aforementioned performance and scalability limitations.  This situation motivated the invention of hazard 

 



 
pointers, which can be thought of as a scalable implementation of reference counting.  Hazard pointers achieve this 
scalability by maintaining “inside-out” counters: Instead of a highly contended integer, hazard-pointer readers instead 
store a pointer to the object to be read into a local hazard pointer.  The number of such hazard pointers to a given 
object is the value of that object’s reference count.  Because hazard-pointer readers are storing these pointers locally 
instead of mutating shared objects, memory contention is avoided, thus resulting in good performance and excellent 
scalability. 
 
However, a given object might be deleted just as a reader is attempting to access it.  This means that an attempt to 
acquire a hazard pointer can fail, just as can happen with many reference-counting schemes.  But this also means that 
hazard-pointers readers need the ability to safely process (but not dereference!) pointers to lifetime-ended objects. 
Sample “textbook” code for hazard-pointer readers is shown below.  This consists of a library part (which could 
reasonably use special types and markings), followed by a user part, which must be allowed to make use of normal 
C-language type checking. 
 
The library code is as follows: 
 

// Hazard pointer library code 

bool hazptr_try_protect_internal( 

    hazard_pointer* hp, // Pointer to a hazard pointer 

    void** ptr, // Pointer to a local (maybe invalid) pointer 

    void* const _Atomic* src) { // Pointer to an atomic pointer 

  uintptr_t p1 = (uintptr_t)(*ptr); 

  hazptr_reset(hp, p1); // Write p1 to *hp 

  /*** Full fence ***/ 

  *ptr = atomic_load_explicit(src, memory_order_acquire); // Might return invalid pointer 

  uintptr_t p2 = (uintptr_t)(*ptr); 

  if (p1 != p2) { 

    hazptr_reset(hp); // Clear the hazard pointer 

    return false; // Caller must not use *ptr 

  } 

  return true; // Safe for caller to dereference *ptr 

} 

 

#define hazptr_try_protect(hp, ptr, src) \ 

  hazptr_try_protect_internal((hp), (void **)(ptr), (void * const _Atomic *)(src)) 

 
The approach is to load from the local variable referenced by *ptr while converting to uintptr_t, storing the result into 
the hazard pointer, doing a full fence, reloading the pointer, and comparing it to the original.  If either the initial caller’s 
load or the final load result in an indeterminate pointer, other portions of the algorithm guarantee that the (naive 
expectations of the) bit patterns of p1 and p2 will differ. 
 
Note that the pointer referenced by ptr in the hazptr_try_protect() macro might be indeterminate at the time of the 
cast. 
 
The following is the user code. We don't want to make this code unsafe or error-prone.  Note that user_t is protectable 
by hazard pointers. 
 



 
 

/* Important for the following to remain atomic user_t* 

   and not have to become atomic uintptr_t. */ 

user_t* _Atomic src; 

 

void init_user_data(user_t* _atomic* ptr, value_t v) { 

  user_t* p = (user_t*) malloc(sizeof(user_t)); 

  set_value(p, v); 

  atomic_store(ptr, p);  

} 

 

void read_only_op_on_user_data() { 

  hazard_pointer* hp = hazptr_alloc(); // Get a hazard pointer 

  while (true) { 

    user_t* ptr = atomic_load(&src); 

    // ptr may be invalid here 

    if (hazptr_try_protect(&hp, &ptr, &src)) { 

      // Safe to dereference ptr as long as *hp protects *ptr 

      read_only_op(ptr); // Dereferences ptr. 

      break; 

    } 

  } 

  hazptr_free(hp); // Free the hazard pointer for reuse 

} 

 

void update_user_data(value_t v) { 

  user_t* newobj = (user_t*) malloc(sizeof(user_t)); 

  set_value(newobj, v); 

  user_t* oldobj = atomic_exchange(&src, newobj); 

  hazptr_retire(oldobj); // Leads to calling `free(oldobj)` exactly once, 

                         // either immediately or later. 

  } 

} 

LIFO Singly Linked List push 
LIFO singly-linked list with push and pop-all operations. 
 
The push algorithm dates back to at least 1973. Note that this code (with pop_all  and without single node pop ) does 
not require protection from the ABA problem or from dereferencing dangling pointers. 
 
struct node_t { 

  value_t val_; 

  node_t* next_; 

} 

 



 
 
// LIFO list structure 

node_t* _atomic top; 

 

init_list( std::atomic<Node*> top_{nullptr}; 

 

void list_push(value_t v) { 

  node_t* newnode = (node_t*) malloc(sizeof(node_t)); 

  set_value(newnode, v); 

  while (true) { 

  node_t* p = atomic_load(&top); 

    // p may have become invalid 

    newnode->next = p; // May store invalid pointer that is dereferenced later 

                       // but only if it is equal to a valid pointer. 

    if (atomic_compare_exchange_weak(&top, &p, newnode)) break; 

  } 

} 

 

void list_pop_all() { 

  node_t* p = atomic_exchange(&top, nullptr); 

  while (p) { 

    node_t* next = p->next; 

    foo(p); 

    free(p); 

    p = next; 

  } 

} 

Optimized Hashed Arrays of Locks 
This approach uses the time-honored hashed array of locks, but removes the need to acquire locks for statically 
allocated objects in some cases.  For the shallow data structures favored by those writing performance-critical code, 
this optimization could potentially reduce the number of lock acquisitions by a factor of two, hence is quite attractive. 
 
Holding a particular lock in the array grants ownership of any object whose address hashes to that lock and ownership 
of any pointer residing in shared memory that references that object, but only if there is at least one pointer residing in 
memory that references the given object.  Dereferencing a given pointer requires hashing that pointer’s value, acquiring 
the corresponding lock, then checking that the pointer has that same value.  If the pointer’s value differs, the lock must 
be released and the dereference operation must be restarted from the beginning. 
 
Of course, the pointer being dereferenced must be subject to some sort of existence guarantee, for but a few examples: 
 

1. The pointer might be a static global variable whose lifetime is that of the program. 
2. The pointer might emanate from an object whose lock is already held. 

 



 
3. Some other mechanism, such as reference counting, hazard pointers, or RCU might guarantee the pointer's 

existence.  (This sort of use of hazard pointers and RCU in this context has been historically rare.) 
 
For simplicity of exposition, let's assume option 1.  For further simplicity, let's choose an extremely simple linked data 
structure consisting of a single pointer that references either zero (value of NULL) or one (non-NULL value) objects. 
For additional simplicity, we will ignore the possibility of both deadlock and livelock, at least initially.  We will also ignore 
the possibility of two objects hashing to the same lock, again, at least initially. 
 
Suppose that the pointer initially references object A.  How to safely update this pointer to reference another object, 
assuming several concurrent attempts to do so, but assuming that no object referenced by this pointer is referenced by 
any other pointer? 
 
        spinlock_t *acquire_lock(void *p); 

        void release_lock(spinlock_t *slp); 

 

        int *gp; 

 

        bool new_object(int a) 

        { 

                int *p_new; 

                int *p_old; 

                spinlock_t *slp1; 

                spinlock_t *slp2; 

 

                p_new = malloc(sizeof(*p_new); 

                if (!p_new) 

                        return false; 

                *p_new = a; 

                for (;;) { 

                        p_old = READ_ONCE(gp);  /* Pointer indeterminate? */ 

                        slp1 = acquire_lock(p_old); 

                        if (READ_ONCE(gp) == p_old) 

                                break; /* If so, can't get here! */ 

                        else 

                                release_lock(slp1); 

                } 

                slp2 = acquire_lock(p_new); 

                WRITE_ONCE(gp, p_new); 

                if (p_old) 

                        free(p_old); 

                release_lock(slp1); 

                release_lock(slp2); 

        } 

 
Note that even read-only access to the value referenced by gp requires locking: 
 
 



 
        bool access_object(int *ap) 

        { 

                int *p_obj; 

                spinlock_t *slp1; 

 

                for (;;) { 

                        p_obj = READ_ONCE(gp);  /* Pointer indeterminate? */ 

                        if (!p_obj) 

                                return false; 

                        slp1 = acquire_lock(p_obj); 

                        if (READ_ONCE(gp) == p_obj) 

                                break; /* If so, can't get here! */ 

                        else 

                                release_lock(slp1); 

                } 

                *ap = *p_obj 

                release_lock(slp1); 

                return true; 

        } 

 
The indeterminate pointers can be avoided by first acquiring the lock corresponding to the address of gp, but this 
requires yet another lock being acquired. 
 
In the Linux kernel, READ_ONCE() is defined roughly as follows: 
 

#define READ_ONCE(x) (*(volatile typeof(x) *)&(x)) 

 
This effect could also be obtained using (volatile) C11 atomics or inline assembly.  Similar observations apply to the 
Linux kernel’s WRITE_ONCE() macro. 

How to handle lock collisions? 
One approach is to maintain an array of locks already held, along with a count of held locks.  This array and count are 
then passed into acquire_lock(), which checks whether the required lock is already held, and acquires the lock only if it 
is not already held. Then release_lock() is also passed this array and count, and releases all locks that were acquired. 

How to avoid deadlock and livelock? 
One approach (heard from Doug Lea) is to use spin_trylock() instead of spin_lock().  If any spin_trylock() fails, all locks 
acquired up to that point are released, and lock acquisition restarts from the beginning.  If too many consecutive failures 
occur, a global lock is acquired.  The thread holding that global lock is permitted to use unconditional lock acquisition, 
that is, spin_lock() instead of spin_trylock(). 
 
Deadlock is avoided because: 

1. At most one thread is doing unconditional lock acquisition. 

 



 
2. Any thread doing conditional lock acquisition will either acquire all needed locks on the one hand, or encounter 

acquisition failure on the other.  In both cases, this thread will release all locks that it acquired, thus allowing the 
thread doing unconditional acquisition to proceed, thus avoiding deadlock. 

3. Any thread that has suffered too many acquisition failures will acquire the global lock and eventually become the 
thread doing unconditional lock acquisitions, thus avoiding livelock. 

Disadvantages 
Optimized sharded locks appear to have been used quite heavily in the 1990s, and still see some use.  Reasons that 
they aren't used universally include: 
 

1. Pure readers must nevertheless contend for locks, degrading performance, and, in cases involving "hot spots", 
also degrading scalability. 

2. The hash function will not typically result in good locality of reference, which limits update-side performance. 
3. Poor locality typically also results in poor performance on NUMA systems. 
4. Much better results are usually obtained through use of a combination of hazard pointers or RCU with a lock 

residing within each object, as this provides excellent locality of reference and also avoids acquiring locks on 
any but the data items directly involved in the intended update. 

Likelihood of Use 
Optimized sharded locks were rederived by Paul based on hearsay from the early 1990s.  The likelihood of their use 
was confirmed by the fact that Lisa Lippincott was not only able to derive correct rules for their use based on a vague 
verbal description, but also able to do so within a few minutes.  Given that Lisa is not a concurrency expert, we assert 
that someone as intelligent and motivated as Lisa (which admittedly rules out the vast majority of the population, but by 
no means all of it) could successfully formulate and use this optimized sharded locking technique.  Especially given that 
this someone would not be under anywhere near the time pressure that Lisa was subjected to. 
 
It is therefore unnecessary to conduct a software archaeology expedition to find this technique:  Given that it has up to a 
2-to-1 performance advantage over simple sharded locking, the probability of its use is very close to 1.0.  In addition, 
the code bases in which it is most likely to be used are not publicly available. 

Checking realloc() Return Value and Other Single-Threaded Use Cases 
The realloc() C standard library function might or might not return a pointer to a fresh allocation, and software 
legitimately needs to know the difference.  For example: 
 
        q = realloc(p, newsize); 

        if (q != p) 

                update_my_pointers(p, q); 

 
Without the ability to compare a pointer to a lifetime-ended object, the realloc() function becomes rather hard to use. 
One approach is to cast the pointers to intptr_t or uintptr_t before comparing them, but not all current compilers 
respect such casts, as demonstrated by the example code on page 67:8 of SC21 WG14 working paper N2311.  In 
addition, casts have the disadvantage of disabling pointer type checking.  It would therefore be good to permit pointer 
load/store and comparison aspects in cases such as this one.  

 

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2311.pdf


 
 
If the allocated region itself contains pointers to within the region, fixing those up after the realloc() 
Is even more challenging. 
 
 
Martin Sebor suggests splitting realloc() into a try_realloc() that does in-place extension (if possible), and, if that 
fails, a malloc()/free() pair.  Outgoing pointers could then be used normally during the time between the malloc() of 
the new location and  the free() of the old one.  Florian Weimer suggests that most users would not need to know or 
care about the added complexity of this procedure, and further notes that realloc() cannot be used for non-trivial data 
structures in any case. 
 
Similar use cases from the University of Cambridge Cerberus surveys (see question 8 of 15, and also here and 
summarized in Section 2.16 on page 38 here) involve: 
 

1. Using the pointer to the newly freed object as a key to container data structures, thus enabling further cleanup 
actions enabled by the free(). 

2. Debug printing of the pointer (e.g., using “%p”), allowing the free operation to be correlated with the allocation 
and use of the newly freed object.  Note that it is possible to use things like thread IDs to disambiguate between 
the pointer to the newly freed object and a pointer to a different newly allocated object that happens to occupy 
the same memory. 

3. Debugging code that caches pointers to recently freed objects (which are thus indeterminate) in order to detect 
double free()s. 

4. Some garbage collectors need to load, store, and compare possibly indeterminate pointers as part of their 
mark/sweep pass. 

5. If a pair of pointers might alias, the simplest code would free one, check to see whether the pointers are equal, 
and if not, free the other. 

6. A loop freeing the elements of a linked list might check the just-freed pointer against NULL as the loop 
termination condition.  (The referenced blog post suggests use of a break statement to avoid such 
comparisons.) 

 
In short, it is not just obscure concurrent algorithms having difficulty with this “unusual aspect of C".  That said, Martin 
Sebor points out that debugging use cases should not necessarily drive the standard and that garbage-collection use 
cases will usually have at least some implementation-specific code.  On the other hand, a feature that purports to 
improve diagnostics that also causes printf() to emit inaccurate and/or misleading results will understandably be 
viewed with extreme suspicion by a great many C-language developers. 

Identity-only pointers 
This was encountered by Hans Boehm in SGI’s Open64 compiler many years ago. Hans wishes that he could say that 
he altered the details to protect somebody or other, but in fact, he just doesn’t remember all the details correctly. So 
some of this is approximated, preserving the high-level issue. 
 
The compiler was space constrained, since it attempted to do a lot of optimization at link time. As is common for a 
number of compilers, used region allocation for objects of similar lifetimes, deleting entire regions when the contained 

 

https://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
https://www.cl.cam.ac.uk/~pes20/cerberus/analysis-2016-02-05-anon.txt
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2013.pdf
https://trust-in-soft.com/dangling-pointer-indeterminate/
https://trust-in-soft.com/dangling-pointer-indeterminate/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2013.pdf


 
data was no longer relevant. At some point it decided that say, a symbol table describing identifier attributes was no 
longer needed. So the symbol table was deallocated in its entirety. 
 
The rest of the program representation referred to identifiers by pointing into this symbol table. The only information 
required after the deallocation of the symbol table was to determine whether two identifier references referred to the 
same identifier. This could still be resolved without the symbol table, and without retaining the associated memory, by 
just comparing the pointers. And the compiler did so routinely. 
 
(Hans remembers this approach because it foiled his attempt to convert the region-based memory management, which 
required significant ongoing engineering effort to squash dangling pointer bugs, to conservative garbage collection. The 
collector would fail to collect the symbol tables, because they were actually still reachable through pointers, just not 
accessed. Without collecting those, space overhead was excessive.) 

Weak pointers in Android 
This is really a C++ example. Correct implementation relies on C++ std::less, which orders arbitrary addresses. But it is 
likely that everything here could be done in C with slightly different techniques. 
 
Android provides a reference-count-based weak pointer implementation 
(https://android.googlesource.com/platform/system/core/+/master/libutils/include/utils/RefBase.h). One of the intended 
uses of such weak pointers is specifically as a key in a map data structure. They can be safely compared even after all 
strong pointers to the referent disappear and the referent is deallocated. A weak pointer to a deallocated object at 
address A will compare unequal to a subsequently allocated object that also happens to occupy address A. Hence a 
map indexed by such weak pointers can be used to associate additional data with particular objects in memory, without 
risk of associating data for deallocated objects with new objects. 
 
Comparison of such weak pointers treats the object address as the primary key, and the address of a separate object 
used for maintaining weak reference information as a secondary key. The second object is not reused while any weak 
or strong pointers to the primary object remain. The use of the primary key allows ordering to be consistent with 
std::less ordering on raw pointers. The (primary key) object pointer stored inside a weak pointer is routinely used in 
comparisons after the referenced object is deallocated. Depending on the particular map data structure that's used and 
context, the outcome of comparing a pointer to deallocated memory may or may not matter. But it is currently critical 
that it not result in undefined behavior. 
 
Since some applications rely on more than equality comparison, so that they can be used in tree maps, I think it is also 
important that pointers to dead objects can still be compared via std::less (C++) or converted to uintptr_t (C). 

Pointer Lifetime-end Zap and Happens-before 
If it might be undefined behaviour to load or do arithmetic on a pointer value after the lifetime-end of its pointed-to 
object, then, in the context of the C/C++11 concurrency model, that must be stated in terms of happens-before 
relationships, not the instantaneous replacement of pointer values with indeterminate values of the current standard 
text.  In turn, this means that all operations on pointer values must participate in the concurrency model, not just loads 
and stores.  
 

 

https://android.googlesource.com/platform/system/core/+/master/libutils/include/utils/RefBase.h


 

Pointer Lifetime-end Zap and Representation-byte Accesses 
 
The current standard text says that pointer values become indeterminate after the lifetime-end of their pointed-to 
objects, but it leaves unknown the status of their representation bytes (e.g. if read via char*  pointers).  One could 
imagine that these are left unchanged, or that they also become indeterminate.  

Possible Resolutions 

Status Quo 
This is of course the “resolution” that results from leaving the standard be.  This would leave unstated the ordering 
relationship between the end of an object’s lifetime and the zapping of all pointers to it.  This will also result in 
practitioners continuing to apply their defacto resolutions. 
 
In fact a number of large pre-C11 concurrent code bases, including the Linux kernel and prominent user-space 
applications, avoid these issues, for pointers to heap-allocated objects, by carefully refusing to tell the compiler which 
functions do memory allocation or deallocation. At the current time, this prevents the compiler from applying any pointer 
lifetime-end zap optimizations, but also prevents the compiler from carrying out any optimizations or issuing any 
diagnostics based on pointer lifetime-end analysis.  Of course, this approach may need adjustment as whole-program 
optimizations become more common, with the GCC link-time optimization (LTO) capability being but one such 
whole-program optimization.  It would therefore be wise to consider longer-term solutions, which is the topic of the next 
sections. 

Eliminate Pointer Lifetime-End Zap Altogether 
At the opposite extreme, given that ignoring pointer lifetime-end zap is common practice among sequential C 
developers, another resolution is to reflect that status quo in the standard by completely eliminating pointer lifetime-end 
zap altogether.  This would of course also eliminate the corresponding diagnostics and optimizations.  It is therefore 
worth looking into more nuanced changes, a task taken up by the following sections. 

Limit Pointer Lifetime-End Zap Based on Storage Duration 
The concurrent use cases for pointers to lifetime-ended objects seem to involve only allocated storage-duration objects, 
while the current compiler NULL’ing of pointers at lifetime end appears to apply only to automatic storage-duration 
objects.  A simple and easy to explain solution would therefore be to limit lifetime-end zap to the latter (perhaps also 
thread-local storage).   The biggest advantage of this approach is that it accommodates all known concurrent use cases 
and also many of the single-threaded use cases.  There is some concern that it might limit future compiler diagnostics 
or optimizations.  There is of course a similar level of concern about pointer lifetime-end zap invalidating other 
algorithms that are not known to those of us associated with the committee. 
 

 



 
One can also imagine doing this selectively: introducing some annotation (perhaps an attribute) to identify regions of 
code that should or should not be subject to pointer lifetime-end zap semantics for allocated storage-duration objects 
(and/or for all objects).  
 
Note that the Linux kernel avoids many (but by no means all!) of these issues by the simple expedient of refusing to 
inform the compiler that things like kmalloc(), kfree(), slab_alloc(), and slab_free() are in fact involved in 
memory allocation. 

Limit Pointer Lifetime-End Zap Based on Marking of Pointer Fetches 
Hubert Tong suggested that pointers loaded using C11 atomics or inline assembly be exempted from pointer 
lifetime-end zap, and further investigation into existing code prompted volatile loads and stores to be added to this list. 
This approach would accommodate all verified concurrent use cases, but there is some concern over lock-based 
algorithms involving pointer revalidation (because the pointers are accessed with locks held, they might well be 
accessed using plain C-language loads and stores).  It also requires adding language to define information flow to the 
standard, to identify all such pointer instances; this would be complex and require many decisions (analogous to 
provenance-via-integer semantics).  
 
Martin Sebor suggested adding a new marking (perhaps an attribute), which works well for new code, but does not help 
with existing code. 
 
With or without the new marking, this approach should have minimal effect on compiler optimizations and diagnostics. 
However, as Peter Sewell notes, functions to which pointers are passed cannot tell whether those pointers were initially 
loaded via a marked access. 

Limit Pointer Lifetime-End Zap to Pointers Crossing Function Boundaries 
Martin Uecker suggested that developers should be free to load, store, [cast,] and compare indeterminate pointers 
within the confines of a function (inline or otherwise), but that touching indeterminate pointers that have crossed a 
function-call boundary should be subject to lifetime-end zap.  This proposal could be combined with the other proposals 
that limit pointer lifetime-end zap. 
 

 


