
FLOATING-POINT
PROPOSALS

FOR C2X
N2140

WG 14 - Markham
April 3-6, 2017

C FP group

FP proposals for C2x

•  IEC 60559 is intended for a wide range of applications.
Not all its features are suitable for all languages or
implementations – hence some features are optional in
IEC 60559

• Goal here …
• Summarize C support for optional features of IEC

60559 as specified in ISO/IEC TS 18661-3,4,5
• Decide what should be further considered for C2x

•  TS 18661 proposals are for conditional (optional) features
in C2x

• All parts of TS 18661 provide detailed changes to C11

CFP proposals for C2x

n2117 - TS 18661-3 - interchange and extended types
n2118 - TS 18661-4a - mathematical functions
n2119 - TS 18661-4b - reduction functions
n2120 - TS 18661-5a - evaluation format pragmas
n2121 - TS 18661-5b - optimization control pragmas
n2122 - TS 18661-5c - reproducible results
n2123 - TS 18661-5d - alternate exception handling
n2124 - rounding direction macro FE_TONEARESTFROMZERO

n2128 - Default rounding mode

TS 18661-3
n2117

Types and functions to support

IEC 60559 interchange and extended formats

IEC 60559 interchange formats
•  IEC 60559:2011 specifies a “tower” of interchange formats
• Arbitrarily large wdiths (32x)
•  For binary and decimal
• Balanced precision and range determined by width
•  For exchange of FP data
•  binary16, for GPU data, etc.
•  Formats may be supported as

• Arithmetic – with all standard operations
• Non-arithmetic – with conversion operations

IEC 60559 extended formats
•  IEEE specifies extended formats that extend its basic

formats: binary32|64|128 and decimal64|128
• Have at least a specified precision and range
•  For explicit wide evaluation
• Not for data exchange

TS 18661-3

•  Three features
•  Interchange floating types
• Extended floating types
• Support for non-arithmetic interchange formats

•  Full language and library support for interchange and
extended floating types

• Conversion operations for non-arithmetic interchange
formats represented in unsigned char arrays

TS 18661-3 – type structure extensions
interchange floating types: _FloatN, _DecimalN
extended floating types: _FloatNx, _DecimalNx

real floating types

 standard floating types: float, double, long double
 binary floating types: _FloatN, _FloatNx
 decimal floating types: _DecimalN, _DecimalNx

complex types

 float _Complex, double _Complex, long double _Complex
 _FloatN _Complex, _FloatNx _Complex

Imaginary types

 float _Imaginary, double _Imaginary, long double _Imaginary
 _FloatN _Imaginary, _FloatNx _Imaginary

TS 18661-3 – type structure unchanged
floating types

 real floating types
 complex types
 imaginary types

real types

 integer types
 real floating types

arithmetic types

 integer types
 floating types

TS 18661-3
• Standard binding for extension floating types with IEC

60559 formats, which are common extensions (e.g.,
float16, float128, float80)

•  Facilitates exchange of FP data, without full support type
• Enables explicit wide evaluation, for robustness

TS 18661-4a
n2118

Functions to support

IEC 60559 mathematical operations

TS 18661-4a mathematical functions
•  IEC 60559:2008 specifies a set of optional mathematical

operations
• Many of these are already supported as <math.h>

functions
•  TS 18661-4 adds functions for the rest
• Does not require IEC 60559-specified correct rounding
• Names with cr prefixes reserved for correctly rounded

verisons, e.g., crsin for correctly rounded sin function

TS 18661-4a mathematical functions
asinpi(x) = arcsin(x) / π
acospi(x) = arccos(x) / π
atanpi(x) = arctan(x) / π
atan2pi(y, x) = arctan(y/x) / π
sinpi(x) = sin(π × x)
cospi(x) = cos(π × x)
tanpi(x) = tan(π × x)
exp10(x) = 10x

exp2m1(x) = 2x - 1
exp10m1 = 10x – 1

TS 18661-4a mathematical functions
logp1(x) = loge(x + 1)
log2p1(x) = log2(x + 1)
log10p1(x) = log10(x + 1)
rsqrt(x) = 1/√x
compound(x, n) = (1 + x)n, , for int n
rootn(x, n) = x1/n , for int n
pown(x, n) = xn , for int n
powr(x, y) = xy as ey × ln(x), for x in [0, +∞]

TS 18661-4a mathematical functions
• Complete the set of exponential and logarithm functions

for bases 2 and 10
•  Include trigonometric functions based on units of pi
•  Include commonly needed functions involving power and

square root operations
• Supported entirely in <math.h> and <tgmath>

TS 18661-4b
n2119

Functions to support

IEC 60559 reduction operations

TS 18661-4b reduction functions
•  IEC 60559:2008 specifies a set of optional reduction

operations
•  TS 18661-4 supports them as <math.h> functions

TS 18661-4b – sum reductions
Sum reduction functions on vectors p and q of length n

double reduc_sum(size_t n, const double p[static n]);
computes Σi=0,n−1pi

reduc_sumabs computes Σi=0,n−1|pi|

reduc_sumsq compute Σi=0,n−1pi

2

reduc_sumprod computes Σi=0,n−1pi × qi

TS 18661-4b – scaled product reductions
Scaled product reduction functions on vectors p and q of length n

double scaled_prod(size_t n,

 const double p[static restrict n],
 intmax_t * restrict sfptr);

computes product pr of the n members of array p and scale
factor sf, such that pr × bsf = Πi=0,n−1p[i], where b is the radix of
the type

scaled_prodsum computes pr and sf, such that
 pr × bsf = Πi=0,n−1(p[i] + q[i])

scaled_proddiff computes pr and sf, such that
 pr × bsf = Πi=0,n−1(p[i] − q[i])

TS 18661-4b reduction functions
• Reductions are among the most widely used numerical

computations
• Allow implementations to take advantage of platform-

specific performance features to compute reductions
•  Avoid intermediate overflow and underflow
•  The scaled product functions can avoid overflow and

underflow where the scaled product itself is an
intermediate computation

• Supported entirely in <math.h>

TS 18661-5a
n2120

Evaluation format pragmas to support
IEC 60559 preferredWidth attributes

TS 18661-5a evaluation format pragmas
•  IEC 60559:2008 recommends preferredWidth attributes

for users to specify the format for evaluating expressions,
at a block level

•  TS 18661-5 supports them as evaluation format pragmas
in <fenv.h>

•  Form and scope like other floating-point pragmas in C11
• Allow user tradeoffs for precision, performance, or

reproducibility

TS 18661-5a evaluation format pragmas
•  #pragma STDC FENV_FLT_EVAL_METHOD width

for standard and binary types
• width reflects a possible value of FLT_EVAL_METHOD

macro (which characterizes default evaluation)
• Required support for width values -1, 0, and DEFAULT
• Other width values may be supported
• Similar FENV_DEC_EVAL_METHOD for decimal types
• Required support for decimal width values -1, 1, and

DEFAULT

TS 18661-5b
n2121

Pragmas to support

IEC 60559 optimization attributes

TS 18661-5b optimization pragmas
•  IEC 60559:2008 recommends attributes for users to allow

or disallow certain value-changing optimizations
•  TS 18661-5 supports these attributes as optimization

pragmas in <fenv.h>
•  Form and scope like other floating-point pragmas in C11
• Pragmas allow but do not require the optimizations
• Enable user to tradeoff predictability and performance

TS 18661-5b optimization pragmas
Allow/disallow value-changing optimizations
(transformations)
#pragma STDC FENV_ALLOW_... on-off-switch
where … is one of
• VALUE_CHANGING_OPTIMIZATION allows all the

following, which can also be allowed separately
• ASSOCIATIVE_LAW
• DISTRIBUTIVE_LAW
• MULTIPLY_BY_RECIPROCAL

A / B = A x (1/B)

TS 18661-5b optimization pragmas
•  ZERO_SUBNORMAL

allow replacing subnormal operands and results with 0

• CONTRACT_FMA
contract (compute with just one rounding) A x B + C

• CONTRACT_OPERATION_CONVERSION
e.g., F = D1 * D2 and F = sqrt(D)

• CONTRACT
all contractions
equivalent to FP_CONTRACT pragma in <math.h>

TS 18661-5c
n2122

Pragma to support

IEC 60559 reproducible-results attribute

TS 18661-5c reproducible results
•  IEC 60559:2008 recommends an attribute for users to

request results that are reproducible on all supporting
implementations

•  TS 18661-5 supports this attribute with a pragma in
<fenv.h> and with guidelines for reproducible code

•  Form and scope like other floating-point pragmas in C11
•  #pragma FENV_REPRODUCIBLE on-off-default

FENV_ACCES “on”
FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION “off”
FENV_FLT_EVAL_METHOD 0
FENV_DEC_EVAL_METHOD 1

TS 18661-5c reproducibility
Rules for reproducible code include
• Code translates into a sequence of IEC 60559 operations
• Use FENV_REPRODUCIBLE pragma
•  Limit use of FP pragmas to reproducible states
• Do not use long double, extended floating, complex, or

imaginary types
• Use part 3 interchange formats only among supporting

implementations

TS 18661-5d
n2123

Pragma to support

IEC 60559 alternate exception handling

TS 18661-5d alternate exception handling
•  IEC 60559 default exception handling

set exception flag(s)
return prescribed value
continue execution

•  IEC 60559:2008 recommends attributes for users to
specify alternate (non-default) methods for handling
floating-point exceptions

•  Intended to let users deal with exceptions without having
to know the details

•  TS 18661-5 supports these attributes with a pragma in
<fenv.h>

TS 18661-5d alternate exception handling
#pragma STDC FENV_EXCEPT except-list action
except-list a comma-separated list of

exception macro names:
 FE_DIVBYZERO, FE_INVALID, …

and FE_ALL_EXCEPT
and optional sub-exception designations:

FE_INVALID_ADD inf - inf
FE_INVALID_MUL inf * 0
FE_INVALID_SNAN signaling NaN operand
FE_DIVBYZERO_LOG log(0)
etc.

TS 18661-5d alternate exception handling
action one of
• DEFAULT

IEC 60559 default handling

• NOEXCEPT
like default but no flags set

• OPTEXCEPT
like default but flags may be set

• ABRUPT
only for “underflow”, IEC 60559-defined abrupt underflow shall
occur, unlike ALLOW_ZERO_SUBNORMAL where zeroing may
occur

TS 18661-5d alternate exception handling
The following change flow of control

action one of (cont.)
• BREAK

terminate compound statement associated with pragma, ASAP*

*ASAP – for performance, the objects, flags, dynamic modes, and
library states that would be changed at any point if the compound
statement ran to completion are indeterminate or unspecified

TS 18661-5d alternate exception handling
action one of (cont.)
These work together
•  TRY

A designated exception may be handled (ASAP) by a compound
statement associated with a CATCH action

• CATCH
Code to handle designated exceptions

TS 18661-5d alternate exception handling
action one of (cont.)
These work together
• DELAYED_TRY

After associated compound statement completes, a designated
exception may be handled by a compound statement associated
with a DELAYED_CATCH action.

• DELAYED_CATCH
Code to handle designated exceptions

TS 18661-5d alternate exception handling

double d[n]; float f[n];
...
#pragma STDC FENV_EXCEPT TRY FE_DIVBYZERO, FE_OVERFLOW
{

 for (i=0; i<n; i++) {
 f[i] = 1.0 / d[i];
 }

}
#pragma STDC FENV_EXCEPT CATCH FE_DIVBYZERO
{

 printf(“divide-by-zero\n”); }
}
#pragma STDC FENV_EXCEPT CATCH FE_OVERFLOW
{

 printf(“overflow\n”);
}

Rounding direction macro
FE_TONEARESTAWAY

n2124

Macro to support

IEC 60559 optional rounding direction

Rounding direction macro FE_TONEARESTAWAY

•  IEC 60559:2008 specifies rounding to nearest with ties
away from zero

•  The rounding direction is required for decimal, optional for
binary FP

• Now in RISC V architecture for binary FP and should be
expected to appear in HW

• Proposal supports it with an optional <fenv.h> macro
FE_TONEARESTAWAY

•  For use with the fegetround and fesetround functions and
the FENV_ROUND pragma

Rounding direction macro
FE_DEFAULT

n2128

Macro for

default rounding direction

Rounding direction macro FE_DEFAULT

•  C11 makes several references to "default rounding”
•  There is no symbol for the default rounding direction
•  FE_TONEAREST represents the default rounding mode

for IEC 60559 implementations, but other
implementations may have different defaults (e.g., IBM
S/360 hex FP has FE_TOWARDZERO)

•  Proposal adds macro FE_DEFAULT in <fenv.h> to
represent the implementation’s default rounding
direction

About TS 18661 – backup slides

TR 24732
60559 decimal

IEEE 754
1985

C99 C11

IEEE 754
2008

TS 18661
Full 60559 support

Floating-point and C standards

IEC
60559:1989

IEC
60559:2011

1990 2000 2010

C90

Background

•  Work began 2009
•  Under direction of ISO/IEC JTC1/SC22/WG14 – C
•  Expertise in floating-point and language standards, compilers,

libraries
•  754 adopted as international standard ISO/IEC/IEEE

60559:2011

Specify a C binding for IEEE 754-2008

Principles
• Support all of the current FP standard, as-is
• Specify as changes to C11
• Use existing C mechanisms, minimize language invention
• Develop specification in parts, to pipeline process
• Supersede TR 24732 (decimal)
• Allow support by free-standing C implementations
• Deliver an ISO/IEC Technical Specification

Status
•  In five parts

Required features in IEC 60559
1  Binary floating-point arithmetic
2  Decimal floating-point arithmetic
Recommended features in IEC 60559
3  Interchange and extended types
4  Supplementary functions
5  Supplementary attributes

• All parts published 2014-2016

Publications
•  ISO/IEC TS 18661-1:2014, Information technology — Programming languages,

their environments and system software interfaces — Floating-point extensions for
C — Part 1: Binary floating-point arithmetic

•  ISO/IEC TS 18661-2:2015, Information technology — Programming languages,
their environments and system software interfaces — Floating-point extensions for
C — Part 2: Decimal floating-point arithmetic

•  ISO/IEC TS 18661-3:2015, Information technology — Programming languages,
their environments and system software interfaces — Floating-point extensions for
C — Part 3: Interchange and extended types

•  ISO/IEC TS 18661-4:2015, Information Technology — Programming languages,
their environments, and system software interfaces — Floating-point extensions
for C — Part 4: Supplementary functions

•  ISO/IEC TS 18661-5:2016, Information Technology — Programming languages,

their environments, and system software interfaces — Floating-point extensions
for C — Part 5: Supplementary attributes

