
Floating-Point Typedefs Having Specified
Widths - N1703

Paul A. Bristow
Christopher Kormanyos

John Maddock
Copyright © 2013 Paul A. Bristow, Christopher Kormanyos, John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Abstract ... 2
Introduction .. 3
The proposed typedefs and potential extensions ... 4
Handling floating-point literals ... 7
Changes to the C and C++ standard ... 8
Interoperation with <cmath> and special functions ... 9
Interoperation with <limits> ... 10
Interoperation with <complex> ... 11
Specifying 128-bit precision ... 12
Extending to lower precision .. 13
The context among existing implementations ... 14
References .. 15
Version Info .. 16

This paper is submitted to both C and C++ Standards groups WG14 and Wg21

ISO/IEC JTC1 SC22 WG14/ Numerics N1703 - 2013-04-18

ISO/IEC JTC1 SC22 WG21/SG6 Numerics N3626 - 2013-04-18

Revised after WG21/SG6 meeting 18 Apr 2013, and 22 Apr 2013 adding a reference to standard text in raw html.

Comments and suggestions to Paul.A.Bristow pbristow@hetp.u-net.com.

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Abstract
It is proposed to add to the C++ standard optional floating-point typedefs having specified widths. The optional typedefs include
float16_t, float32_t, float64_t, float128_t, their corresponding least and fast types, and the corresponding maximum-
width type. These are to conform with the corresponding specifications of binary16, binary32, binary64, and binary128 in
IEEE_ floating-point format.

The optional floating-point typedefs having specified widths are to be contained in a new standard library header <cstdfloat>.

They will be defined in the std namespace.

New C-style macros to facilitate initialization of the optional floating-point typedefs having specified widths from floating-point
literal constants are proposed.

It is not proposed to make any mandatory changes to <cmath>, special functions, <limits>, or <complex>.

The main objectives of this proposal are to:

• Extend the benefits of specified-width typedefs for integer types to floating-point types.

• Improve floating-point safety and reliability by providing standardized typedefs that behave identically on all platforms.

• Optionally extend the range of floating-point to lower and to higher precision.

• Provide a Standard way of specifying 128-bit precision.

2

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Introduction
Since the inceptions of C and C++, the built-in types float, double, and long double have provided a strong basis for floating-
point calculations. Optional compiler conformance with IEEE_ floating-point format has generally led to a relatively reliable and
portable environment for floating-point calculations in the programming community.

Support for mathematical facilities and specialized number types in C++ is progressing rapidly. Currently, C++11 supports floating-
point calculations with its built-in types float, double, and long double as well as implementations of numerous elementary
and transcendental functions.

A variety of higher transcendental functions of pure and applied mathematics were added to the C++11 libraries via technical report
TR1. It is now proposed to fix these into the next C++1Y standard.1

Other mathematical special functions are also now proposed, for example, A proposal to add special mathematical functions according
to the ISO/IEC 80000-2:2009 standard Document number: N3494 Version: 1.0 Date: 2012-12-19

It is, however, emphasized that floating-point adherence to IEEE_ floating-point format is not mandated by the current C++ language
standard. Nor does the standard specify the widths, precisions and layouts of its built-in types float, double, and long double.
This can lead to portability problems, introduce poor efficiency on cost-sensitive microcontroller architectures, and reduce reliability
and safety.

This situation reveals a need for a standard way to specify floating-point precision in C++.

Providing optional floating-point typedefs having specified widths is expected to significantly improve portability, reliability, and
safety of floating-point calculations in C++. Analogous improvements for integer calculations were recently achieved via standard-
ization of integer types having specified widths such as int8_t, int16_t, int32_t, and int64_t.

1 Conditionally-supported Special Math Functions for C++14, N3584, Walter E. Brown

3

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3494.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3494.pdf
http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3548.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The proposed typedefs and potential extensions
The core of this proposal is based on the optional floating-point typedefs float16_t, float32_t, float64_t, float128_t,
their corresponding least and fast types, and the corresponding maximum-width type.

In particular,

// Sample partial synopsis of <cstdfloat>

namespace std
{
typedef float float32_t;
typedef double float64_t;
typedef long double float128_t;
typedef float128_t floatmax_t;

// ... and the corresponding least and fast types.
}

These proposed optional floating-point typedefs are to conform with the corresponding specifications of binary16, binary32,
binary64, and binary128 in IEEE_ floating-point format. In particular, float16_t, float32_t, float64_t, and float128_t
correspond to floating-point types with 11, 24, 53, and 113 binary significand digits, respectively. These are defined in IEEE_
floating-point format, and there are more detailed descriptions of each type at IEEE half-precision floating-point format, IEEE single-
precision floating-point format, IEEE double-precision floating-point format, Quadruple-precision floating-point format, and IEEE
754 extended precision formats and x86 80-bit Extended Precision Format.

Here, we specifically mean equivalence of the following.

float16_t == binary16;
float32_t == binary32;
float64_t == binary64;
float128_t == binary128;

This equivalence results in far-reaching benefits.

It means that floating-point software written with float16_t, float32_t, float64_t, and float128_t will probably behave
identically when used on any platform with any implementation that correctly supports the typedefs.

It also creates the opportunity to implement quadruple-precision (Quadruple-precision floating-point format) in a specified, and
therefore portable, fashion.

One could envision two ways to name the proposed optional floating-point typedefs having specified widths:

• float11_t, float24_t, float53_t, float113_t, ...

• float16_t, float32_t, float64_t, float128_t, ...

The first set above is intuitively coined from IEE754:2008. It is also consistent with the gist of integer types having specified widths
such as int64_t, in so far as the number of binary digits of significand precision is contained within the name of the data type.

On the other hand, the second set with the size of the whole type contained within the name may be more intuitive to users. Here,
we prefer the latter naming scheme.

No matter what naming scheme is used, the exact layout and number of significand and exponent bits can be confirmed as IEEE754
by checking std::numeric_limits<type>::is_iec559 == true, and the byte order. Little-endian IEEE754 architectures
now predominate.

4

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/Half_precision_floating-point_format
http://en.wikipedia.org/wiki/Single_precision_floating-point_format
http://en.wikipedia.org/wiki/Single_precision_floating-point_format
http://en.wikipedia.org/wiki/Double_precision_floating-point_format
http://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format
http://en.wikipedia.org/wiki/Extended_precision#IEEE_754_extended_precision_formats
http://en.wikipedia.org/wiki/Extended_precision#IEEE_754_extended_precision_formats
http://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

IEEE_ floating-point format prescribes a method of precision extension, that allows for conforming types other than
binary16, binary32, binary64, and binary128. This makes it possible to extend floating-point precision to
both lower and higher precisions in a standardized way using implementation-specific typedefs that are not derived
from float, double, and long double.

Note

Paragraph 3.7 in IEEE_ floating-point format states: Language standards should define mechanisms supporting
extendable precision for each supported radix. This proposal embodies a potential way for C++ to adhere to this
requirement.

Note

IEEE_ floating-point format does not specify the byte order for floating-point storage (the so-called endianness).
This is the same situation that prevails for integer storage in C++.

We will now consider various examples that show how implementations might introduce some of the optional floating-point typedefs
having specified widths into the std namespace.

An implementation has float and double corresponding to IEEE754 binary32, binary64, respectively. This implementation
could introduce float32_t, float64_t, and floatmax_t into the std namespace as shown below.

// In <cstdfloat>

namespace std
{
typedef float float32_t;
typedef double float64_t;
typedef float64_t floatmax_t;

}

There may be a need for octuple-precision float, in other words an extension to float256_t with about 240 binary significand digits
of precision. In addition, a float512_t type with even more precision may be considered as an option. Beyond these, there may
be potential extension to multiprecision types, or even arbitrary precision, in the future.

Consider an implementation for a supercomputer. This platform has float, double, and long double corresponding to IEEE754
binary32, binary64, and binary128, respectively. In addition, this implementation has floating-point types with octuple-precision
and hextuple-precision. The implementation for this supercomputer could introduce its optional floating-point typedefs having
specified widths into the std namespace as shown below.

// In <cstdfloat>

namespace std
{
typedef float float32_t;
typedef double float64_t;
typedef long double float128_t;
typedef floating-point type float256_t;
typedef floating-point type float512_t;
typedef float512_t floatmax_t;

}

5

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/Endianness#Floating-point_and_endianness
http://en.wikipedia.org/wiki/Arbitrary_precision
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A cost-sensitive 8-bit microcontroller platform without an FPU does not have sufficient resources to support the eight-byte, 64-bit
binary64 type in a feasible fashion. An implementation for this platform can, however, support half-precision float16_t and
single-precision float32_t. This implementation could introduce its optional floating-point typedefs having specified widths
into the std namespace as shown below.

// In <cstdfloat>

namespace std
{
typedef floating-point type float16_t;
typedef float float32_t;
typedef float32_t floatmax_t;

}

The popular Intel X8087 chipset architecture supports a 10-byte floating-point format. It may be useful to extend the optional support
to float80_t. Several implementations using x86 Extended Precision Format already exist in practice.

Consider an implementation that supports single-precision float, double-precision double, and 10-byte long double. This im-
plementation could introduce its optional typedefs float32_t, float64_t, float80_t, and floatmax_t into the std namespace
as shown below.

// In <cstdfloat>

namespace std
{
typedef float float32_t;
typedef double float64_t;
typedef long double float80_t;
typedef float80_t floatmax_t;

}

6

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://gcc.gnu.org/wiki/x87note
http://en.wikipedia.org/wiki/Extended_precision#IEEE_754_extended_precision_formats#
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Handling floating-point literals
We will now examine how to use floating-point literal constants in combination with the optional floating-point typedefs having
specified widths. This will be done in a manner analagous to the mechanism specified for integer types having specified widths, in
other words using C-style macros.

The header <cstdfloat> should contain all necessary C-style function macros in the form shown below.

FLOAT{16 32 64 80 128 MAX}_C

The code below, for example, initializes a constant float128_t value using one of these macros.

#include <cstdfloat>

constexpr std::float128_t euler = FLOAT128_C(0.57721566490153286060651209008240243104216);

The following code initializes a constant float16_t value using another one of these macros.

#include <cstdfloat>

constexpr std::float16_t euler = FLOAT16_C(0.577216);

In addition, the header <cstdfloat> should contain all necessary macros of the form:

FLOAT_[FAST LEAST]{16 32 64 80 128}_MIN
FLOAT_[FAST LEAST]{16 32 64 80 128}_MAX
FLOATMAX_MIN
FLOATMAX_MAX

These macros can be used to query the ranges of the optional floating-point typedefs having specified widths at compile-time. For
example,

#include <limits>
#include <cstdfloat>

static_assert(FLOATMAX_MAX > (std::numeric_limits<float>::max)(),
"The iec559 floating-point range is too small.");

7

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Changes to the C and C++ standard
The proper place for defining the optional floating-point typedefs having specified widths should be oriented along the lines of
the current standard stdint.h and <cstdint>. Consider the existing specification of integer typedefs having specified widths
in C++11. A partial synopsis is shown below.

18.4 Integer types [cstdint]

18.4.1 Header <cstdint> synopsis [cstdint.syn]

namespace std
{
typedef signed integer type int8_t; // optional
typedef signed integer type int16_t; // optional
typedef signed integer type int32_t; // optional
typedef signed integer type int64_t; // optional

}

// ... and the corresponding least and fast types.

It is not immediately obvious where the optional floating-point typedefs having specified widths should reside. One potential place
is <cstdint>. The int, however, implies integer types. Here, we prefer the proposed new headers stdfloat.h and <cstdfloat>
calling stdfloat.h.

We propose the following changes to the C standard (and incorporated into the C++ by reference).

We propose to add a new header stdfloat.h and <cstdfloat> to the standard library. The header <cstdfloat> should call
stdfloat.h which may contain optional floating-point typedefs having specified widths included in the implementation and the
corresponding C macros shown above.

Section 18.4 could be extended (with a new title) but for clarity a new section 18.11 is proposed.

18.11 Floating-Point Types having Specified Widths

n3626 standard text

8

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/svn/boost/sandbox/precision/libs/precision/doc/n3626_standard.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Interoperation with <cmath> and special functions
It is not proposed to make any mandatory changes to <cmath> or special functions.

Any of the optional floating-point typedefs having specified widths that are typedefed from the built-in types float, double,
and long double should automatically be supported by the implementation's existing <cmath> and special functions.

Implementation-specific optional floating-point typedefs having specified widths that are not derived from float, double, and
long double can optionally be supported by <cmath> and special functions. This is considered an implementation detail.

Note

Support of elementary functions (and possibly some special functions, even where only optional) can be very useful
for real-life computational regimes.

9

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Interoperation with <limits>
It is not proposed to make any mandatory changes to <limits>.

Any of the optional floating-point typedefs having specified widths that are typedefed from the built-in types float, double,
and long double should automatically be supported by the implementation's existing <limits>.

Implementation-specific optional floating-point typedefs having specified widths that are not derived from float, double, and
long double can optionally be supported by <limits>. This is considered an implementation detail.

Note

Support for <limits>, even where optional, can be very useful, especially for portability. This allows programs
to query the floating-point limits at compile-time and use, among other things, std::numeric_lim-
its<>::is_iec559 to verify conformance with IEEE_ floating-point format.

Note

Each of the optional floating-point typedefs having specified widths can only have true for the value of
std::numeric_limits<>::is_iec559 if its underlying type (be it float, double, long double or an imple-
mentation-dependent type) conforms with one of binary16, binary32, binary64, or binary128, or the prescribed
method of precision extension in IEEE_ floating-point format.

10

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Interoperation with <complex>
It is not proposed to make any mandatory changes to <complex>.

Any of the optional floating-point typedefs having specified widths that are typedefed from the built-in types float, double,
and long double should automatically be supported by the implementation's existing <complex>.

Implementation-specific optional floating-point typedefs having specified widths that are not derived from float, double, and
long double can optionally be supported by <complex>. This is considered an implementation detail.

11

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specifying 128-bit precision
The proposed typedef float128_t provides a standardized way to specify quadruple-precision (Quadruple-precision floating-
point format) in C++.

On powerful PCs and workstations, implementation-specific versions of long double as well as various floating-point extensions
to 128-bit have been treated in a variety of ways. This has resulted in numerous portability problems.

The Intel X8087 chipset is capable of performing calculations with internal 80-bit registers. This increases the width of the significand
from 53 to 63 bits, thereby gaining about 3 decimal digits precision and extending it from 18 and 21. If an implementation has a type
that uses all 80 bits from this chipset to calculate Extended precision, it could could use an optional typedef of this type to
float80_t.

Some hardware, for example Sparc, provides a full 128-bit quadruple-precision floating-point chip. An implementation for this kind
of architecture might already have a built-in type corresponding to binary128, and this type could be optionally typedefed to
float128_t.

GCC has recently developed quadruple-precision support on a variety of platforms using GCC libquadmath. However, the imple-
mentation-specific type __float128 is used rather than long double. These implementations could optionally typedef
__float128 to float128_t in addition to any other optional typedefs.

Darwin long double uses a double-double format developed first by Keith Briggs. This gives about 106-bits of precision (about
33 decimal digits) but has rather odd behavior at the extremes making implementation of std::numeric_limits<>::epsilon()
problematic.

It may be useful if future implementations for powerful PCs and workstations strive to make implementation-specific extensions to
128-bit floating-point or the built-in type long double equivalent to binary128, and to include the corresponding typedef to
float128_t.

Some architectures have hardware support for this. Those lacking direct hardware support can use software emulation.

Survey of extended-precision types

1. GNU C supports additional floating types, __float80 and __float128 to support 80-bit (XFmode) and 128-bit (TFmode)
floating types.

2. Intel C++ provides an internal 128-bit floating-point type called _Quad. When the -Qoption,cpp,--extended_float_type
command line option is supplied, it supports what appears to be an undocumented data type _Quad. This type is equivalent to
GCC's __float128.

3. Intel FORTRAN REAL*16 is an actual 128-bit IEEE quad, emulated in software. But "I don't know of any plan to implement
full C support for 128-bit IEEE format, although evidently ifort has support libraries." This is equivalent to the proposed float128_t
type.

4. The 360/85 and follow-on System/370 added support for a 128-bit "extended" IBM extended precision formats. These formats
are still supported in the current design, where they are now called the "hexadecimal floating point" (HFP) formats.

12

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format
http://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format
http://gcc.gnu.org/wiki/x87note
http://en.wikipedia.org/wiki/Extended_precision
http://en.wikipedia.org/wiki/SPARC
http://gcc.gnu.org/onlinedocs/libquadmath/
http://www.opensource.apple.com/source/gcc/gcc-5646/gcc/config/rs6000/darwin-ldouble.c
http://keithbriggs.info/doubledouble.html
http://gcc.gnu.org/onlinedocs/gcc/Floating-Types.html
http://gcc.gnu.org/onlinedocs/gcc/Floating-Types.html
http://software.intel.com/en-us/forums/topic/358476
http://en.wikipedia.org/wiki/Extended_precision#IBM_extended_precision_formats
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Extending to lower precision
Some implementations for cost-sensitive microcontroller platforms support float, double, and long double, and some of these
are compliant with IEEE_ floating-point format. Some of these implementations treat double exactly as float, and even treat long
double exactly as double. This is permitted by the standard which does not prescribe the precision for any floating-point (or integer)
types, leaving them to be implementation-defined. On these platforms, the existing floating-point types could optionally be type-
defined to float32_t. Optional support for an extension to float16_t could provide a very useful and efficient floating-point
type with half-precision, but reduced range.

Some implementations for cost-sensitive microcontroller platforms also support a 24-bit floating-point type. Here, an extension of
the optional floating-point typedefs with specified widths could include float24_t. This would be equivalent to three-quarter
precision floating-point, the layout of which should adhere to the method of precision extension specified in IEEE_ floating-point
format.

Some embedded graphics systems use an 8-bit floating-point representation, primarily for storage of pixel information. Here, an
extension of the optional floating-point typedefs with specified widths could include float8_t. This would be equivalent to one-
quarter precision floating-point, the layout of which should adhere to the method of precision extension specified in IEEE_ floating-
point format.

These potential embedded extensions for cost-sensitive microcontroller platforms are shown in the code sample below

// Potential embedded extensions.

namespace std
{
typedef floating-point type float8_t; // optional.
typedef floating-point type float16_t; // optional.
typedef floating-point type float24_t; // optional.
typedef float float32_t; // optional.

}

13

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The context among existing implementations
Many existing implementations already support float, double, and long double. In addition, some of these either are or strive
to be compliant with IEEE_ floating-point format. In these cases, it will be straightforward to support (at least) a subset of the proposed
optional floating-point typedefs having specified widths by adding any desired optional type definitions and the corresponding
macro definitions.

14

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

References
1. isocpp.org C++ papers and mailings

2. C++ Binary Fixed-Point Arithmetic, N3352, Lawrence Crowl

3. Proposal to Add Decimal Floating Point Support to C++, N3407 Dietmar Kuhl

4. The C committee is working on a Decimal TR as TR 24732. The decimal support in C uses built-in types _Decimal32, _Decimal64,
and _Decimal128. 128-bit decimal floating point in IEEE 754:2008

5. lists binary16, 32, 64 and 128 (and also decimal 32, 64, and 128)

6. IEEE Std 754-2008

7. IEEE Standard for Floating-point Arithmetic, IEEE Std 754-2008

8. How to Read Floating Point Numbers Accurately, William D Clinger

9. Conditionally-supported Special Math Functions for C++14, N3584, Walter E. Brown

10. Walter E.Brown, Opaque Typedefs

11. Specification of Extended Precision Floating-point and Integer Types, Christopher Kormanyos, John Maddock

12. X8087 notes

13. Intel Extended or Quad IEEE FP formats compiler '-Qoption,cpp,--extended_float_type'

15

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://isocpp.org/std/meetings-and-participation/papers-and-mailings
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3407.html
http://www.cesura17.net/~will/Professional/Research/Papers/retrospective.pdf
http://en.wikipedia.org/wiki/IEEE_floating_point
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4610933
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://www.cesura17.net/~will/Professional/Research/Papers/retrospective.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3548.pdf
I:/boost-sandbox/precision/libs/precision/doc/html/www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2013/n????.pdf
http://gcc.gnu.org/wiki/x87note
http://software.intel.com/en-us/forums/topic/304052
http://software.intel.com/en-us/forums/topic/358472
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Version Info
Last edit to Quickbook file precision.qbk was at 12:00:56 PM on 2013-Apr-24.

Tip

This should appear on the pdf version (but may be redundant on a html version where the last edit date is on the
first (home) page).

Warning

Home page "Last revised" is GMT, not local time. Last edit date is local time.

16

Floating-Point Typedefs Having Specified
Widths - N1703

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Floating-Point Typedefs Having Specified Widths - N1703
	Table of Contents
	Abstract
	Introduction
	The proposed typedefs and potential extensions
	Handling floating-point literals
	Changes to the C and C++ standard
	Interoperation with <cmath> and special functions
	Interoperation with <limits>
	Interoperation with <complex>
	Specifying 128-bit precision
	Extending to lower precision
	The context among existing implementations
	References
	Version Info

