
Subtleties of the ANSI/ISO C standard
Robbert Krebbers, Freek Wiedijk

Radboud University Nijmegen

Abstract—In our Formalin project to formalize C11 (the AN-
SI/ISO standard of the C programming language) we discovered
many subtleties that make formalization of this standard difficult.
We discuss some of these subtleties and indicate how they may
be addressed in a formal C semantics.

Furthermore, we argue that the C standard does not allow
Turing complete implementations, and that its evaluation seman-
tics does not preserve typing. Finally, we claim that no strictly
conforming programs exist. That is, there is no C program for
which the standard can guarantee that it will not crash.

Index Terms—C programming language, programming lan-
guage standardization, formal methods

I. I NTRODUCTION

A. Problem

Current programming technology is rather fragile: programs
regularly crash, hang, or even allow viruses to have free reign.
An important reason is that a lot of programs are developed
using low-level programming languages. One of the most
extreme instances is the widespread use of the C programming
language. In the TIOBE popularity index [23] it is (fall 2012)
in the top position.

Whereas most modern programming languages require a
compiler to throw an exception when exceptional behavior
occurs (e.g. dereferencing aNULL pointer, integer overflow,
accessing an array out of its bounds), C [11, 7] does not
impose such requirements. Instead, it classifies these behaviors
as undefinedand allows a program to do literally anything
in such situations [7: 3.4.3]. On the one hand, this allows a
compiler to omit runtime checks and to generate more efficient
code, but on the other hand these undefined behaviors often
lead to security vulnerabilities [4, 14, 24].

There are two main approaches for improving this situation:

• Switch to a more modern and higher level programming
language. This approach reduces the number of program-
ming errors, and if there still is an error, the chance of it
being used by an exploit is much lower.
One disadvantage of this approach is that there will be
a thicker layer between the program and the hardware
of the system. This costs performance, both in execution
speed and in memory usage, but it also means a reduction
in control over the behavior of the system. Especially for
embedded systems and operating system kernels this is
an undesired consequence.

• Stick to a low-level programming language like C, but
add a formal methods layer on top of it to establish that
programs do not exhibit undefined behavior.
Such a layer might allow the developer to annotate their
programs with invariants, and to prove that these invari-

ants indeed hold. To be practical most of these invariants
should be proven automatically, and the remaining ones
by interactive reasoning.
This approach is an extension ofstatic analysis. But
whereas static analysis tools often yield false-positives,
this approach allows the developer to prove that a false-
positive is not an actual error.
For functional correctness, this approach has also been
successful. There have been various projects to prove
the C source code of a microkernel operating system
correct [2, 12].

There are many tools for the second approach, like VCC [2],
Verifast [10] and Frama-C [19]. However, these tools do not
use an explicit formal C semantics and only implicitly ‘know’
about the semantics of C. Therefore the connection between
the correctness proof and the behavior of the program when
compiled with a real-world compiler is shallow. The soundness
of these tools is thus questionable [6].

For this reason, we started in 2011 at the Radboud Uni-
versity a project to provide a formal semantics of the C pro-
gramming language: the Formalin project [13]. This semantics
was to be developed for interactive theorem provers, allowing
one to base formal proofs on it. Although there already exist
various versions of a formal semantics of significant fragments
of C (see Section I-C for an overview), our goal was to
formalize the ‘official’ semantics of C, as written down in
the C11 standard (back then the target was C99, as C11 was
not finished yet). We intended not to skim the more difficult
aspects of C and to provide a semantics of the whole language.

Unfortunately, the Formalin project has turned out to be
much harder than we anticipated because the C11 standard
turned out to be very difficult to formalize. We were aware
that C11 includes many features, so that we would need to
write a large formalization to include them all. Also, since
the standard is written in English, we knew we had to deal
with its inherent ambiguity and incompleteness. But we had
not realized how difficult things were in this respect.

Already, the very basis of our formalization, the memory
model, turned out to be almost impossible to bring into line
with the standard text. The reason for this is that C allows
bothhigh-level(by means of typed expressions) andlow-level
(by means of bit manipulation) access to the memory. The
C99 and C11 standards have introduced various restrictionson
the interaction between these two levels to allow compilersto
make more effective non-aliasing hypotheses based on typing.
As also observed in [9, 18] these restrictions have lead to
unclarities and ambiguities in the standard text.

B. Approach

The aim of this paper is to discuss the situation. We describe
various issues by small example programs, and discuss what
the C11 standard says about them, and how a formal semantics
may handle these.

During the year that the Formalin project has been running
we have developed an (implicit) prototype of a C11 semantics
in the form of a large Haskell program. This program can be
seen as averycritical C interpreter. If the standard says that a
program has undefined behavior, our Haskell interpreter will
terminate in a state that indicates this.

The intention of our prototype was to develop a clear
semantics of the high-level part. To this end, we postponed
including low-level details as bytes, object representations,
padding and alignment. Due to the absence of low-level de-
tails, we were able to support features that are commonly left
out, or handled incorrectly, in already existing formal versions
of C. In particular, we treat effective types, the common initial
segment rule, indeterminate values, pointers to one past the last
element, variable length arrays, andconst-qualified objects.
But even without the low-level part, we experienced many
other difficulties, that are also described in this paper.

Our prototype is currently being ported to the interactive
theorem prover Coq. Nonetheless, the source of the prototype
can be inspected athttp://ch2o.cs.ru.nl/.

While working on a formal version of the C11 standard, we
had four rules that guided our thinking:

1) If the standard is absolutely clear about something, our
semantics should not deviate from that. That means, if
the standard clearly states that certain programs should
not exhibit undefined behavior, we are not allowed
to take the easy way out and letour version of the
semantics assign undefined behavior to it.

2) If it is not clear how to read the standard, our semantics
should err on the side of caution. Generally this means
assigning undefined behavior as we did not want our
semantics to allow one to prove that a program has a
certain property, when under a different reading of the
standard this property might not hold.

3) C idiom that is heavily used in practice should not be
considered to exhibit undefined behavior, even if the
standard is not completely clear about it.

4) If real-world C compilers like GCC and clang in AN-
SI/ISO C mode exhibit behavior that is in conflict with
a straightforward reading of the standard, but that can
be explained by a contrived reading of the standard,
our semantics should take the side of the compilers and
assign undefined behavior.

Of course there is a tension between the second and third rule.
Furthermore, the fourth rule is a special case of the second,but
we included it to stress that compiler behavior can be taken
as evidence of where the standard is unclear.

C. Related Work

This related work section consists of three parts: discussion
of related work on unclarities in the C standard, discussions

of related work on undefined behavior, and a brief comparison
of other versions of a formal semantics of C.

An important related document is a post by Maclaren [18]
on the standard committee’s mailing list where he expresses
his concerns about the standard’s notion of anobjectandeffec-
tive type, and discusses their relation to multiprocessing. Like
our paper, he presents various issues by considering example
programs. Most importantly, he describes three directionsto
consistency. We will treat those in Section II.

The standard committee’s website contains a list of defect
reports. These reports describe issues about the standard,and
after discussion by the committee, may lead to a revision
or clarification of the official standard text. Defect Report
#260 [9] raises similar issues as we do and will be discussed
thoroughly throughout this paper.

There is also some related work on undefined behavior and
its relation to bugs in both programs and compilers. Wanget
al. [24] classified various kinds of undefined behavior and
studied its consequences to real-world systems. They have
shown that undefined behavior is a problem in practice and
that various popular open-source projects (like the Linux
kernel and PostgreSQL) use compiler workarounds for it.
However, they do not treat the memory model, and non-
aliasing specifically, and also do not consider how to deal with
undefined behavior in a formal C semantics.

Yang et al. [25] developed a tool to randomly generate C
programs to find compiler bugs. This tools has discovered a
significant number of previously unknown bugs in state of
the art compilers. In order to do this effectively, they had
to minimize the number of generated programs that exhibit
undefined behavior. However, they do not seem to treat the
kinds of undefined behavior that we consider.

Lastly, we will briefly compare the most significant already
existing formal versions of a C semantics. There are also many
others like [3, 21, 15], but these only cover small fragmentsof
C or are not recent enough to include the troublesome features
of C99 and C11 that are the topic of this paper.

Norrish defined a semantics of a large part of C89 in
the interactive theorem prover HOL [20]. His main focus
was to precisely capture the non-determinism in evaluation
of expressions and the standard’s notion ofsequence points.
However, the problems described in our paper are due to more
recent features of the standard than Norrish’s work.

Blazy and Leroy [1] defined a semantics of a large part of C
in the interactive theorem prover Coq to prove the correctness
of the optimizing compiler CompCert. CompCert treats some
of the issues we raise in this paper, but as its main application
is to compile code for embedded systems, its developers are
more interested in giving a semantics to various undefined
behaviors (such as wild pointer casts) and to compile those it
in a faithful manner, than to support C’s non-aliasing features
to their full extent (private communication with Leroy).

Ellison and Rosu [5] defined an executable semantics of the
C11 standard in theK-framework. Although their semantics
is very complete, has been thoroughly tested, and has some
interesting applications, it seems infeasible to be used for

http://ch2o.cs.ru.nl/

interactive theorem provers. Besides, their current memory
model seems not capable of supporting the issues we present.
We give more details of the discussed semantics in Section II.

D. Contribution

The contribution of this paper is fourfold:

• We indicate various subtleties of the C11 memory model
and type system that we discovered while working on our
formal semantics (Section II, III, IV and VII).

• We argue for various properties of C11: lack of Turing
completeness (Section V), lack of programs that are
guaranteed not to exhibit undefined behavior (Section
VI), and lack of preservation of typing (Section VII).

• We present many small example programs that can be
used as a ‘benchmark’ for comparing different formal
versions of a C semantics.

• We discuss some considerations on how to best proceed
with formalizing the C standard, given that the existing
standard text is imprecise and maybe even inconsistent.

II. POINTER ALIASING VERSUS BIT REPRESENTATIONS

An important feature of C is to allow bothhigh-level (by
means of typed expressions) andlow-level (by means of bit
manipulation) access to the memory. For low-level access, the
standard requires that each value is represented as a sequence
of bytes [7: 3.6, 5.2.4.2.1], called theobject representation[7:
6.2.6.1p4, 6.5.3.4p2].

In order to allow various compiler optimizations (in partic-
ular strong non-aliasing analysis), the standard has introduced
various restrictions on the interaction between these two levels
of access. Let us consider the following program [9]:

int x = 30, y = 31;
int *p = &x + 1, *q = &y;
if (memcmp(&p, &q, sizeof(p)) == 0)
printf("%d\n", *p);

Here we declare two objectsx andy of typeint and use the
&-operator to take the address of both (Figure 1a). Increasing
the pointer&x by one moves itsizeof(int) bytes ahead
and yields a pointer to the right edge of thex block. It may
seem strange that such pointers are allowed at all [7: 6.5.6p8]
because they cannot be dereferenced, but their use is common
programming practice when looping through arrays.

We store these pointers into objectsp andq of type pointer
to int (Figure 1b). The next step is to check whether these
pointersp and q are equal (note: not whether the memory
they point to is equal). We do this by using thememcmp
function, which checks whether their object representations
are equal. It is important to use a bitwise comparison, instead
of the ordinaryp == q, to reveal if additional information
is stored. If the object representations of the two are equal,
we can conclude that both pointers point to the same memory
location and do not contain conflicting bounds information.
From this we are allowed to conclude thatx and y are
allocated adjacently (Figure 1c).

30 31

&x &y

(a)

30 31

p q

(b)

30 31

p q

(c)

Fig. 1: Adjacent blocks.

Now we have ended up in a situation where the low- and
high-level world are in conflict. On the one hand,p is a
pointer to the edge of thex block, and thus dereferencing
it would be undefined behavior. On the other hand, the object
representation ofp is the same as the objection representation
of q, and sop andq should behave identically.

Although the standard itself is very unclear about these
problems, in Defect Report #260 [9] the committee expressed
the following judgment:

Implementations are permitted to track the origins
of a bit-pattern and treat those representing an inde-
terminate value as distinct from those representing a
determined value. They may also treat pointers based
on different origins as distinct even though they are
bitwise identical.

Apparently a value can contain additional information about
its origin that is not reflected in its object representation.
The reason the committee allows this, is to allow compiler
optimizations that would not be correct otherwise.

To show that this is a real issue, we changed the last example
slightly and compiled it without warnings with GCC1:

int y = 31, x = 30;
int *p = &x + 1, *q = &y;
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 10;
printf("%d %d\n", *p, *q);

}

This prints two distinct values ‘10 31’. Despite the fact that
p and q are identical on the bit-level (which follows from
the fact that theprintf is executed at all), they still behave
differently on the object-level, as indeed Defect Report #260
allows for.

Maclaren describes similar unclarities of the standard with
respect to the size of array objects corresponding to pointer
values [18]. He presents three directions the standard may take:

1) The original Kernighan & Ritchie approach. Pointer
values are simply addresses, and their object represen-
tations are all that matters.

2) Pointers carry their origin. Each pointer value carries
a history on how it is constructed. This history should

1Using gcc -O1 -std=c99 -pedantic -Wall, version 4.1.2.

be preserved by various operations on pointers. Further-
more, if the pointer is refined to a subobject (for example
by array indexing, or by taking a field of a structure),
it is impossible to get the original pointer back, even if
they correspond to the same address in memory.

3) Only visible information is relevant. This is a weaker
variant of the previous one where the history is limited
to a certain visibility, for example the current scope.

The first approach is taken by the semantics of Norrish [20]
in HOL. Although this approach is clearly understood, and is
convenient to formalize, it implies that pointers with equal
object representation always have to be treated as equal.
Therefore, optimizations as for example performed by GCC
and allowed by Defect Report #260 are not sound with respect
to Norrish’s semantics.

The second approach allows the most compiler optimiza-
tions and is therefore the most appealing one. However, it
is unclear how bit-level operations and library functions like
memcpy should deal with a pointer’s origin. In an earlier
version of the CompCert memory model of by Leroy and
Blazy [17], bytes were not modeled as simple sequences of
bits, but as abstract entities. Although this approach makes
many bit-level operations exhibit undefined behavior, it en-
sures that the abstract information can easily be preserved,
even by byte-level operations. In a more recent version of
their memory model [16], only bytes that constitute a pointer
are abstract entities, whereas those that constitute integers or
floating point numbers are real sequences of bits.

The third approach requires a careful definition of ‘visibil-
ity’. It is unclear whether such a definition can be given thatis
both consistent and that allows sufficient compiler optimiza-
tions. This approach therefore seems not very attractive.

The memory model of our semantics takes the second
approach to its fullest extent. We represent the memory
as a finite map from indexes to trees that expose the full
structure of values, and pointers are paths through these trees.
Subobjects (subarrays, fields of structures or unions) then
correspond to subtrees of the memory. The origin of pointers
in our semantics is much more detailed than its counterpart
in CompCert where only a pointer’s block and offset into that
block is stored. In particular, since we do not flatten arrays
and structures, we are able to handle subobjects correctly.For
example, it allows our semantics to impose undefined behavior
on the following example.

int a[2][2] = { {13, 21}, {34, 35} };
struct t { int *r, *p, *q; } s;
s.p = &a[0][2]; s.q = &a[1][0];
if (p == q)
printf("%d\n", *p);

We do not usememcmp in this example, because our seman-
tics does not support object representations. The comparison
p == q is the source of the undefined behavior.

Figure 2 displays the representation of the memory after
evaluating the first three lines of this code in both a concrete
memory and our abstract memory as trees. Our semantics

a

13 21 34 55

s

undef • •

(a) flattened

a

13 21 34 55

s

undef • •

(b) abstract

Fig. 2: Example contents of the memory.

imposes special treatment on pointers that point to elements
one past the end of an object. We do not allow these pointers
to be dereferenced, and they are only allowed in comparisons
with other pointers to the same subobject, making the above
example undefined.

The semantics by Ellison and Rosu [5] in theK-framework
imposes similar treatment. CompCert [16] does not allow
pointers to the end of an object to be used at all. It seems not
to be a fundamental limitation of their model to incorporatea
similar treatment as ours and Ellison and Rosu’s.

Of course, the drawback of our current memory model
is that bytes are not present at all, whereas the CompCert
memory model at least allows byte-level operations on objects
solely consisting of integers and floating point numbers. But
since the intention of our semantics was to obtain a better
understanding of the high-level part of the C memory, we do
not consider this to be a problem for the moment.

III. T HE COMMON INITIAL SEQUENCE

The C programming language supports various data types to
be used to build more complex types. In particular, structure,
union, and array types. Structures are like product types and
unions are like sum types. Due to the low-level nature of C,
unions areuntaggedrather thantagged. This means that the
current variant of the union is not stored. Consider:

union int_or_float { int x; float y; };

Given an object of typeint_or_float, it is not possible
to (portably) test whether it contains theint or thefloat
variant. This may seem unnatural, but it is in the spirit of C
to let the programmer decide whether or not to store the tag.

An interesting consequence of untagged unions is the stan-
dard’scommon initial sequencerule [7: 6.5.2.3]. Consider:

struct t1 { int m; float f; };
struct t2 { int m; short s; };
union { struct t1 s1; struct t2 s2; } u;

s1 m f

or

s2 m s

Fig. 3: A union containing two structures with a common
initial sequence.

The representation of the objectu might look as pictured in
Figure 3. Although, due to alignment there may be additional
space between the members, the standard guarantees that the
integer parts always coincide. Even stronger, in this case it
guarantees the following [7: 6.5.2.3p6]:

. . . it is permitted to inspect the common initial part
of any of them anywhere that a declaration of the
completed type of the union is visible.

For example, that means we are allowed to do things like:

int main(void) {
u.s2.m = 20;
printf("%d\n", u.s1.m);

}

So, we set the integer part via the one variant of the union,
and read it out via the other. However, the following program
exhibits undefined behavior as in the function body the relation
to the union type is not visible.

int f(struct t1 *p1, struct t2 *p2) {
p2->m = 20;
return p1->m;

}
int main(void) {
printf("%d\n", f(&u.s1, &u.s2));

}

This is to allow compilers to make additional aliasing assump-
tions aboutp1 andp2 because their types are different. Real
compilers, like GCC, happily use this, and indeed this example
can be adapted for GCC such that something different from
the naively expected ‘20’ is printed.

The standard’s definition of ‘visible’ is rather unclear,
especially when a pointer to a common initial segment is
passed through another function. For example, in

int *f(int *p) { return p; }
int main(void) {
u.s2.m = 20;
printf("%d\n", f(u.s1.m));

}

does passing the pointer throughf remove the visibility
of the common initial segment? Our semantics takes the
cautious way, and annotates each structure fragment in the path
corresponding to a pointer with a flag whether the common
initial segment rule may be used. When storing objects in the
memory, this flag is set to false. Hence, it imposes undefined
behavior on this last example.

a b

Fig. 4:struct T { short a ; int b } on a standard
32 bits architecture.

IV. I NDETERMINATE VALUES

Uninitialized variables and padding bytes of objects of
structure type take anindeterminate value[7: 6.2.6.1p6].
An indeterminate value is an object that either describes an
unspecified value or is atrap representation[7: 3.17.2]. A
trap representation is an object representation that does not
represent a value of the object type and reading it leads to
undefined behavior [7: 6.2.6.1p5].

A. Uninitialized variables

Since an object of typeunsigned char cannot have a
trap value, reading it does not exhibit undefined behavior.
Instead it just gives an unspecified value. This property is
important to allow simple minded bit-wise copying of struc-
tures, without having to worry about padding bytes between
members. For example:

struct T { short a ; int b; } x = {10, 11}, y;
for (size_t i = 0; i < sizeof(x); i++)
((unsigned char*)&y)[i] =
((unsigned char*)&x)[i];

Figure 4 displays the representation ofx on a standard 32 bits
architecture with a 4 bytes alignment requirement for integers.
This means that integers should be aligned at addresses that
are multiples of 4, and therefore we have 2 padding bytes
between the members. In case reading indeterminate values
of type unsigned char (and in particular these padding
bytes) would exhibit undefined behavior, this copy would also
exhibit undefined behavior.

An interesting property of indeterminate values is that
Defect Report #260 [9] allows them to change arbitrarily,
so reading an indeterminate value twice might yield different
results. This is useful for an optimizing compiler because it
may figure out the actual lifetime of two values is disjoint and
thereby share the storage location of both. As an example (the
mysterious&x will be explained later)

unsigned char x; &x;
printf("%d\n", x);
printf("%d\n", x);

does not exhibit undefined behavior (an object of type
unsigned char cannot contain a trap value), but Defect
Report #260 allows the two printed values to be different.
This is not so strange: the compiler might do liveness analysis
and decide thatx does not need to be saved on the stack when
calling printf. And then of courseprintf might clobber
the register that containsx.

Unfortunately, the standard is very unclear about the im-
posed behavior of various operations on indeterminate values,
e.g., what happens when they are copied or used in expres-
sions. For example, shouldy be indeterminate after evaluating

unsigned char x, y; &x;
y = x/2;

Surely the most significant bit ofy will be 0 after this? Or is
this not something that the standard guarantees? But ify is
not indeterminate after this, what about:

y = x/1;

We just changed the constant, and therefore after this statement
y also should be determinate? But after:

y = x;

will it still not be indeterminate? This seems almost indis-
tinguishable from thex/1 case, but the liveness analysis
argument surely also will apply to thisy? A formal C
semantics will have to take a stance on this.

Also, should the following print ‘0’, or may it print a
different value as well, because thex changed during the
evaluation of the subtraction expression?

unsigned char x; &x;
printf("%d\n", x - x);

Defect Report #338 [9] remarks that on some architectures
(e.g. IA-64) registers may hold trap values that do not exist
in memory. Thus, for such architectures, programs cannot
safely copy uninitialized variables of typeunsigned char
because these might reside in registers. In the C11 stan-
dard this problem has been fixed by including the following
workaround [7: 6.3.2.1p2]:

If the lvalue designates an object of automatic stor-
age duration that could have been declared with the
register storage class (never had its address taken),
and that object is uninitialized (not declared with
an initializer and no assignment to it has been
performed prior to use), the behavior is undefined.

This is the reason we had to take the address of the uninitial-
ized variables in the preceding examples. Of course even with
the&x present, a compiler can decide to ignore it and still use
a register forx, as this address is never used.

This workaround again shows that treating uninitialized
objects as indeterminate has its difficulties. In the memory
model of our semantics we keep track of uninitialized (or
freed) memory by specialundef nodes (see Figure 2). Since
objects of structure or union type cannot be indeterminate,we
only allow theseundef nodes on the leaves. Again, we take the
most cautious way, and let operations on these specialundef

nodes, like reading them, exhibit undefined behavior.

B. Freeing memory

The standard states that the value of a pointer becomes
indeterminate when the object it points to reaches the end of
its lifetime [7: 6.2.4]. In particular this means that whenever
some memory is freed, all pointers to it become indeterminate.
For example, assuming themallocs do not fail, the following
program can still exhibit undefined behavior

int *p = malloc(sizeof(int));
free(p);
int *q = malloc(sizeof(int));
printf("%d\n", p == q);

because the value of the pointerp has become indeterminate
and now can be a trap value. Of course, we can still compare
the bit patterns of both pointers, and if they are equal, try to
usep instead.

int *p = malloc(sizeof(int));
free(p);
int *q = malloc(sizeof(int));
if(memcmp(&p, &q, sizeof(p)) == 0)

*p = 10;

Again, Defect Report #260 [9] states that this program exhibits
undefined behavior.

The fact that a pointer object becomes indeterminate after
the block it points to has been freed means that if we copy
pointers to various places in memory, then all copies should
become indeterminate and not just the argument offree
(which does not even need to be an lvalue). This means that a
free operation will affect the formal memory state globally.
And what about individual bytes of a pointer that have been
copied? Will these also become indeterminate after freeing
that pointer?

C. Padding bytes

The standard states that when a value is stored in a member
of an object of structure or union type, padding bytes take
an unspecified value [7: 6.2.6.1p6], and that when a value
is stored in a member of a union type, bytes that do not
correspond to that member take an unspecified value [7:
6.2.6.1p7]. Consider:2

union { int a[1] ; int b[2]; } x;
x.b[0] = 10; x.b[1] = 11;
x.a[0] = 12;
printf("%d\n", x.b[1]);

This example can lead to undefined behavior, as assigning
to x.a makes the bytes ofx.b that do not belong tox.a
unspecified, and thusx.b[1] possibly indeterminate. Taking
Defect Report #260 into account, it is unclear whether the
bytes that belong tox.b[1] after this may change arbitrarily.

This program also suggests that the representation of point-
ers in a formal semantics should contain information describ-
ing which parts of the memory should become indeterminate
upon assignment to them. If instead of assigning tox.a[0]
directly we do:

int *p = &x.a[0];

*p = 12;

x.b[1] will still become indeterminate. But the assignment
to p might happen anywhere in the program, even in a context
where the union type is not visible at all.

2Adapted from Shao Miller, Bounds Checking as Undefined Behaviour,
comp.std.c newsgroup, July 29, 2010.

V. C IS NOT TURING COMPLETE

In this section we will argue thatno Turing complete
implementation of the C standard exists. Obviously there do
exist someimplementations that are not Turing complete, but
that is weaker than what we claim. We argue that forany
implementation that behaves as described by the standard, all
programs will correspond to a finite state machine, and hence
that their termination is decidable. This implies that C is not
Turing complete, as for a Turing complete language termina-
tion is undecidable by the halting problem. Our argument is
similar to the well-known pumping lemma [22].

Unfortunately, we cannot give a mathematical proof that C
is not Turing complete, as that would require a mathematically
precise version of the standard, which does not exist yet.

Let us put a restriction on what we will establish. With
sufficient I/O, an external file may be used as the tape to
create a Turing machine emulator. Even then the existence of
the function

long int ftell(FILE *stream);

that gives the position in a file [7: 7.21.9.4], seems to imply
that files as described in the standard need to have a bounded
length as the return type offtell is bounded. However,
an implementation could have its own infinite-file access
interface, allowing it to become Turing complete. Therefore
we will here only consider C programs without I/O. (Our
argumentcan be adapted to show that the programs that
restrict I/O to readingstdin and writingstdout are Turing
incomplete as well, but we will not do so here.)

The first step in our argument is the observation that each
type that is not an array has finitely many distinct values, asa
value of a typeT needs to have a representation that consists of
sizeof(T)*CHAR_BIT many bits. Now for array types the
elements of the array need to have an address that corresponds
to a pointer, and those pointersalso only have finitely many
distinct values. This means that there is an upper bound on
the length of arrays, and thus array types also only have a
bounded number of distinct values.

There are three ways to get storage in C: (1) through global
or static variables, (2) through allocated storage (e.g. using
malloc), (3) through automatic variables in function calls.
The size of the storage obtained through (1) is clearly bounded.
All allocated storage needs to be addressable and there are only
finitely many pointers, therefore storage obtained through(2)
is also bounded. As for (3), since the standard does not restrict
recursion depth, there could be unboundedly many automatic
variables. This means that the size of this part of the state of
a program does not have to be bounded. However, the size of
the visible part of that state, the automatic variables that are
in scope, together with those that can be reached by following
pointers,is bounded.

Now there will be a (very large) bound to the recursion
depth, such that if that bound is exceeded, a function will end
up in a visible state that it has been in before. Clearly, in
that case, the program will be in an infinite loop. Therefore,
for an arbitrary program there are two possibilities. Either the

bound to the recursion depth will not be exceeded, in which
case the size of the state is bounded, and it behaves as a finite
state machine. Or, the recursion depthwill be exceeded, in
which case the program will infinitely go deeper and deeper
in recursion, repeating the pattern of function calls, in which
case the program also behaves as a finite state machine. This
finishes our argument.

The result that C is not Turing complete is surprising: it
seems possible to implement a Turing machine emulator in
C, which seems to imply Turing completeness. However, the
problem is that the C data types are too small to represent an
arbitrarily long tape. C integers only have a specific number
of bits, and even when one wants to use arrays or linked lists
to hold bigger data structures, thepointers that are involved
in this also only have a finite number of bits, and therefore
one cannot have arbitrarily large data structures as one would
run out of different pointer values.

VI. STRICTLY CONFORMING C PROGRAMS DO NOT EXIST

An implementation of a programming language typically
organizes its storage into two parts: thestackand theheap. On
a function call, the stack is extended with a frame containing
the function’s arguments, local variables and return address
(the address of the instruction to be executed when the function
is finished). The heap contains dynamically allocated storage.

The standard abstracts from implementation details like
these, and thus also allows implementations that do not
organize their memory in this way. Although we agree that
this is the right approach, we do believe it should at the very
least account for (an abstract version of) the problem ofstack
overflow. Unfortunately, the notion of stack overflow is not
mentioned by the standard [7] or the standard’s rationale [8]
at all. This is very troublesome, as for most actual implemen-
tations stack overflow is a real problem. Let us consider the
following function.

/*@ decreases n; ensures \result == n; */
unsigned long f(unsigned long n) {
if (n != 0) return f(n - 1) + 1;
else return 0;

}

With most tools for C verification one can prove by induction
that the functionf behaves as the identity function (for
example, the Jessie plug-in for Frama-C [19] turns these
four lines into 92 lines of Why3ML code, leading to four
verification conditions that are all trivially provable). However,
in a real C implementation, a call likef(10000000) will
not return10000000, but instead will crash with a message
like ‘segmentation fault’.

Furthermore, stack overflow does not necessarily have to
result in a crash with a nice error message, but might also
overwrite non-stack parts of the memory (possibly putting the
address of virus code there).

Stack overflow even can occur without function calls. For
example, the program

int main(void) { int a[10000000]; }

might also crash. In order to make this really happen with
an optimizing compiler, one might need to use the arraya
to prevent it from being optimized away. For example when
compiled with GCC or clang (with-O2) the following crashes
when running it with the standard stack size:

int main(void) {
int a[10000000];
for (int i = 0; i < 10000000; i++) a[i] = i;
return a[10];

}

This all means that a proof of correctness of a program with
respect to the standard only guarantees correctness relative to
the assumption that the stack does not overflow. As we have
seen, this assumption does not hold in general. But even worse,
it is not clear for whichn the program

int main(void) { int a[n]; }

is guaranteednot to overflow the stack. On a microcontroller
this might already happen for rather smalln. Therefore, as
there is no a clear division between then that are safe and the
ones that are not, it seems reasonable that even the extreme
program, which is a variation on the case forn = 0,

int main(void) { }

potentially could overflow a (very) small stack. For one thing,
there need to be space on the stack for theint return value,
and then the runtime environment that callsmain also might
need a bigger stack than is there.

The obvious way to change the text of the C standard to
address this issue would be to add to [7: 6.5.2.2] something
like:

A function call (even the initial call tomain) might
overflow the stack, in which case the behavior is
undefined. It is implementation defined under what
circumstances this is guaranteed not to happen.

It is important that it is not justunspecifiedwhen these
overflows happen, for then it still would be impossible to
reason about any program formally from the text of the
standard.

A consequence of this addition is thatstrictly conforming
programsno longer exist as one of their defining properties
is that they ‘shall not produce output dependent on . . . im-
plementation defined behavior’ [7: 4.5]. Of course, once one
takes stack overflow into account no program has that property
anymore.

Another consequence is thatall C implementations become
conforming, as that notion is defined by quantification over all
strictly conforming programs [7: 4.6]. Therefore, the definition
of conforming C implementations should also be adapted.

The fact that the standard does not allow to portably test
for stack overflow is to us one of the main omissions of the
language. A call tomalloc will return aNULL pointer when
there is no storage available, which means that a program can
test for that situation. But there is no counterpart to this for
function calls, or for entering a block.

VII. FAILURE OF THE SUBJECT REDUCTION PROPERTY

A desired property for a typed programming language
is subject reduction, which means that evaluation preserves
typing. As proven by Norrish, this property holds for (his
small-step expression semantics of) C89 [20]. We will argue
that due to the introduction of variable length arrays in C99,
this property no longer holds. Before pursuing the problem of
subject reduction, we briefly introduce variable length arrays
and some other problems of these.

Before C99, arrays were required to have a size that
could be determined at compile-time. To avoid this restriction
programmers had to use dynamically allocated memory (e.g.
throughmalloc andfree) for arrays of dynamic size. To
loosen this restriction, C99 introduced support forvariable
length arrays(VLAs) to the language.

The first shortcoming of VLAs is related to the fact that
there is no portable way to test if there is sufficient storage
available (on the stack) when entering a block (see Section VI).
Since most implementations use the stack to store VLAs, not
being able to perform such a test, makes VLAs dangerous in
practice. Consider the following program.

int main(void) {
int n;
scanf("%d", &n);
int a[n];

}

Since there is no way to test if there is enough space on the
stack, it is impossible to portably ensure that the program does
not crash.

Another problem of VLAs is that C allows casts to variable
length types. Since size expressions in such casts may impose
side-effects, this makes the situation rather complex. For
example, consider:

1 ? (int(*)[f(5)])0 : (int(*)[f(3)])0;

where f is the identity function onint. We were unable
to find anything in the standard on which of the function
calls f(5) and f(3) may (or should) be evaluated. It is
reasonable to allow implementations to evaluate neither of
them, as programs can generally be executed correctly without
needing to know the size of array bounds in pointer casts. But
what about:

printf("%d\n",
sizeof(*(1 ? 0 : (int(*)[f(3)])0)));

Here an implementation clearly needs to evaluate the function
call, to obtain the value of thesizeof, even though it is in
the branch of the conditional that is not taken. The standard
includes the following related clause [7: 6.7.6.2p5]:

Where a size expression is part of the operand of a
sizeof operator and changing the value of the size
expression would not affect the result of the operator,
it is unspecified whether or not the size expression
is evaluated.

Since in this example the size expression in the ‘not to be
taken’ branch has to be evaluated, one may wonder whether
they are also allowed to be evaluated in the ‘not to be taken’
branch of the earlier example.

It also is unclear how these function calls in casts are
evaluated with respect to sequence points. As they are evalu-
ated in branches that are not taken, it seems they are exempt
from the normal execution flow of an expression. But if they
already can be executed before the sequence point that starts
the subexpression that contains them, is there a reason they
cannot be executed before the evaluation of the statement that
contains them starts?

The standard’s (implicit) distinction betweenstaticandrun-
time typing is the reason that subject reduction breaks. This
means that an expression can get a more restricted type
during its evaluation. For example, statically the expression
(int(*)[f(5)])0 has type ‘pointer to integer array of
variable length’, whereas at run-time it will become of the
more restricted type ‘pointer to integer array of lengthn’
wheren is the result of evaluatingf(5).

The previous example already indicates that one has to
sacrifice either subject reduction or uniqueness of types (that
is, each expression has a unique type). However, we will argue
that the situation is worse, and that for a reduction semantics
whose rules are applied locally, subject reduction will fail even
if expressions are allowed to have multiple types. Consider:

1 ? (int(*)[f(5)])0 : (int(*)[3])0

In this example the two subexpressions(int(*)[f(5)])0
and (int(*)[3])0 have (static) typesint(*)[*] and
int(*)[3], respectively, whereT[*] denotes the variable
length array type overT . By typing of the conditional and
composite types [7: 6.5.15p6, 6.2.7] the full expression has
type int(*)[3].

If the function callf(5) gets evaluated, and returns a value
different from3, typing breaks,i.e., a well typed expression is
evaluated to a non-well typed expression. Luckily, the standard
imposes undefined behavior on this example by means of the
following clause [7: 6.7.6.2p5]:

If the two array types are used in a context which
requires them to be compatible, it is undefined
behavior if the two size specifiers evaluate to unequal
values.

Currently, our C semantics deals with this problem by allow-
ing evaluation of size expressions at any place in a bigger
expression. If the conditional gets reduced, we check if both
arguments have compatible types, and if not, assign undefined
behavior. This approach has two obvious drawbacks. First
of all, it breaks subject reduction, and secondly, undefined
behavior gets caught at a late moment, or might not get caught
at all. For example, in

g() ? (int(*)[f(5)])0 : (int(*)[3])0

it may happen thatf(5) is evaluated first, and returns a value
unequal to3, in which case typing has already failed. After
that, it may happen that the call tog() does not return (for

example because it invokes anexit or loops indefinitely),
resulting in the undefined behavior not getting described by
the semantics.

But does this mean that in a formal C semantics each
reduction step has to establish that typing does not break
in order to catch undefined behavior? This would obviously
fix subject reduction, but destroys the locality of a small-step
reduction semantics.

VIII. C ONCLUSION

A. Discussion

We will finish our discussion of the subtleties of the C
standard by asking the following questions:

1) Is the interpretation of the C standard that we presented
in this paper a reasonable reading of the standard?

2) Is the C standard itself (under this interpretation) rea-
sonable?

First of all, we claim that the standard is not fully clear. The
standard committee’s response in Defect Report #260 [9] is
not obvious from the text of the standard. Also, Maclaren [18]
presents various issues about which the standard does not have
an unambiguous reading, even when taking Defect Report
#260 into account. One might even claim that the exact text of
the standard (without giving it a liberal reading) is inconsistent,
i.e. that from a logical point of view the standard implies
anything one likes. But of course that position is not very
productive.

Even the relation between Defect Report #260 and the
official standard text is not completely clear. The reportdoes
include a response by the standard committee and as such
should not be taken lightly. It was a clarification of the C99
version of the standard, and hence it seems obvious that there
was some defect in that text. However, the parts of the text
of the standard in the C11 version relevant for the issues
discussed in the report have not changed from their counterpart
in the C99 standard at all.

The standard makes a very clear distinction between ‘nor-
mative’ and ‘informative’ text in the standard, and the ex-
planations of Defect Report #260 certainly are not part of
the ‘normative’ text of the C11 standard. Therefore, it seems
an option to decide to ignore the committee’s response in
this report, especially the notion of theorigin of an object,
which does not occur in the standard at all. In that case,
one could read the standard in a ‘Kernighan & Ritchie’
manner. But of course in that case the optimizations of for
example GCCwill be incorrect, and one will get standard
compliant behavior only when compiling using flags like
-fno-strict-aliasing. Many real world programs, like
for example the Linux kernel, are compiled with such flags
anyway [24], but on the other hand this attitude would mean
that strictly conforming programs would have less than optimal
performance, because they would need to generate more code
to test for changes due to aliasing.

The second question, whether the standard can and should
be improved is even more interesting. We think that the fact

that it is very difficult (or maybe even impossible) to give a
mathematically precise version of the memory model from
the standard, is a sign that one should aim for a clearer
explanation of the issues involved. However, it seems difficult
to give a version that is both fully clear and still is reasonably
compatible with the current standard.

For example, in the memory model of CompCert, bytes
(objects of typeunsigned char) that constitute a pointer
are not simple sequences of bits, but instead are abstract
entities [16]. This means that treating them like numbers –
calculating with them, printing them – will exhibit undefined
behavior. This seems not in the spirit of the language. On the
other hand, for actual practical programs, this restriction on
the programs that are considered meaningful probably is not
important at all.

B. Future work

The future work in our Formalin project has two directions.
On the one hand we are porting the prototype semantics that
we have developed in Haskell to the theorem prover Coq.
For the moment, this development mainly ignores the issues
described in this paper and aims at an elegant semantics for
non-local control flow, block scoped variables, expressions
with side effects, and sequence points. In this formalization
we both give an operational semantics and an axiomatic
semantics, and we prove that the axiomatic semantics is correct
with respect to the operational semantics.

On the other hand we are experimenting with a formal
memory model in which the issues from this paperare taken
into account. The state of the memory in this model consists
of a pair of anabstractversion of the memory (like the one in
our Haskell prototype), and aconcreteversion of the memory
(which consists of sequences of bytes encoding the data). The
puzzle is how to deal with information flow between these
two components. For the moment we have not been able to
resolve these issues in a satisfactory way.

If we succeed in creating such a ‘Defect Report #260-
compliant’ formal memory model, we will incorporate it into
the operational semantics that we already are working on. We
then also will be able to take a guaranteed consistent position
on the issues discussed in this paper.

Acknowledgments.We thank Rob Arthan, Sandrine Blazy,
Herman Geuvers, Andreas Lochbihler, Michael Norrish and
Erik Poll for discussions on this topic, Xavier Leroy for
details on the CompCert memory model, and the people
on thecomp.std.c newsgroup for helpful discussions on
the C standard. This work is financed by the Netherlands
Organisation for Scientific Research (NWO).

REFERENCES

[1] Sandrine Blazy and Xavier Leroy. Mechanized semantics for
the Clight subset of the C language.Journal of Automated
Reasoning, 43(3):263–288, 2009.

[2] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk
Leinenbach, Michal Moskal, Thomas Santen, Wolfram Schulte,
and Stephan Tobies. VCC: A Practical System for Verifying

Concurrent C. InTPHOLs, volume 5674 ofLNCS, pages 23–
42, 2009.

[3] Jeffrey Cook and Sakthi Subramanian. A Formal Semantics
for C in Nqthm. Technical Report 517D, Trusted Information
Systems, 1994.

[4] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and
Jonathan Walpole. Buffer Overflows: Attacks and Defenses for
the Vulnerability of the Decade. InDISCEX, 2000.

[5] Chucky Ellison and Grigore Rosu. An executable formal
semantics of C with applications. InPOPL, pages 533–544,
2012.

[6] Chucky Ellison and Grigore Rosu. Slides for the POPL’12
talk on [5], 2012. http://fsl.cs.uiuc.edu/pubs/
ellison-rosu-2012-popl-slides.pdf.

[7] International Organization for Standardization.INCITS/ISO/IEC
9899-2011: Programming languages – C. ISO Working Group
14, 2012.

[8] International Organization for Standardization. Rationale for
International Standard – Programming Languages – C, 2003.
Revision 5.10.

[9] International Organization for Standardization. WG14 Defect
Report Summary for ISO/IEC 9899:1999, 2008.http://
www.open-std.org/jtc1/sc22/wg14/www/docs/.

[10] Bart Jacobs and Frank Piessens. The VeriFast program verifier.
Technical Report CW-520, Department of Computer Science,
Katholieke Universiteit Leuven, Belgium, 2008.

[11] Brian W. Kernighan and Dennis M. Ritchie.The C Program-
ming Language. Prentice Hall, 2nd edition, 1988.

[12] Gerwin Klein et al. seL4: formal verification of an OS kernel.
In SOSP, pages 207–220, 2009.

[13] Robbert Krebbers and Freek Wiedijk. A Formalization of the
C99 Standard in HOL, Isabelle and Coq. InCICM, volume
6824 ofLNAI, pages 297–299, 2011.

[14] Patrice Lacroix and Jules Desharnais. Buffer Overflow Vulner-
abilities in C and C++. Rapport de Recherche DIUL-RR-0803,
Universit́e Laval, Qúebec, Canada, 2008.

[15] Dirk Leinenbach. Compiler Verification in the Context of
Pervasive System Verification. PhD thesis, Saarland University,
Saarbr̈ucken, 2008.

[16] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon
Stewart. The CompCert Memory Model, Version 2. Research
report RR-7987, INRIA, 2012.

[17] Xavier Leroy and Sandrine Blazy. Formal verification of
a C-like memory model and its uses for verifying program
transformations.Journal of Automated Reasoning, 41(1):1–31,
2008.

[18] Nick Maclaren. What is an Object in C Terms?, 2001. Mailing
list message,http://www.open-std.org/jtc1/sc22/
wg14/9350.

[19] Yannick Moy and Claude Marché. Jessie Plugin Tutorial,
Beryllium version. INRIA, 2009.

[20] Michael Norrish.C formalised in HOL. PhD thesis, University
of Cambridge, 1998.

[21] Nikolaos Papaspyrou.A Formal Semantics for the C Program-
ming Language. PhD thesis, National Technical University of
Athens, 1998.

[22] Thomas Sudkamp.Languages and machines - an introduction
to the theory of computer science. Addison-Wesley, 1988.

[23] TIOBE Software. TIOBE index. http://www.tiobe.
com/content/paperinfo/tpci/, 2012.

[24] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai
Zeldovich, and M. Frans Kaashoek. Undefined Behavior: What
Happened to My Code? InAPSys, 2012.

[25] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding
and understanding bugs in C compilers. InPLDI, pages 283–
294, 2011.

http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl-slides.pdf
http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl-slides.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/
http://www.open-std.org/jtc1/sc22/wg14/9350
http://www.open-std.org/jtc1/sc22/wg14/9350
http://www.tiobe.com/content/paperinfo/tpci/
http://www.tiobe.com/content/paperinfo/tpci/

	Introduction
	Problem
	Approach
	Related Work
	Contribution

	Pointer aliasing versus bit representations
	The common initial sequence
	Indeterminate values
	Uninitialized variables
	Freeing memory
	Padding bytes

	C is not Turing complete
	Strictly conforming C programs do not exist
	Failure of the subject reduction property
	Conclusion
	Discussion
	Future work

