
Document: N1511
Date: 2010/09/23
Author: Jim Thomas and Fred Tydeman
Subject: Clarifications for wide evaluation

Clause 6.3.1.4 speaks of converting “a finite value of real floating type”. This appears to mean a
value representable in the type, which does not include values represented in greater precision
and range than their semantic type. The following change includes them:

6.3.1.4 #1, first sentence: change “When a finite value of real floating type is converted to

an integer type …” to “When a real finite floating-point value is converted to an integer

type …”

Clause 6.3.1.5 refers to promoting or demoting a floating type. This is ambiguous - maybe
meaning a value representable in the type, or maybe a value with extra precision and range.
Paragraph #2 has words intended to cover the case of extra precision and range, but paragraph
#1 does not. A change in the style of the one above for 6.3.1.4 is clearer and covers the
specification in both paragraphs:

6.3.1.5 #1, #2 change

When a float is promoted to double or long double, or a double is

promoted to long double, its value is unchanged (if the source value is

represented in the precision and range of its type).

When a double is demoted to float, a long double is demoted to

double or float, or a value being represented in greater precision and range

than required by its semantic type (see 6.3.1.8) is explicitly converted (including

to its own type), if the value being converted can be represented exactly in the

new type, it is unchanged. If the value being converted is in the range of values

that can be represented but cannot be represented exactly, the result is either the

nearest higher or nearest lower representable value, chosen in an implementation-

defined manner. If the value being converted is outside the range of values that

can be represented, the behavior is undefined.

to

When a real floating-point value is converted to a floating type, if the value being

converted can be represented exactly in the new type, it is unchanged. If the value

being converted is in the range of values that can be represented but cannot be

represented exactly, the result is either the nearest higher or nearest lower

representable value, chosen in an implementation-defined manner. If the value

being converted is outside the range of values that can be represented, the

behavior is undefined.

