
ATOMIC PROPOSAL, N1485
BLAINE GARST

APPLE INC.

blaine@apple.com

M A Y 2 7 , 2 0 1 0
Draft 10

1 I n f i t n i t e L o o p D r i v e • C u p e r t i n o • C a l i f o r n i a • 9 5 0 1 4

mailto:blaine@apple.com
mailto:blaine@apple.com

Introduction

The C1x atomics section 7.16 was crafted with a keen eye to compatibility with C++0x so that there were clear and
unambiguous ways of writing code portable across the two languages. A somewhat informally determined design
constraint at the beginning precluded direct language treatment for atomics in C, unlike that which atomics enjoys in
C++0x. In fact, the library-only approach for C1x allows only the integral types and a limited set of predefined
atomic typedefs for some of the other, but not all, typedefs in C1x. There is no compile time mechanism possible to
extend the typedefs to other popular platform specific typedefs such as int32_t, thus limiting portability of code that
would otherwise use such useful typedefs.

The proposal is to add an _Atomic type qualifier to the C1x language such that atomics can also apply to the full set
of C1x types in a natural way, including direct use of the compound assignment operators. Through several revisions
incorporating suggestions from Lawrence Crowl, Paul McKenney, Hans Boehm, and Thomas Plum, this proposal
unambiguously increases compatibility with C++0x. This is achieved by preserving not only the operational se-
mantics of sequential-consistency but also representational equivalence leading to direct interoperability of _Atomic
qualified objects with their C++0x atomic<T> counterparts. Moreover, an additional declarative syntax is proposed
such that C1x atomic programs can be written that compile, run, and interoperate directly with C++0x.

The interoperability is so great that we, at Lawrence’s suggestion, can define the fundamental atomic_T types intro-
duced in the atomics section to be _Atomic T and gain operator overloading of these types much as is possible in
C++0x.

High Level Description

1. A new keyword _Atomic is introduced. It is used, alone, as a type qualifier. An implementation is allowed to relax
the requirement of having the same representation and alignment of the corresponding non-atomic type, as long as
appropriate conversions are made, including via the cast operator.

2. The _Atomic keyword also can also be used in the form _Atomic(T), where T is a type, as a type specifier equiva-
lent to _Atomic T. Thus, _Atomic(T) x, y; declares x and y with the same type, even if T is a pointer type. This al-
lows for trivial C++0x compatibility with a C++ only _Atomic(T) macro definition as atomic<T>.

3. The existing atomic_int et al. typedefs are redefined to be typedefs of _Atomic counterparts.

4. The compound assignment operators (e.g. +=, /=, ^= , ...,) and all forms of ++ and -- are overloaded on atomic ob-
jects to provide sequentially-consistent read-modify-write atomic behavior, whether achieved directly via hard-
ware instructions, by small inline compare-and-swap code sequences, or by support from compiler intrinsics, as
the implementation decides. Thus, even atomic float identifiers can make use of sequentially-consistent operators..

5. Ordinary read and write access to _Atomic identifiers is sequentially-consistent, requiring acquire fences as neces-
sary on the hardware before every read, and release fences after writes so that dependent data can be properly pro-
vided.

6. A new ?= : ternary assignment operator is introduced to express an assign value if identifier has the specific value
operation. When used upon an atomic qualified identifier, a sequentially-consistent compare-and-swap operation
will be performed. This is the only mechanism for doing compare-and-swap on atomic bitfields.

W G 1 4! N 1 4 5 1

1

_Atomic applies uniformly to all types, including scalars, arrays, and aggregates, yet has little to no meaning for
function results and parameters. When applied to structures and unions _Atomic offers guarantees of complete loads
and stores via assignment. Field access of atomic structures and unions presents an inherent data-race that is ex-
pressly left to the implementation to decide and hence leads non-portable undefined behavior which very closely
matches the restrictions in C++0x which are impossible to implement exactly.

Modifications

The following are the formal descriptions of changes necessary to the N1425 proposed draft standard to reflect the
preceding high level descriptions of atomic.

1. Section 6.2.5 para 26+1 (new paragraph after 26)

Further, there is the _Atomic qualifier which may combine with volatile and restrict.
The size and alignment for _Atomic qualified objects are allowed to be implementation
defined independently of the underlying unqualified type as long as requisite represen-
tational conversions are done for all implicit or explicit cases.

2. Section 6.2.6.1

Loads and stores of _Atomic objects are done with sequentially-consistent memory or-
der.

3. Section 6.4.1,

Add _Atomic to the list of keywords.

4. Section 6.4.6

Add ?= to list of punctuators.

5. Section 6.5.2.4

Postfix ++ and -- operations on atomic objects are atomic read-modify with
sequentially-consistent memory order. [Note: where pointers to atomic objects can be
formed, these operations are equivalent, where T is the type of E1, to the code sequence

T tmp;
T result = E1;
do {
 tmp = result OP 1;
} while (!atomic_compare_exchange_strong(&E1, &result, tmp));

W G 1 4! N 1 4 5 1

2

where result is the result of the operation.]

6. Section 6.5.3.1

Prefix ++ and -- operations on atomic objects are atomic read-modify with sequentially-
consistent memory order. [Note: where pointers to atomic objects can be formed, these
operations are equivalent, where T is the type of E1, to the code sequence

T result;
T expected = E1;
do {
 result = expected OP 1;
} while (!atomic_compare_exchange_strong(&E1, &expected, result));

where result is the result of the operation.]

7. Section 6.5.16.2 Compound Assignment, para 3, Semantics

If E1 is atomic, the operations are atomic read-modify with sequentially-consistent
memory order. [Note: where pointers to atomic objects can be formed, these operations
are equivalent, where T is the type of E1, to the code sequence

T result;
T expected = E1;
do {
 result = expected OP E2;
} while (!atomic_compare_exchange_strong(&E1, &expected, result));

where result is the result of the operation.]

8. Section 6.5.16.3 The ternary assignment operator ?= :

The ternary operator lvalue ?= candidateExpr : replacementExpr tests that the lvalue has
candidateExpr value and if so assigns the replacementExpr value, yielding a boolean value
affirming or denying that the assignment occurred. If lvalue is atomic, the test and as-
signment must be performed with sequentially-consistent behavior, e.g. the test-and-set
W G 1 4! N 1 4 5 1

3

must be done atomically, with memory-load and memory-store fences. The test is done
as if the == operator were used, and if equal, will replace the value, as is done with
atomic_compare_exchange_strong.

[Example: lazy initialization

_Atomic struct x *GlobalPX = NULL;
struct x *getGlobalPX() {
 struct x *returnValue;
 // the read of GlobalPX synchronizes with assignment to member
 if (! (returnValue = GlobalPX)) {
 struct x *tmp = (struct x *)malloc(sizeof(struct x));
 tmp->member = value;
 if (GlobalPX ?= NULL : tmp)
 returnValue = tmp;
 else
	 free(tmp);
 }
 return returnValue;
}

9. Section 6.7.2 Type Specifiers

Paragraph 1: Add to declaration productions:

 _Atomic (type-name) init-declarator-list[opt] ;

Paragraph 2: add _Atomic (type-name) to the list

(new paragraph)

The _Atomic production qualifies type-name with _Atomic.

10. Section 6.7.3 Type Qualifiers

Paragraph 1: Add _Atomic to the list.

Paragraph 2: (Constraints)

W G 1 4! N 1 4 5 1

4

Access to a member of an _Atomic qualified structure or union results in undefined be-
havior. [Note: A data-race would occur if access to the entire structure in one thread
conflicts with access to a member from another thread, where one or more of such ac-
cesses is a modification, and such a data-race results in undefined behavior].

Paragraph 5: If an attempt is made to refer to an object defined with an _Atomic quali-
fied type through use of an lvalue with non-_Atomic-qualified type, the behavior is un-
defined.

11. Section 7.16.5 Atomic integer and address types

Paragraph 1: For each line in the following table, atomic typedef names are provided as
defined in the direct type column

Atomic typedef! Direct type

atomic_char! ! ! _Atomic char

...

Paragraph 2: same transformation as in Paragraph 1.

12. Section 7.16.6 Operations on integer and address types

Re-title section to be “Operations on atomic types”

W G 1 4! N 1 4 5 1

5

