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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) are worldwide federations of national bodies (member bodies). The work of
preparing International standards is normally carried out through ISO or IEC technical com-
mittees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, gov-
ernmental and non-governmental, in liaison with ISO and IEC, also take part in the work. ISO
collaborates closely with the IEC on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules in the ISO/IEC Directives,
Part 2 [1].

The main task of technical committees is to prepare International Standards. Draft Interna-
tional Standards adopted by the technical committees are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. ISO or IEC shall not be held responsible for identifying any or all such
patent rights.

ISO/IEC 10967-1 was prepared by Technical Committee ISO/IEC JTC 1, Information tech-
nology, Subcommittee SC 22, Programming languages, their environments and system software
interfaces.

This second edition cancels and replaces the first edition which has been technically revised.

ISO/IEC 10967 consists of the following parts, under the general title Information technology
— Language independent arithmetic:

– Part 1: Integer and floating point arithmetic

– Part 2: Elementary numerical functions

– Part 3: Complex integer and floating point arithmetic and complex elementary numerical
functions

Additional parts will specify other arithmetic datatypes or arithmetic operations.

vii
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Introduction

The aims

Programmers writing programs that perform a significant amount of numeric processing have
often not been certain how a program will perform when run under a given language processor.
Programming language standards have traditionally been somewhat weak in the area of numeric
processing, seldom providing an adequate specification of the properties of arithmetic datatypes,
particularly floating point numbers. Often they do not even require much in the way of documen-
tation of the actual arithmetic datatypes by a conforming language processor.

It is the intent of this document to help to redress these shortcomings, by setting out precise
definitions of integer and floating point datatypes, and requirements for documentation.

It is not claimed that this document will ensure complete certainty of arithmetic behaviour in
all circumstances; the complexity of numeric software and the difficulties of analysing and proving
algorithms are too great for that to be attempted.

The first aim of this document is to enhance the predictability and reliability of the behaviour
of programs performing numeric processing.

The second aim, which helps to support the first, is to help programming language standards
to express the semantics of arithmetic datatypes.

The third aim is to help enhance the portability of programs that perform numeric processing
across a range of different platforms. Improved predictability of behaviour will aid programmers
designing code intended to run on multiple platforms, and will help in predicting what will happen
when such a program is moved from one conforming language processor to another.

Note that this document does not attempt to ensure bit-for-bit identical results when programs
are transferred between language processors, or translated from one language into another. How-
ever, experience shows that diverse numeric environments can yield comparable results under most
circumstances, and that with careful program design significant portability is actually achievable.
In addition, the IEC 60559 (IEEE 754) standard goes a long way to ensure bit-for-bit identical
results.

The content

This document defines the fundamental properties of integer and floating point datatypes.
These properties are presented in terms of a parameterised model. The parameters allow enough
variation in the model so that several integer and floating point datatypes on several platforms
are covered. In particular, the IEC 60559 (IEEE 754) datatypes are covered, both those of radix
2 and those of radix 10, and both limited and unlimited integer datatypes are covered.

The requirements of this document cover four areas. First, the programmer must be given
runtime access to the specified operations on values of integer or floating point datatype. Second,
the programmer must be given runtime access to the parameters (and parameter functions) that
describe the arithmetic properties of an integer or floating point datatype. Third, the executing
program must be notified when proper results cannot be returned (e.g., when a computed result
is out of range or undefined). Fourth, the numeric properties of conforming platforms must be
publicly documented.

viii
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This document focuses on the classical integer and floating point datatypes. Subsequent parts
considers common elementary numerical functions (part 2), complex numerical numbers and com-
plex elementary numerical functions (part 3), and possibly additional arithmetic types such as
interval arithmetic and fixed point datatypes.

The benefits

Adoption and proper use of this document can lead to the following benefits.

For programming language standards it will be possible to define their arithmetic semantics
more precisely without preventing the efficient implementation of the language on a wide range
of machine architectures.

Programmers of numeric software will be able to assess the portability of their programs in
advance. Programmers will be able to trade off program design requirements for portability in
the resulting program.

In programs one will be able to determine (at run time) the crucial numeric properties of
the implementation. They will be able to reject unsuitable implementations, and (possibly) to
correctly characterize the accuracy of their own results. Programs will be able to detect (and
possibly correct for) exceptions in arithmetic processing.

End users will find it easier to determine whether a (properly documented) application program
is likely to execute satisfactorily on their platform. This can be done by comparing the documented
requirements of the program against the documented properties of the platform.

Finally, end users of numeric application packages will be able to rely on the correct execution
of those packages. That is, for correctly programmed algorithms, the results are reliable if and
only if there is no notification.

ix



ISO/IEC WD 10967-1.2:2010(E) Working draft

x



EDITOR’S WORKING DRAFT ISO/IEC WD 10967-1.2:2010(E)

Information technology —
Language independent arithmetic —

Part 1: Integer and floating point arithmetic

1 Scope

This document specifies properties of many of the integer and floating point datatypes available in
a variety of programming languages in common use for mathematical and numerical applications.

It is not the purpose of this document to ensure that an arbitrary numerical function can be
so encoded as to produce acceptable results on all conforming datatypes. Rather, the goal is to
ensure that the properties of the arithmetic on a conforming datatype are made available to the
programmer. Therefore, it is not reasonable to demand that a substantive piece of software run
on every implementation that can claim conformity to this document.

An implementor may choose any combination of hardware and software support to meet the
specifications of this document. It is the datatypes and operations on values of those datatypes,
of the computing environment as seen by the programmer/user, that does or does not conform to
the specifications.

The term implementation (of this document) denotes the total computing environment perti-
nent to this document, including hardware, language processors, subroutine libraries, exception
handling facilities, other software, and documentation.

1.1 Inclusions

This document provides specifications for properties of integer and floating point datatypes as
well as basic operations on values of these datatypes. Specifications are included for bounded and
unbounded integer datatypes, as well as floating point datatypes. Boundaries for the occurrence
of exceptions and the maximum error allowed are prescribed for each specified operation. Also the
result produced by giving a special value operand, such as an infinity or a NaN (not-a-number),
is prescribed for each specified floating point operation.

This document provides specifications for:

a) The set of required values of the arithmetic datatype.

b) A number of arithmetic operations, including:

1) comparison operations on two operands of the same type,

2) primitive operations (addition, subtraction, etc.) with operands of the same type,

3) operations that access properties of individual values,

4) conversion operations of a value from one arithmetic datatype to another arithmetic
datatype, at least one of the datatypes conforming to this document, and

1. Scope 1
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5) numerals for all values specified by this document for a conforming datatype.

This document also provides specifications for:

c) The results produced by an included floating point operation when one or more argument
values are IEC 60559 special values.

d) Program-visible parameters that characterise the values and certain aspects of the operations
of an arithmetic datatype.

e) Methods for reporting arithmetic exceptions.

1.2 Exclusions

This document provides no specifications for:

a) Arithmetic and comparison operations whose operands are of more than one datatype. This
document neither requires nor excludes the presence of such “mixed operand” operations.

b) An interval datatype, or the operations on such data. This document neither requires nor
excludes such data or operations.

c) A fixed point datatype, or the operations on such data. This document neither requires nor
excludes such data or operations.

d) A rational datatype, or the operations on such data. This document neither requires nor
excludes such data or operations.

e) The properties of arithmetic datatypes that are not related to the numerical process, such
as the representation of values on physical media.

f) The properties of integer and floating point datatypes that properly belong in programming
language standards or other specifications. Examples include:

1) the syntax of numerals and expressions in the programming language, including the
precedence of operators in the programming language,

2) the syntax used for parsed (input) or generated (output) character string forms for
numerals by any specific programming language or library,

3) the presence or absence of automatic datatype coercions, and the consequences of
applying an operation to values of improper type, or to uninitialized data,

4) the rules for assignment, parameter passing, and returning value.

NOTE – See Clause 7 and Annex D for a discussion of language standards and language
bindings.

The internal representation of values is beyond the scope of this standard. E.g., the value of
the exponent bias, if any, is not specified, nor available as a parameter specified by this document.
Internal representations need not be unique, nor is there a requirement for identifiable fields (for
sign, exponent, and so on).

Furthermore, this document does not provide specifications for how the operations should be
implemented or which algorithms are to be used for the various operations.

2 Scope
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2 Conformity

It is expected that the provisions of this document will be incorporated by reference and further
defined in other International Standards; specifically in programming language standards and in
binding standards.

A binding standard specifies the correspondence between one or more of the arithmetic data-
types, parameters, and operations specified in this document and the concrete language syntax
of some programming language. More generally, a binding standard specifies the correspondence
between certain datatypes, parameters, and operations and the elements of some arbitrary com-
puting entity. A language standard that explicitly provides such binding information can serve as
a binding standard.

When a binding standard for a language exists, an implementation shall be said to conform to
this document if and only if it conforms to the binding standard. In the case of conflict between a
binding standard and this document, the specifications of the binding standard takes precedence.

When a binding standard requires only a subset of the integer or floating point datatypes
provided, an implementation remains free to conform to this document with respect to other
datatypes independently of that binding standard.

When a binding standard requires only a subset of the operations specified in this document,
an implementation remains free to conform to this document with respect to other operations,
independently of that binding standard.

When no binding standard exists, an implementation conforms to this document if and only
if it provides one or more datatypes and operations that together satisfy all the requirements of
clauses 5 through 8 that are relevant to those datatypes and operations. The implementation
shall then document the binding.

Conformity to this document is always with respect to a specified set of datatypes and set of
operations. Under certain circumstances, conformity to IEC 60559 is implied by conformity to
this document.

An implementation is free to provide arithmetic datatypes and arithmetic operations that do
not conform to this document or that are beyond the scope of this document. The implementation
shall not claim conformity to this document for such datatypes or operations.

An implementation is permitted to have modes of operation that do not conform to this doc-
ument. A conforming implementation shall specify how to select the modes of operation that
ensure conformity. However, a mode of operation that conforms to this document should be the
default mode of operation.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. See Annex C.7 for recommendations on the proper content
of a binding standard, Annex E for an example of a conformity statement, and Annex D
for suggested language bindings.

2 A complete binding for this document may include (explicitly or by reference) a binding
for IEC 60559 as well. See 5.2.1 and Annex B.

3 It is not possible to conform to this document without specifying to which datatypes and
set of operations, and modes of operation, conformity is claimed.
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4 This document requires that certain integer operations are made available for a conform-
ing integer datatype, and that certain floating point operations are made available for a
conforming floating point datatype.

5 All the operations specified in this document for a datatype must be provided for a con-
forming datatype, in a conforming mode of operation for that datatype.

3 Normative references

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

IEC 60559, Standard for floating-point arithmetic.

ISO/IEC 10967-2, Information technology – Language independent arithmetic – Part 2:
Elementary numerical functions.

ISO/IEC 10967-3, Information technology – Language independent arithmetic – Part 3:
Complex integer and floating point arithmetic and complex elementary numerical func-
tions.

4 Symbols and definitions

4.1 Symbols

4.1.1 Sets and intervals

In this document, Z denotes the set of mathematical integers, R denotes the set of classical real
numbers, and C denotes the set of complex numbers over R. Note that Z ⊂ R ⊂ C, and Z ⊂ C.

The conventional notation for set definition and manipulation is used.

The following notation for intervals is used in this document:

[x, z] designates the interval {y ∈ R | x 6 y 6 z},
]x, z] designates the interval {y ∈ R | x < y 6 z},
[x, z[ designates the interval {y ∈ R | x 6 y < z}, and
]x, z[ designates the interval {y ∈ R | x < y < z}.

NOTE – The notation using a round bracket for an open end of an interval is not used, for
the risk of confusion with the notation for pairs.

4.1.2 Operators and relations

All prefix and infix operators have their conventional (exact) mathematical meaning. The con-
ventional notation for set definition and manipulation is also used. In particular, this document
uses:

4 Symbols and definitions
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⇒ and ⇔ for logical implication and equivalence
+, −, /, |x|, bxc, dxe, and round(x) on real values
· for multiplication on real values
<, 6, >, and > between real values
= and 6= between real as well as special values
max on non-empty upwardly closed sets of real values
min on non-empty downwardly closed sets of real values
∪, ∩, ∈, 6∈, ⊂, ⊆, *, 6=, and = with sets
× for the Cartesian product of sets
→ for a mapping between sets
| for the divides relation between integer values
xy,
√
x, logb on real values

NOTE 1 – ≈ is used informally, in notes and the rationale.

For x ∈ R, the notation bxc designates the largest integer not greater than x:

bxc ∈ Z and x− 1 < bxc 6 x

the notation dxe designates the smallest integer not less than x:

dxe ∈ Z and x 6 dxe < x+ 1

and the notation round(x) designates the integer closest to x:

round(x) ∈ Z and x− 0.5 6 round(x) 6 x+ 0.5

where in case x is exactly half-way between two integers, the even integer is the result.

The divides relation (|) on integers tests whether an integer i divides an integer j exactly:

i|j ⇔ (i 6= 0 and i · n = j for some n ∈ Z)

NOTE 2 – i|j is true exactly when j/i is defined and j/i ∈ Z.

4.1.3 Exceptional values

The parts of ISO/IEC 10967 use the following six exceptional values:

a) inexact: the result is rounded and different from the exact result.

b) underflow: the absolute value of the unrounded result is less than the smallest normal
value, and the rounded result may have lost accuracy due to the denormalisation (more
than lost by ordinary rounding if the exponent range was unbounded).

c) overflow: the rounded result (when rounding as if the exponent range was unbounded) is
larger than can be represented in the result datatype.

d) infinitary: the corresponding mathematical function has a pole at the finite argument
point, or the result is otherwise infinite from finite arguments.

NOTE – infinitary is a generalisation of divide by zero.

e) invalid: the operation is undefined but not infinitary, or the result is in C but not in R, for
the given arguments.

4.1.3 Exceptional values 5
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f) absolute precision underflow: indicates that the arguments are such that the density
of representable argument values is too small in the neighbourhood of the given argument
values for a numeric result to be considered appropriate to return. Used for operations
that approximate trigonometric functions (Part 2 and Part 3), and complex hyperbolic and
exponentiation functions (Part 3).

For the exceptional values, a continuation value may be given in this document in parenthesis
after the exceptional value.

4.1.4 Special values

The following symbols represent special values defined in IEC 60559 and used in this document:

−−−0, +∞+∞+∞, −∞−∞−∞, qNaN, and sNaN.

These values are not part of I or F (see clause 5.2 for a definition of these datatypes), but if
iec 559F (see clause 5.2.1) has the value true, these values are included in the floating point
datatype in the implementation that corresponds to F .

NOTE – This document uses the above five special values for compatibility with IEC 60559.
In particular, the symbol −−−0 (in bold) is not the application of (mathematical) unary − to
the value 0, and is a value logically distinct from 0.

The specifications for floating point operations cover the results to be returned by an operation
if given one or more of the IEC 60559 special values −−−0, +∞+∞+∞, −∞−∞−∞, or NaNs as input values.
These specifications apply only to systems which provide and support these special values.

If an implementation is not capable of representing a−−−0 result or continuation value, 0 shall be
used as the actual result or continuation value. If an implementation is not capable of representing
a prescribed result or continuation value of the IEC 60559 special values +∞+∞+∞, −∞−∞−∞, or qNaN, the
actual result or continuation value is binding or implementation defined.

4.1.5 The Boolean datatype

The datatype Boolean consists of the two values true and false.

NOTE – Mathematical relations are true or false (or undefined, if an operand is undefined),
which are abstract conditions, not values in a datatype. In contrast, true and false are values
in Boolean.

4.1.6 Operation specification framework

Each of the operations are specified using a mathematical notation with cases. Each case condition
is intended to be disjoint with the other cases, and encompass all non-special values as well as
some of the special values.

Mathematically, each argument to an operation is a pair of a value and a set of exceptional
values and likewise for the return value. However, in most cases only the first part of this pair is
written out in the specifications. The set of exceptional values returned from an operation is at
least the union of the set of exceptional values from the arguments. Any new exceptional value
that the operation itself gives rise to is given in the form exceptional value(continuation value)
indicating that the second (implicit) part of the mathematical return value not only is the union
of the second (implicit) parts of the arguments, but in addition is unioned with the singleton set
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of the given exceptional value, or, in the case of underflow or overflow, the set of the given
exceptional value and inexact.

In an implementation, the exceptional values usually do not accompany each argument and
return value, but are instead handled as notifications. See Clause 6.

Notifications shall be internal to each computational thread, whether threads are explicit or
implicit in the program as seen by the programmer.

Notifications that may be relevant for a value occurring in a thread should be communicated to
a receiving thread when values (of any datatype, not just numeric ones) may be passed between
threads. In such instances, the exceptional values are associated with the value, even though it
may pick up notifications in the thread that arose for a different computation in that thread and
were not cleared.

NOTE 1 – If notifications were arbitrarily seen in other threads, it would be very difficult to
know which computation (thread) it is that might have caused the notification, and thus may
trigger notification handling when not appropriate in an unrelated thread.

Therefore it is essential that notifications are internal to each computational thread, when not
communicating a value with attached notifications.

If notification (even when recorded in indicators) are trimmed away when communicating a
value (of whatever type) to another thread may fail to cause notification handling when it
would be appropriate. However, many existing methods for remote procedure calling do not
communicate notifications (even when recorded in indicators).

4.2 Definitions of terms

For the purposes of this document, the following definitions apply.

4.2.1
accuracy
The closeness between the true mathematical result and a computed result.

4.2.2
arithmetic datatype
A datatype whose non-special values are members of Z, R, or C.

4.2.3
continuation value
A computational value used as the result of an arithmetic operation when an exception occurs.
Continuation values are intended to be used in subsequent arithmetic processing. A continuation
value can be a (in the datatype representable) value in R or be an IEC 60559 special value.
(Contrast with exceptional value. See Clause 6.2.1.)

4.2.4
denormalisation
The inclusion of lead zero digits, with corresponding adjustment of the exponent, logically done
before rounding (otherwise there may be double rounding). May be done in order to get the
exponent within representable range.

4.2 Definitions of terms 7
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4.2.5
denormalisation loss
A larger than normal rounding error caused by the fact that denormalisation, for instance to
a subnormal value (including zeros), may loose precision more than rounding would do if the
exponent range was unbounded. (See Clause 5.2.4 for a full definition.)

4.2.6
error
〈in computed value〉 The difference between a computed value and the mathematically correct
value. Used in phrases like “rounding error” or “error bound”.

4.2.7
error
〈computation gone awry〉 A synonym for exception in phrases like “error message” or “error
output”. Error and exception are not synonyms in any other contexts.

4.2.8
exception
The inability of an operation to return a suitable finite numeric result from finite arguments.
This might arise because no such finite result exists mathematically (infinitary (e.g., at a pole),
invalid (e.g., when the true result is in C but not in R)), or because the mathematical result
cannot, or might not, be representable with sufficient accuracy (underflow, overflow) or viability
(absolute precision underflow).

NOTES

1 absolute precision underflow is not used in this document, but in Part 2 (and thereby
also in Part 3).

2 The term exception is here not used to designate certain methods of handling notifications
that fall under the category ‘change of control flow’. Such methods of notification han-
dling will be referred to as “[programming language name] exception”, when referred to,
particularly in annex D.

4.2.9
exceptional value
A non-numeric value produced by an arithmetic operation to indicate the occurrence of an excep-
tion. Exceptional values are not used in subsequent arithmetic processing. (See clause 5.)

NOTES

3 Exceptional values are used as a defining formalism only. With respect to this document,
they do not represent values of any of the datatypes described. There is no requirement
that they be represented or stored in the computing system.

4 Exceptional values are not to be confused with the NaNs and infinities defined in IEC 60559.
Contrast this definition with that of continuation value above.

4.2.10
helper function
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A function used solely to aid in the expression of a requirement. Helper functions are not accessible
to the programmer, and are not required to be part of an implementation.

4.2.11
implementation (of this document)
The total arithmetic environment presented to a programmer, including hardware, language pro-
cessors, exception handling facilities, subroutine libraries, other software, and all pertinent docu-
mentation.

4.2.12
literal
A single syntactic entity denoting a constant value.

4.2.13
normal value
A non-special value of a floating point datatype F that is not subnormal. (See FN in Clause 5.2
for a full definition.)

4.2.14
notification
The process by which a program (or that program’s user) is informed that an arithmetic exception
has occurred. For example, dividing 2 by 0 results in a notification for infinitary. (See Clause 6
for details.)

4.2.15
numeral
A numeric literal. It may denote a value in Z or R, −−−0, an infinity, or a NaN.

4.2.16
operation
A function directly available to the programmer, as opposed to helper functions or theoretical
mathematical functions.

4.2.17
pole
A mathematical function f has a pole at x0 if x0 is finite, f is defined, finite, monotone, and
continuous in at least one side of the neighbourhood of x0, and lim

x→x0

f(x) is infinite.

4.2.18
precision
The number of digits in the fraction of a floating point number. (See Clause 5.2.)

4.2.19
rounding
The act of computing a representable final result for an operation that is close to the exact (but
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unrepresentable in the result datatype) result for that operation. Note that a suitable representable
result may not exist (see Clause 5.2.5).

4.2.20
rounding function
Any function rnd : R → X (where X is a given discrete and unlimited subset of R) that maps
each element of X to itself, and is monotonic non-decreasing. Formally, if x and y are in R,

x ∈ X ⇒ rnd(x) = x
x < y ⇒ rnd(x) 6 rnd(y)

Note that if u is between two adjacent values in X, rnd(u) selects one of those adjacent values.

4.2.21
round to nearest
The property of a rounding function rnd that when u ∈ R is strictly between two adjacent
values in X, rnd(u) selects the one nearest u. If the adjacent values are equidistant from u,
either value can be chosen deterministically but in such a way that sign symmetry is preserved
(rnd(−u) = −rnd(u)).

4.2.22
round toward minus infinity
The property of a rounding function rnd that when u ∈ R is strictly between two adjacent values
in X, rnd(u) selects the one less than u.

4.2.23
round toward plus infinity
The property of a rounding function rnd that when u ∈ R is strictly between two adjacent values
in X, rnd(u) selects the one greater than u.

4.2.24
shall
A verbal form used to indicate requirements strictly to be followed in order to conform to the
standard and from which no deviation is permitted. (Quoted from the directives [1].)

4.2.25
should
A verbal form used to indicate that among several possibilities one is recommended as particu-
larly suitable, without mentioning or excluding others; or that (in the negative form) a certain
possibility is deprecated but not prohibited. (Quoted from the directives [1].)

4.2.26
signature (of a function or operation)
A summary of information about an operation or function. A signature includes the function or
operation name; a subset of allowed argument values to the operation; and a superset of results
from the function or operation (including exceptional values if any), if the argument is in the
subset of argument values given in the signature.
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The signature addI : I×I → I∪{overflow} states that the operation named addI shall accept
any pair of values in I as input, and when given such input shall return either a single value in I
as its output or the exceptional value overflow possibly accompanied by a continuation value.

A signature for an operation or function does not forbid the operation from accepting a wider
range of arguments, nor does it guarantee that every value in the result range will actually be
returned for some argument(s). An operation given an argument outside the stipulated argument
domain may produce a result outside the stipulated result range.

NOTE 5 – In particular, IEC 60559 special values are not in F , but must be accepted as
arguments if iec 559F has the value true.

4.2.27
subnormal
denormal (obsolete)
A value of a floating point datatype F , or −−−0, whose absolute value is strictly less than the
smallest positive normal value in F . (See FS in Clause 5.2 for a full definition.)

4.2.28
ulp
The value of one “unit in the last place” of a floating point number. This value depends on
the exponent, the radix, and the precision used in representing the number. Thus, the ulp of a
normalised value x (in F ), with exponent t, precision pF , and radix rF , is rt−pFF , and the ulp of a
subnormal value is fminDF . (See Clause 5.2.)

5 Specifications for integer and floating point datatypes and op-
erations

An arithmetic datatype consists of a set of values and is accompanied by operations that take
values from an arithmetic datatype and return a value in an arithmetic datatype (usually the same
as for the arguments, but there are exceptions, like for the conversion operations) or a boolean
value. For any particular arithmetic datatype, the set of non-special values is characterized by a
small number of parameters. An exact definition of the value set will be given in terms of these
parameters.

Each operation is given a signature and is further specified by a number of cases. These cases
may refer to mathematical functions, to other operations, and to helper functions (specified in
this document). They also use special values and exceptional values.

Given the datatype’s non-special value set, V , the accompanying arithmetic operations will
be specified as mathematical functions on V union the special values that may arise from the
operation (or helper function). These functions typically return values in V or a special value,
but they may instead nominally return exceptional values (that have no arithmetic datatype, and
are not to be confused with the special values) that are often specified along with a continuation
value. Though nominally listed as a return value, an exceptional value is mathematically really
part of a second component of the result, as explained in clause 4.1.6, and is to be handled as a
notification as described in clause 6.

The exceptional values used in this document are underflow, inexact, overflow, infinitary
(generalisation of division-by-zero), and invalid. Parts 2 and 3 will also use the exceptional value
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absolute precision underflow for the operations that correspond to cyclic functions. For many
cases this document specifies which continuation value to use with a specified exceptional value.
The continuation value is then expressed in parenthesis after the expression of the exceptional
value. For example, infinitary(+∞+∞+∞) expresses that the exceptional value infinitary in that case
is to be accompanied by a continuation value of +∞+∞+∞ (unless the binding states differently). In
case the notification is by recording in indicators (see Clause 6.2.1), the continuation value is used
as the actual return value. This document sometimes leaves the continuation value unspecified,
in which case the continuation value is implementation defined.

Whenever an arithmetic operation (as defined in this clause) returns an exceptional value
(mathematically, that a non-empty exceptional value set is unioned with the union of exceptions
from the arguments, as the exceptional values part of the result), notification of this shall occur
as described in Clause 6.

An implementation of a conforming integer or floating point datatype shall include all non-
special values defined for that datatype by this document. However, the implementing datatype is
permitted to include additional values (for example, and in particular, IEC 60559 special values).
This document specifies the behaviour of integer operations when applied to infinitary values,
but not for other such additional values. This document specifies the behaviour of floating point
operations when applied to IEC 60559 special values, but not for other such additional values.

An implementation of a conforming integer or floating point datatype shall be accompanied
by all the operations specified for that datatype by this document. Additional operations are
explicitly permitted.

The datatype Boolean is used for parameters and the results of comparison operations. An
implementation is not required by this document to provide a Boolean datatype, nor is it re-
quired by this document to provide operations on Boolean values. However, an implementation
shall provide a method of distinguishing true from false as parameter values and as results of
operations.

NOTE – This document requires an implementation to provide methods to access values,
operations, and other facilities. Ideally, these methods are provided by a language or binding
standard, and the implementation merely cites this standard. Only if a binding standard
does not exist, must an individual implementation supply this information on its own. See
Annex C.7.

5.1 Integer datatypes and operations

The non-special value set, I, for an integer datatype shall be a subset of Z, characterized by the
following parameters:

bounded I∈ Boolean (whether the set I is finite)
minintI ∈ I ∪ {−∞−∞−∞} (the smallest integer in I if boundedI = true)
maxintI ∈ I ∪ {+∞+∞+∞} (the largest integer in I if boundedI = true)

In addition, the following parameter characterises one aspect of the special values in the datatype
corresponding to I in the implementation:

hasinfI∈ Boolean (whether the corresponding datatype has −∞−∞−∞ and +∞+∞+∞)

NOTE 1 – The first edition of this document also specified the parameter moduloI . A binding
may still have a parameter moduloI , and for conformity to this second edition, that parameter
is to have the value false. Part 2 includes specifications for operations add wrapI , sub wrapI ,
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and mul wrapI . If the parameter moduloI has the value true (non-conforming case), that
indicates that the binding binds the basic integer arithmetic operations to the corresponding
wrapping operations instead of the addI , subI , and mulI operations of this document.

If boundedI is false, the set I shall satisfy

I = Z
In this case, hasinfI shall be true, the value of minintI shall be −∞−∞−∞, and the value of maxintI
shall be +∞+∞+∞.

If bounded I is true, then minintI ∈ Z and maxintI ∈ Z and the set I shall satisfy

I = {x ∈ Z | minintI 6 x 6 maxintI}
and minintI and maxintI shall satisfy

maxintI > 0

and one of:

minintI = 0,
minintI = −maxintI , or
minintI = −(maxintI + 1)

A bounded integer datatype with minintI < 0 is called signed. A bounded integer datatype
with minintI = 0 is called unsigned. An integer datatype in which bounded I is false is signed,
due to the requirement above.

An implementation may provide more than one integer datatype. A method shall be provided
for a program to obtain the values of the parameters boundedI , hasinfI , minintI , and maxintI ,
for each conforming integer datatype provided.

NOTES

2 The value of hasinfI does not affect the values of minintI and maxintI for bounded integer
datatypes.

3 Most traditional programming languages call for bounded integer datatypes. Others allow
or require an integer datatype to have an unbounded range. A few languages permit the
implementation to decide whether an integer datatype will be bounded or unbounded. (See
C.5.1.0.1 for further discussion.)

4 Operations on unbounded integers will not overflow, but may fail due to exhaustion of
resources.

5 Unbounded natural numbers are not covered by this document.

6 If the value of a parameter (like boundedI) is dictated by a language standard, implemen-
tations of that language need not provide program access to that parameter explicitly.
But for programmer convenience, minintI should anyway be provided for all signed integer
datatypes, and maxintI should anyway be provided for all integer datatypes.

5.1.1 Integer result function

If bounded I is true, the mathematical operations +, −, and · can produce results that lie outside
the set I even when given values in I. In such cases, the computational operations addI , subI ,
negI , absI , and mulI shall cause an overflow notification.

In the integer operation specifications below, the handling of overflow is specified via the resultI
helper function:

resultI : Z → I ∪ {overflow}

5.1.1 Integer result function 13
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which is defined by:

resultI(x) = x if x ∈ I
= overflow(−∞−∞−∞) if x ∈ Z and x 6∈ I and x < 0
= overflow(+∞+∞+∞) if x ∈ Z and x 6∈ I and x > 0

NOTES

1 For integer operations, this document does not specify continuation values for overflow
when hasinfI = false nor the continuation values for invalid. The binding or implementa-
tion must document the continuation value(s) used for such cases (see Clause 8).

2 For the floating point operations in Clause 5.2 a resultF helper function is used to consis-
tently and succinctly express overflow and denormalisation loss cases.

5.1.2 Integer operations

5.1.2.1 Comparisons

For each provided conforming integer datatype, the following operations shall be provided.

eqI : I × I → Boolean

eqI(x, y) = true if x, y ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and x = y
= false if x, y ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and x 6= y

neqI : I × I → Boolean

neqI(x, y) = true if x, y ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and x 6= y
= false if x, y ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and x = y

lssI : I × I → Boolean

lssI(x, y) = true if x, y ∈ I and x < y
= false if x, y ∈ I and x > y
= true if x ∈ I ∪ {−∞−∞−∞} and y = +∞+∞+∞
= true if x = −∞−∞−∞ and y ∈ I
= false if x ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and y =−∞−∞−∞
= false if x = +∞+∞+∞ and y ∈ I ∪ {+∞+∞+∞}

leqI : I × I → Boolean

leqI(x, y) = true if x, y ∈ I and x 6 y
= false if x, y ∈ I and x > y
= true if x ∈ I ∪ {−∞−∞−∞,+∞+∞+∞} and y = +∞+∞+∞
= true if x =−∞−∞−∞ and y ∈ I ∪ {−∞−∞−∞}
= false if x ∈ I ∪ {+∞+∞+∞} and y =−∞−∞−∞
= false if x = +∞+∞+∞ and y ∈ I

gtrI : I × I → Boolean

gtrI(x, y) = lssF (y, x)
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geqI : I × I → Boolean

geqI(x, y) = leqF (y, x)

5.1.2.2 Basic arithmetic

For each provided conforming integer datatype, the following operations shall be provided. If I is
unsigned, it is permissible to omit the operations negI , absI , and signumI .

negI : I → I ∪ {overflow}
negI(x) = resultI(−x) if x ∈ I

= +∞+∞+∞ if x = −∞−∞−∞
=−∞−∞−∞ if x = +∞+∞+∞

addI : I × I → I ∪ {overflow}
addI(x, y) = resultI(x+ y) if x, y ∈ I

=−∞−∞−∞ if x ∈ I ∪ {−∞−∞−∞} and y =−∞−∞−∞
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ I
= +∞+∞+∞ if x ∈ I ∪ {+∞+∞+∞} and y = +∞+∞+∞
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ I
= invalid if x = +∞+∞+∞ and y =−∞−∞−∞
= invalid if x =−∞−∞−∞ and y = +∞+∞+∞

subI : I × I → I ∪ {overflow}
subI(x, y) = resultI(x− y) if x, y ∈ I

=−∞−∞−∞ if x ∈ I ∪ {−∞−∞−∞} and y = +∞+∞+∞
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ I
= +∞+∞+∞ if x ∈ I ∪ {+∞+∞+∞} and y = −∞−∞−∞
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ I
= invalid if x = +∞+∞+∞ and y = +∞+∞+∞
= invalid if x =−∞−∞−∞ and y =−∞−∞−∞

mulI : I × I → I ∪ {overflow}
mulI(x, y) = resultI(x · y) if x, y ∈ I

= +∞+∞+∞ if x = +∞+∞+∞ and (y = +∞+∞+∞ or (y ∈ I and y > 0))
=−∞−∞−∞ if x = +∞+∞+∞ and (y = −∞−∞−∞ or (y ∈ I and y < 0))
=−∞−∞−∞ if x ∈ I and x > 0 and y =−∞−∞−∞
= +∞+∞+∞ if x ∈ I and x < 0 and y =−∞−∞−∞
= +∞+∞+∞ if x =−∞−∞−∞ and (y = −∞−∞−∞ or (y ∈ I and y < 0))
=−∞−∞−∞ if x =−∞−∞−∞ and (y = +∞+∞+∞ or (y ∈ I and y > 0))
=−∞−∞−∞ if x ∈ I and x < 0 and y = +∞+∞+∞
= +∞+∞+∞ if x ∈ I and x > 0 and y = +∞+∞+∞
= invalid if x ∈ {−∞−∞−∞,+∞+∞+∞} and y = 0
= invalid if x = 0 and y ∈ {−∞−∞−∞,+∞+∞+∞}
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absI : I → I ∪ {overflow}
absI(x) = resultI(|x|) if x ∈ I

= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞}

signumI : I → {−1, 1}
signumI(x) = 1 if (x ∈ I and x > 0)

= −1 if (x ∈ I and x < 0)

NOTE 1 – The first edition of this document specified a slightly different operation signI .
signumI is consistent with signumF , which in turn is consistent with the branch cuts for the
complex trigonometric operations (Part 3).

Integer division with floor and its remainder:

quotI : I × I → I ∪ {overflow, infinitary, invalid}
quotI(x, y) = resultI(bx/yc) if x, y ∈ I and y 6= 0

= infinitary(+∞+∞+∞) if x ∈ I and x > 0 and y = 0
= invalid(qNaN) if x = 0 and y = 0
= infinitary(−∞−∞−∞) if x ∈ I and x < 0 and y = 0

NOTE 2 – quotI(minintI ,−1), for a bounded signed integer datatype where minintI =
−maxintI − 1, is the only case where this operation will overflow.

modI : I × I → I ∪ {invalid}
modI(x, y) = x− (bx/yc · y) if x, y ∈ I and y 6= 0

= invalid(qNaN) if x ∈ I and y = 0

NOTE 3 – The first edition of this document specified the operations divfI , divtI , modaI , modpI ,

remf
I , and remt

I . However, divfI = quotI , and modaI = remf
I = modI . divtI , modpI , and remt

I

are not recommended and should not be provided as their use may give rise to late-discovered
bugs.

5.2 Floating point datatypes and operations

A floating point datatype shall have a non-special value set F that is a finite subset of R, char-
acterized by the following parameters:

rF ∈ Z (the radix of F )
pF ∈ Z (the precision of F )
emaxF ∈ Z (the largest exponent of F )
eminF ∈ Z (the smallest exponent of F )
denormF ∈ Boolean (whether F contains non-zero subnormal values)

In addition, the following parameter characterises the special values in the datatype corresponding
to F in the implementation, and the operations in common for this document and IEC 60559:

iec 559F ∈ Boolean (whether the datatype and operations conform to IEC 60559)

NOTE 1 – This standard does not advocate any particular representation for floating point
values. However, concepts such as radix, precision, and exponent are derived from an abstract
model of such values as discussed in Annex C.5.2.

The parameters rF , pF , and denormF shall satisfy:
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rF > 2
pF > 2 ·max{1, dlogrF (2 · π)e}
denormF = true

NOTE 2 – The first edition of this document only required for pF that pF > 2. The
requirement in this edition allows for the use of any existing floating point type and is made
so that angles in radians are not too degenerate within the first two cycles, plus and minus,
when represented in F .

Furthermore, rF should be even, and pF should be such that pF > 2 + dlogrF (1000)e.
NOTE 3 – The recommendation that pF > 2+ dlogrF (1000)e, which did not occur in the first
edition of this document allows for the use of any existing floating point type and is made so as
to allow for a not too coarse angle resolution, for operations in Part 2 and Part 3, anywhere in
the interval [−big angle rF , big angle rF ] (big angle rF is a parameter introduced in Part 2).

The parameters eminF and emaxF shall satisfy:

1− rpFF 6 eminF 6 −1− pF
pF 6 emaxF 6 rpFF − 1

and should satisfy:

0 6 emaxF + eminF 6 4

NOTES

4 The first edition of this document had the wider range requirement 1 − rpF

F 6 eminF 6
2 − pF . The shorter range requirement in this edition of this document allows for the use
of any existing floating point type and is made so as to be able to avoid the underflow
notification, that is, avoid denormalisation loss, in the specifications for the expm1F and
ln1pF operations (Part 2) for subnormal arguments though still inexact, except for zeroes.

5 IEC 60559 (IEEE 754) in its third edition also have parameters named emin and emax.
However, the emin and emax of IEC 60559, third edition, are eminF − 1 and emaxF − 1,
respectively, of this document.

Given specific values for rF , pF , eminF , emaxF , and denormF , the following sets are defined:

FS = {s ·m · re−pFF | s ∈ {−1, 1}, m, e ∈ Z, 0 6 m < rpF−1F , e = eminF }

FN = {s ·m · re−pFF | s ∈ {−1, 1}, m, e ∈ Z, rpF−1F 6 m < rpFF , eminF 6 e 6 emaxF }

FE = {s ·m · re−pFF | s ∈ {−1, 1}, m, e ∈ Z, rpF−1F 6 m < rpFF , emaxF < e}

FL = {s ·m · re−pFF | s ∈ {−1, 1}, m, e ∈ Z, rpF−1F 6 m < rpFF , e < eminF }

F † = FS ∪ FN ∪ FE

F ‡ = FL ∪ F †

F = FS ∪ FN if denormF = true
= {0} ∪ FN if denormF = false (non-conforming case, see Annex A)

NOTES
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6 F † is the outwards unbounded extension of F , including in addition all subnormal values
that would be in F if denormF were true. F † will be used in defining rounding for
operations.

7 F ‡ is the unbounded extension of F .

The elements of FN are called normal floating point values. The elements of FS, as well as the
special value −−−0, are called subnormal floating point values.

NOTE 8 – The terms normal and subnormal refer to the mathematical values involved, not
to any method of representation.

An implementation may provide more than one floating point datatype.

For each of the parameters rF , pF , eminF , emaxF , denormF , and iec 559F , and for each
conforming floating point datatype provided, a method shall be provided for a program to obtain
the value of the parameter.

NOTE 9 – The conditions placed upon the parameters rF , pF , eminF , and emaxF are suffi-
cient to guarantee that the abstract model of F is well-defined and contains its own parameters,
as well as enabling the avoidance of denormalisation loss (in particular for expm1F and ln1pF

of Part 2). More stringent conditions are needed to produce a computationally useful floating
point datatype. These are design decisions which are beyond the scope of this document. (See
Annex C.5.2.)

5.2.1 Conformity to IEC 60559

The parameter iec 559F shall be true only when the datatype corresponding to F and the relevant
operations completely conform to the requirements of IEC 60559. F may correspond to any of
the floating point datatypes defined in IEC 60559.

When iec 559F has the value true, all the facilities required by IEC 60559 shall be provided.
Methods shall be provided for a program to access each such facility. In addition, documentation
shall be provided to describe these methods, and all implementation choices. When iec 559F has
the value true, all operations and values common to this document and IEC 60559 shall satisfy
the requirements of both standards.

NOTES

1 IEC 60559 is also known as IEEE 754 [35].

2 The IEC 60559 facilities include: values for infinities and NaNs, extended comparisons,
rounding towards positive or negative infinity, and an inexact exception flag. See annex B
for more information.

3 IEC 60559, third edition, specifies rF = 2 or rF = 10.

4 If iec 559F is true, then denormF must also be true. Note that denormF = false is
non-conforming also to this document.

5.2.2 Range and granularity constants

The range and granularity of F is characterized by the following derived constants:

fmaxF = max F = (1− r−pFF ) · remaxF
F

fminNF = min {z ∈ FN | z > 0} = reminF−1

fminDF = min {z ∈ FS | z > 0} = reminF−pF
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fminF = min {z ∈ F | z > 0} = fminDF if denormF = true
= fminNF if denormF = false (non-conforming case)

epsilonF = r1−pFF (the relative spacing in F ‡ between adjacent values)

For each of the derived constants fmaxF , fminNF , fminF , and epsilonF , and for each conform-
ing floating point datatype provided, a method shall be provided for a program to obtain the
value of the derived constant.

5.2.3 Approximate operations

The operations (specified below) addF , subF , mulF , divF and, upon denormalisation loss, scaleF,I
are approximations of exact mathematical operations. They differ from their mathematical coun-
terparts, not only in that they may accept special values as arguments, but also in that

a) they may produce “rounded” results,

b) they may produce a special value (even without notification, or for values in F as arguments),
and

c) they may produce notifications (with values in F or special values as continuation values).

The approximate floating point operations are specified as if they were computed in three
stages:

a) compute the exact mathematical answer (if there is any),

b) round the exact answer (if there is any) to pF digits of precision in the radix rF (the precision
will be less if the rounded answer is subnormal), maybe producing a special value as the
rounded result, and

c) determine if notification is required.

These stages will be modelled by basic and elementary mathematical functions and two helper
functions: nearestF (part of stage b) and resultF (stages b and c). These helper functions
are not visible to the programmer and are not required to be part of the implementation, just
like exact mathematical functions are not required to be part of an implementation. An actual
implementation need not perform the above stages at all, merely return a result (or produce a
notification and a continuation value) as if it had.

5.2.4 Rounding and rounding constants

Define the helper function eF : R → Z such that

eF (x) = blogrF (|x|)c+ 1 if |x| > fminNF

= eminF if |x| < fminNF

Define the helper function uF : R → F † such that

uF (x) = r
eF (x)−pF
F
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NOTES

1 The value eF (x) is the exponent for values in F † in the immediate neighbourhood of x
(which need not be in F †) When x is in ]−2 · fminNF , 2 · fminNF [, then eF (x) is eminF

regardless of x.

2 The value uF (x) is the absolute distance between adjacent values in F † in the immediate
neighbourhood of x (which need not be in F †). When x is in ]−2 · fminNF , 2 · fminNF [,
then uF (x) is fminDF regardless of x.

3 When x is on an exponent boundary of F †, the neighbourhood (mentioned in the previous
two notes) is that which is away from zero.

For floating point operations, rounding is the process of taking an exact result in R and
producing a pF -digit approximation.

NOTE 4 – In Annex A of this document, and in Parts 2 and 3 of ISO/IEC 10967, the “exact
result” may be a prerounding approximation, through approximation helper functions.

The nearestF , downF , and upF helper functions are introduced to model the rounding process:
The floating point helper function

nearestF : R → F †

is the rounding function that rounds to nearest, ties rounded to even last digit. The floating point
helper function

downF : R → F †

is the rounding function that rounds towards negative infinity. The floating point helper function

upF : R → F †

is the rounding function that rounds towards positive infinity.

If, for some x ∈ R and some i ∈ Z, such that |x| < fminNF , |x · riF | > fminNF , and rounding
function rnd : R → F †, the formula

rnd(x · riF ) = rnd(x) · riF
does not hold, then rnd is said to have a denormalisation loss at x.

NOTE 5 – If nearest′F : R → F ‡ is a round to nearest function to F ‡, and nearest′F (x) 6=
nearestF (x), then nearestF has a denormalisation loss at x. Similarly for upF and downF .

5.2.5 Floating point result function

A floating point operation produces a rounded result or a notification. The decision is based on
the computed result (either before or after rounding).

The resultF helper function is introduced to model this decision. resultF is partially imple-
mentation defined. resultF has a signature:

resultF : R× (R → F †)→ F ∪ {inexact,underflow,overflow}
NOTE 1 – The first input to resultF is the computed result before rounding, and the second
input is the rounding function to be used.

For the overflow cases for the three roundings nearestF , upF , and downF , and for x ∈ R, the
following shall apply:
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resultF (x, nearestF ) = overflow(+∞+∞+∞) if nearestF (x) > fmaxF

resultF (x, nearestF ) = overflow(fmaxF ) or inexact(fmaxF )
if nearestF (x) = fmaxF and x > fmaxF

resultF (x, nearestF ) = overflow(−∞−∞−∞) if nearestF (x) < −fmaxF

resultF (x, nearestF ) = overflow(−fmaxF ) or inexact(−fmaxF )
if nearestF (x) = −fmaxF and x < −fmaxF

resultF (x, upF ) = overflow(+∞+∞+∞) if upF (x) > fmaxF

resultF (x, upF ) = overflow(−fmaxF ) if upF (x) < −fmaxF

resultF (x, upF ) = overflow(−fmaxF ) or inexact(−fmaxF )
if upF (x) = −fmaxF and x < −fmaxF

resultF (x, downF ) = overflow(−∞−∞−∞) if downF (x) < −fmaxF

resultF (x, downF ) = overflow(fmaxF ) if downF (x) > fmaxF

resultF (x, downF ) = overflow(fmaxF ) or inexact(fmaxF )
if downF (x) = fmaxF and x > fmaxF

For other cases for either of the thee rounding functions as rnd, and for x ∈ [−fmaxF , fmaxF ],
the following shall apply:

resultF (x, rnd) = x if x ∈ F
= inexact(rnd(x)) if x 6= rnd(x) and fminNF 6 |x| 6 fmaxF

= underflow(−−−0) if denormF = false and −fminNF < x < 0
= underflow(0) if denormF = false and 0 < x < fminNF

= underflow(−−−0) if denormF = true and x < 0 and rnd(x) = 0
= inexact(rnd(x)) or underflow(rnd(x))

if denormF = true and x 6= rnd(x) and |x| < fminNF

and rnd has no denormalisation loss at x
= underflow(rnd(x))

otherwise

NOTES

2 Overflow may be detected before or after rounding. If overflow is detected before rounding,
the bounds for overflow are independent of rounding.

3 The notifications underflow and overflow implies inexact result. When inexact notifica-
tions are supported, and when recording notifications in indicators, recording an underflow
or an overflow notification implies also recording an inexact notification.

4 An implementation is allowed to choose between inexact(rnd(x)) and underflow(rnd(x))
for values of x in the interval ]−fminNF , fminNF [ where x is not in F and there is no
denormalisation loss at x. However, a subnormal value without an underflow notification
can be chosen only if denormF is true and no denormalisation loss occurs at x.

5 In the non-conforming case denormF = false, neither rounding is heeded in case of
underflow.

An implementation shall document how the choice between inexact(rnd(x)) and underflow(rnd(x))
is made. Different floating point types may have different versions of resultF .

Define the no resultF→F ′ and no result2F→F ′ helper functions:

no resultF→F ′ : F → {invalid}
no resultF→F ′(x)

= invalid(qNaN) if x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN
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no result2F→F ′ : F × F → {invalid}
no result2F→F ′(x, y)

= invalid(qNaN) if x, y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if at least one of x and y is a quiet NaN and

neither a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNaN) is the appropriate result.

NOTE 6 – The handling of other special values, if available, is left unspecified by this
document.

5.2.6 Floating point operations

5.2.6.1 Comparisons

For each provided conforming floating point datatype, the following operations shall be provided.

eqF : F × F → Boolean

eqF (x, y) = true if x, y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and x = y
= false if x, y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and x 6= y
= eqF (0, y) if x = −−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= eqF (x, 0) if x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y =−−−0
= false if x is a quiet NaN and y is not a signalling NaN
= false if y is a quiet NaN and x is not a signalling NaN
= invalid(false) if x is a signalling NaN or y is a signalling NaN

neqF : F × F → Boolean

neqF (x, y) = true if x, y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and x 6= y
= false if x, y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and x = y
= neqF (0, y) if x = −−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= neqF (x, 0) if y = −−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= true if x is a quiet NaN and y is not a signalling NaN
= true if y is a quiet NaN and x is not a signalling NaN
= invalid(true) if x is a signalling NaN or y is a signalling NaN

lssF : F × F → Boolean

lssF (x, y) = true if x, y ∈ F and x < y
= false if x, y ∈ F and x > y
= lssF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= lssF (x, 0) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= true if x =−∞−∞−∞ and y ∈ F ∪ {+∞+∞+∞}
= false if x = +∞+∞+∞ and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= false if x ∈ F ∪ {−∞−∞−∞} and y = −∞−∞−∞
= true if x ∈ F and y = +∞+∞+∞
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= invalid(false) if x is a NaN or y is a NaN

leqF : F × F → Boolean

leqF (x, y) = true if x, y ∈ F and x 6 y
= false if x, y ∈ F and x > y
= leqF (0, y) if x = −−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= leqF (x, 0) if y = −−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= true if x = −∞−∞−∞ and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= false if x = +∞+∞+∞ and y ∈ F ∪ {−∞−∞−∞}
= false if x ∈ F and y =−∞−∞−∞
= true if x ∈ F ∪ {+∞+∞+∞} and y = +∞+∞+∞
= invalid(false) if x is a NaN or y is a NaN

gtrF : F × F → Boolean

gtrF (x, y) = lssF (y, x)

geqF : F × F → Boolean

geqF (x, y) = leqF (y, x)

isnegzeroF : F → Boolean

isnegzeroF (x) = true if x =−−−0
= false if x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= invalid(false) if x is a NaN

istinyF : F → Boolean

istinyF (x) = true if (x ∈ F and |x| < fminNF ) or x = −−−0
= false if (x ∈ F and |x| > fminNF ) or x ∈ {−∞−∞−∞,+∞+∞+∞}
= invalid(false) if x is a NaN

isnanF : F → Boolean

isnanF (x) = false if x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= true if x is a quiet NaN
= invalid(true) if x is a signalling NaN

issignanF : F → Boolean

issignanF (x) = false if x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= false if x is a quiet NaN
= true if x is a signalling NaN
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5.2.6.2 Basic arithmetic

For each provided conforming floating point datatype, the following round to nearest operations
shall be provided, and the round towards negative and positive infinity operations should be
provided. For the non-conforming case that denormF = false, the operations below using upF or
downF as rounding shall not be provided.

NOTE 1 – If denormF = false, then any result that is smaller than fminnF is replaced by
zero. This implies that neither rounding direction (nearest, up, down) is heeded, doing “flush
to zero” for would-be subnormal results. Thus if denormF = false, the directed rounding
operations would be unreliable for interval arithmetic, as well as other uses. That is why the
directed rounding operations are not to be provided when denormF = false.

The operations in this clause are specified only for the case that rF = rF ′ , denormF =
denormF ′ , iec 559F = iec 559F ′ . If iec 559F = false then the operations are required only if
F = F ′. The addF→F ′ and subF→F ′ operations can underflow only if denormF ′ = false (non-
conforming case) or eminF − pF < eminF ′ − pF ′ .

negF : F → F ∪ {−−−0}
negF (x) = −x if x ∈ F and x 6= 0

=−−−0 if x = 0
= 0 if x = −−−0
=−∞−∞−∞ if x = +∞+∞+∞
= +∞+∞+∞ if x = −∞−∞−∞
= no resultF→F (x) otherwise

addF→F ′ : F × F → F ′ ∪ {inexact,underflow,overflow}
addF→F ′(x, y) = resultF ′(x+ y, nearestF ′)

if x, y ∈ F
=−−−0 if x = −−−0 and y =−−−0
= addF→F ′(0, y) if x = −−−0 and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= addF→F ′(x, 0) if x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y =−−−0
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ F ∪ {+∞+∞+∞}
= +∞+∞+∞ if x ∈ F and y = +∞+∞+∞
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ F ∪ {−∞−∞−∞}
=−∞−∞−∞ if x ∈ F and y =−∞−∞−∞
= no result2F→F ′(x, y) otherwise

add↑F→F ′ : F × F → F ′ ∪ {inexact,underflow,overflow}

add↑F→F ′(x, y) = resultF ′(x+ y, upF ′) if x, y ∈ F
= addF→F ′(x, y) otherwise

add↓F→F ′ : F × F → F ′ ∪ {−−−0, inexact,underflow,overflow}

add↓F→F ′(x, y) = resultF ′(x+ y, downF ′)if x, y ∈ F and (x+ y 6= 0 or x = 0)
=−−−0 if x, y ∈ F and x+ y = 0 and x 6= 0
=−−−0 if addF (x, y) = 0 and (x =−−−0 or y =−−−0)
= addF→F ′(x, y) otherwise
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subF→F ′ : F × F → F ′ ∪ {inexact,underflow,overflow}
subF→F ′(x, y) = addF→F ′(x, negF (y))

sub↑F→F ′ : F × F → F ′ ∪ {inexact,underflow,overflow}

sub↑F→F ′(x, y) = add↑F→F ′(x, negF (y))

sub↓F→F ′ : F × F → F ′ ∪ {−−−0, inexact,underflow,overflow}

sub↓F→F ′(x, y) = add↓F→F ′(x, negF (y))

mulF→F ′ : F × F → F ′ ∪ {−−−0, inexact,underflow,overflow}
mulF→F ′(x, y) = resultF ′(x · y, nearestF ′)

if x, y ∈ F and x 6= 0 and y 6= 0
= 0 if x = 0 and y ∈ F and y > 0
=−−−0 if x = 0 and ((y ∈ F and y < 0) or y =−−−0)
=−−−0 if x = −−−0 and y ∈F and y > 0
= 0 if x = −−−0 and ((y ∈ F and y < 0) or y =−−−0)
= 0 if x ∈ F and x > 0 and y = 0
=−−−0 if x ∈ F and x < 0 and y = 0
=−−−0 if x ∈ F and x > 0 and y = −−−0
= 0 if x ∈ F and x < 0 and y = −−−0
= +∞+∞+∞ if x = +∞+∞+∞ and ((y ∈ F and y > 0) or y = +∞+∞+∞)
=−∞−∞−∞ if x = +∞+∞+∞ and ((y ∈ F and y < 0) or y =−∞−∞−∞)
=−∞−∞−∞ if x =−∞−∞−∞ and ((y ∈ F and y > 0) or y = +∞+∞+∞)
= +∞+∞+∞ if x =−∞−∞−∞ and ((y ∈ F and y < 0) or y =−∞−∞−∞)
= +∞+∞+∞ if x ∈ F and x > 0 and y = +∞+∞+∞
=−∞−∞−∞ if x ∈ F and x < 0 and y = +∞+∞+∞
=−∞−∞−∞ if x ∈ F and x > 0 and y = −∞−∞−∞
= +∞+∞+∞ if x ∈ F and x < 0 and y = −∞−∞−∞
= no result2F→F ′(x, y) otherwise

mul↑F→F ′ : F × F → F ′ ∪ {−−−0, inexact,underflow,overflow}

mul↑F→F ′(x, y) = resultF ′(x · y, upF ′) if x, y ∈ F and x 6= 0 and y 6= 0
= mulF→F ′(x, y) otherwise

mul↓F→F ′ : F × F → F ′ ∪ {−−−0, inexact,underflow,overflow}

mul↓F→F ′(x, y) = resultF ′(x · y, downF ′) if x, y ∈ F and x 6= 0 and y 6= 0
= mulF→F ′(x, y) otherwise

divF→F ′ : F × F → F ′ ∪ {−−−0, inexact,underflow,overflow, infinitary, invalid}
divF→F ′(x, y) = resultF ′(x/y, nearestF ′)

if x, y ∈ F and x 6= 0 and y 6= 0
= 0 if x = 0 and y ∈ F and y > 0
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=−−−0 if x = 0 and y ∈ F and y < 0
=−−−0 if x = −−−0 and y ∈ F and y > 0
= 0 if x = −−−0 and y ∈ F and y < 0
= infinitary(+∞+∞+∞) if x ∈ F and x > 0 and y = 0
= infinitary(−∞−∞−∞) if x ∈ F and x < 0 and y = 0
= infinitary(−∞−∞−∞) if x ∈ F and x > 0 and y =−−−0
= infinitary(+∞+∞+∞) if x ∈ F and x < 0 and y =−−−0
= 0 if x ∈ F and x > 0 and y = +∞+∞+∞
=−−−0 if x ∈ F and x > 0 and y = −∞−∞−∞
=−−−0 if ((x ∈ F and x < 0) or x =−−−0) and y = +∞+∞+∞
= 0 if ((x ∈ F and x < 0) or x =−−−0) and y =−∞−∞−∞
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ F and y > 0
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ F and y > 0
=−∞−∞−∞ if x = +∞+∞+∞ and ((y ∈ F and y < 0) or y =−−−0)
= +∞+∞+∞ if x = −∞−∞−∞ and ((y ∈ F and y < 0) or y =−−−0)
= no result2F→F ′(x, y) otherwise

div↑F→F ′ : F × F → F ′ ∪ {−−−0, inexact,underflow,overflow, infinitary, invalid}

div↑F→F ′(x, y) = resultF ′(x/y, upF ′) if x, y ∈ F and x 6= 0 and y 6= 0
= divF→F ′(x, y) otherwise

div↓F→F ′ : F × F → F ′ ∪ {−−−0, inexact,underflow,overflow, infinitary, invalid}

div↓F→F ′(x, y) = resultF ′(x/y, downF ′) if x, y ∈ F and x 6= 0 and y 6= 0
= divF→F ′(x, y) otherwise

absF : F → F

absF (x) = |x| if x ∈ F
= 0 if x =−−−0
= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞}
= no resultF→F (x) otherwise

signumF : F → F

signumF (x) = 1 if (x ∈ F and x > 0) or x = +∞+∞+∞
= −1 if (x ∈ F and x < 0) or x ∈ {−−−0,−∞−∞−∞}
= no resultF→F (x) otherwise

residueF : F × F → F ∪ {−−−0, invalid}
residueF (x, y) = resultF (x− (round(x/y) · y), nearestF )

if x, y ∈ F and y 6= 0 and
(x > 0 or x− (round(x/y) · y) 6= 0)

=−−−0 if x, y ∈ F and y 6= 0 and
x < 0 and x− (round(x/y) · y) = 0

=−−−0 if x = −−−0 and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y 6= 0
= x if x ∈ F and y ∈ {−∞−∞−∞,+∞+∞+∞}
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= no result2F→F (x, y) otherwise

NOTE 2 – The residueF operation is informally known as “IEEE remainder”.

sqrtF→F ′ : F → F ′ ∪ {inexact,underflow, invalid}
sqrtF→F ′(x) = resultF ′(

√
x, nearestF ′)

if x ∈ F and x > 0
= x if x ∈ {−−−0,+∞+∞+∞}
= no resultF→F ′(x) otherwise

sqrt↑F→F ′ : F → F ′ ∪ {inexact,underflow, invalid}

sqrt↑F→F ′(x, y) = resultF ′(
√
x, upF ′) if x ∈ F and x > 0

= sqrtF→F ′(x) otherwise

sqrt↓F→F ′ : F → F ′ ∪ {inexact,underflow, invalid}

sqrt↓F→F ′(x, y) = resultF ′(
√
x, downF ′) if x ∈ F and x > 0

= sqrtF→F ′(x) otherwise

5.2.6.3 Value dissection

For each provided floating point type, the following operations shall be provided. For the non-
conforming case of denormF = false, ulpF may underflow, and the operations succF and predF
shall not be provided.

The exponentF→I operation is specified only when minintI < eminF − pF and maxintI >
emaxF (or a stronger requirement) holds. Further, this requirement (or a stronger requirement)
should hold also for scaleF,I .

exponentF→I : F → I ∪ {infinitary}
exponentF→I(x)= blogrF (|x|)c+ 1 if x ∈ F and x 6= 0

= infinitary(−∞−∞−∞) if x ∈ {−−−0, 0}
= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

1 Since most integer datatypes cannot represent any infinitaty (or NaN) values, documented
“well out of range” finite integer values of the correct sign may here be used instead of the
infinities.

2 The related IEC 60559 operation logb returns a floating point value, to guarantee the
representability of the infinitary (and NaN) return values.

fractionF : F → F

fractionF (x) = x/r
exponentF→Z(x)
F if x ∈ F and x 6= 0

= x if x ∈ {−∞−∞−∞,−−−0, 0,+∞+∞+∞}
= no resultF→F (x) otherwise
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scaleF,I : F × I → F ∪ {underflow,overflow}
scaleF,I(x, n) = resultF (x · rnF , nearestF )

if x ∈ F and n ∈ I
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no result2F→F (x, convertI→F (n))

otherwise

succF : F → F ∪ {overflow}
succF (x) = resultF (min {z ∈ F † | z > x}, nearestF )

if x ∈ F
= succF (0) if x = −−−0
= no resultF→F (x) otherwise

predF : F → F ∪ {overflow}
predF (x) = resultF (max {z ∈ F † | z < x}, nearestF )

if x ∈ F
= predF (0) if x =−−−0
= no resultF→F (x) otherwise

ulpF : F → F

ulpF (x) = resultF (uF (x), nearestF )
if x ∈ F

= ulpF (0) if x = −−−0
= no resultF→F (x) otherwise

5.2.6.4 Value splitting

For each provided floating point type, the following operations shall be provided. The truncF,I
and roundF,I operations are specified only if maxintI > pF (or a stronger requirement) holds.

intpartF : F → F ∪ {−−−0}
intpartF (x) = bxc if x ∈ F and x > 0

= negF (intpartF (−x)) if x ∈ F and x < 0
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no resultF→F (x) otherwise

fractpartF : F → F ∪ {−−−0}
fractpartF (x) = x− bxc if x ∈ F and x > 0

= negF (fractpartF (−x)) if x ∈ F and x < 0
= x if x ∈ {−−−0}
= no resultF→F (x) otherwise

truncF,I : F × I → F ∪ {−−−0}
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truncF,I(x, n) = bx/reF (x)−n
F c · reF (x)−n

F if x ∈ F and x > 0 and n ∈ I
= negF (truncF (−x, n)) if x ∈ F and x < 0 and n ∈ I
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no result2F→F (x, n) otherwise

roundF,I : F × I → F ∪ {−−−0,overflow}

roundF,I(x, n) = resultF (round(x/r
eF (x)−n
F ) · reF (x)−n

F , nearestF )
if x ∈ F and x > 0 and n ∈ I

= negF (roundF,I(−x, n)) if x ∈ F and x < 0 and n ∈ I
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no result2F→F (x, n) otherwise

5.3 Operations for conversion between numeric datatypes

Numeric conversion between different representation forms for integer and fractional values can
take place under a number of different circumstances. E.g.:

a) explicit or implicit conversion between different numeric datatypes conforming to this doc-
ument;

b) explicit or implicit conversion between different numeric datatypes only one of which con-
forms to this document;

c) explicit or implicit conversion between a character string and a numeric datatype.

The latter includes outputting a numeric value as a character string, inputting a numeric value
from a character string source, and converting a numeral in the source program to a value in a
numeric datatype (see Clause 5.4). This document covers only the cases where at least one of the
source and target of a conversion is a numeric datatype conforming to this document.

When a character string is involved as either source or target of a conversion, this document does
not specify the lexical syntax for the numerals parsed or formed. A binding standard should specify
the lexical syntax or syntaxes for these numerals, and, when appropriate, how the lexical syntax
for the numerals can be altered. This could include which set of digits to use in a numeral position
system (Latin-Arabic digits, Arabic-Indic digits, traditional Thai digits, Devanagari digits, etc.).
With the exception of the radix used in numerals expressing non-integer values, differences in
lexical syntactic details that do not affect the value in R denoted by the numerals will not affect
the result of a conforming conversion.

Character string representations for integer values can include representations for −−−0, +∞+∞+∞,
−∞−∞−∞, and quiet NaNs. Character string representations for floating point and fixed point values
should have formats for −−−0, +∞+∞+∞, −∞−∞−∞, and quiet NaNs. For both integer and floating point
values, character strings that are not numerals nor special values according to the lexical syntax
used, shall be regarded as signalling NaNs when used as source of a numerical conversion.

For the cases where one of the datatypes involved in the conversion does not conform to this
document, the values of some numeric datatype parameters need to be inferred. For integers, one
need to infer the value for bounded, and if that is true then also values for maxint and minint,
and for string formats also the radix. For floating point values, one need to infer the values for
r, p, and emax or emin. In case a precise determination is not possible, values that are ‘safe’ for

5.3 Operations for conversion between numeric datatypes 29



ISO/IEC WD 10967-1.2:2010(E) Working draft

that instance should be used. ‘Safe’ values for otherwise undetermined inferred parameters are
such that

a) if the value resulting from the conversion is converted back to the source datatype by a
conversion conforming to this document the original value, or a close approximation, should
be regenerated if possible, and

b) overflow and underflow are avoided if possible.

If, and only if, a specified infinite special value result cannot be represented in the target
datatype, the infinity result shall be interpreted as implying the infinitary notification. If, and
only if, a specified NaN special value result cannot be represented in the target datatype, the
NaN result shall be interpreted as implying the invalid notification. If, and only if, a specified
−−−0 special value result cannot be represented in the target datatype, the −−−0 result shall be
interpreted as 0.

5.3.1 Integer to integer conversions

Let I and I ′ be non-special value sets for integer datatypes. At least one of the datatypes
corresponding to I and I ′ conforms to this document.

The convertI→I′ operation:

convertI→I′ : I → I ′ ∪ {overflow}
convertI→I′(x) = resultI′(x) if x ∈ I

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.2 Floating point to integer conversions

Let I be the non-special value set for an integer datatype conforming to this document. Let F be
the non-special value set for a floating point datatype conforming to this document.

The floorF→I , roundingF→I , and ceilingF→I operations:

floorF→I : F → I ∪ {overflow}
floorF→I(x) = resultI(bxc) if x ∈ F

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

roundingF→I : F → I ∪ {−−−0,overflow}
roundingF→I(x)

= resultI(round(x)) if x ∈ F and (x > 0 or round(x) 6= 0)
=−−−0 if x ∈ F and x < 0 and round(x) = 0
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

ceilingF→I : F → I ∪ {−−−0,overflow}
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ceilingF→I(x) = resultI(dxe) if x ∈ F and (x > 0 or dxe 6= 0)
=−−−0 if x ∈ F and x < 0 and dxe = 0
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.3.3 Integer to floating point conversions

Let I be the non-special value set for an integer datatype. Let F be the non-special value set for
a floating point datatype. At least one of the source and target datatypes is conforming to this
document.

The convertI→F operation:

convertI→F : I → F ∪ {inexact,overflow}
convertI→F (x) = resultF (x, nearestF ) if x ∈ I

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

The convert↑I→F and convert↓I→F operations:

convert↑I→F : I → F ∪ {inexact,overflow}

convert↑I→F (x) = resultF (x, upF ) if x ∈ I
= convertI→F (x) otherwise

convert↓I→F : I → F ∪ {inexact,overflow}

convert↓I→F (x) = resultF (x, downF ) if x ∈ I
= convertI→F (x) otherwise

5.3.4 Floating point to floating point conversions

Let F , F ′, and F ′′ be non-special value sets for floating point datatypes. At least one of the source
and target datatypes in the conversion operations specified in this Clause shall conform to this
document

The convertF→F ′ operation:

convertF→F ′ : F → F ′ ∪ {inexact,underflow,overflow}
convertF→F ′(x) = resultF ′(x, nearestF ′) if x ∈ F

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE – Modern techniques allow, on the average, efficient conversion with a maximum error
of 0.5 ulp even when the radices differ. C99 [16], for instance, requires that all floating point
value conversion is done with a maximum error of 0.5 ulp.

The convert↑F→F ′ and convert↓F→F ′ operations:

convert↑F→F ′ : F → F ′ ∪ {inexact,underflow,overflow}
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convert↑F→F ′(x) = resultF ′(x, upF ′) if x ∈ F
= convertF→F ′ otherwise

convert↓F→F ′ : F → F ′ ∪ {inexact,underflow,overflow}

convert↓F→F ′(x) = resultF ′(x, downF ′) if x ∈ F
= convertF→F ′ otherwise

5.3.5 Floating point to fixed point conversions

Let F be the non-special value set for a floating point datatype conforming to this document. Let
D be the non-special value set for a fixed point datatype.

A fixed point datatype D is a subset of R, characterised by a radix, rD ∈ Z (> 2), a density,
dD ∈ Z (> 0), and if it is bounded, a maximum positive value, dmaxD > 1. Given these values,
the following sets are defined:

D∗ = {n/(rdDD ) | n ∈ Z}

D = D∗ if D is not bounded
D = D∗ ∩ [−dmaxD, dmaxD] if D is bounded

NOTE 1 – D corresponds to scaled(rD, dD) in ISO/IEC 11404 Information technology –
General-Purpose Datatypes (GPD) [10]. GPD has no parameter corresponding to dmaxD even
when the datatype is bounded.

The fixed point rounding helper functions:

nearestD : R → D∗

is the rounding function that rounds to nearest, ties round to even last digit.

upD : R → D∗

is the rounding function that rounds towards positive infinity.

downD : R → D∗

is the rounding function that rounds towards negative infinity.

The fixed point result helper function, resultD, is like resultF , but for a fixed point datatype.
It will return overflow if the rounded result is not representable:

resultD : R× (R → D∗)→ D ∪ {inexact,overflow}
resultD(x, rnd) = overflow if x ∈ R and rnd(x) 6∈ D

= x if rnd(x) ∈ D and rnd(x) = x
= inexact(rnd(x)) if rnd(x) ∈ D and rnd(x) 6= x and

(rnd(x) 6= 0 or 0 < x)
= inexact(−−−0) if rnd(x) = 0 and x < 0

The convertF→D operation:

convertF→D : F → D ∪ {inexact,overflow}
convertF→D(x) = resultD(x, nearestD) if x ∈ F

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN
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NOTES

2 The datatype D need not be visible in the programming language. D may be a subtype of
strings, according to some format. Even so, no datatype for strings need be present in the
programming language.

3 This covers, among other things, “output” of floating point datatype values, to fixed point
string formats. E.g. a binding may say that float to fixed string(x, m, n) is bound
to convertF→Sm,n(x) where Sm,n is strings of length m, representing fixed point values in
radix 10 with n decimals. The binding should also detail how NaNs, signed zeroes and
infinities are represented in Sm,n, as well as the precise format of the strings representing
ordinary values. (Note that if the length of the target string is limited, the conversion may
overflow.)

The convert↑F→D and convert↓F→D operations:

convert↑F→D : F → D ∪ {inexact,overflow}

convert↑F→D(x) = resultD(x, upD) if x ∈ F
= convertF→D(x) otherwise

convert↓F→D : F → D ∪ {inexact,overflow}

convert↓F→D(x) = resultD(x, downD) if x ∈ F
= convertF→D(x) otherwise

5.3.6 Fixed point to floating point conversions

Let F be the non-special value set for a floating point datatype conforming to this document. Let
D and D′ be the non-special value set for fixed point datatypes.

The convertD→F operation:

convertD→F : D → F ∪ {inexact,underflow,overflow}
convertD→F (x) = resultF (x, nearestF ) if x ∈ D

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE – This covers, among other things, “input” of floating point datatype values, from
fixed point string formats. E.g. a binding may say that string to float(s) is bound to
convertSm,n→F (s) where Sm,n is strings of length m, where m is the length of s, and n is the
number of digits after the “decimal symbol” represented in Sm,n, as well as the precise format
of the strings representing ordinary values.

The convert↑D→F and convert↓D→F operations:

convert↑D→F : D → F ∪ {inexact,underflow,overflow}
convertD→F (x) = resultF (x, upF ) if x ∈ D

= convertD→F (x) otherwise

convert↓D→F : D → F ∪ {inexact,underflow,overflow}
convertD→F (x) = resultF (x, downF ) if x ∈ D

= convertD→F (x) otherwise
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5.4 Numerals as operations in a programming language

NOTE – Numerals in strings, or input, is covered by the conversion operations in clause 5.3.

Each numeral is a parameterless operation. Thus, this clause introduces a very large number
of operations, since the number of numerals is in principle infinite.

5.4.1 Numerals for integer datatypes

Let I ′ be a non-special value set for integer numerals for the datatype corresponding to I.

An integer numeral, denoting an abstract value n in I ′ ∪ {−−−0,+∞+∞+∞,−∞−∞−∞,qNaN, sNaN}, for
an integer datatype with non-special value set I, shall result in

convertI′→I(n)

For each integer datatype conforming to this document and made directly available, there shall
be integer numerals with radix 10.

For each radix for numerals made available for a bounded integer datatype with non-special
value set I, there shall be integer numerals for all non-negative values of I. For each radix for
numerals made available for an unbounded integer datatype, there shall be integer numerals for
all non-negative integer values smaller than 1020.

For each integer datatype made directly available and that may have special values:

a) There should be a numeral for positive infinity. There shall be a numeral for positive infinity
if there is a positive infinity in the integer datatype.

b) There should be numerals for quiet and signalling NaNs.

5.4.2 Numerals for floating point datatypes

Let D be a non-special value set for fixed point numerals for the datatype corresponding to F .
Let F ′ be a non-special value set for floating point numerals for the datatype corresponding to F .

A fixed point numeral, denoting an abstract value x in D∪{−−−0,+∞+∞+∞,−∞−∞−∞,qNaN, sNaN}, for
a floating point datatype with non-special value set F , shall result in

convertD→F (x)

A floating point numeral, denoting an abstract value x in F ′ ∪{−−−0,+∞+∞+∞,−∞−∞−∞,qNaN, sNaN},
for a floating point datatype with non-special value set F , shall result in

convertF ′→F (x)

For each floating point datatype conforming to this document and made directly available,
there should be radix 10 floating point numerals, and there shall be radix 10 fixed point numerals.

For each radix for fixed point numerals made available for a floating point datatype, there shall
be numerals for all bounded precision and bounded range expressible non-negative values of R.
At least a precision (dD) of 20 should be available. At least a range (dmaxD) of 1020 should be
available.

For each radix for floating point numerals made available for a floating point datatype with
non-special value set F , there shall be numerals for all bounded precision and bounded range
expressible non-negative values of R. The precision and range bounds for the numerals shall be
large enough to allow all non-negative values of F to be reachable.
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For each floating point datatype made directly available and that may have special values:

a) There should be a numeral for positive infinity. There shall be a numeral for positive infinity
if there is a positive infinity in the floating point datatype.

b) There should be numerals for quiet and signalling NaNs.

The conversion operations used for numerals as operations should be the same as those used
by default for converting strings to values in conforming integer or floating point datatypes.

6 Notification

6.1 Model for handling of notifications

Notification (as that term is used in this document) is the process by which a user or program is
informed that an arithmetic operation, on given arguments, has some problem associated with it.
Specifically, a notification shall occur when any arithmetic operation returns an exceptional value
as defined in clause 5.

Logically there is a set of exceptional values associated with each value (not just arithmetic
values). An operation returns a computed result together with the union of the arguments’s sets
of exceptional values and the set of exceptional values produced by the operation itself.

What in clause 5 is written as addI : I × I → I ∪ {overflow}, should really be written as
addI : (I × P(E)) × (I × P(E)) → (I × P(E)), where E is the set of exception values, and P
is powerset, and for each case of addI(〈x, s1〉, 〈y, s2〉), return s1 ∪ s2 as the second component
and the first component is the computed value, except for the overflow case where the second
component is s1 ∪ s2 ∪ {overflow} and the first component is then the continuation value. Since
being explicit about this for every specification would clutter the specifications, the specifications
in this document are implicit about this handling of exceptional values.

Reproducing this nominal behaviour (a special case of recording in indicators, Clause 6.2.1)
may be prohibitively inefficient. Therefore the notification alternatives below relax this nominal
behaviour. The maximum extension of the notification handling in these alternatives is a runtime
thread (or similar construct), but may be more limited as specified in a binding standard.

6.2 Notification alternatives

Three alternatives for notification are provided in this document. The requirements are:

a) Notification by recording in indicators (see Clause 6.2.1) shall be supplied, and should be
the default way of handling notifications.

b) Notification by alteration of control flow (see Clause 6.2.2) should be supplied in conjunction
with any language which provides support for exception handling.

c) Notification by termination with message (see Clause 6.2.3) (a special case of the second
alternative) may be supplied.

NOTE – This is different from the first edition of this document, in which all implementations
were required to supply the last alternative, but were given a choice between the first and the
second based on whether the language supported exception handling or not.
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6.2.1 Notification by recording in indicators

An implementation shall provide for support of this alternative, and it should be the default
alternative for notification handling.

Notification consists of two elements: a prompt recording in the relevant indicators of the fact
that an arithmetic operation returned an exceptional value, and means for the program or system
to interrogate or modify the recording in those indicators at a subsequent time.

This notification alternative has indicators, which represent sets of exceptional values (which
need not be just arithmetic ones). But the indicators need not be directly associated with values,
but instead with determinable sets of values. However, computations that occur in parallel (logi-
cally or actually) must not interfere with each others’s indicators. At the start of a computation
the indicators for that computation are all clear.

NOTES

1 The “set of values” may thus be “all the values computed by a thread”. Not just “output
values”, but all values computed by the thread. The “sets of values” may be subsets of the
values computed by a thread, by the rules of the programming language or system.

2 When computations are joined, the common continuing computation must have the union
(in practice often: bitwise or) of the joined computations indicators. This should be auto-
matic, needing no extra code from the programmer.

3 Computations that are completely ignored, e.g. speculative threads that are not taken, or
timed out threads without output, will have their indicator recordings ignored too.

4 Any kind of modes or similar (e.g., the value of big angle rF , specified in Part 2) that affect
the computations, should be propagated to new threads in a binding defined manner.

The set of indicators shall consist of at least six indicators, one for each of the exceptional values
that may be returned by an arithmetic operation as defined in clause 5: inexact, underflow,
overflow, infinitary, invalid, and absolute precision underflow.

NOTE 5 – Part 1 does not use absolute precision underflow, but it is used in Part 2 and
Part 3.

Consider a set E including at least six elements corresponding to the six exceptional val-
ues used in this document: {absolute precision underflow, inexact, underflow, overflow,
infinitary, invalid} ⊆ E. An implementation is permitted to expand the set E to include
additional notification indicators beyond the six listed in this document.

Let Ind be be a type whose values represent the subsets of E. An implementation shall provide
an embedding of Ind into a programming language type. In addition, a method shall be provided
for denoting each of the values of Ind , either as constants or via computation. The individual
notifications as well as the set of all notifications shall be available as named constants.

The relevant indicators shall be set when any arithmetic operation returns exceptional values
as defined in clause 5. When either of the exceptional values underflow or overflow is returned,
not only shall the corresponding indicator be set, but also the indicator for inexact shall be set.
Once set, an indicator shall be cleared only by explicit action of the program.

NOTE 6 – The status flags required by IEC 60559 are an example of this form of notification,
provided that the status flags for different computations (microthreads, threads, programs,
scripts, similar) are kept separate, and joined only when results of computations are joined.

When an arithmetic operation returns exceptional values as defined in clause 5, in addition to
recording the event, an implementation shall provide a continuation value for the result of the
failed arithmetic operation, and continue execution from that point. In many cases this document
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specifies the continuation value. The continuation value shall be implementation specified if this
document does not specify one.

NOTE 7 – The infinities and NaNs produced by an IEC 60559 system are examples of values
not in F which can be used as continuation values.

The following four operations shall be provided for the current indicators as well as for the
indicators of accessible computations:

clear indicators: Ctx × Ind → Ctx
set indicators: Ctx × Ind → Ctx
current indicators: Ctx → Ind
test indicators: Ctx × Ind → Boolean

For every value S in Ind , the above four operations shall behave as follows:

clear indicators(C, S) in the context C clear each of the indicators referred in S
set indicators(C, S) in the context C set each of the indicators referred in S
current indicators(C) return the set of indicators that are set in the context C
test indicators(C, S) true if any of the indicators referred in S are set in the context C

If either of the indicators for underflow or overflow is set by set indicators, not only shall
that indicator be set, but also the indicator for inexact shall be set. Indicators that are not re-
ferred to in S shall not be altered by clear indicators nor set indicators except as just mentioned,
and no indicators are altered by current indicators nor test indicators. The context C is usually
“the current thread” or similar construct, and C is then an implicit argument to these operations.
In other cases, the context argument may be a name or a thread instance or some other method
of referring to a separate computation (with an actual context, storing among other things, the
indicators recording of arithmetic exceptional values), as defined in a binding. The context result
for the set and clear operations just say that these operations may change the state of the context
(notionally getting a new actual context).

NOTES

8 The argument to test indicators tells which indicators to look at, it is not the indicator set
in the argument that is tested for non-emptyness.

9 No changes to the specifications of a language standard are required to implement this
alternative for notification. The recordings can be implemented in system software. The
operations for interrogating and manipulating the recording can be contained in a system
library, and invoked as library routine calls.

6.2.2 Notification by alteration of control flow

An implementation should provide this alternative for any language that provides a mechanism for
handling of exceptions. This alternative is allowed (with system support) even in the absence of
such a mechanism. This alternative can be applied to some notifications, while other notifications
are dealt with by recording in indicators. In particular, notification by alteration of control flow
should not be used for inexact nor for underflow (unless underflow implies “flush to zero”).

Notification consists of prompt alteration of the control flow of the program to execute user
provided exception handling code. The manner in which the exception handling code is specified
and the capabilities of such exception handling code (including whether it is possible to resume
the operation which caused the notification) is the province of the language standard, not this
arithmetic standard.
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If no exception handling code is provided for a particular occurrence of the return of an excep-
tional value as defined in clause 5, that fact shall be reported to the user of that program in an
unambiguous and “hard to ignore” manner (see 6.2.3).

6.2.3 Notification by termination with message

An implementation may provide this alternative, which also serves as a back-up if the programmer
has not provided the necessary code for handling of a notification by alteration of control flow.

Notification consists of prompt delivery of a “hard-to-ignore” message, followed by termination
of execution of the program. Any such message should identify the cause of the notification and
the operation responsible.

6.3 Delays in notification

Notification may be momentarily delayed for performance reasons, but should take place as close
as practical to the attempt to perform the responsible operation. When notification is delayed, it
is permitted to merge notifications of different occurrences of the return of the same exceptional
value into a single notification. However, it is not permissible to generate duplicate or spurious
notifications.

In connection with notification, “prompt” means before the occurrence of a significant program
event. For the recording in indicators in 6.2.1, a significant program event is an attempt by the
program (or system) to access the indicators, or the termination of the program. For alteration of
control flow described in 6.2.2, the definition of a significant event is language dependent, is likely
to depend upon the scope or extent of the exception handling mechanisms, and must therefore be
provided by language standards or by language binding standards. For termination with message
described in 6.2.3, the definition of a significant event is again language dependent, but would
include producing output visible to humans or other programs.

NOTES

1 Roughly speaking, “prompt” should at least imply “in time to prevent an erroneous response
to the exception”.

2 The phrase “hard-to-ignore” is intended to discourage writing messages to log files (which
are rarely read), or setting program variables (which disappear when the program com-
pletes).

6.4 User selection of alternative for notification

A conforming implementation shall provide a means for a user or program to select among the
alternate notification mechanisms provided. It should be possible to select different notification
alternatives for different notifications (i.e. different exceptional values). The choice of an appro-
priate means, such as compiler options, is left to the implementation.

The language or binding standard should specify the notification alternatives to be used in the
absence of a user choice. The notification alternatives used in the absence of a user choice shall
be documented.
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7 Relationship with language standards

A computing system often provides arithmetic datatypes within the context of a standard pro-
gramming language. The requirements of this document shall be in addition to those imposed by
the relevant programming language standards.

This document does not define the syntax of arithmetic expressions. However, programmers
need to know how to reliably access the operations defined in this document.

NOTE 1 – Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation used to invoke each operation specified in
Clause 5.

NOTE 2 – For example, integer equality (eqI(i, j)) might be invoked as

i = j in Pascal [26] and Ada [11]
i == j in C [16], C++ [18], and Fortran [22]
i .EQ. j in Fortran [22]
(= i j) in Common Lisp [38] and ISLisp [23]

An implementation shall document the semantics of arithmetic expressions in terms of compo-
sitions of the operations specified in Clause 5.

NOTE 3 – For example, if x, y, and z are declared to be single precision (SP ) reals, and
calculation is done in single precision, then the expression

x + y < z

might translate to

lssSP (addSP→SP (x, y), z)

If the language in question did all computations in double precision (DP ), the above expression
might translate to

lssDP (addDP→DP (convertSP→DP (x), convertSP→DP (y)), convertSP→DP (z)) or
lssDP (addSP→DP (x, y), convertSP→DP (z))

Alternatively, if x was declared to be an integer (J), and computations done in single precision,
the above expression might translate to

lssSP (addSP→SP (convertJ→SP (x), y), z)

Compilers often “optimize” code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include:

a) Insertion of operations, such as datatype conversions (including changes in precision).

b) Reordering of operations, such as the application of associative or distributive rules (note
that distributive rules are not exact for floating point operations).

c) Replacing operations (or entire subexpressions) with others, such as “2*x”→ “x+x” or “x/c”
→ “x*(1/c)” (the latter is not exactly valid for floating point). (The example expressions
here are expressed in some programming language, they are not mathematical expressions.)

d) Evaluating constant subexpressions at compile time.

e) Eliminating unneeded subexpressions.
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Only transformations which alter the semantics of an expression (the values produced (in-
cluding special values), and the notifications generated (including continuation values)) need be
documented. Only the kinds of permitted transformations need be documented. It is not necessary
to describe the specific choice of transformations that will be applied to a particular expression.

The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

NOTE 4 – It is highly desirable that programming languages intended for numerical use
provide means for limiting the transformations applied to particular arithmetic expressions.

8 Documentation requirements

In order to conform to this document, an implementation shall include documentation providing
the following information to programmers.

NOTE – Much of the documentation required in this clause is properly the responsibility of
programming language or binding standards. An individual implementation would only need
to provide details if it could not cite an appropriate clause of the language or binding standard.

a) A list of the provided integer and floating point types that conform to this document.

b) For each conforming integer type, the values of the parameters: boundedI , minintI , maxintI ,
and hasinfI . (See 5.1.)

c) For each floating point type, the values of the parameters: rF , pF , eminF , emaxF , denormF ,
and iec 559F . (See 5.2.)

d) For each unsigned integer type I, which (if any) of the operations negI , absI , and signI are
omitted for that type. (See 5.1.2.)

e) For each floating point type F , the full definition of resultF . (See 5.2.5.)

f) The notation for invoking each operation provided by this document. (See 5.1.2 and 5.2.6.)

g) The translation of arithmetic expressions into combinations of operations provided by this
document, including any use made of higher precision. (See clause 7.)

h) For each integer type, the method for a program to obtain the values of the parameters:
bounded I , minintI , maxintI , and hasinfI . (See 5.1.)

i) For each floating point type, the method for a program to obtain the values of the parameters:
rF , pF , eminF , emaxF , denormF , and iec 559F . (See 5.2.)

j) For each floating point type, the method for a program to obtain the values of the derived
constants fmaxF , fminF , fminNF , epsilonF .

k) The methods used for notification, and the information made available about the notification.
(See clause 6.)

l) The means for selecting among the notification methods, and the notification method used
in the absence of a user selection. (See 6.4.)

m) When “recording in indicators” is the method of notification, the type used to represent Ind,
the method for denoting the values of Ind (the association of these values with the subsets
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of E must be clear), and the notation for invoking each of the four “indicator” operations.
(See 6.2.1.)

n) For each floating point type where iec 559F is true, and for each of the facilities required
by IEC 60559, the method available to the programmer to exercise that facility. (See 5.2.1
and Annex B.)
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Annex A
(informative)

Partial conformity

The requirements of this document have been carefully chosen to be as beneficial as possible,
yet be efficiently implemented on most existing or anticipated hardware architectures.

The bulk of requirements of this document are for documentation, or for parameters and
functions that can be efficiently realized in software. However, the accuracy and notification
requirements on the four basic floating point operations (addF , subF , mulF , and divF ) do have
implications for the underlying hardware architecture.

A small number of computer systems may have some difficulties with some of the requirements
of this document for floating point arithmetic:

a) The ability to represent subnormal values apart from zero.

b) The ability to record all notifications, including underflow and inexact.

c) The ability to distinguish infinitary and invalid notifications.

d) Strict 0.5-ulp accuracy for addF→F ′ , subF→F ′ , mulF→F ′ , and divF→F ′ (strictly interpreted
this applies also for continuation values upon underflow which in turn requires subnormal
values).

e) Strict 0.5-ulp accuracy for convertF→F ′ , convertF→D, and convertD→F .

f) addF and subF never give a notification of underflow, but instead may return a subnormal
value.

g) Round ties to even last digit.

h) A common rounding rule for addF→F ′ , subF→F ′ , mulF→F ′ , and divF→F ′ .

i) The ability to do exact comparisons without spurious notifications.

j) A sign symmetric value set (all values can be negated exactly).

Language standards will want to adopt all the requirements of this document to provide pro-
grammers with the maximum benefit. However, if it is perceived that requiring full conformity
to this document will exclude a significant portion of that language’s user community from any
benefit, then specifying partial conformity to this document, as permitted in Clause 2 and further
specified in this Annex, may be a reasonable alternative.

Such partial conformity would relax one or more of the requirements listed above, but would
retain the benefits of all other requirements of this document. All deviations from conformity to
this document shall be fully documented.

If a programming language (or binding) standard states that partial conformity is permitted,
programmers will need to detect what degree of conformity is available. It would be helpful for
the language standard to require parameters indicating whether or not conformity is complete,
and if not, which of the requirements above are violated.
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A.1 Integer overflow notification relaxation

Some programming languages specify a “wrapping” interpretation of addition, subtraction, and
multiplication for bounded integer datatypes. These are in ISO/IEC 10967 modelled as different
operations from the addI , subI , and mulI operations, and are specified in Part 2.

If a binding allows an implementation to interpret the ordinary (for that language) program-
ming language syntax for integer addition, subtraction, and multiplication as wrapping operations,
there shall be a Boolean parameter, available to programs:

moduloI — if true this indicates that the implementation uses the operations add wrapI ,
sub wrapI , and mul wrapI specified in Part 2 instead of addI , subI , and mulI specified in this
Part for the “ordinary” syntax for these operations.

NOTES

1 In the first edition of this Part, this was modelled as a normative parameter and a change
of interpretation of the addI , subI , mulI , divfI , and divtI operations. In this edition the
parameter and the wrapping interpretation for the ordinary (in that programming lan-
guage) addition, subtraction, and multiplication operations are accepted as only partially
conforming.

2 The interpretation of integer division has been made stricter in this edition than in the first
edition, and is no longer dependent on the the moduloI parameter even if integer overflow
notification is otherwise relaxed.

3 add wrapI , sub wrapI , and mul wrapI can (and should) be provided as separate operations
also in fully conforming implementations.

4 addI , subI , and mulI can (and should) be provided as separate operations (though per-
haps will less appealing syntax) also in partially conforming implementations where integer
overflow notification is relaxed for the ordinary syntax operations.

A.2 Infinitary notification relaxation

With an infinitary notification (as opposed to overflow) a continuation value that is an infinity
is given as an exact value. It is therefore reasonable to have implementations or modes that
suppress infinitary notifications.

If a binding allows infinitary notifications to go unrecorded, there shall be a Boolean parameter,
available to programs:

silent infinitaryI — true when infinitary notifications are suppressed, and not replaced by
invalid notifications, for the integer datatype corresponding to I.

invalid infinitaryI — true when infinitary notifications are replaced by invalid notifications
for the integer datatype corresponding to I.

silent infinitaryF — true when infinitary notifications are suppressed for the floating point
datatype corresponding to F .

NOTE – Infinitary notification should only be handled by recording of indicators, if not
suppressed, since other methods of notification are too disruptive.
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A.3 Inexact notification relaxation

Some architectures may not be able to efficiently detect inexact results.

If a binding allows inexact to go unrecorded, there shall be a Boolean parameter, available to
programs:

silent inexactF — true when inexact notifications are suppressed for the datatype correspond-
ing to F .

A.4 Underflow notification relaxation

Some architectures may not be able to efficiently detect underflow, even if there are no non-zero
subnormal values.

If a binding allows underflow to go unrecorded, there shall be a Boolean parameter, available
to programs:

silent underflowF — true when underflow notifications are suppressed for the datatype corre-
sponding to F .

A.5 Subnormal values relaxation

If the parameter denormF has a value of false, and thus there are no subnormal values in F except
0 (and possibly −−−0), then the corresponding datatype is not fully conforming to this document.
If a binding allows a floating point datatype in an implementation not to have subnormal values
apart from 0 and −−−0, the parameter denormF shall be made available to programs.

NOTE – If full conformity is required by the binding, the parameter denormF is always true
and need not be made available to programs.

The resultF helper function will then return 0 for 0, underflow(−−−0) for values strictly between
−fminNF and 0, and underflow(0) for values strictly between 0 and fminNF .

A.6 Accuracy relaxation for add, subtract, multiply, and divide

Ideally, and conceptually, no information should be lost before the rounding step in the compu-
tational model of this document. But some hardware implementations of arithmetic operations
compute an approximation that loses information (conceptually) prior to rounding (to nearest).
In some cases, it may even be so that x+y = u+v may not imply add′F→F ′(x, y) = add′F→F ′(u, v)
(and similarly for subtract). (add′F→F ′ is defined below.)

A maximum error parameter max error is an element in F such that

|x− nearestF (x′)| 6 max error · uF (x)

for x, x′ ∈ R, where x is the mathematical result and x′ is the result of a corresponding approx-
imation helper function given the same arguments; max error should be the minimal value for
which the relation holds.

If this relaxation is allowed, the there shall be a maximum error parameter, rnd errorF param-
eter available to programs for the datatype corresponding to F . rnd errorF shall be the maximum
error for the addition, multiplication, and division operations. It cannot have a value that is less
than 0.5 and shall have a value less than or equal to 1.
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The add∗F , mul∗F , and div∗F helper functions are introduced to model this pre-rounding approx-
imation: add∗F : F ‡ × F ‡ → R, mul∗F : F ‡ × F ‡ → R, div∗F : F ‡ × F ‡ → R.

add∗F (x, y) returns a close approximation to x+ y, satisfying
|(x+ y)− nearestF (add∗F (x, y))| 6 rnd errorF · uF (x+ y)

mul∗F (x, y) returns a close approximation to x · y, satisfying
|(x · y)− nearestF (mul∗F (x, y))| 6 rnd errorF · uF (x · y)

div∗F (x, y) returns a close approximation to x/y, satisfying
|(x/y)− nearestF (div∗F (x, y))| 6 rnd errorF · uF (x/y)

Further requirements on the add∗F approximation helper function are:

add∗F (u, v) ∈ F ‡ ⇔ add∗F (u, v) = u+ v if u, v ∈ F ‡
add∗F (−u,−v) = −add∗F (u, v) if u, v ∈ F ‡
add∗F (u, v) = add∗F (v, u) if u, v ∈ F ‡
add∗F (u, x) 6 add∗F (v, x) if u, v, x ∈ F ‡ and u < v
add∗F (u · riF , v · riF ) = add∗F (u, v) · riF if u, v ∈ F ‡ and i ∈ Z

NOTES

1 The above requirements capture the following properties:

a) The result of add∗F is exact iff the ‘true result’ is in F ‡; and, by monotonicity, add∗F (u, v)
and u+v, when not equal, are in the same range of values strictly between two adjacent
values in F ‡.

b) add∗F is sign symmetric when changing both signs.

c) add∗F is commutative.

d) add∗F is monotonic for the left operand and, by commutativity, for the right operand.

e) For add∗F a common exponent of its arguments can be factored out. But the approxi-
mation to +, and thus final rounding, may depend on the (absolute) difference of the
exponents of the arguments.

2 True addition (+) fulfills the requirements on add∗F .

Further requirements on the mul∗F approximation helper function are:

mul∗F (u, v) ∈ F ‡ ⇔ mul∗F (u, v) = u · v if u, v ∈ F ‡
mul∗F (−u, v) = −mul∗F (u, v) if u, v ∈ F ‡
mul∗F (u, v) = mul∗F (v, u) if u, v ∈ F ‡
mul∗F (u, x) 6 mul∗F (v, x) if u, v, x ∈ F ‡ and u < v and 0 < x
mul∗F (u, x) > mul∗F (v, x) if u, v, x ∈ F ‡ and u < v and x < 0

mul∗F (u · riF , v · r
j
F ) = mul∗F (u, v) · ri+j

F if u, v ∈ F ‡ and i, j ∈ Z
NOTES

3 The above requirements capture the following properties:

a) The result of mul∗F is exact iff the ‘true result’ is in F ‡; and, by monotonicity,
mul∗F (u, v) and u · v, when not equal, are in the same range of values strictly be-
tween two adjacent values in F ‡. Thus, if rnd errorF is 1, the max error is strictly
less than 1.

b) mul∗F is sign symmetric for the left operand and, by commutativity, for the right
operand.

c) mul∗F is commutative.

d) mul∗F is monotonic for the left operand and, by commutativity, for the right operand.

e) For mul∗F the exponents of its arguments can be factored out.
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4 True multiplication (·) fulfills the requirements on mul∗F .

Further requirements on the div∗F approximation helper function are:

div∗F (u, v) ∈ F ‡ ⇔ div∗F (u, v) = u/v if u, v ∈ F ‡ and v 6= 0
div∗F (−u, v) = −div∗F (u, v) if u, v ∈ F ‡ and v 6= 0
div∗F (u,−v) = −div∗F (u, v) if u, v ∈ F ‡ and v 6= 0
div∗F (u, x) 6 div∗F (v, x) if u, v, x ∈ F ‡ and u < v and 0 < x
div∗F (u, x) > div∗F (v, x) if u, v, x ∈ F ‡ and u < v and x < 0
div∗F (x, u) > div∗F (x, v) if u, v, x ∈ F ‡ and (u < v < 0 or 0 < u < v) and 0 < x
div∗F (x, u) 6 div∗F (x, v) if u, v, x ∈ F ‡ and (u < v < 0 or 0 < u < v) and x < 0

div∗F (u · riF , v · r
j
F ) = div∗F (u, v) · ri−jF if u, v ∈ F ‡ and v 6= 0 and i, j ∈ Z

NOTES

5 The above requirements capture the following properties:

a) The result of div∗F is exact iff the ‘true result’ is in F ‡; and, by monotonicity, div∗F (u, v)
and u/v, when not equal, are in the same range of values strictly between two adjacent
values in F ‡.

b) div∗F is sign symmetric for the left operand and for the right operand.

c) div∗F is monotonic for the left and right operands.

d) For div∗F the exponents of its arguments can be factored out.

6 True division (/) fulfills the requirements on div∗F .

If this relaxation is permitted in a binding, add′F→F ′ , sub′F→F ′ , mul′F→F ′ , and div′F→F ′ , (re-
placing addF→F ′ , subF→F ′ , mulF→F ′ , and divF→F ′ in the binding) shall be defined as:

add′F→F ′(x, y) = resultF ′(add∗F ′(x, y), nearestF ′) if x, y ∈ F
= addF→F ′(x, y) otherwise

sub′F→F ′(x, y) = add′F→F ′(x, negF (y))

mul′F→F ′(x, y) = resultF ′(mul∗F ′(x, y), nearestF ′) if x, y ∈ F
= mulF→F ′(x, y) otherwise

div′F→F ′(x, y) = resultF ′(div∗F ′(x, y), nearestF ′) if x, y ∈ F and y 6= 0
= divF→F ′(x, y) otherwise

This allows addition, subtraction, multiplication, and division that do not round ties to even
last digit (when rnd errorF ′ is 0.5), or rounds towards zero or away from zero (when rnd errorF ′

is 1).

If this relaxation is allowed, there shall be a parameter rnd styleF , available to programs for
the datatype corresponding to F , having one of four constant values, is defined by

rnd styleF = nearesttiestoeven if this relaxation is not engaged
= nearest if this relaxation is engaged and rnd errorF = 0.5
= truncate if nearestF (|add∗F (x, y)|) = downF (|x+ y|) and

nearestF (|mul∗F (x, y)|) = downF (|x · y|) and
nearestF (|div∗F (x, y)|) = downF (|x/y|)

= other otherwise
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If rnd styleF 6= nearesttiestoeven, the operations using upF or downF as rounding shall not
be provided.

A.7 Accuracy relaxation for floating point conversion

First define the least radix function, lb, defined for arguments that are greater than 0:

lb : Z → Z
lb(r) = min{n ∈ Z | n > 1 and there is an m ∈ Z such that r = nm}

If this relaxation is allowed, there shall be a max error convertF→F ′ parameter that gives the
maximum error when converting from F to F ′ and lb(rF ) 6= lb(rF ′), a max error convertF→D

parameter that gives the maximum error when converting from F to D and lb(rF ) 6= lb(rD), and
a max error convertD→F parameter that gives the maximum error when converting from D to
F and lb(rD) 6= lb(rF ). These parameters may be required to have the same value, and then only
one parameter need be made available to programs.

max error convertF→F ′ , max error convertF→D, and max error convertD→F should each
have a value less than 1. When lb(rF ) = lb(rF ′), thenmax error convertF→F ′ , max error convertF→D,
and max error convertD→F shall all be 0.5.

The convert∗F→F ′ , convert∗F→D, and convert∗D→F helper functions are introduced to model
this pre-rounding approximation: convert∗F→F ′ : F ‡ → R, convert∗F→D : F ‡ → R, convert∗D→F :
D∗ → R.

convert∗F→F ′(x) returns a close approximation to x, satisfying
|x− nearestF (convert∗F→F ′(x))| 6 max error convertF→F ′ · uF (x)

convert∗F→D(x) returns a close approximation to x, satisfying
|x− nearestF (convert∗F→D(x))| 6 max error convertF→D · uF (x)

convert∗D→F (x) returns a close approximation to x, satisfying
|x− nearestF (convert∗D→F (x))| 6 max error convertD→F · uF (x)

Further requirements on the convert∗F→F ′ approximation helper functions are:

convert∗F→F ′(x) = x if x ∈ Z ∩ F
convert∗F→F ′(−x) = −convert∗F→F ′(x) if x ∈ F ‡
convert∗F→F ′(x) 6 convert∗F→F ′(y) if x, y ∈ F ‡ and x < y

Relationship to other floating point to floating point conversion approximation helper functions
for conversion operations in the same library shall be:

convert∗F→F ′(x) = convert∗F ′′→F ′(x) if lb(rF ′′) = lb(rF ) and x ∈ F ∩ F ′′

The convert′F→F ′ operation:

convert′F→F ′ : F → F ′ ∪ {inexact,underflow,overflow}
convert′F→F ′(x) = resultF ′(convert∗F→F ′(x), nearestF ′)

if x ∈ F
= convertF→F ′(x) otherwise

Further requirements on the convert∗F→D approximation helper functions are:

convert∗F→D(x) = x if x ∈ Z ∩ F
convert∗F→D(−x) = −convert∗F→D(x) if x ∈ F
convert∗F→D(x) 6 convert∗F→D(y) if x, y ∈ F and x < y
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Relationship to other floating point to fixed point conversion approximation helper functions
for conversion operations in the same library shall be:

convert∗F→D(x) = convert∗F ′′→D(x) if lb(rF ′′) = lb(rF ) and x ∈ F ∩ F ′′

The convert′F→D operation:

convert′F→D : F → D ∪ {inexact,overflow}
convert′F→D(x) = resultD(convert∗F→D(x), nearestD)

if x ∈ F
= convertF→F ′(x) otherwise

Further requirements on the convert∗D→F approximation helper functions are:

convert∗D→F (x) = x if x ∈ Z ∩D
convert∗D→F (−x) = −convert∗D→F (x) if x ∈ D
convert∗D→F (x) 6 convert∗D→F (y) if x, y ∈ D and x < y

Relationship to other floating point and fixed point to floating point conversion approximation
helper functions for conversion operations in the same library shall be:

convert∗D→F (x) = convert∗D′→F (x) if lb(rD′) = lb(rD) and x ∈ D ∩D′
convert∗D→F (x) = convert∗F ′→F (x) if lb(rF ′) = lb(rD) and x ∈ D ∩ F ′

The convert′D→F operation:

convert′D→F : D → F ∪ {inexact,underflow,overflow}
convert′D→F (x) = resultF (convert∗D→F (x), nearestF )

if x ∈ D
= convertD→F (x) otherwise
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Annex B
(informative)

IEC 60559 bindings

When the parameter iec 559F is true for a floating point type F , all the facilities required by
IEC 60559 shall be provided for that datatype. Methods shall be provided for a program to access
each such facility. In addition, documentation shall be provided to describe these methods.

This means that a complete programming language binding for LIA-1 should provide a binding
for all IEC 60559 facilities as well. Such a programming language binding must define syntax
for all required facilities, and should define syntax for all optional facilities as well. Defining
syntax for optional facilities does not make those facilities required. All it does is ensure that
those implementations that choose to provide an optional facility will do so using a standardized
syntax.

The normative listing of all IEC 60559 facilities (and their definitions) is given in IEC 60559.
ISO/IEC 10967 does not alter or eliminate any of them. However, to assist the reader, the
following summary is offered.

B.1 Summary

A binding of IEC 60559 to a programming language must provide the names of the programming
language datatypes that correspond to:

a) binary32,

b) binary64,

c) binary128,

d) decimal64,

e) decimal128,

if any.

Note that the LIA-1 parameter values for each of the IEC 60559 datatypes the parameters
denormF and iec 559F are true. The remaining LIA-1 basic parameters for ‘binary32’ are:

rF = 2
pF = 24
eminF = −125
emaxF = 128

For IEC 60559 ‘binary64’ they are:

rF = 2
pF = 53
eminF = −1021
emaxF = 1024

For IEC 60559 ‘binary128’ they are:
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rF = 2
pF = 113
eminF = −16381
emaxF = 16384

For IEC 60559 ‘decimal64’ they are:

rF = 10
pF = 16
eminF = −382
emaxF = 385

For IEC 60559 ‘decimal128’ they are:

rF = 10
pF = 34
eminF = −6142
emaxF = 6145

IEC 60559 also specifies ‘binary16’ and ‘decimal32’ with only conversion operations speci-
fied, terming them “storage formats”. These storage formats are not included when referring to
IEC 60559 conforming datatype below. IEC 60559 also specifies extended formats, giving just
maximum or minimum requirements on the parameters. These are included when referring to
IEC 60559 conforming datatype below.

For each IEC 60559 conforming datatype, the binding must provide:

a) a method for denoting positive infinity,

b) a method for denoting at least one quiet NaN (not-a-number),

c) a method for denoting at least one signalling NaN (not-a-number).

For each IEC 60559 conforming datatype provided, the binding should provide the notation
for invoking each of the following operations:

a) The basic comparison operations (also required by LIA-1, though not with built-in conver-
sion):

boolean compareEqual(source1,source2) eqF
boolean compareNotEqual(source1,source2) neqF
boolean compareGreater(source1,source2) gtrF
boolean compareGreaterEqual(source1,source2) geqF
boolean compareLess(source1,source2) lssF
boolean compareLessEqual(source1,source2) leqF

b) The other comparison operations required by IEC 60559:

boolean compareSignalingNotGreater(source1,source2)
boolean compareSignalingLessUnordered(source1,source2)
boolean compareSignalingNotLess(source1,source2)
boolean compareSignalingGreaterUnordered(source1,source2)
boolean compareQuietGreater(source1,source2)
boolean compareQuietGreaterEqual(source1,source2)
boolean compareQuietLess(source1,source2)
boolean compareQuietLessEqual(source1,source2)
boolean compareUnordered(source1,source2)
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boolean compareQuietNotGreater(source1,source2)
boolean compareQuietLessUnordered(source1,source2)
boolean compareQuietNotLess(source1,source2)
boolean compareQuietGreaterUnordered(source1,source2)
boolean compareOrdered(source1,source2)

c) The basic arithmetic operations (also required by LIA-1, though not with built-in conver-
sions, and not rounding mode dependent), plus negation and absolute value.

formatOf-addition(source1, source2) addF→F ′ , add↑F→F ′ , add
↓
F→F ′

formatOf-subtraction(source1, source2) subF→F ′ , sub↑F→F ′ , sub
↓
F→F ′

formatOf-multiplication(source1, source2) mulF→F ′ , mul↑F→F ′ , mul
↓
F→F ′

formatOf-division(source1, source2) divF→F ′ , div↑F→F ′ , div
↓
F→F ′

sourceFormat negate(source) similar to negF
sourceFormat abs(source) similar to absF
sourceFormat copySign(source, source) similar to mulF→F (absF (x),

signumF (y))

d) Remainder, square-root, and fused multiply-add.

sourceFormat remainder(source, source) residueF
formatOf-squareRoot(source) sqrtF→F ′ , sqrt↑F→F ′ , sqrt

↓
F→F ′

formatOf-fusedMultiplyAdd(source1, source2, source3) mul addF→F ′ , mul add↑F→F ′ ,

mul add↓F→F ′

e) Floating point step functions, exponent extraction and change.

sourceFormat nextUp(source) succF
sourceFormat nextDown(source) predF
sourceFormat nextAfter(source, source)
logBFormat logB(source) exponentF→I(x)− 1
sourceFormat scaleB(source, logBFormat) scaleF,I
sourceFormat quantize(source, source) (may have denormalisation loss)

f) Maximum and minimum operations.

sourceFormat minNum(source, source) similar to mminF
sourceFormat maxNum(source, source) similar to mmaxF
sourceFormat minNumMag(source, source) mminF (absF (x), absF (y))
sourceFormat maxNumMag(source, source) mmaxF (absF (x), absF (y))

g) The type and value conversions.

sourceFormat roundToIntegralTiesToEven(source) roundingF
sourceFormat roundToIntegralTiesToAway(source)
sourceFormat roundToIntegralTowardZero(source)
sourceFormat roundToIntegralTowardPositive(source) ceilingF
sourceFormat roundToIntegralTowardNegative(source) floorF
sourceFormat roundToIntegralExact(source)

formatOf-convert(int) convertI→F , convert↑I→F , convert↓I→F

intFormatOf-convertToIntegerTiesToEven(source)
intFormatOf-convertToIntegerTowardZero(source)
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intFormatOf-convertToIntegerTowardPositive(source)
intFormatOf-convertToIntegerTowardNegative(source)
intFormatOf-convertToIntegerTiesToAway(source)
intFormatOf-convertToIntegerExactTiesToEven(source) roundingF→I

intFormatOf-convertToIntegerExactTowardZero(source)
intFormatOf-convertToIntegerExactTowardPositive(source)

ceilingF→I

intFormatOf-convertToIntegerExactTowardNegative(source)
floorF→I

intFormatOf-convertToIntegerExactTiesToAway(source)

formatOf-convert(source) convertF→F ′ , convert↑F→F ′ , convert
↓
F→F ′

formatOf-convertFromDecimalCharacter(decimalCharacterSequence)
convertF ′→F , convertD→F

convert↑F ′→F , convert↑D→F

convert↓F ′→F , convert↓D→F

decimalCharacterSequence convertToDecimalCharacter(source, conversionSpecification)
convertF→F ′ , convertF→D

convert↑F→F ′ , convert
↑
F→D

convert↓F→F ′ , convert
↓
F→D

formatOf-convertFromHexCharacter(hexCharacterSequence)
convertF ′→F , convertD→F

convert↑F ′→F , convert↑D→F

convert↓F ′→F , convert↓D→F

hexCharacterSequence convertToHexCharacter(source, conversionSpecification)
convertF→F ′ , convertF→D

convert↑F→F ′ , convert
↑
F→D

convert↓F→F ′ , convert
↓
F→D

decimalEncodingType encodeDecimal(decimalType) convertF→F ′ , convert↑F→F ′ , convert
↓
F→F ′

decimalType decodeDecimal(decimalEncodingType) convertF→F ′ , convert↑F→F ′ , convert
↓
F→F ′

binaryEncodingType encodeBinary(decimalType) convertF→F ′ , convert↑F→F ′ , convert
↓
F→F ′

decimalType decodeBinary(binaryEncodingType) convertF→F ′ , convert↑F→F ′ , convert
↓
F→F ′

h) Some test functions.

boolean isSigned(source) similar to eqF (signumF (x),−1)
boolean isNormal(source) similar to geqF (absF (x), fminNF )
boolean isFinite(source) similar to lssF (absF (x),+∞+∞+∞)
boolean isZero(source) eqF (x, 0)
boolean isSubnormal(source) similar to istinyF (x)&&neqF (x, 0)
boolean isInfinity(source) eqF (absF (x),+∞+∞+∞)
boolean isNaN(source) neqF (x, x), isnanF (x)
boolean isSignaling(source) issignanF (x)
boolean isCanonical(source)
int radix(source) rF
enum class(source)
boolean totalOrder(source, source)
boolean totalOrderMag(source, source)
boolean sameQuantum(source,source)
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i) Notification indicator functions.

void lowerFlag(exceptionGroupType) clear indicators(C ,S )
boolean testFlag(exceptionGroupType) test indicators(C ,S )
void restoreFlag(flagsType, exceptionGroupType) similar to set indicators(C ,S )

but also clears
flagsType saveFlags(void) current indicators(C )

j) “Mode” changes (rounding direction modes, and other modes).

MODEtype getMODE(void)
binaryRoundingDirectionType getBinaryRoundingDirection(void)
decimalRoundingDirectionType getDecimalRoundingDirection(void)
void setMODE(MODEtype)
void setBinaryRoundingDirection(binaryRoundingDirectionType)
void setDecimalRoundingDirection(decimalRoundingDirectionType)
modeGroupType saveModes(void)
void restoreModes(modeGroupType)
void defaultModes(void)

Note that several of the above facilities are already required by LIA-1 even for implementations
that do not conform to IEC 60559.

B.2 Notification

The default notification handling in IEC 60559 is by recording in indicators, called exception flags
in IEC 60559. One appropriate way to access the IEC 60559 exception flags is to use the functions
defined in 6.2.1.

IEC 60559 also allows for alternate exception handling. In LIA this is modelled by notification
by change of control.

B.3 Rounding

The directed roundings are useful for implementing interval arithmetic. However, at a higher level
it is better to use a special datatype for intervals, and arithmetic on intervals.
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Annex C
(informative)

Rationale

This annex explains and clarifies some of the ideas behind Information technology – Language
independent arithmetic – Part 1: Integer and floating point arithmetic (LIA-1). This allows the
standard itself to be more concise. Many of the major requirements are discussed in detail,
including the merits of possible alternatives. The clause numbering matches that of the standard,
although additional clauses have been added.

C.1 Scope

The scope of LIA-1 includes the traditional primitive arithmetic operations usually provided in
hardware. The standard also includes several other useful primitive operations which could be
provided in hardware or software. An important aspect of all of these primitive operations is
that they are to be considered atomic (with respect to rounding and notifications, not necessarily
with respect to thread parallelism) rather than noticeably implemented as a sequence of yet more
primitive operations. Hence, each primitive floating point operation has a half ulp error bound
when rounding to nearest, and is never interrupted by an intermediate notification. The latter is
true also for all integer operations.

LIA-1 provides a parameterised model for arithmetic. Such a model is needed to make concepts
such as “precision” or “exponent range” meaningful. However, there is no such thing as an “LIA-1
machine”. It makes no sense to write code intended to run on all machines describable with LIA-1
model – the model covers too wide a range for that. It does make sense to write code that uses
LIA-1 facilities to determine whether the platform it is running on is suitable for its needs.

C.1.1 Inclusions

This standard is intended to define the meaning of an “integer datatype” and a “floating point
datatype”, but not to preclude other arithmetic or related datatypes. The specifications for integer
and floating point datatypes are given in sufficient detail to

a) support detailed and accurate numerical analysis of arithmetic algorithms,

b) enable a precise determination of conformity or non-conformity, and

c) prevent exceptions (like overflow) from going undetected.

C.1.2 Exclusions

There are many arithmetic systems, such as fixed point arithmetic, significance arithmetic, interval
arithmetic, rational arithmetic, level-index arithmetic, slash arithmetic, and so on, which differ
considerably from traditional integer and floating point arithmetic, as well as among themselves.
Some of these systems, like fixed point arithmetic, are in wide-spread use as datatypes in standard
languages; most are not. A form of floating point is defined by Kulish and Miranker [54, 55] which
is compatible with the floating point model in LIA-1. For reasons of simplicity and clarity, these
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alternate arithmetic systems are not treated in LIA-1. They should be the subject of other parts
of ISO/IEC 10967 if and when they become candidates for standardization.

The portability goal of LIA-1 is for programs, rather than data. LIA-1 does not specify the
internal representation of data. However, portability of data is a subject of IEC 60559, which
specifies internal representations that can also be used for data exchange.

Mixed mode operations, and other issues of expression semantics, are not addressed directly
by LIA-1. However, suitable documentation is required (see clause 7).

C.1.3 Companion parts to this part

The following topics are the subject of a family of standard parts, of which LIA-1 is the first
member:

a) Specifications for the usual elementary functions (LIA-2).

b) Specifications for complex and imaginary datatypes and operations (LIA-3).

This list is incomplete, and further parts may be created.

Each of these new sets of specifications is necessary to provide a total numerical environment
for the support of portable robust numerical software. The properties of the primitive operations
is used in the specifications of elementary and complex functions and conversion routines which

a) are realistic from an implementation point of view,

b) have acceptable performance, and

c) have adequate accuracy to support numerical analysis.

C.2 Conformity

A conforming system consists of an implementation (which obeys the requirements) together with
documentation which shows how the implementation conforms to the standard. This documenta-
tion is vital since it gives crucial characteristics of the system, such as the range for integers, the
range and precision for floating point, and the actions taken by the system on the occurrence of
notifications.

The binding of LIA-1 facilities to a particular programming language should be as natural
as possible. Existing language syntax and features should be used for operations, parameters,
notification, and so on. For example, if a language expresses addition by “x+y,” then LIA-1
addition operations addI and addF should be bound to the infix “+” operator.

Most current implementations of floating point can be expected to conform to the specifications
in this standard. In particular, implementations of IEC 60559 (IEEE 754 [35]) in default mode
will conform, provided that the user is made aware of any status flags that remain set upon exit
from a program.

The documentation required by LIA-1 will highlight the differences between “almost IEEE”
systems and fully IEEE conforming ones.

Note that a system can claim conformity for a single integer type, a single floating point type,
or a collection of arithmetic types.

An implementation is free to provide arithmetic datatypes (e.g. fixed point) or arithmetic op-
erations (e.g. exponentiation on integers) which may be required by a language standard but are
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not specified by LIA-1. Similarly, an implementation may have modes of operation (e.g. notifica-
tions disabled) that do not conform to LIA-1. The implementation must not claim conformity to
LIA-1 for these arithmetic datatypes or modes of operation. Again, the documentation that dis-
tinguishes between conformity and non-conformity is critical. An example conformity statement
(for a Fortran implementation) is given in annex E.

C.2.1 Validation

This standard gives a very precise description of the properties of integer and floating point
datatypes. This will expedite the construction of conformity tests. It is important that objective
tests be available. Schryer [57] has shown that such testing is needed for floating point since two
thirds of units tested by him contained serious design flaws. Another test suite is available for
floating point [44], which includes enhancements based upon experience with Schryer’s work [57].

LIA-1 does not define any process for validating conformity.

Independent assurance of conformity to LIA-1 could be by spot checks on products with a
validation suite, as for language standards, or via vendors being registered under ISO/IEC 9001
Model for quality assurance in production and installation [32] enhanced with the requirement that
their products claiming conformity are tested with the validation suite and checked to conform as
part of the release process.

Alternatively, checking could be regarded as the responsibility of the vendor, who would then
document the evidence supporting any claim to conformity.

C.3 Normative references

The referenced IEC 60559 standard is identical to IEEE 754. IEEE 754-2008 is a major revision of
IEEE 754-1984, adding 124-bit floating point types, decimal radix floating point types (formerly
in IEEE 854, now withdrawn), removing “trapping” exception handling, removing implementor
options, adding operations, and more. IEC 60559 third edition (2009?) will be identical to
IEEE 754-2008.

C.4 Symbols and definitions

An arithmetic standard must be understood by numerous people with different backgrounds:
numerical analysts, compiler-writers, programmers, microcoders, and hardware designers. This
raises certain practical difficulties. If the standard were written entirely in a natural language,
it might contain ambiguities. If it were written entirely in mathematical terms, it might be
inaccessible to some readers. These problems were resolved by using mathematical notation for
LIA-1, and providing this rationale in English to explain the notation.

C.4.1 Symbols

LIA-1 uses the conventional notation for sets and operations on sets. The set Z denotes the
set of mathematical integers. This set is infinite, unlike the finite subset which a machine can
conveniently handle. The set of real numbers is denoted by R, which is also infinite. Numbers
such as π, 1/3 and

√
2 are in R, but usually they cannot be represented exactly in a floating point
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type. (Some systems make provisions to represent a select few such numbers specially, and handle
them ‘symbolically’ as much as possible.)

C.4.2 Definitions of terms

A vital definition is that of “notification”. A notification is the report (to the program or user)
that results from an error or exception as defined in ISO/IEC TR 10176 [7].

The principle behind notification is that such events in the execution of a program should not
go unnoticed. The preferred action is to use ‘recording in indicators’. Another possibility is to
invoke a change in the flow control of a program (for example, an Ada or Java “exception”), to
allow the user to take corrective action. Changes of control flow are, however, harder to handle
and recover from, especially if the notifications is not so serious and the computation may just
continue. In particular, for inexact and underflow it is usually ill-advised to make a change
in control flow, likewise for infinitary (usually divide-by-zero) notifications when infinity values
are guaranteed to be available in the datatype. The practice in some older systems is that a
notification consists of aborting execution with a suitable error message. This is hardly ever the
proper action to take, and can be highly dangerous.

The various forms of notification are given names, such as overflow, so that they can be
distinguished. However, bindings are not require to handle each named notification the same way
everywhere. For example, overflow may be split into tt integer-overflow and tt floating-overflow,
infinitary for integer results may result in a change of control flow, while infinitary on floating
point results are handled by recording in indicators, only returning an infinitary continuation
value while setting the indicator for infinitary.

Another important definition is that of a rounding function. A rounding function is a mapping
from the real numbers onto a subset of the real numbers. Typically, the subset X is an “approxi-
mation” to R, having unbounded range but limited precision. X is a discrete subset of R, which
allows precise identification of the elements of X which are closest to a given real number in R.
A rounding function rnd maps each real number y to an approximation of y that lies in X. If
a real number y is in X, then clearly y is the best approximation for itself, so rnd(y) = y. If y
is between two adjacent values x1 and x2 in X, then one of these adjacent values must be the
approximation for y:

x1 < y < x2 ⇒ (rnd(y) = x1 or rnd(y) = x2)

Finally, if rnd(y) is the approximation for y, and z is between y and rnd(y), then rnd(y) is the
approximation for z also.

y < z < rnd(y) ⇒ rnd(z) = rnd(y)
rnd(y) < z < y ⇒ rnd(z) = rnd(y)

The last three rules are special cases of the monotonicity requirement

x < y ⇒ rnd(x) 6 rnd(y)

which appears in the definition of a rounding function.

Note that the value of rnd(y) depends only on y and not on the arithmetic operation (or
operands) that gave rise to y.

The graph of a rounding function looks like a series of steps. As y increases, the value of rnd(y)
is constant for a while (equal to some value in X) and then jumps abruptly to the next higher
value in X.
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Some examples may help clarify things. Consider a number of rounding functions from R to
Z. One possibility is to map each real number to the next lower integer:

rnd(u) = buc
This gives rnd(1) = 1, rnd(1.3) = 1, rnd(1.99 · · · ) = 1, and rnd(2) = 2. Another possibility
would be to map each real number to the next higher integer. A third example maps each real
number to the closest integer (with half-way cases rounding toward plus infinity):

rnd(u) = bu+ 0.5c
This gives rnd(1) = 1, rnd(1.49 · · · ) = 1, rnd(1.5) = 2, and rnd(2) = 2. Each of these examples
corresponds to rounding functions in actual use. For some floating point result examples, see
C.5.2.4.

Note, the value rnd(u) may not be representable in the target datatype. The absolute value
of the rounded result may be too large. The resultF function deals with this possibility. (See
C.5.2.5 for further discussion.)

There is a precise distinction between shall and should as used in this standard: shall implies
a requirement, while should implies a recommendation. One hopes that there is a good reason if
the recommendation is not followed.

Additional definitions specific to particular types appear in the relevant clauses.

C.5 Specifications for integer and floating point datatypes and operations

Each arithmetic datatype conforming to LIA-1 consists of a subset of the real numbers character-
ized by a small number of parameters. Additional values may be included in an LIA-1 conforming
datatype, especially infinities, negative zeroes, and NaNs (“not a number”). Two basic classes of
types are specified: integer and floating point. A typical system could support several of each.

In general, the parameters of all arithmetic types must be accessible to an executing program.
However, sometimes a language standard requires that a a parameter for a numeric datatype has
a known value (for example, that an integer type is bounded). In this case, the parameter must
have the same value in every implementation of that language and therefore need not be provided
as a run-time parameter.

The signature of each operation partially characterizes the possible input and output values.
All operations are defined for all possible combinations of input values. Exceptions (like dividing
3 by 0) are modelled by the return of non-numeric exceptional values (like invalid, infinitary,
etc.). The absence of an exceptional value in the result set of a signature does not indicate that
that exception cannot occur, but that it cannot occur for values in the input set of the signature.
Other exceptions, as well as other values, can be returned for inputs outside of the stated input
values, e.g. infinities. The operation specifications (5.1.2, 5.2.6) state precisely when notifications
must occur.

The philosophy of LIA-1 is that all operations either produce correct results or give a no-
tification. For the operations specified in LIA, a notification must be based on the final result;
there can be no spurious intermediate notifications. Arithmetic on bounded, non-modulo, integers
must be correct if the mathematical result lies between minintI and maxintI and must produce
a notification if the mathematically well-defined result lies outside this interval (overflow) or if
there is no mathematically well-defined (and finite) result (infinitary or invalid). Arithmetic
on floating point values must give a correctly rounded approximation if the approximation lies
between −fmaxF and fmaxF and must produce a notification if the mathematically well-defined
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approximation lies outside this interval (overflow) or if there is no mathematically well-defined
(and finite) approximation (infinitary or invalid).

C.5.1 Integer datatypes and operations

Most traditional computer programming languages assume the existence of bounds on the range
of integers which can be values in integer types. Some languages place no limit on the range of
integers, or even allow the boundedness of an integer type to be an implementation choice.

This standard uses the parameter bounded I to distinguish between implementations which
place no restriction on the range of integer data values (bounded I = false) and those that do
(bounded I = true). If the integer datatype (corresponding to) I is bounded, then two additional
parameters are required, minintI and maxintI . For unbounded integers, minintI and maxintI
are required to have infinitary values. Infinitary values are required for unbounded integer types,
and are allowed for bounded integer types.

For bounded integers, there are two approaches to out-of-range values: notification and “wrap-
ping”. In the latter case, all computation except comparisons is done modulo the cardinality
of I (typically 2n for some n), and no notification is required. The “wrapping” is modeled by
operations specified in part 2.

C.5.1.0.1 Unbounded integers

Unbounded integers were introduced because there are languages which provide integers with no
fixed upper limit. The value of the Boolean parameter bounded I must either be fixed in the
language definition or must be available at run-time. Some languages permit the existence of an
upper limit to be an implementation choice.

In an unbounded integer datatype implementation, every mathematical integer is potentially a
data object in that datatype. The actual values computable depend on resource limitations, not on
predefined bounds. Resource limitation problems are not modelled in LIA, but an implementation
will need to make use of some notification to report the error back to the program (or program
user). Note that also bounded integer datatypes may give rise to resource limitation errors, e.g.
if the (intermediary) computed result cannot be stored.

LIA-1 does not specify how the unbounded integer datatype is implemented. Implementations
will use a variable amount of storage for an integer, as needed. Indeed, if an implementation
supplied a fixed amount of storage for each integer, this would establish a de facto maxintI and
minintI . It is important to note that this standard is not dependent upon hardware support for
unbounded integers (which rarely, if ever, exists). In essence, LIA-1 requires a certain abstract
functionality, and this can be implemented in hardware, software, or more typically, a combination
of the two.

Operations on unbounded integers will never overflow. However, the storage required for
unbounded integers can result in a program failing due to lack of memory. This is logically no
different from failure through other resource limits, such as time.

The implementation may be able to determine that it will not be able to continue processing in
the near future and may issue a warning. Some recovery may or may not be possible. It may be
impossible for the system to identify the specific location of the fault. However, the implementation
must not give false results without any indication of a problem. It may be impossible to give a
definite “practical” value below which integer computation is guaranteed to be safe, because the
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largest representable integer at time t may depend on the machine state at that instant. Sustained
computations with very large integers may lead to resource exhaustion.

Natural numbers (upwardly unbounded non-negative integers) are not modelled by LIA-1.

The signatures of the integer operations include overflow as a possible result because they
refer to bounded integer operations as well.

C.5.1.0.2 Bounded non-modulo integers

For bounded non-modulo integers, it is necessary to define the range of representable values,
and to ensure that notification occurs on any operation which would give a mathematical result
outside that range. Different ranges result in different integer types. The values of the parameters
minintI and maxintI must be accessible to an executing program.

The allowed ranges for integers fall into three classes:

a) minintI = 0, corresponding to unsigned integers. The operation negI would always produce
overflow (except on 0), and may be omitted.

The operation absI is the identity mapping and may also be omitted. The operation divI
never produces overflow.

b) minintI = −maxintI , corresponding to one’s complement or sign-magnitude integers. None
of the operations negI , absI or divI produces overflow.

c) minintI = −(maxintI + 1), corresponding to two’s complement integers. The operations
negI and absI produce overflow only when applied to minintI . The operation divI produces
overflow when minintI is divided by −1, since

minintI/(−1) = −minintI = maxintI + 1 > maxintI .

The Pascal, Modula-2, and Ada programming languages support subranges of integers. Such
subranges typically do not satisfy the rules for maxintI and minintI . However, is not to say that
these languages have non-conforming integer datatypes. Each subrange type can be viewed as
a subset of an integer datatype that does conform to LIA-1. Integer operations are defined on
those integer datatypes, and the subrange constraints only affect the legality of assignment and
parameter passing.

C.5.1.0.3 Modulo integers

Modulo arithmetic operations on integers were introduced because there are languages that man-
date wrapping operations for some integer types (e.g., C’s unsigned int type), and make it
optional for others (e.g., C’s signed int type).

Modulo arithmetic operations on integer datatypes behave as above, but wrap rather than
overflow when an operation would otherwise return a value outside of the range of the datatype.
However, in this edition, this is modelled as separate operations from the addI etc. operations.
A binding may however use the same syntax for addI and add wrapI (etc. for other operations),
and let the datatypes of the arguments, or a moduloI parameter, imply which LIA operation is
invoked.

C.5.1 Integer datatypes and operations 63



ISO/IEC WD 10967-1.2:2010(E) Working draft

Bounded modulo integers (in the limited form defined here) are definitely useful in certain
applications. However, bounded integers are most commonly used as an efficient hardware ap-
proximation to true mathematical integers. In these latter cases, a wrapped result would be
severely inaccurate, and should result in a notification. Unwary use of modulo integers can easily
lead to undetected programming errors.

The developers of a programming language standard (or binding standard) should carefully
consider which (if any) of the integral programming language types are bound to modulo integers.
Since modulo integers are dangerous, programmers should always have the option of using non-
modulo (overflow checking) integers instead.

Some languages, like Ada, allow programmers to declare new modulo integer datatypes, usually
unsigned. Since the upper limit is then also programmer defined, the lower limit usually fixed at
zero, these datatypes are more flexible, and very useful.

C.5.1.0.4 Modulo integers versus overflow

wrapI (LIA-2) produces results in the range [minintI ,maxintI ]. These results are positive for
unsigned integer types, but may be negative for signed types.

C.5.1.1 Integer result function

Integer result functions, resultI , takes as argument the exact mathematical result of an integer
operation, and checks that it is in the bounds of the integer datatype. If so, the value is returned.
If not, the exceptional value overflow is returned.

The resultI helper function is used in the specifications of the integer operations, and is used
to consistently and succinctly express the overflow notification cases. The continuation value on
overflow is binding or implementation defined.

C.5.1.2 Integer operations

C.5.1.2.1 Comparisons

The comparisons are always exact and never produce any notification.

C.5.1.2.2 Basic arithmetic

The ratio of two integers is not necessarily an integer. Thus, the result of an integer division may
require rounding. Two rounding rules are in common use: round toward minus infinity (quotI),
and round toward zero. The latter is not specified by LIA-1, due to proneness for erroneous use,
when the arguments are of different signs. For example,

quotI(−3, 2) = −2 round toward minus infinity, specified in LIA-2
divtI(−3, 2) = −1 round toward zero, no longer specified by any part of LIA

quotI (called divfI in the first edition of LIA-1) as well as ratioI and groupI (specified in LIA-2)
all satisfy a broadly useful translation invariant:

quotI(x+ i ∗ y, y) = quotI(x, y) + i if y 6= 0, and no overflow occurs
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(and similarly for the ratioI and groupI). quotI is the form of integer division preferred by many
mathematicians. divtI (no longer specified by LIA) is the form of division introduced by Fortran.

Integer division is frequently used for grouping. For example, if a series of indexed items are to
be partitioned into groups of n items, it is natural to put item i into group i/n. This works fine
if quotI is used for integer division. However if divtI (no longer specified by LIA) is used, and i

can be negative, group 0 will get 2 ·n− 1 items rather than the desired n. This uneven behaviour
for negative i can cause subtle program errors, and is a strong reason against the use of divtI , and
for the use of the other integer division operations.

modI gives the remainder after quotI division. It is coupled to quotI by the following identities:

x = quotI(x, y) ∗ y +modI(x, y) if y 6= 0, and no overflow occurs
y < modI(x, y) 6 0 if y < 0
0 6 modI(x, y) < y if y > 0

Thus, quotI and modI form a logical pair. So do ratioI and residueI , as well as groupI and
negated(!) padI (specified in LIA-2). Note that computing modI(x, y) only as

subI(x,mulI(quotI(x, y), y))

is not correct for asymmetric bounded integer types, because quotI(x, y) can overflow butmodI(x, y)
cannot.

C.5.2 Floating point datatypes and operations

Floating point values are traditionally represented as either zero or

X = ±g ∗ reF = ±0.f1f2...fpF ∗ reF
where 0.f1f2...fpF is the pF -digit fraction g (represented in base, or radix, rF ) and e is the
exponent.

The exponent e is an integer in [eminF , emaxF ]. The fraction digits are integers in {0, ..., rF −
1}. If the floating point number is normalized, f1 is not zero, and hence the minimum normalised
value of the fraction g is 1/rF and the maximum value is 1− r−pFF . Subnormal values, including
0, cannot be represented in normalised form, since that would call for an exponent smaller than
eminF , indeed, for 0 the exponent would be negative infinity.

This description gives rise to five parameters that characterize the set of non-special values of
a floating point datatype:

radix rF : the “base” of the number system.

precision pF : the number of radix rF digits provided by the type.

eminF and emaxF : the smallest and largest exponent values. They define the range of the type.

denormF (a Boolean): true if the datatype includes the subnormal values; false if the only
subnormal values included are zeroes (non-conforming case).

For normalised values, the fraction g can also be represented as i ∗ r−pFF , where i is a pF digit

integer in the interval [rpF−1F , rpFF − 1]. Thus

X = ±g ∗ reF = ±(i ∗ r−pFF ) ∗ reF = ±i ∗ re−pFF
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This is the form of the floating point values used in defining the finite set FN . The exponent e is
often represented with a bias added to the true exponent.

denormF must be true for a fully conforming datatype. It is allowed to be false only for
partially conforming datatypes.

The IEEE 754 [35] (same as IEC 6559) present a slightly different model for the floating point
type. Normalized floating point numbers are represented as

±f0.f1...fpF−1 ∗ reF
where f0.f1...fpF−1 is the pF -digit significand (represented in radix rF , where rF is 2 or 10), and
e is an integer exponent between eminF − 1 (called emin in IEEE 754) and emaxF − 1 (called
emax in IEEE 754). For rF = 2 the minimum value of the significand is 1 and the maximum
value is rF − 1/rpF−1F . For rF = 10 the minimum value of the significand is 0 and the maximum

value is rF − 1/rpF−1F , allowing for denormal values that need not be subnormal. LIA does not
distinguish between normal and denormal representations of the same value. The IEEE significand
is equivalent to g ∗ rF .

The fraction model and the significand model are equivalent in that they can generate precisely
the same sets of floating point values. Currently, all ISO/IEC JTC1/SC22 programming language
standards that present a model of floating point to the programmer use the fraction model rather
than the significand one. LIA-1 has chosen to conform to this trend.

C.5.2.0.1 Constraints on the floating point parameters

The constraints placed on the floating point parameters are intended to be close to the minimum
necessary to have the model provide meaningful information. We will explain why each of these
constraints is required, and then suggest some constraints which have proved to be characteristic
of useful floating point datatypes.

LIA-1 requires that rF > 2 and pF > 2 · max{1, dlogrF (2 · π)e} in order to ensure that a
meaningful set of values. At present, only 2, 8, 10, and 16 appear to be in use as values for rF .
The first edition of LIA-1 only required that pF > 2, but such a low bound gives trouble in the
specifications of some of the elementary function operations (LIA-2). Indeed, pF should be such
that pF > 2+dlogrF (1000)e, so that the trigonometric operations can be meaningful for more than
just one cycle, but at 100 or so cycles. If the radix is 2, that means at least 12 binary digits in the
fraction part. As a comparison, note that the IEEE 754 storage format ‘binary16’ has pF = 11.

The requirement that eminF 6 2− pF ensures that epsilonF is representable in F .

The requirement that emaxF > pF ensures that 1/epsilonF is representable in F . It also
implies that all integers from 1 to rpFF − 1 are exactly representable.

The parameters rF and pF logically must be less than rpFF , so they are automatically in F .
The additional requirement that emaxF and −eminF are at most rpFF −1 guarantees that emaxF
and eminF are in F as well.

A consequence of the above restrictions is that a language binding can choose to report rF , pF ,
eminF , and emaxF to the programmer either as integers or as floating point values without loss
of accuracy.

Constraints designed to provide:

a) adequate precision for scientific applications,
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b) “balance” between the overflow and underflow thresholds, and

c) “balance” between the range and precision parameters

are applied to safe model numbers in Ada [11]. No such constraints are included in LIA-1, since
LIA-1 emphasizes descriptive, rather than prescriptive, specifications for arithmetic datatypes.
However, the following restrictions have some useful properties:

a) rF should be even

An even value of rF makes certain rounding rules easier to implement. In particular, round-
ing to nearest would pose a problem because with rF odd and d = brF /2c we would have
1
2 = .ddd · · · . Hence, for x1 < x < x1 + ulpF (x1) a reliable test for x relative to
x1 + 1

2ulpF (x1) could require retention of many guard digits.

b) rpF−1F > 106

This gives a maximum relative error (epsilonF ) of one in a million. This is easily accom-
plished by 24 binary or 6 hexadecimal digits.

c) eminF − 1 6 −k ∗ (pF − 1) with k > 2 and k as large an integer as practical

This guarantees that epsilonkF is in F which makes it easier to simulate higher levels of
precision than would be offered directly by the values in the datatype.

d) emaxF > k ∗ (pF − 1)

This guarantees that epsilon−kF is in F and is useful for the same reasons as given above.

e) −2 6 (eminF − 1) + emaxF 6 2

This guarantees that the geometric mean
√

fminNF ∗ fmaxF of fminNF and fmaxF lies
between 1/rF and rF .

All of these restrictions are satisfied by most (if not all) implementations. A few implemen-
tations present a floating point model with the radix point in the middle or at the low end of
the fraction. In this case, the exponent range given by the implementation must be adjusted to
yield the LIA-1 eminF and emaxF . In particular, even if the minimum and maximum exponent
given in the implementation’s own model were negatives of one another, the adjusted eminF and
emaxF become asymmetric.

C.5.2.0.2 Radix complement floating point

LIA-1 presents an abstract model for a floating point datatype, defined in terms of parameters.
An implementation is expected to be able to map its own floating point numbers to the elements
in this model, but LIA-1 places no restrictions on the actual internal representation of the floating
point values.

The floating point model presented in LIA-1 is sign-magnitude. A few implementations keep
their floating point fraction in a radix-complement format. Several different patterns for radix-
complement floating point have been used, but a common feature is the presence of one “extra”
negative floating point number, that has no positive counterpart: the most negative. Its value is
−fmaxF − ulpF (fmaxF ). Some radix-complement implementations also omit the negative coun-
terpart of fminNF .
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In order to accommodate radix-complement floating point, LIA-1 would have to make at least
the following changes:

a) define additional derived constants which correspond to the negative counterparts of fminF

(the “least negative” floating point number) and fmaxF (the “most negative” floating point
number) and change the definitions of FN , FS , etc.;

b) negation and absolute value will also be inexact for some values close to exponent bound-
aries;

c) add overflow to the signature of negF (because negF evaluated on the most negative number
will now overflow);

d) add overflow to the signature of absF (because absF will now overflow when evaluated on
the most negative number);

e) perhaps add underflow to the signature of negF , if −fminNF is omitted;

f) expand the definitions of subF and truncF to ensure that these operations behave correctly.

g) redefine the predF and succF operations to treat the new most negative floating point
number properly.

Because of this complexity, LIA-1 does not include radix-complement floating point.

Floating point implementations with sign-magnitude or (radix−1)-complement fractions can
map the floating point numbers directly to LIA-1 model without these adjustments.

C.5.2.1 Conformity to IEC 60559

IEC 60559 is the international version of IEEE 754.

Note that “methods shall be provided for a program to access each [IEC 60559] facility”. This
means that a complete LIA-1 binding will include a binding for IEC 60559 as well.

C.5.2.1.1 Subnormal numbers

IEEE 754 (IEC 60559) datatypes and some non-IEEE floating point datatypes include subnormal
numbers. 0 and −−−0 are two of the subnormal numbers. Floating point formats can in general
represent subnormal numbers, since the LIA-1 models a subnormal floating point number as a
real number of the form

X = ±i ∗ reminF−pF
F

where i is an integer in the interval [0, rpF−1F −1]. The corresponding fraction g lies in the interval

[0, 1/rF − r−pFF ]; its most significant digit is zero. Subnormal numbers partially fill the “underflow

gap” in fminNF , the interval ]−reminF−1
F , reminF−1

F [. Taken together, apart from−−−0, they comprise
the set FS .

The values in FS are linearly distributed with the same spacing as the values in the neighbouring
ranges ]−reminF

F ,−reminF−1
F ] and [reminF−1

F , reminF
F [ in FN . Thus they have a maximum absolute

representation error of reminF−pF
F . However, since subnormal numbers have less than pF digits

of precision, the relative representation error can vary widely. This relative error varies from
epsilonF = r1−pFF at the high ends of FS to 1 at the low ends of FS . Near 0, in [−fminDF , fminDF ],
the relative error may be unboundedly large.
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Whenever an addition or subtraction, resulting in the same datatype as the arguments, pro-
duces a result in FS , that result is exact – the relative error is zero. Even for an “effective
subtraction” no accuracy is lost, because the decrease in the number of significant digits is exactly
the same as the number of digits cancelled in the subtraction. For multiplication, division, scaling,
and some conversions, significant digits (and hence accuracy) may be lost if the result is in FS .
This loss of significant digits is called denormalisation loss.

The entire set of floating point numbers F is either FN∪FS (if subnormal numbers are provided),
or FN ∪ {0} (if all available non-special numbers, except 0, are normalized). For full conformity
LIA-1 requires the use of subnormal numbers.

C.5.2.1.2 Signed zero

The IEEE standards define both 0 and −−−0. Very few non-IEEE floating point datatypes provide
the user with two “different” zeros. Even for an IEEE datatype, the two zeroes can only be
distinguished with a few operations, not including comparisons, but e.g. use of the IEEE copysign
function, dividing by zero to obtain signed infinity, by (correctly) converting to a character string
numeral, or by using operations that have a branch cut along an axis, like arcF (LIA-2) or some
complex inverse trigonometric operation (LIA-3). Programs that require that 0 and−−−0 are distinct
might not be portable to systems without IEEE floating point datatypes.

C.5.2.1.3 Infinities and NaNs

IEEE 754 [35] provides special values to represent infinities and Not-a-Numbers. Infinity represents
an exact quantity (for instance from dividing a finite number by zero). Infinities are also used as an
inexact continuation value for overflow. A NaN represents an indeterminate or unrepresentable
quantity (e.g. from dividing zero by zero, or square root of −1 when that result cannot be
represented).

Most non-IEEE floating point datatypes do not provide infinities or (quiet) NaNs. Thus,
programs that make use of infinity or quiet NaNs will not be portable to systems that do not
provide them.

Note also that LIA-1 requires the presence of both negative and positive infinity in unbounded
integer datatypes. Also quiet NaNs should be provided. Such requirements are not made for
bounded integer datatypes, since such datatypes are most often supported directly by hardware.

C.5.2.2 Range and granularity constants

The positive real numbers fmaxF , fminF , and fminNF are interesting boundaries in the set F .
fmaxF is the “overflow threshold”. It is the largest value in F (and thereby also FN ). fminF is
the value of smallest magnitude in F . fminNF is the “subnormal threshold”. It is the smallest
normalized value in F : the point where the number of significant digits begins to decrease. Finally,
fminDF is the smallest strictly positive subnormal value, representable only if denormF is true.

This standard requires that the values of fmaxF , fminF , and fminNF be accessible to an ex-
ecuting program. All non-zero floating point values fall in the ranges [−fmaxF ,−fminF ] and
[fminF , fmaxF ], and values in the ranges [−fmaxF ,−fminNF ] and [fminNF , fmaxF ] can be repre-
sented with full precision.
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The derived constant fminDF need not be given as a run-time parameter. For a datatype in
which subnormal numbers are provided (and enabled), the value of fminDF is fminF . If subnormal
numbers are not present, the constant fminDF is not representable, and fminF = fminNF .

The derived constant epsilonF must also be accessible to an executing program:

epsilonF = r1−pFF

It is defined as ratio of the weight of the least significant digit of the fraction g, r−pFF , to the
minimum value of g, 1/rF . So epsilonF can be described as the largest relative representation
error for the set of normalized values in FN .

An alternate definition of epsilonF currently in use is the smallest floating point number such
that the expression 1 + epsilonF yields a value greater than 1. This definition is flawed because it
depends on the characteristics of the rounding function. For example, on an IEEE floating point
datatype with round-to-positive-infinity, epsilonF would be fminDF .

C.5.2.2.1 Relations among floating point datatypes

An implementation may provide more than one conforming floating point datatype, and most
systems do. It is usually possible to order those with a given radix as F1, F2, F3, · · · such that

pF1 < pF2 < pF3 · · ·
eminF1 > eminF2 > eminF3 · · ·
emaxF1 6 emaxF2 6 emaxF3 · · · .

A number of systems do not increase the exponent range with precision. However, the following
constraints

2 · pFi 6 pFi+1

2 · (eminFi − 1) > (eminFi+1 − 1)
2 · emaxFi 6 emaxFi+1

for each pair Fi and Fi+1 would provide advantages to programmers of numerical software (for
floating point datatypes not at the widest level of range-precision):

a) The constraint on the increase in precision expedites the accurate calculation of residuals
in an iterative procedure. It also provides exact products for the calculation of an inner
product or a Euclidean norm.

b) The constraints on the increase in the exponent range makes it easy to avoid the occurrence
of an overflow or underflow in the intermediate steps of a calculation, for which the final
result is in range.

C.5.2.3 Approximate operations

Let’s apply a three stage model to multiplication (mulF→F (x, y)) (for simplicity, assuming the
target type is the same as the argument type):

a) First, compute the perfect result, x ∗ y, as an element of R.

b) Second, modify this to form a rounded result, nearestF (x ∗ y), as an element of F †.

c) Finally, decide whether to accept the rounded result or to cause a notification.
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Putting this all together, we get the defining case for multiplication when both arguments are in
F :

mulF→F (x, y) = resultF (x · y, nearestF ) if x, y ∈ F
The resultF function is defined to compute the rounded result internally, since the result depend
on the properties of the rounding function itself, as well as the exact value, not just the rounded
result.

Note that in reality, step (a) only needs to compute enough of x ·y to be able to complete steps
(b) and (c), i.e., to produce a rounded result and to decide on overflow, inexact, and underflow.

The helper functions nearestF , resultF , are the same for all the operations of a given floating
point type. Similarly, the constant rnd errorF does not differ between operations.

The helper functions are not visible to the programmer, but they are included in the required
documentation of the type. This is because these functions form the most concise description of
the semantics of the approximate operations.

C.5.2.4 Rounding and rounding constants

Floating point operations are rarely exact. The true mathematical result seldom lies in F , so
the mathematical result must be rounded to a nearby value that does lie in F . For convenience,
this process is described in three steps: first the exact value is computed, then a determination is
made about overflow, underflow, or inexact, finally the exact value is rounded to the appropriate
precision and a continuation value is determined.

A rounding rule is specified by a rounding function which maps values in R onto values in F †.
F † is the set FS ∪FN augmented with all values of the form ±i ∗ re−pFF where rpF−1F 6 i 6 rpFF − 1
(as in FN ) but e > emaxF . The extra values in F †, i.e. FE , are unbounded in range, but all have
exactly pF digits of precision. These are “helper values”, and are not representable in the type F .

The round to nearest rule is “sign symmetric”, nearestF (−x) = −nearestF (x). This assures
that the arithmetic operations addF→F ′ , subF→F ′ , mulF→F ′ , and divF→F ′ have the expected
behaviour with respect to sign, as described in C.5.2.8.

In addition to being a rounding function (as defined in 4.2), nearestF does not depend upon
the exponent of its input (except for subnormal values). This is captured by a “scaling rule”:

nearestF (x · rjF ) = nearestF (x) · rjF
which holds as long as x and x · rjF have magnitude greater than (or equal to) fminNF .

Subnormal values have a wider relative spacing than ‘normal’ values. Thus, the scaling rule
above does not hold for all x in the subnormal range. When the scaling rule fails, we say that
nearestF has a denormalization loss at x, and the relative error

|x−nearestF (x)
x |

is typically larger than for ‘normal’ values.

A constant may be provided, and must be provided if the operation variants specified in A.6 are
allowed, to give the programmer access to some information about the rounding function in use.
rnd errorF describes the maximum rounding error (in ulps). Floating point datatypes that fully
conform to LIA-1 have rnd errorF = 0.5. This is a value of the rounding error that is actually
allowed, that is, the actual rounding error for any inexact LIA-1 operation is in the interval [0, 0.5]
ulp. Partially conforming floating point datatypes can have an rnd errorF = 1. This is a value of
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the (partially conforming) rounding error that is not actually allowed, that is, the actual rounding
error for any inexact LIA-1 operation is in the interval [0, 1[ ulp.

IEEE 754 [35] defines five rounding methods. IEEE 754 mostly uses setting of a rounding mode
to choose between them, but sometimes have different operations for different rounding methods.

a) Round to nearest, ties to even last digit. In the case of a value exactly half-way between two
neighbouring values in F †, select the “even” result. That is, for non-negative x in F †

rnd(x+ 1
2 · uF (x)) = x+ uF (x) if x/uF (x) is odd

= x if x/uF (x) is even

This is the default rounding mode in IEEE 754.

b) Round to nearest, ties away from zero. In the case of a half-way value, round away from
zero. That is, for non-negative x in F †

rnd(x+ 1
2 · uF (x)) = x+ uF (x)

This rounding mode is in IEEE 754 specified only for radix 10 datatypes, though it has
traditionally been used also for other radices (2, 8, 16).

c) Round toward zero.

d) Round toward minus infinity.

e) Round toward plus infinity.

The first three of these rounding rules are sign symmetric, but the last two are not. However,
the last two are useful for getting tighter error bounds for interval arithmetic, provided that “flush
to zero” on underflow is not used or is compensated for. The first two rounding methods give a
half ulp error bound, so rnd errorF is 1

2 . The last three rounding methods give a one ulp error
bound, so rnd errorF is 1. Most non-IEEE implementations provide either the second or the
third rule.

C.5.2.5 Floating point result function

The rounding function, like nearestF , can return values that are not bounded by fmaxF . A result
function is then used to check whether the result is within range, and to generate an exceptional
value if required. The result function resultF takes two arguments. The first one is a real value
x (typically the mathematically correct result) and the second one is a rounding function rnd to
be applied to x.

If F does not include subnormal numbers, and rnd(x) is representable, then resultF returns
rnd(x) (as a continuation value to inexact if x 6= rnd(x)). If rnd(x) is too large or too small to
be represented, then resultF returns overflow or underflow respectively.

The only difference when F does contain subnormal values occurs when rnd returns a sub-
normal value. If there was a denormalization loss in computing the rounded value, then resultF
must return underflow with rnd(x) as continuation value. On the other hand, if there was no
denormalization loss, then the implementation is to return rnd(x) as a continuation value either
to inexact or underflow.

resultF (x, rnd) takes rnd as its second argument (rather than taking rnd(x)) because one of
the final parts of the definition of resultF refers to denormalization loss. Denormalization loss is a
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property of the function rnd rather than the individual value rnd(x). In addition, the continuation
value upon overflow, depends on the rounding function.

C.5.2.6 Floating point operations

This clause describes the floating point operations defined by the standard.

An implementation can easily provide any of these operations in software. However, portable
versions of these operations will not be as efficient as those which an implementation provides and
“tunes” to the architecture.

C.5.2.6.1 Comparisons

The comparison operations are atomic operations which never produce a notification when the ar-
guments are in F , and then always return true or false in accordance with the exact mathematical
result.

C.5.2.6.2 Basic arithmetic

a) The operations addF→F ′ , subF→F ′ , mulF→F ′ , and divF→F ′ carry out the usual basic arith-
metic operations of addition, subtraction, multiplication, and division.

b) The operations negF and absF produce the negative and absolute value, respectively, of the
input argument. They never overflow or underflow.

c) The operation signumF returns a floating point 1 or −1, depending on whether its argument
is positive (including zero) or negativ (including negative zero).

C.5.2.6.3 Value dissection

a) The operation exponentF gives the exponent of the floating point number in the model as
presented in LIA-1, as though the range of exponent values was unbounded. The value of
exponentF can also be thought of as the “order of magnitude” of its argument, i.e., if n is an
integer such that rn−1F 6 x < rnF , then exponentF (x) = n. exponentF (0) is negative infinity
(with a infinitary notification).

b) The operation fractionF scales its argument (by a power of rF ) until it is in the range
±[1/rF , 1[. Thus, for x 6= 0,

x = fractionF (x) ∗ rexponentF (x)
F

c) The operation scaleF scales a floating point number by an integer power of the radix.

d) The operation succF returns the closest element of F greater than the argument, the “suc-
cessor” of the argument.

e) The operation predF returns the closest element of F less than the argument, its “predeces-
sor”.

The succF and predF operations are useful for generating adjacent floating point numbers,
e.g. in order to test an algorithm in the neighbourhood of a “sensitive” point.
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f) The operation ulpF gives the value of one unit in the last place, i.e., its value is the weight of
the least significant digit. It will underflow catastrophically if denormF = false in the range
]−reminF+pF

F , reminF+pF
F [, but will never return an exceptional value if denormF = true.

Standardizing functions such as exponentF and ulpF helps shield programs from explicit de-
pendence on the underlying format.

Note that the helper function eF is not the same as the exponentF operation. They agree on
‘normal’ numbers in F , but differ on subnormal and zero ones. exponentF (x) is chosen to be the
exponent of x as though x were in normalized form and the range and precision were unbounded.
For subnormal numbers, eF (x) is equal to eminF . In addition, eF is defined for an argument in
R, while exponentF is defined for arguments in F (plus special values).

C.5.2.6.4 Value splitting

a) The operation truncF (x, n) zeros out the low (pF − n) digits of the first argument. When
n 6 0 then 0 is returned; and when n > pF the argument is returned.

b) The operation roundF (x, n) rounds the first argument to n significant digits. That is, the
nearest n-digit floating point value is returned. Values exactly half-way between two adjacent
n-digit floating point numbers round away from zero. roundF differs from truncF by at most
1 in the n-th digit.

roundF is not intended to provide access to machine rounding.

The truncF and roundF operations can be used to split a floating point number into a
number of “shorter” parts in order to expedite the simulation of multiple precision operations
without use of operations at a higher level of precision.

c) The operation intpartF isolates the integer part of the argument (by truncation), and returns
this result in floating point form.

d) The operation fractpartF returns the value of the argument minus its integer part (obtained
by intpartF ).

C.5.2.7 Levels of predictability

This clause explains why the method used to specify floating point types was chosen. The main
question is, “How precise should the specifications be?” The possibilities range from completely
prescriptive (specifying every last detail) to loosely descriptive (giving a few axioms which essen-
tially every floating point system already satisfies).

IEEE 754 [35] takes the highly prescriptive approach, allowing relatively little latitude for
variation. It even stipulates much of the representation. The Brown model [43] comes close to
the other extreme, even permitting non-deterministic behaviour.

There are (at least) five interesting points on the range from a strong specification to a very
weak one. These are

a) Specify the set of representable values exactly; define the operations exactly; but leave the
representations unspecified.

b) Allow limited variation in the set of representable values, and limited variation in the oper-
ation semantics. The variation in the value set is provided by a small set of parameters.
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c) Use parameters to define a “minimum” set of representable values, and an idealized set of
operations. This is called a model. Implementations may provide more values (extra preci-
sion), and different operation semantics, as long as the implemented values and operations
are sufficiently close to the model. The standard would have to define “sufficiently close”.

d) Allow any set of values and operation semantics as long as the operations are deterministic
and satisfy certain accuracy constraints. Accuracy constraints would typically be phrased
as maximum relative errors.

e) Allow non-deterministic operations.

The IEEE model is close to (a). The Brown model is close to (e). LIA-1 selects the second
approach because it permits conformity by most current systems, provides flexibility for high
performance designs, and discourages increase in variation among future systems.

Note that the Brown model allows “parameter penalties” (reducing pF or eminF or emaxF )
to compensate for inaccurate hardware. The LIA-1 model does not permit parameter penalties.

A major reason for rejecting a standard based upon the Brown model is that the relational
operations do not (necessarily) have the properties one expects. For instance, with the Brown
model, x < y and y < z does not imply that x < z.

C.5.2.8 Identities

By choosing a relatively strong specification of floating point, certain useful identities are guar-
anteed to hold. The following is a sample list of such identities. These identities can be derived
from the axioms defining the arithmetic operations.

In the following discussion, let u, v, x, and y be elements of F , and let j, k, and n be integers.

The approximate operations (addF→F ′ , subF→F ′ , mulF→F ′ , divF→F ′ , sqrtF→F ′ , ...) compute
approximations to the ideal mathematical functions. Note that in this version of LIA-1 these
operations the approximate operations all have a source and a target type. This way double
rounding is avoided when the target type has less precision that the argument types. IEC 60559
(IEEE 754), also in the version from 1989, requires this avoidance of double rounding for these
operations. Some of the double rounding avoiding operations were previously in LIA-2, but are
now in LIA-1.

Since the approximate operations specified in LIA-1 are all so similar, it is convenient to give
a series of rules that apply to all of them (with some qualifications). Let Φ be any of the LIA-1
approximate operations with arguments in F and result in F ′, and let φ be the corresponding
ideal mathematical function (in the case of conversions, φ is the identity function). If φ is a single
argument function, ignore the second argument.

When φ(x, y) is defined for x, y ∈ F , and no notification apart from inexact occurs (the rules
below then consider only the continuation values),

u 6 φ(x, y) 6 v ⇒ u 6 Φ(x, y) 6 v (I)

when u, v ∈ F .

When φ(x, y) is defined for x, y ∈ F ,

φ(x, y) ∈ F ′ ⇒ Φ(x, y) = φ(x, y) (II)

When φ(u, x) and φ(v, y) are defined for x, y, u, v ∈ F , and no notification apart from inexact
occurs,
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φ(u, x) 6 φ(v, y) ⇒ Φ(u, x) 6 Φ(v, y) (III)

When φ(x, y) is defined for x, y ∈ F , and no notification apart from inexact occurs,

|Φ(x, y)− φ(x, y)| 6 uF (φ(x, y)) 6 uF (Φ(x, y)) (IV)

When φ(x, y) is defined for x, y ∈ F , non-zero, is in range [−fmaxF ′ , fmaxF ′ ], and no notification
apart from inexact occurs,∣∣∣Φ(x,y)−φ(x,y)

φ(x,y)

∣∣∣ 6 ulpF ′(1) = epsilonF ′ (V)

When φ(x, y) and φ(x · rjF , y · rkF ) are defined for x, y ∈ F and j, k ∈ Z, are in the range
[−fmaxF ′ , fmaxF ′ ], and no notification apart from inexact occurs, for some n ∈ Z

φ(x · rjF , y · rkF ) = φ(x, y) · rnF ⇒ Φ(x · rjF , y · rkF ) = Φ(x, y) · rnF (VI)

Rules (I) through (VI) apply to the approximate operations of LIA-1. This is true also with
the relaxations in Annex A.6 with one exception. Rule (III) may then fail for addF and subF
when the approximate addition function is not equal to the true sum (i.e., add∗F (u, x) 6= u+ x, or
add∗F (v, y) 6= v + y). However, the following weaker rules always hold:

u 6 v ⇒ addF→F ′(u, x) 6 addF→F ′(v, x)
u 6 v ⇒ addF→F ′(x, u) 6 addF→F ′(x, v)
u 6 v ⇒ subF→F ′(u, x) 6 subF→F ′(v, x)
u 6 v ⇒ subF→F ′(x, u) > subF→F ′(x, v)

Rules (I) through (VI) also apply to the exact operations, but then they do not say anything
of interest.

Here are some identities that apply to specific operations, when no notification apart from
inexact occurs:

addF→F ′(x, y) = addF→F ′(y, x)

mulF→F ′(x, y) = mulF→F ′(y, x)

subF→F ′(x, y) = negF ′(subF→F ′(y, x))

addF→F ′(negF (x), negF (y)) = negF ′(addF→F ′(x, y))

subF→F ′(negF (x), negF (y)) = negF ′(subF→F ′(x, y))

mulF→F ′(negFx), y) = mulF→F ′(x, negF (y)) = negF ′(mulF→F ′(x, y))

divF→F ′(negF (x), y) = divF→F ′(x, negF (y)) = negF ′(divF→F ′(x, y))

For x 6= 0,

x ∈ FN ⇒ exponentF (x) ∈ [eminF , emaxF ]

x ∈ FS ⇒ exponentF (x) ∈ [eminF − pF + 1, eminF − 1]

r
exponentF (x)−1
F ∈ F

r
exponentF (x)−1
F 6 |x| < r

exponentF (x)
F
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|fractionF (x)| ∈ [1/rF , 1[

scaleF (fractionF (x), exponentF (x)) = x

scaleF (x, n) is exact (= x · rnF ) if x · rnF is in one of the ranges [−fmaxF ,−fminNF ] or
[fminNF , fmaxF ] or is 0, or if n > 0 and |x · rnF | 6 fmaxF .

For x 6= 0 and y 6= 0,

x = ±i · ulpF (x) for some integer i which satisfies

rpF−1F 6 i < rpFF if x ∈ FN

1 6 i < rpF−1F if x ∈ FS

exponentF (x) = exponentF (y) ⇒ ulpF (x) = ulpF (y) if x, y ∈ FN

x ∈ FN ⇒ ulpF (x) = epsilonF ∗ rexponentF (x)−1
F

Note that if denormF = true, ulpF is defined on all floating point values. If denormF = false
(not conforming to LIA-1), ulpF underflows catastrophically (returning 0) on all values less than
fminNF /epsilonF , i.e., on all values for which eF (x) < eminF + pF − 1.

For |x| > 1,

intpartF (x) = truncF (x, eF (x)) = truncF (x, exponentF (x))

For any x ∈ F , when no notification occurs,

succF (predF (x)) = x

predF (succF (x)) = x

succF (−x) = −predF (x)

predF (−x) = −succF (x)

For positive x ∈ F , when no notification occurs,

succF (x) = x+ ulpF (x)

predF (x) = x− ulpF (x) if x is not rnF for any integer n > eminF
= x− ulpF (x)/rF if x is rnF for some integer n > eminF

ulpF (x) · rpFF = r
eF (x)
F

For any x and any integer n > 0, when no notification occurs,

r
exponentF (x)−1
F 6 |truncF (x, n)| 6 |x|

roundF (x, n) = truncF (x, n), or

= truncF (x, n) + signumF (x) · ulpF (x) · rpF−nF
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C.5.2.9 Precision, accuracy, and error

LIA-1 uses the term precision to mean the number of radix rF digits in the fraction of a floating
point datatype. All floating point numbers of a given type are assumed to have the same precision.
(This does not hold for variable precision floating point datatypes. However, LIA-1 does not cover
variable precision floating point datatypes.) A subnormal number has the same number of radix
rF digits, but the presence of leading zeros in its fraction means that fewer of these digits are
significant.

In general, numbers of a given datatype will not have the same accuracy. Most will contain
combinations of errors which can arise from many sources.

a) The error introduced by a single atomic arithmetic operation.

b) The error introduced by approximations in mathematical constants, such as π, 1/3, or
√

2,
used as program constants.

c) The errors incurred in converting data between external format (decimal text) and internal
format.

d) The error introduced by use of a numerical library routine.

e) The errors arising from limited resolution in measurements.

f) Two types of modelling errors:

1) Approximations made in the formulation of a mathematical model for the application
at hand.

2) Conversion of the mathematical model into a computational model, including approx-
imations imposed by the discrete nature of numerical calculations.

g) The maximum possible accumulation of such errors in a calculation.

h) The true accumulation of such errors in a calculation.

i) The final difference between the computed result and the mathematically accurate result.

The last item is the goal of error analysis. To obtain this final difference, it is necessary to
understand the other eight items, some of which are discussed below.

C.5.2.9.1 LIA-1 and error

LIA-1 interprets the error in a single atomic arithmetic operation to mean the error introduced
into the result by the operation, without regard to any error which may have been present in the
input operands.

The rounding function introduced in 5.2.4 produces the only source of error contributed by
arithmetic operations. If the results of an arithmetic operation are exactly representable, they
must be returned without error. Otherwise, LIA-1 requires that the error in the result of a
conforming operation be bounded in magnitude by one half ulp, and bounded in magnitude by
one ulp for partial conformity.

Rounding that results in a subnormal number may result in a loss of significant digits. A
subnormal result is always exact for an addF→F or subF→F operation (same type for arguments
and result), provided denormF = true. Such subnormal results will not give rise to underflow
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notifications. However, a subnormal result for a mulF→F or divF→F operation (same type for
arguments and result) usually is not exact, which introduces an error of at most one half ulp (or
one ulp, if the relaxations of A.6 are allowed), provided denormF = true. When there is loss of
significant digits in producing a subnormal result, the relative error due to rounding exceeds that
for rounding a ‘normal’ result. Hence accuracy of a subnormal result for a mulF→F or divF→F

operation is usually lower than that for a ‘normal’ result. Such loss of accuracy is required to be
accompanied with an underflow notification.

Note that the error in the result of an operation on exact input operands becomes an “inherited”
error if and when this result appears as input to a subsequent operation. The interaction between
the intrinsic error in an operation and the inherited errors present in the input operands is discussed
below in C.5.2.9.3.

C.5.2.9.2 Empirical and modelling errors

Empirical errors arise from data taken from sensors of limited resolution, uncertainties in the
values of physical constants, and so on. Such errors can be incorporated as initial errors in the
relevant input parameters or constants.

Modelling errors arise from a sequence of approximations:

a) Formulation of the problem in terms of the laws and principles relevant to the application.
The underlying theory may be incompletely formulated or understood.

b) Formulation of a mathematical model for the underlying theory. At this stage approxima-
tions may enter from neglect of effects expected to be small.

c) Conversion of the mathematical model into a computer model by replacing infinite series
by a finite number of terms, transforming continuous into discrete processes (e.g. numerical
integration), and so on.

Estimates of the modelling errors can be incorporated as additions to the computational errors
discussed in the next section. The complete error model will determine whether the final accuracy
of the output of the program is adequate for the purposes at hand.

Finally, comparison of the output of the computer model with observations may shed insight
on the validity of the various approximations made.

C.5.2.9.3 Propagation of errors

Let each variable in a program be given by the sum of its true value (denoted with subscript t)
and its error (denoted with subscript e). That is, the program variable x

x = xt + xe

consists of the “true” value plus the accumulated “error”. Note that the values taken on by x are
“machine numbers” in the set F , while xt and xe are mathematical quantities in R.

The following example illustrates how to estimate the total error contributed by the combi-
nation of errors in the input operands and the intrinsic error in addition. First, the result of
an LIA-1 operation on approximate data can be described as the sum of the result of the true
operation on that data and the “rounding error”, where

rounding error = computed value− true value
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Next, the true operation on approximate data is rewritten in terms of true operations on true
data and errors in the data. Finally, the magnitude of the error in the result can be estimated
from the errors in the data and the rounding error.

Consider the result, z, of LIA-1 addition operation on x and y:

z = addF→F (x, y) = (x+ y) + rounding error

where the true mathematical sum of x and y is

(x+ y) = xt + xe + yt + ye = (xt + yt) + (xe + ye)

By definition, the “true” part of z is

zt = xt + yt

so that

z = zt + (xe + ye) + rounding error

Hence

ze = (xe + ye) + rounding error

The rounding error is bounded in magnitude by 0.5 · ulpF (z) (ulpF (z) if the relaxation in A.6 is
allowed) (this can be a slight overestimate at exponent boundaries). If bounds on xe and ye are
also known, then a bound on ze can be calculated for use in subsequent operations for which z is
an input operand.

Although it is a lengthy and tedious process, an analysis of an entire program can be carried out
from the first operation through the last. At each stage the worst case combination of signs and
magnitudes in the errors must be assumed. Thus, it is likely that the estimates for the final errors
will be unduly pessimistic because the signs of the various errors are usually unknown. Under
some circumstances it is possible to obtain a realistic estimate of the true accumulation of error
instead of the maximum possible accumulation, e.g. in sums of terms with known characteristics.

C.5.2.10 Extra precision

The use of a higher level of range and/or precision is a time-honoured way of eliminating overflow
and underflow problems and providing “guard digits” for the intermediate calculations of a prob-
lem. In fact, one of the reasons that programming languages have more than one floating point
type is to permit programmers to control the precision of calculations.

Clearly, programmers should be able to control the precision of calculations whenever the
accuracy of their algorithms require it. Conversely, programmers should not be bothered with
such details in those parts of their programs that are not precision sensitive.

Some programming language implementations calculate intermediate values inside expressions
to a higher precision than is called for by either the input variables or the result variable. This
“extended intermediate precision” strategy has the following advantages:

a) The result value may be closer to the mathematically correct result than if “normal” precision
had been used.

b) The programmer is not bothered with explicitly calling for higher precision calculations.

However, there are also some disadvantages:

a) Since the use of extended precision varies with implementation, programs become less
portable.
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b) It is difficult to predict the results of calculations and comparisons, even when all floating
point parameters and rounding functions are known.

c) It is impossible to rely on techniques that depend on the number of digits in working preci-
sion.

d) Programmers lose the advantage of extra precision if they cannot reliably store parts of a
long, complicated expression in a temporary variable at the higher precision.

e) Programmers cannot exercise precise control when needed.

f) Programmers cannot trade off accuracy against performance.

Assuming that a programming language designer or implementor wants to provide extended
intermediate precision in a way consistent with the LIA-1, how can it be done? Implementations
must follow the following rules detailed in clause 8:

a) Each floating point type, even those that are only used in extended intermediate precision
calculations, must be documented.

b) The translation of expressions into LIA-1 operations must be documented. This includes
any implicit conversions to or from extended precision types occurring inside expressions.

This documentation allows programmers to predict what each implementation will do. To the
extent that a programming language standard constrains what implementations can do in this
area, the programmer will be able to make predictions across all implementations. In addition,
the implementation should also provide the user some explicit controls (perhaps with compiler
directives or other declarations) to prevent or enable this “silent” widening of precision.

C.5.3 Operations for conversion between numeric datatypes

LIA-1 covers conversions from an integer type to another integer type and to a floating point
type, as well as between floating point types. These conversions are often between two datatypes
conforming to this document. But, unlike for other operations, the source or target datatype for
a conversion may be a datatype that does not conform to LIA. An example of such as conversions
are conversions to and from strings. Indeed it is common for string formats to include fixed-
point formats. LIA-1 does not cover fixed-point datatypes otherwise, but does so for conversions,
specifically due to the fixed-point string formats.

String formats also need to cover special values. For−−−0, strings like “−0”, “−0.0”, “−0.00e−4”,
“−0.00 · 10−4” are among the possible representations. +∞+∞+∞ can, for instance, be represented by
strings like “+∞”, “∞”, “+infinity”, or “positiva oändligheten”. In ordinary string formats for
numerals, the string “Hello world!” is an example of a signalling NaN.

LIA-1 does not specify any string formats, not even for the special values −−−0, +∞+∞+∞, −∞−∞−∞,
and quiet NaN. The strings used may depend on preference settings. For instance, one may
use different notation for the decimal separator character (like period, comma, Arabic comma,
...), use superscript digits for exponents in scientific notation, or use Arabic digits or traditional
Thai digits. String formats for numerical values, and if and how they may depend on preference
settings, is also an issue for bindings or programming language specifications, not for this part of
LIA.

If the value converted is greater than those representable in the target datatype, or less than
those representable in the target datatype, even after rounding, then an overflow will result. E.g.,
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if the target is a character string of at most 3 digits, and the target radix is 10, then an integer
source value of 1000 will result in an overflow. As for other operations, if the notification handling
is by recording in indicators, a suitable continuation value must be used.

Most language standards contain (partial) format specifications for conversion to and from
strings, usually for a decimal representation.

LIA-1 requires, like C [16], that all floating point conversion operations be such that the error
is at most 0.5 ulp. This is now also required by IEC 60559 (IEEE 754) for the round-to-nearest
conversions.

C.5.4 Numerals as operations in a programming language

C.5.4.1 Numerals for integer datatypes

Negative values (except minintI if minintI = −maxintI − 1) can be obtained by using the
negation operation (negI).

Integer numerals in radix 10 are normally available in programming languages. Other radices
may also be available for integer numerals, and the radix used may be part of determining the
target integer datatype. E.g., radix 10 may be for signed integer datatypes, and radix 8 or 16 may
be for unsigned integer datatypes.

Syntaxes for numerals for different integer datatypes need not be different, nor need they be
the same. This part does not further specify the format for integer numerals. That is an issue for
bindings.

Overflow for integer numerals can be detected at “compile time”, and warned about. Likewise
can notifications about invalid, e.g. for infinitary or NaN numerals that cannot be converted to
the target type, be detected at “compile time” and be warned about.

C.5.4.2 Numerals for floating point datatypes

If the numerals used as operations in a program, and numerals read from other sources use the
same radix, then “internal” numerals and “external” numerals (strings) denoting the same value
in R and converted to the same target datatype should be converted to the same value. Indeed,
the requirement on such conversions to round to nearest implies this.

Negative values (including negative 0, −−−0, if avaliable) can be obtained by using the negation
operation (negF ).

Radices other than 10 may also be available for floating point numerals.

Integer numerals may also be floating point numerals, i.e. their syntaxes need not be different.
Nor need syntaxes for numerals for different floating point datatypes be different, nor need they
be the same. This part does not specify the syntax for numerals. That is an issue for bindings or
programming language specifications.

Overflow or underflow for floating point numerals can be detected at “compile time”, and
warned about. Likewise can notifications about infinitary or invalid, e.g. for infinitary or NaN
numerals that cannot be converted to the target type, be detected at “compile time” and be
warned about.
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C.6 Notification

The essential goal of the notification process is that it should be possible for a program (efficiently
and at reasonable convenience to the programmer) to find out about relevant problems that have
occurred when evaluating a set of values. For reasons of efficiency, it may not be possible to tie
the reported problems to individual values, just a set of values. However, it must be possible to
determine which set of values the reported problems are in relation to.

Given these notifications, a program can take action to recompute the result (using higher
precision, or some other way of trying to avoid the problem), or report the problem to the user of
the program in some suitable way.

C.6.1 Model handling of notifications

In the mathematical framework of LIA, every value is accompanied by a set of exceptional values,
or actually, set of indicators. And in a floating point processor pipeline, this is often the actual
case as well. At a higher level, it is usually not very efficient to let every value be individually
accompanied by a set of indicators.

C.6.2 Notification alternatives

LIA-1 provides a choice of notification mechanisms to fit the requirements of various programming
languages. The first alternative (recording in indicators) provides a standard notification handling
mechanism for all programming languages. The second alternative (alteration of control flow)
essentially says “if a programming language already provides an exception handling mechanism
for some kinds of notification, it may be used for some of the arithmetic notifications too”. The
recording in indicators mechanism must be provided, and should be the default handling.

The third alternative (termination of program with message) is provided for use when the
programmer has not (yet) programmed any exception handling code for the alteration of control
flow alternative. It should be noted that this may terminate just an affected thread, while the
rest of the program may continue.

Implementations are encouraged to provide additional mechanisms which would be useful for
debugging. For example, pausing and dropping into a debugger, or continuing execution while
writing to a log file.

In order to provide the full advantage of these notification capabilities, information describing
the nature of the reason for the notification should be complete and available as close in time to
the occurrence of the violation as possible.

C.6.2.1 Notification by recording in indicators

This alternative gives a programmer the primitives needed to obtain exception handling capabil-
ities in cases where the programming language does not provide such a mechanism directly. An
implementation of this alternative for notification should not need extensions to most program-
ming languages. The status of the indicators is maintained by the system. The operations for
testing and manipulating the indicators can be implemented as a library of callable routines.

This alternative can be implemented on any system with an “interrupt” capability, and on
some without such a capability.
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This alternative can be implemented on an IEEE system by making use of the required status
flags. The mapping between the IEEE status flags and the LIA-1 indicators is as follows:

IEEE flag LIA notification (can be recorded in indicator)

invalid invalid
overflow overflow
underflow underflow
division by zero infinitary
inexact inexact
(no counterpart) absolute precision underflow (LIA-2 and LIA-3)

Non-IEEE implementations are unlikely to detect inexactness of floating point results.

For a zero divisor, IEEE specifies an invalid exception if the dividend is zero, and a division
by zero (infinitary in LIA) otherwise. Note that the continuation value also varies. Other ar-
chitectures are not necessarily capable of making this distinction. In order to provide a reasonable
mapping for an exception associated with a zero divisor, LIA allows a binding may map both
notification types to the same actual notification, like invalid.

Different notification types need not be handled the same. E.g. inexact and underflow should
be handled by recording in indicators, or even be ignored if a binding so specifies, regardless of
how other notifications are handled.

A program should check the set of indicators and handle indicators that are set in an appropriate
way. Most programs are likely to ignore if the indicator for inexact is set, but other indicators
should be dealt with by either recalculation in a different way, or by indicating the problem to
the user in a suitable way, like an error message. For some computations it may be appropriate
to ignore even notifications about invalid, for instance when using max/min operations that skip
NaNs.

The mechanism of recording in indicators is general enough to be applied to a broad range of
phenomena by simply extending the value set E to include indicators for other types of conditions.
However, in order to maintain portability across implementations, such extensions should be made
in conformity with other standards, such as language standards.

Notification indicators may be a form of thread global variable, but can be more local (but
not more global). A single thread of computation must have at least one set of these indicators
local to the thread, not interfering with other threads. However, care should be taken in designing
systems with multiple threads or “interrupts” so that

a) logically asynchronous computations do not interfere with each other’s indicators, and

b) notifications do not get lost when threads are rejoined (unless the whole computation of the
thread is ignored) or data exchanged between threads.

Similarly, any kind of evaluation “modes”, like rounding mode, or notification handling “modes”
may be thread global modes, but can be more local (e.g. static per operation), but never more
global. So the mode settings and changes in different threads do not interfere. The modes may
be inherited from the logical parent of a thread, or be default if there is no logical parent to the
thread. Note that LIA does not use a rounding mode model, different roundings have different
operations. IEEE 754 has a partial rounding mode model, some operations are sensitive to the
set rounding mode, while for other operations the rounding is fixed for the operation (as in LIA).
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The details on how to do this is part of the design of the programming language, threads system,
or hardware, and is not within the scope of LIA-1. Still, these details should be documented in a
binding.

C.6.2.2 Notification by alteration of control flow

This alternative requires the programmer to provide application specific code which decides
whether the computation should proceed, and if so how it should proceed. This alternative places
the responsibility for the decision to proceed with the programmer who is presumed to have the
best understanding of the needs of the application.

ADA and PL/I are examples of standard languages which include syntax that allows the
programmer to describe this type of alteration of control flow.

Note, however, that a programmer may not have provided code for all trouble-spots in the
program. This implies that program termination (or thread termination) must be an available
alternative.

Designers of programming languages and binding standards should keep in mind the basic
principle that a program should not be allowed to take significant irreversible action (for example,
printing out apparently accurate results, or even terminating “normally”) based on erroneous
arithmetic computations.

C.6.2.3 Notification by termination with message

This alternative results in the termination of the program following a notification. It is intended
mainly for use when a programmer has failed to exploit one of the other alternatives provided.

C.6.3 Delays in notification

Many modern floating point implementations are pipelined, or otherwise execute instructions
in parallel. This can lead to an apparent delay in reporting violations, since an overflow in a
multiply operation might be detected after a subsequent, but faster, add operation completes.
The provisions for delayed notification are designed to accommodate these implementations.

Parallel implementations may also not be able to distinguish a single overflow from two or more
“almost simultaneous” overflows. Hence, some merging of notifications is permitted.

Imprecise interrupts (where the offending instruction cannot be identified) can be accommo-
dated as notification delays. Such interrupts may also result in not being able to report the kind
of violation that occurred, or to report the order in which two or more violations occurred.

In general the longer the notification is delayed the greater the risk to the continued execution
of the program.

C.6.4 User selection of alternative for notification

On some machine architectures, the notification alternative selected may influence code generation.
In particular, the optimal code that can be generated for 6.2.2 may differ substantially from the
optimal code for 6.2.1. Because of this, it is unwise for a language or binding standard to require
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the ability to switch between notification alternatives during execution. Compile time selection
should be sufficient.

An implementation can provide separate selection for each kind of notification (overflow,
underflow, etc).

If a system had a mode of operation in which exceptions were totally ignored, then for this
mode, the system would not conform to ISO/IEC 10967. However, modes of operation that
ignore exceptions may have some uses, particularly if they are otherwise LIA-1 conforming. For
example, a user may find it desirable to verify and debug a program’s behaviour in a fully LIA-1
conforming mode (exception checking on), and then run the resulting “trusted” program with
exception checking off.

In any case, it is essential for an implementation to provide documentation on how to select
among the various LIA-1 conforming notification alternatives provided.

C.7 Relationship with language standards

Language standards vary in the degree to which the underlying datatypes are specified. For
example, Pascal [26] merely gives the largest integer value (maxintI), while Ada [11] gives a
large number of attributes of the underlying integer and floating point types. LIA-1 provides a
language independent framework for giving the same level of detail that Ada requires, specific to
a particular implementation.

LIA-1 gives the meaning of individual operations on numeric values of particular type. It does
not specify the semantics of expressions, since expressions are sequences of operations which could
be mapped into individual operations in more than one way. LIA-1 does require documentation
of the range of possible mappings.

The essential requirement is to document the semantics of expressions well enough so that a rea-
sonable error analysis can be done. There is no requirement to document the specific optimisation
technology in use.

An implementation might conform to the letter of LIA-1, but still violate its “spirit” – the
principles behind LIA-1 – by providing, for example, a sin function that returned values greater
than 1 or that was highly inaccurate for input values greater than one cycle. LIA-2 takes care of
this particular example. Beyond this, implementors are encouraged to provide numerical facilities
that

a) are highly accurate,

b) obey useful identities like those in C.5.2.0.1 or C.5.2.8,

c) notify the user whenever the mathematically correct result would be out of range, not
accurately representable, or undefined,

d) are defined on as wide a range of input values as is consistent with the three items above.

LIA-1 does not cover programming language issues such as type errors or the effects of unini-
tialised variables. Implementors are encouraged to catch such errors – at compile time whenever
possible, at run time if necessary. Uncaught programming errors of this kind can produce the
very unpredictable and false results that this standard was designed to avoid.

A list of the information that every implementation of LIA-1 must document is given in clause 8.
Some of this information, like the value of emaxF for a particular programming language floating
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point type, may vary from implementation to implementation. However, due to the success of
IEEE 754, this will be much less of an issue. Other information, like the syntax for accessing
the value of emaxF , should be the same for all implementations of a particular programming
language. See annex D for information on how this might be done.

To maximize the portability of programs, most of the information listed in clause 8 should be
standardized for a given language – either by inclusion in the language standard itself, or by a
language specific binding standard.

To further promote portability, the numeric datatype parameters should be standardised per
programming language and datatype.

The allowed translations of expressions into combinations of LIA operations should allow rea-
sonable flexibility for compiler optimisation. The programming language standard must determine
what is reasonable. In particular, languages intended for the careful expression of numeric algo-
rithms are urged to provide ways for programmers to control order of evaluation and intermediate
precision within expressions. Note that programmers may wish to distinguish between such “con-
trolled” evaluation of some expressions and “don’t care” evaluation of others.

Developers of language standards or binding standards may find it convenient to reference LIA-
1. For example, the specification method and the helper functions may prove useful in defining
additional arithmetic operations.

C.8 Documentation requirements

To make good use of an implementation of this standard, programmers need to know not only
that the implementation conforms, but how the implementation conforms. Clause 8 requires
implementations to document the binding between LIA-1 types and operations and the total
arithmetic environment provided by the implementation.

An example conformity statement (for a Fortran implementation) is given in annex E.

It is expected that an implementation will meet part of its documentation requirements by
incorporation of the relevant language standard. However, there will be aspects of the implemen-
tation that the language standard does not specify in the required detail, and the implementation
needs to document those details. For example, the language standard may specify a range of
allowed parameter values, but the implementation must document the value actually used. The
combination of the language standard and the implementation documentation together should
meet all the requirements in clause 8.

Most of the documentation required can be provided easily. The only difficulties might be in
defining helper functions like add∗F (for partially conforming implementations, see annex A), or in
specifying the translation of arithmetic expressions into combinations of LIA-1 operations.

Compilers often “optimise” code as part of the compilation process. Popular optimisations
include moving code to less frequently executed spots, eliminating common subexpressions, and
reduction in strength (replacing expensive operations with cheaper ones).

Compilers are always free to alter code in ways that preserve the semantics (the values computed
and the notifications generated). However, when a code transformation may change the semantics
of an expression, this must be documented by listing the alternative combinations of operations
that might be generated. (There is no need to include semantically equivalent alternatives in this
list.) This includes evaluations that are done at compile time instead of at runtime. For instance
evaluating quotI(minintI ,−1) at compile time (as a constant expression) may yield an overflow
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which might not be visible at runtime (having replaced the expression with the continuation value
alone, not triggering the overflow notification at runtime), if this expression is allowed to compile
at all.
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Annex D
(informative)

Example bindings for specific languages

This annex describes how a computing system can simultaneously conform to a language stan-
dard and to LIA-1. It contains suggestions for binding the “abstract” operations specified in
LIA-1 to concrete language syntax.

Portability of programs can be improved if two conforming LIA-1 systems using the same
language agree in the manner with which they adhere to LIA-1. For instance, LIA-1 requires
that the derived constant epsilonF be provided, but if one system provides it by means of the
identifier EPS and another by the identifier EPSILON, portability is impaired. Clearly, it would be
best if such names were defined in the relevant language standards or binding standards, but in
the meantime, suggestions are given here to aid portability.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various language standards committees. Until binding standards are in
place, implementors can promote “de facto” portability by following these suggestions on their
own.

The languages covered in this annex are

Ada
C
C++
Fortran
Common Lisp

This list is not exhaustive. Other languages and other computing devices (like ‘scientific’ cal-
culators, ‘web script’ languages, and database ‘query languages’) are suitable for conformity to
LIA-1.

In this annex, the datatypes, parameters, constants, operations, and exception behaviour of
each language are examined to see how closely they fit the requirements of LIA-1. Where param-
eters, constants, or operations are not provided by the language, names and syntax are suggested.
(Already provided syntax is marked with a ?.) Substantial additional suggestions to language
developers are presented in C.7, but a few general suggestions are reiterated below.

This annex describes only the language-level support for LIA-1. An implementation that wishes
to conform must ensure that the underlying hardware and software is also configured to conform
to LIA-1 requirements.

A complete binding for LIA-1 will include a binding for IEC 60559. Such a joint LIA-1/IEC 60559
binding should be developed as a single binding standard. To avoid conflict with ongoing devel-
opment, only LIA-1 specific portions of such a binding are presented in this annex.

Most language standards permit an implementation to provide, by some means, the parameters,
constants and operations required by LIA-1 that are not already part of the language. The
method for accessing these additional constants and operations depends on the implementation
and language, and is not specified in LIA-1. It could include external subroutine libraries; new
intrinsic functions supported by the compiler; constants and functions provided as global “macros”;
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and so on. The actual method of access through libraries, macros, etc. should of course be given
in a real binding.

A few parameters are completely determined by the language definition, e.g. whether the
integer type is bounded. Such parameters have the same value in every implementation of the
language, and therefore need not be provided as a run-time parameter.

During the development of standard language bindings, each language community should take
care to minimise the impact of any newly introduced names on existing programs. Techniques such
as “modules” or name prefixing may be suitable depending on the conventions of that language
community.

LIA-1 treats only single operations on operands of a single datatype (in some cases with a
different target type), but nearly all computational languages permit expressions that contain
multiple operations involving operands of mixed types. The rules of the language specify how
the operations and operands in an expression are mapped into the primitive operations described
by LIA-1. In principle, the mapping could be completely specified in the language standard.
However, the translator often has the freedom to depart from this precise specification: to reorder
computations, widen datatypes, short-circuit evaluations, and perform other optimisations that
yield “mathematically equivalent” results but remove the computation even further from the image
presented by the programmer.

We suggest that each language standard committee require implementations to provide a means
for the user to control, in a portable way, the order of evaluation of arithmetic expressions.

Some numerical analysts assert that user control of the precision of intermediate computations
is desirable. We suggest that language standard committee consider requirements which would
make such user control available in a portable way. (See C.5.2.10.)

Most language standards do not constrain the accuracy of floating point operations, or specify
the subsequent behaviour after a serious arithmetic violation occurs.

We suggest that each language standard committee require that the arithmetic operations
provided in the language satisfy LIA-1 requirements for accuracy and notification.

We also suggest that each language standard committee define a way of handling exceptions
within the language, e.g. to allow the user to control the form of notification, and possibly to “fix
up” the error and continue execution. The binding of the exception handling within the language
syntax must also be specified.

In the event that there is a conflict between the requirements of the language standard and
the requirements of LIA-1, the language binding standard should clearly identify the conflict and
state its resolution of the conflict.

D.1 Ada

The programming language Ada is defined by ISO/IEC 8652:1995, Information Technology –
Programming Languages – Ada [11].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this (example, and partial) language binding.

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
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identifier is provided. The additional facilities can be provided by means of an additional package,
denoted by LIA.

The Ada datatype Boolean corresponds to the LIA-1 datatype Boolean.

Ada has a predefined signed integer type named Integer. It is a bounded integer type. Ada also
has a predefined type Natural, which is an unsigned type with the same upper limit as Integer.
Natural is a non-modulo (se below) datatype. A programmer can declare other subtypes of
root integer (an “anonymous” integer type). Those declared as “modulo” go from zero to a given
upper limit. They can this conform to LIA-1 integer datatypes in the value set. However, all
arithmetic operations resulting in a “modulo” integer datatype (as determined by the Ada type
system) have an implicit modulo with one plus the max value of the resulting datatype. Non-
modulo integer subtypes may be signed. But they need not fulfill the requirements of LIA-1 on
the min and max value. There may be other predefined signed integer types: Short Integer,
Long Integer, Short Short Integer, Long Long Integer, etc. The notation INT is used to
stand for the name of any one of these datatypes in what follows.

Operations that, for a non-modulo integer target type, mathematically result in a value outside
of the [min, max] range are required to raise the Constraint Error exception (cmp. overflow
with change of control flow; Ada does not distinguish between infinitary and overflow).

The LIA-1 parameters for an integer datatype can be accessed by the following syntax:

maxintI INT’Last ?
minintI INT’First ?

The parameter boundedI is always true, and the parameter hasinfI is always false, and they need
therefore not be provided to programs. The parameter moduloI (see annex A) is always false for
non-modulo integer datatypes, and always true for modulo integer datatypes (declared via the
modulo keyword), and need not be provided for programs.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) x = y ?
neqI(x, y) x /= y ?
lssI(x, y) x < y ?
leqI(x, y) x <= y ?
gtrI(x, y) x > y ?
geqI(x, y) x >= y ?

negI(x) -x ?
addI(x, y) x + y ?
subI(x, y) x - y ?
mulI(x, y) x * y ?
absI(x) abs x ?
signumI(x) Signum(x) †

quotI(x, y) Quotient(x, y) †
modI(x, y) x mod y ?
truncdivI(x, y) x / y (dangerous syntax) ? (bad sem., not LIA-1!)
truncremI(x, y) x rem y ? (bad sem., not LIA-1!)

where x and y are expressions of type INT .
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An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer oper-
ations for all the integer datatypes for which LIA-1 conformity is claimed.

Ada has a predefined floating point datatype named Float. There may be other predefined
floating point types: Short Float, Long Float, Short Short Float, Long Long Float, etc. The
notation FLT are used to stand for the name of any one of these datatypes in what follows.

Floating point operations that mathematically result in in a value outside the [min,max] (where
min is (if conforming to LIA-1) negative max, or close to that value) may result in raising of the
Constraint Error exception (cmp. overflow with change of control flow; Ada does not dis-
tinguish between infinitary and overflow for these exceptions) (if FLT’Machine Overflows is
true). Alternatively, no exception is raised for overflow, nor for divide-by-zero or invalid) (if
FLT’Machine Overflows is true). For LIA conformity, and IEEE 754 conformity, the overflow
and infinitary notifications must then be recorded in indicators. Likewise for other LIA noti-
fications. However, the Ada standard does not provide access to the notification indicators. A
non-standard package, provided by the Ada implementation, is needed for such access.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:

rF FLT’Machine Radix ?
pF FLT’Machine Mantissa ?
emaxF FLT’Machine Emax ?
eminF FLT’Machine Emin ?
denormF FLT’Denorm ?
iec 559F FLT’IEC60559 †
hasnegzeroF FLT’Signed Zeroes ? (not LIA-1)
hasinf F FLT’Has Infinities † (not LIA-1)

fmaxF FLT’Safe Last ?
−fmaxF FLT’Safe First ?
fminNF FLT’Model Small ?
fminF FLT’Model Smallest †
epsilonF FLT’Model Epsilon ?
rnd errorF FLT’Rnd Error † (partial conf.)
rnd styleF FLT’Rnd Style † (partial conf.)

The value returned by FLT’Rnd Style are from the enumeration type Rnd Styles. Each
enumeration literal corresponds as follows to an LIA-1 rounding style value:

nearesttiestoeven NearestTiesToEven †
nearest Nearest †
truncate Truncate †
other Other †

As currently written, Ada formally only allows truncate and nearest-with-ties-away (which is
given by FLT’Rounds), not nearest-ties-to-even. This is not fully conforming to LIA-1, only
partially conforming. Note, however, that nearest-with-ties-away is not readily available for IEEE
754 (IEC 60559) binary floating point datatypes.

There is no standard way of setting rounding mode (as per IEEE 754) in Ada. Note also that
LIA recommends using separate operations for separate roundings, rather than using dynamic
rounding modes. Separate operations are in this case more reliable and less error prone.
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The LIA-1 floating point operations are listed below, along with the syntax used to invoke
them:

eqF (x, y) x = y ?
neqF (x, y) x /= y ?
lssF (x, y) x < y ?
leqF (x, y) x <= y ?
gtrF (x, y) x > y ?
geqF (x, y) x >= y ?

isnegzeroF (x) isNegZero(x) †
istinyF (x) isTiny(x) †
isnanF (x) isNaN(x) †
isnanF (x) x /= x ?
issignanF (x) isSigNaN(x) †

negF (x) -x ?
addF→F ′(x, y) x + y ?
subF→F ′(x, y) x - y ?
mulF→F ′(x, y) x * y ?
divF→F ′(x, y) x / y ?
absF (x) abs x ?
signumF (x) Signum(x) †
residueF (x, y) FLT’Remainder(x, y) ?
sqrtF→F ′(x) Sqrt(x) ?

exponentF→I(x) FLT’Exponent(x) ? (dev.: 0 if eqF (x, 0))
fractionF (x) FLT’Fraction(x) ?
scaleF,I(x, n) FLT’Scaling(x, n) ?
succF (x) FLT’Adjacent(x, FLT’Safe Last) ? (dev. at fmaxF )
predF (x) FLT’Adjacent(x, FLT’Safe First) ? (dev. at −fmaxF )
ulpF (x) FLT’Unit Last Place(x) †

intpartF (x) FLT’Truncation(x) ?
fractpartF (x) x - FLT’Truncation(x) ?
truncF,I(x, n) FLT’Leading Part(x, n) ? (invalid for n 6 0)
roundF,I(x, n) FLT’Round Places(x, n) †

where x and y are expressions of type FLT and n is an expression of type INT .

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in Ada are always explicit and usually use the destination datatype
name as the name of the conversion function, except when converting to/from string formats.

convertI→I′(x) INT2(x) ?
convertI′′→I(s) Get(s, n, w); ?
convertI′′→I(f) Get(f?, n, w?); ?
convertI→I′′(x) Put(s, x, base?); ?
convertI→I′′(x) Put(h?, x, w?, base?); ?
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floorF→I(y) INT(FLT’Floor(y)) ?
roundingF→I(y) INT(FLT’Unbiased Rounding(y)) ?
ceilingF→I(y) INT(FLT’Ceiling(y)) ?

convertI→F (x) FLT(x) ?

convertF→F ′(y) FLT2(y) ?
convertF ′′→F (s) Get(s, n, w?); ?
convertF ′′→F (f) Get(f?, n, w?); ?
convertF→F ′′(y) Put(s, y,Aft=>a?,Exp=>e?); ?
convertF→F ′′(y) Put(h?, y,Fore=>i?,Aft=>a?,Exp=>e?); ?

convertD→F (z) FLT(z) ?
convertD′→F (s) Get(s, n, w?); ?
convertD′→F (f) Get(f?, n, w?); ?

convertF→D(y) FXD(y) ?
convertF→D′(y) Put(s, y,Aft=>a?,Exp=>0); ?
convertF→D′(y) Put(h?, y,Fore=>i?,Aft=>a?,Exp=>0); ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of type
FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to I ′. FLT2
is the floating point datatype that corresponds to F ′. A ? above indicates that the parameter is
optional. f is an opened input text file (default is the default input file). h is an opened output
text file (default is the default output file). s is of type String or Wide String. For Get of a
floating point or fixed point numeral, the base is indicated in the numeral (default 10). For Put

of a floating point or fixed point numeral, only base 10 is required to be supported. For details
on Get and Put, see clause A.10.8 Input-Output for Integer Types, A.10.9 Input-Output for Real
Types, and A.11 Wide Text Input-Output, of ISO/IEC 8652:1995. base, n, w, i, a, and e are
expressions for non-negative integers. e is greater than 0. base is greater than 1.

Ada provides non-negative numerals for all its integer and floating point types. The default
base is 10, but any base from 2 to 16 can be used for a numeral. There is no differentiation
between the numerals for different floating point types, nor between numerals for different integer
types, but integer numerals (without a point) cannot be used for floating point types, and ‘real’
numerals (with a point) cannot be used for integer types. Integer numerals can have an exponent
part though. Integer numerals are of the “anonymous” type universal integer, and real numerals
are of the “anonymous” type universal real. The details are not repeated in this example binding,
see ISO/IEC 8652:1995, clause 2.4 Numeric Literals, clause 3.5.4 Integer Types, and clause 3.5.6
Real Types.

The Ada standard does not specify any numerals for infinities and NaNs. The following syntax
is suggested:

+∞+∞+∞ FLT’Infinity †
qNaN FLT’NaN †
sNaN FLT’NaNSignalling †

as well as string formats for reading and writing these values as character strings.

Ada has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
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flow. Ada uses its exception mechanism as its default means of notification for overflow, in-
finitary, and invalid. Ada uses the exception Constraint Error for infinitary and overflow
notifications, and the exceptions Numerics.Argument Error, IO Exceptions.Data Error, and
IO Exceptions.End Error for invalid notifications. inexact and underflow does not cause any
exception in Ada, and the continuation value is used directly, since an Ada exception is inap-
propriate for these notifications. However, for LIA conformity, numeric notifications that do not
cause Ada exceptions must be recorded in indicators per Ada task.

An implementation that wishes to follow LIA must provide recording in indicators as an alter-
native means of handling numeric notifications also for the notifications where the Ada standard
requires alternation of control flow (Ada exceptions). (See 6.2.1.) Recording of indicators is the
LIA preferred means of handling numeric notifications. In this suggested binding non-negative
integer values in the datatype Natural, are used to represent values in Ind. The datatype Ind is
identified with the datatype Natural. The values representing individual indicators are distinct
non-negative powers of two. Indicators can be accessed by the following syntax:

inexact lia inexact †
underflow lia undeflow †
overflow lia overflow †
infinitary lia infinitary †
invalid lia invalid †
absolute precision underflow

lia density too sparse † (LIA-2, -3)
union of all indicators lia all indicators †

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-wise or, or just addition, or by subtracting from lia all indicators.

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear indicators(C, S) Clear Indicators(S) †
set indicators(C, S) Set Indicators(S) †
current indicators(C) Current Indicators() †
test indicators(C, S) Test Indicators(S) †

where S is an expression compatible with the datatype Natural. C is the current Ada task.

In order not to loose notification indicators when the computation is divided into several Ada
tasks, any in-parameter for a rendezvous must set in the accepting task (when the call is accepted)
the indicators that are set in the caller, and any out-parameter will set in the caller (when the
rendezvous finishes) the indicators that are then set in the accepting task.

D.2 C

The programming language C is defined by ISO/IEC 9899:1999, Information technology – Pro-
gramming languages – C [16]. Some additions relevant for LIA are made in the technical report
ISO/IEC TR 24732:2009, Information technology – Programming languages, their environments
and system software interfaces – Extension for the programming language C to support decimal
floating-point arithmetic [17].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this (example, and partial) language binding.

D.2 C 95



ISO/IEC WD 10967-1.2:2010(E) Working draft

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided. An implementation that wishes to conform to LIA-1 must supply declara-
tions of these items in a header <lia1.h>. Integer valued parameters and derived constants can
be used in preprocessor expressions.

The LIA-1 datatype Boolean is implemented as the C datatype bool or in the C datatype
int (1 = true and 0 = false).

C names several integer datatypes: (signed) int, (signed) long (int), (signed) long

long (int), unsigned (int), unsigned long (int), and unsigned long long (int). The
here parenthesised part of a name may be omitted when using the name in programs. Signed
integer datatypes use 2’s complement for representation for negative values. The notation INT
is used to stand for the name of any one of these datatypes in what follows.

The conformity to LIA of short int and char (signed or unsigned), and similar “short”
integer types are not relevant since values of these types are promoted to int (signed or unsigned
as appropriate) before arithmetic computations are done.

However, the basic integer datatypes, listed above, have portability issues. They may have
different limits in different implementations. Therefore, the C standard specifies a number of
additional integer datatypes, defined for programs in the headers <stdint.h> and <stddef.h>.
Similar portable integer datatypes have been defined in portable libraries. They are aliased, by
typedefs, to the basic integer datatypes, but the aliases are made in an implementation defined
way. The description here is not complete, see the C standard. Some of the integer datatypes have
a predetermined bit width, and the intn t and uintn t, where n is the bit width expressed as a
decimal numeral. Some bit widths are required. There are also minimum width, fastest minimum
width, and special purpose integer datatypes (like size t). Finally there are the integer datatypes
intmax t and uintmax t that are the largest provided signed and unsigned integer datatypes.

NOTES

1 The overflow behaviour for arithmetic operations on signed integer datatypes is unspeci-
fied in the C standard. For the signed datatypes signed int, signed long int, signed
long long int, and similar types (such as int64 t), for conformity with LIA the integer
operations must notify overflow upon overflow, by default via recording in indicators.

2 The unsigned datatypes unsigned int, unsigned long int, unsigned long long int,
and similar types (such as uint64 t), can conform if operations that properly notify overflow
are provided. The operations named +, (binary) -, and * are in the case of the unsigned
integer types bound to add wrapI , sub wrapI , and mul wrapI (specified in LIA-2). For
(unary) -, and integer / similar wrapping operations for negation and integer division are
accessed. The latter operations are not specified by LIA.

3 For portability reasons, it is common to use the size specified integer datatypes (like
int32 t, etc. either the standard ones or such datatypes defined in portable libraries).

The LIA-1 parameters for an integer datatype can be accessed by the following syntax (those
in the standard are in the header <limits.h>):

maxintI T MAX ?
minintI T MIN ? (for signed ints)
moduloI T MODULO † (for signed ints)

where T is INT for signed int, LONG for signed long int, LLONG for signed long long int,
UINT for unsigned int, ULONG for unsigned long int, and ULLONG for unsigned long long

int.
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For the bit size specified integer datatypes the limits are fixed and need not have explicit pa-
rameters accessible to programs. For other integer datatypes, such as size t and int least32 t,
a complete binding must list how to access their parameters in a portable manner.

The parameter hasinf I is always false, and need therefore not be provided to programs as a
named parameter. The parameter bounded I is always true for C integer types, and is not provided
as a named parameter. The parameter minintI is always 0 for the unsigned types, and is not
provided for those types. The parameter moduloI is always true for the unsigned types, and need
not be provided for those types.

The LIA-1 integer operations are either operators, or macros declared in the header <stdlib.h>.
The integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) x == y ?
neqI(x, y) x != y ?
lssI(x, y) x < y ?
leqI(x, y) x <= y ?
gtrI(x, y) x > y ?
geqI(x, y) x >= y ?

negI(x) -x (?)
addI(x, y) x + y (?) (if moduloI = false)
add wrapI(x, y) x + y ? (if moduloI = true)
subI(x, y) x - y (?) (if moduloI = false)
sub wrapI(x, y) x - y ? (if moduloI = true)
mulI(x, y) x * y (?) (if moduloI = false)
mul wrapI(x, y) x * y ? (if moduloI = true)
absI(x) tabs(x) ? (for signed ints)
signumI(x) tsgn(x) † (for signed ints)

quotI(x, y) tquot(x, y) †
modI(x, y) tmod(x, y) †
truncdivI(x, y) x / y (dangerous syntax) ? (bad sem., not LIA-1!)
truncremI(x, y) x % y ? (bad sem., not LIA-1!)

where x and y are expressions of type signed int, signed long int, signed long long int,
unsigned int, unsigned long int, or unsigned long long int, as appropriate, t is the empty
string for int, l for long int, ll for long long int, u for unsigned int, ul for unsigned long

int, and ull for unsigned long long int. The size determined integer datatypes do not have
special prefixes, nor are there type generic names for the operations that are not denoted by
operators. This may be an issue for portability.

Note that C requires a “modulo” interpretation for the ordinary addition, subtraction, and
multiplication operations for unsigned integer datatypes in C (i.e. moduloI = true for un-
signed integer datatypes), and is thus only partially conforming to LIA-1 for the unsigned integer
datatypes. For signed integer datatypes, the value of moduloI is implementation defined. An
implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer operations
for all the integer datatypes for which LIA-1 conformity is claimed.

C names three floating point datatypes: float, double, and long double. In implementations
supporting IEC 60559 (IEEE 754) these datatypes are in practice expected to be binary32,
binary64, and binary128, respectively.
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ISO/IEC TR 24732:2009 [17] suggest adding the new floating point datatypes Decimal32,
Decimal64, and Decimal128. These are intended for the IEC 60559 (IEEE 754) datatypes
decimal32, decimal64, and decimal128, respectively. Note that decimal32 is specified as
a storage format only in IEC 60559 (IEEE 754), while ISO/IEC TR 24732:2009 suggests doing
computation also directly with Decimal32 values, not requiring (but allowing) conversion to a
wider decimal type.

The notation FLT is used to stand for the name of any one of these datatypes in what follows.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:

rF FLT RADIX ? (float, double)
pF T MANT DIG ?
emaxF T MAX EXP ?
eminF T MIN EXP ?
denormF T DENORM †
iec 559F STDC IEC 559 ? (float, double)

fmaxF T MAX ?
fminNF T MIN ?
fminF T DEN ? (proposed)
epsilonF T EPSILON ?
rnd errorF T RND ERR † (partial conf.)
rnd styleF FLT ROUNDS ? (partial conf.)

where T is FLT for float, DBL for double, LDBL for long double, DEC32 for Decimal32, DEC64 for
Decimal64, and DEC128 for Decimal128. The decimal types are not yet part of the C standard,

just proposed in a TR.

Note that FLT RADIX gives the radix for all of float, double, and long double, not for the
decimal datatypes. Also note that FLT ROUNDS gives the rounding style for all of float, double,
and long double, not for the decimal datatypes.

The C standard specifies that the values of the parameter FLT ROUNDS are from int with the
following meaning in terms of the LIA-1 rounding styles.

nearesttiestoeven FLT ROUNDS = 2 †
nearest FLT ROUNDS = 1
truncate FLT ROUNDS = 0
other FLT ROUNDS 6= 0 or 1 or 2

NOTE 4 – The definition of FLT ROUNDS has been extended to cover the rounding style used
in LIA-1 operations (without ↑ or ↓ superscript), not just addition.

The value returned from fegetround() is one of:

FE TONEAREST ? (default)
FE UPWARD ?
FE DOWNWARD ?
FE TOWARDZERO ?

Only the rounding mode FE TONEAREST conforms to LIA. LIA recommends using separate oper-
ations for other roundings, rather than using dynamic rounding modes. Separate operations are
in this case more reliable and less error prone.
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The LIA-1 floating point operations are bound either to operators, or to macros declared in the
header <math.h>. The operations are listed below, along with the syntax used to invoke them:

eqF (x, y) x == y ?
neqF (x, y) x != y ?
lssF (x, y) x < y ?
leqF (x, y) x <= y ?
gtrF (x, y) x > y ?
geqF (x, y) x >= y ?

isnegzeroF (x) isNegZero(x) †
istinyF (x) isTiny(x) †
istinyF (x) -T MIN < x && x < T MIN ?
isnanF (x) isNaN(x) †
isnanF (x) x != x ?
issignanF (x) isSigNaN(x) †

negF (x) -x (?)
addF→F ′(x, y) x + y ?
subF→F ′(x, y) x - y ?
mulF→F ′(x, y) x * y ?
divF→F ′(x, y) x / y ?
absF (x) fabst(x) ?
signumF (x) fsgnt(x) †
residueF (x, y) remaindert(x, y) or remainder(x, y) ?
sqrtF→F ′(x) sqrtt(x) or sqrt(x) ?

exponentF→I(x) (int)(logbt(x)) + 1 ?, (or (long))
fractionF (x) fractt(x) †
scaleF,I(x, n) scalbnt(x, n) ?
scaleF,I′(x,m) scalblnt(x, m) ?
succF (x) nexttowardt(x, HUGE VALT) ?
predF (x) nexttowardt(x, -HUGE VALT) ?
ulpF (x) ulpt(x) †

intpartF (x) intpartt(x) †
fractpartF (x) frcpartt(x) †
truncF,I(x, n) trunct(x, n) †
roundF,I(x, n) roundt(x, n) †

where x and y are expressions of type float, double, or long double, n is of type int, and
m is of type long int, t is f for float, the empty string for double, l for long double, d32
for Decimal32, d64 for Decimal64, and d128 for Decimal128, and where E is F for float, the
empty string for double, L for long double, D32 for Decimal32, D64 for Decimal64, and D128

for Decimal128. The operations on values of decimal types are not yet part of the C standard,
just proposed in a TR.

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
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conversions are usually expressed as ‘casts’, except when converting to/from string formats. The
rules for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C standard for a full description.

In the format strings % is used to indicate the start of a format pattern. After the %, optionally
a string field width (w below) may be given as a positive decimal integer numeral.

For the floating and fixed point format patterns, there may then optionally be a ‘.’ followed
by a positive integer numeral (d below) indicating the number of fractional digits in the string.
The C operations below use HYPHEN-MINUS rather than MINUS (which would have been
typographically better), and only digits that are in ASCII, independently of so-called locale. For
generating or parsing other kinds of digits, say Arabic digits or Thai digits, another API must
be used, that is not standardised in C. For the floating and fixed point formats, +∞+∞+∞ may be
represented as either inf or infinity, −∞−∞−∞ may be represented as either -inf or -infinity, and
a NaN may be represented as NaN; all independently of so-called locale. For language dependent
representations, or use of non-ASCII characters like∞, of these values another API must be used,
that is not standardised in C.

For the integer formats then follows an internal type indicator, of which some are new to C.
Not all C integer types have internal type indicators. However, for t below, hh indicates char, h
indicates short int, the empty string indicates int, l (the letter l) indicates long int, ll (the
letters ll) indicates long long int, and j indicates intmax t or uintmax t. Two more of the
... t integer datatypes have formatting letters: z indicates size t and t indicates ptrdiff t

in the format. Finally, there are radix and signedness format letters (r below): d for signed
decimal string; o, u, x, X for octal, decimal, hexadecimal with small letters, and hexadecimal
with capital letters, all unsigned. E.g., %jd indicates decimal numeral string for intmax t, %2hhx
indicates hexadecimal numeral string for unsigned char, with a two character field width, and
%lu indicates decimal numeral string for unsigned long int.

For the floating point formats instead follows another internal type indicator. Not all C floating
point types have standard internal type indicators for the format strings. However, for u below
the empty string indicates double and L indicates long double; and there is a proposal to use H

for Decimal32, D for Decimal64, and DD for Decimal128. Finally, there is a radix (for the string
side) format letter: e or E for decimal, a or A for hexadecimal. E.g., %15.8LA indicates hexadecimal
floating point numeral string for long double, with capital letters for the letter components, a
field width of 15 characters, and 8 hexadecimal fractional digits.

For the fixed point formats also follows the internal type indicator as for the floating point
formats. But for the final part of the pattern, there is another radix (for the string side) format
letter (p below), only two are standardised, both for the decimal radix: f or F. E.g., %Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter component.
(There is also a combined floating/fixed point string format: g.)

convertI→I′(x) (INT2)x ?
convertI′′→I(s) sscanf(s, "%wtr", &i) ?
convertI′′→I(f) fscanf(f, "%wtr", &i) ?
convertI→I′′(x) sprintf(s, "%wtr", x) ?
convertI→I′′(x) fprintf(h, "%wtr", x) ?

100 Example bindings for specific languages



Working draft ISO/IEC WD 10967-1.2:2010(E)

floorF→I(y) (INT)floort(y) ?
floorF→I(y) (INT)nearbyintt(y) (when in round towards −∞−∞−∞ mode) ?
roundingF→I(y) (INT)nearbyintt(y) (when in round to nearest mode) ?
ceilingF→I(y) (INT)nearbyintt(y) (when in round towards +∞+∞+∞ mode) ?
ceilingF→I(y) (INT)ceilt(y) ?

convertI→F (x) (FLT)x ?

convertF→F ′(y) (FLT2)y ?
convertF ′′→F (s) sscanf(s, "%w.duv", &r) ?
convertF ′′→F (f) fscanf(f, "%w.duv", &r) ?
convertF→F ′′(y) sprintf(s, "%w.duv", y) ?
convertF→F ′′(y) fprintf(h, "%w.duv", y) ?

convertD′→F (s) sscanf(s, "%wup", &g) ?
convertD′→F (f) fscanf(f, "%wup", &g) ?
convertF→D′(y) sprintf(s, "%w.dup", y) ?
convertF→D′(y) fprintf(h, "%w.dup", y) ?

where s is an expression of type char*, f is an expression of type FILE*, i is an lvalue expression
of type int, g is an lvalue expression of type double, x is an expression of type INT, y is an
expression of type FLT, INT2 is the integer datatype that corresponds to I ′, and FLT2 is the
floating point datatype that corresponds to F ′.

C provides non-negative numerals for all its integer and floating point types. The default base
is 10, but base 8 (for integers) and 16 (both integer and floating point) can be used too. Numerals
for different integer types are distinguished by suffixes. f for float, no suffix for double, l for
long double. Numerals for different floating point types are distinguished by suffix: There is
a proposal to use the suffixes DF for Decimal32, DD for Decimal64, and DL for Decimal128.
Numerals for floating point types must have a ‘.’ or an exponent in them. The details are not
repeated in this example binding, see ISO/IEC 9899:1999, clause 6.4.4.1 Integer constants, and
clause 6.4.4.2 Floating constants.

C specifies numerals (as macros) for infinities and NaNs for float:

+∞+∞+∞ INFINITY ?
qNaN NAN ?
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

C has two ways of handling arithmetic errors. One, for backwards compatibility, is by assigning
to errno. The other is by recording of indicators, the method preferred by LIA, which can be
used for floating point errors. For C, the absolute precision underflow notification is ignored.
The behaviour when integer operations initiate a notification is, however, not defined by C.

An implementation that wishes to conform to LIA-1 must provide recording in indicators (for all
of the LIA notifications) as one method of notification. (See 6.2.1.) The datatype Ind is identified
with the datatype int. The values representing individual indicators are distinct non-negative
powers of two. Indicators can be accessed by the following syntax:

inexact FE INEXACT ?
underflow FE UNDERFLOW ?
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overflow FE OVERFLOW ? (integers †)
infinitary FE DIVBYZERO ?
invalid FE INVALID ?
absolute precision underflow FE ARGUMENT TOO IMPRECISE †, LIA-2, -3
union of all indicators FE ALL EXCEPT ?

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-wise or. For example, the indicator subset

{overflow, underflow, infinitary}
can be denoted by the expression

FE OVERFLOW | FE UNDERFLOW | FE DIVBYZERO

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear indicators(C, S) feclearexcept(S) ?
set indicators(C, S) feraiseexcept(S) ?
current indicators(C) fetestexcept(FE ALL EXCEPT) ?
test indicators(C, S) fetestexcept(S) != 0 ?

where S is an expression of type int representing an indicator subset.

D.3 C++

The programming language C++ is defined by ISO/IEC 14882:1998, Programming languages –
C++ [18].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided. Integer valued parameters and derived constants can be used in preprocessor
expressions.

This example binding recommends that all identifiers suggested here be defined in the name-
space std::math.

The LIA-1 datatype Boolean is implemented in the C++ datatype bool.

C++ names several integer datatypes: (signed) int, (signed) long (int),unsigned (int),
and unsigned long (int). The here parenthesised part of a name may be omitted when using
the name in programs. Signed integer datatypes use 2’s complement for representation for neg-
ative values. The notation INT is used to stand for the name of any one of these datatypes in
what follows.

The conformity to LIA of short int and char (signed or unsigned), and similar “short”
integer types are not relevant since values of these types are promoted to int (signed or unsigned
as appropriate) before arithmetic computations are done.

NOTE – The unsigned datatypes unsigned int and unsigned long int can conform if
operations that properly notify overflow are provided. The operations named +, (binary) -,
and * are in the case of the unsigned integer types bound to add wrapI , sub wrapI , and
mul wrapI (specified in LIA-2). For (unary) -, and integer / similar wrapping operations for
negation and integer division are accessed. The latter operations are not specified by LIA.
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The LIA-1 parameters for an integer datatype can be accessed by the following syntax:

maxintI numeric limits<INT>::max() ?
minintI numeric limits<INT>::min() ?
hasinf I numeric limits<INT>::has infinity ?
signed I numeric limits<INT>::is signed ? (not LIA-1)
bounded I numeric limits<INT>::is bounded ?
moduloI numeric limits<INT>::is modulo ? (partial conf.)

The parameter minintI is always 0 for the unsigned types. The parameter moduloI is always
true for the unsigned types.

The LIA-1 integer operations are either operators, or declared in the header <stdlib.h>. The
integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) x == y ?
neqI(x, y) x != y ?
lssI(x, y) x < y ?
leqI(x, y) x <= y ?
gtrI(x, y) x > y ?
geqI(x, y) x >= y ?

negI(x) -x (?)
addI(x, y) x + y (?) (if moduloI = false)
add wrapI(x, y) x + y ? (if moduloI = true)
subI(x, y) x - y (?) (if moduloI = false)
sub wrapI(x, y) x - y ? (if moduloI = true)
mulI(x, y) x * y (?) (if moduloI = false)
mul wrapI(x, y) x * y ? (if moduloI = true)
absI(x) abs(x) ?
signumI(x) sgn(x) †

quotI(x, y) quot(x, y) †
modI(x, y) mod(x, y) †
truncdivI(x, y) x / y (dangerous syntax) ? (bad sem., not LIA-1!)
truncremI(x, y) x % y ? (bad sem., not LIA-1!)

where x and y are expressions of type signed int, signed long int, unsigned int, or unsigned
long int, as appropriate.

An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer oper-
ations for all the integer datatypes for which LIA-1 conformity is claimed.

C++ names three floating point datatypes: float, double, and long double. In implementa-
tions supporting IEC 60559 (IEEE 754) these datatypes are in practice expected to be binary32,
binary64, and binary128, respectively. The notation FLT is used to stand for the name of any
one of these datatypes in what follows.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:

rF numeric limits<FLT>::radix ?
pF numeric limits<FLT>::digits ?
emaxF numeric limits<FLT>::max exponent ?
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eminF numeric limits<FLT>::min exponent ?
denormF numeric limits<FLT>::has denorm ?
hasinf F numeric limits<FLT>::has infinity ? (not LIA-1)
hasqnanF numeric limits<FLT>::has quiet nan ? (not LIA-1)
hassnanF numeric limits<FLT>::has signalling nan ? (not LIA-1)
iec 559F numeric limits<FLT>::is iec559 ?
trapsF numeric limits<FLT>::traps ? (not LIA-1)
tinyness beforeF numeric limits<FLT>::tinyness before ? (LIA-1 ed. 1 extra)

fmaxF numeric limits<FLT>::max() ?
fminNF numeric limits<FLT>::min() ?
fminF numeric limits<FLT>::denorm min ?
epsilonF numeric limits<FLT>::epsilon() ?
rnd errorF numeric limits<FLT>::round error() ? (partial conf.)
rnd styleF numeric limits<FLT>::round style ? (partial conf.)
approx p 10F numeric limits<FLT>::digits10 ? (not LIA-1)
approx emax 10F numeric limits<FLT>::max exponent10 ? (not LIA-1)
approx emin 10F numeric limits<FLT>::min exponent10 ? (not LIA-1)

The C++ standard specifies that the values of the parameter round style are from the enu-
meration type float round style.

enum float round style

{
round indeterminate = -1,

round toward zero = 0,

round to nearest = 1,

round toward infinity = 2,

round toward neg infinity = 3

};
The value returned from fegetround() is one of:

FE TONEAREST † (default)
FE UPWARD †
FE DOWNWARD †
FE TOWARDZERO †

Only the rounding mode FE TONEAREST conforms to LIA. LIA recommends using separate oper-
ations for other roundings, rather than using dynamic rounding modes. Separate operations are
in this case more reliable and less error prone.

The LIA-1 floating point operations are either operators, or declared in the header <math.h>.
The operations are listed below, along with the syntax used to invoke them:

eqF (x, y) x == y ?
neqF (x, y) x != y ?
lssF (x, y) x < y ?
leqF (x, y) x <= y ?
gtrF (x, y) x > y ?
geqF (x, y) x >= y ?

isnegzeroF (x) isNegZero(x) †
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istinyF (x) isTiny(x) †
istinyF (x) -numeric limits<FLT>::min() < x &&

x < numeric limits<FLT>::min()) ?
isnanF (x) isNaN(x) †
isnanF (x) x != x ?
issignanF (x) isSigNaN(x) †

negF (x) -x (?)
addF→F ′(x, y) x + y ?
subF→F ′(x, y) x - y ?
mulF→F ′(x, y) x * y ?
divF→F ′(x, y) x / y ?
absF (x) abs(x) ?
signumF (x) sgn(x) †
residueF (x, y) remainder(x, y) ?
sqrtF→F ′(x) sqrt(x) ?

exponentF→I(x) expon(x) †
fractionF (x) fract(x) †
scaleF,I(x, n) scale(x, n) †
succF (x) succ(x) †
predF (x) pred(x) †
ulpF (x) ulp(x) †

intpartF (x) intpart(x) †
fractpartF (x) frcpart(x) †
truncF,I(x, n) trunc(x, n) †
roundF,I(x, n) round(x, n) †

where x and y are expressions of typ float, double, or long double, and n is of type int.

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in C++ can be explicit or implicit. C++ also deals with stream
input/output in other ways, see clause 22.2.2 of ISO/IEC 14882:1998, ‘Locale and facets’. The
explicit arithmetic value conversions are usually expressed as ‘casts’, except when converting
to/from string formats. The rules for when implicit conversions are applied is not repeated here,
but work as if a cast had been applied.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C++ standard for a full description.

In the format strings % is used to indicate the start of a format pattern. After the %, optionally
a string field width (w below) may be given as a positive decimal integer numeral.

For the floating and fixed point format patterns, there may then optionally be a ‘.’ followed
by a positive integer numeral (d below) indicating the number of fractional digits in the string.
The C++ operations below use HYPHEN-MINUS rather than MINUS (which would have been
typographically better), and only digits that are in ASCII, independently of so-called locale. For
generating or parsing other kinds of digits, say Arabic digits or Thai digits, another API must
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be used, that is not standardised in C++. For the floating and fixed point formats, +∞+∞+∞ may be
represented as either inf or infinity, −∞−∞−∞ may be represented as either -inf or -infinity, and
a NaN may be represented as NaN; all independently of so-called locale. For language dependent
representations of these values another API must be used, that is not standardised in C++.

For the integer formats then follows an internal type indicator. For t below, the empty string
indicates int, l (the letter l) indicates long int. Finally, there is a radix (for the string side)
and signedness (both sides) format letter (r below): d for signed decimal; o, u, x, X for octal,
decimal, hexadecimal with small letters, and hexadecimal with capital letters, all unsigned. E.g.,
%d indicates decimal numeral string for int and %lu indicates decimal numeral string for unsigned
long int.

For the floating point formats instead follows another internal type indicator. For u below the
empty string indicates double and L indicates long double. Finally, there is a radix (for the
string side) format letter: e or E for decimal. E.g., %15.8LE indicates hexadecimal floating point
numeral string for long double, with a capital letter for the letter component, a field width of
15 characters, and 8 hexadecimal fractional digits.

For the fixed point formats also follows the internal type indicator as for the floating point
formats. But for the final part of the pattern, there is another radix (for the string side) format
letter (p below), only two are standardised, both for the decimal radix: f or F. E.g., %Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter component.
(There is also a combined floating/fixed point string format: g.)

convertI→I′(x) static cast<INT2>(x) ?
convertI′′→I(s) sscanf(s, "%wtr", &i) ?
convertI′′→I(f) fscanf(f, "%wtr", &i) ?
convertI→I′′(x) sprintf(s, "%wtr", x) ?
convertI→I′′(x) fprintf(h, "%wtr", x) ?

floorF→I(y) static cast<INT>(floor(y)) ?
roundingF→I(y) static cast<INT>(round(y)) †
ceilingF→I(y) static cast<INT>(ceil(y)) ?

convertI→F (x) static cast<FLT>(x) ?

convertF→F ′(y) static cast<FLT2>y ?
convertF ′′→F (s) sscanf(s, "%w.duv", &r) ?
convertF ′′→F (f) fscanf(f, "%w.duv", &r) ?
convertF→F ′′(y) sprintf(s, "%w.duv", y) ?
convertF→F ′′(y) fprintf(h, "%w.duv", y) ?

convertD′→F (s) sscanf(s, "%wup", &g) ?
convertD′→F (f) fscanf(f, "%wup", &g) ?

convertF→D′(y) sprintf(s, "%w.dup", y) ?
convertF→D′(y) fprintf(h, "%w.dup", y) ?

where s is an expression of type char*, f is an expression of type FILE*, i is an lvalue expression
of type int, g is an lvalue expression of type double, x is an expression of type INT, y is an
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expression of type FLT, INT2 is the integer datatype that corresponds to I ′, and FLT2 is the
floating point datatype that corresponds to F ′.

C++ provides non-negative numerals for all its integer and floating point types in base 10.
Numerals for different integer types are distinguished by suffixes. Numerals for different floating
point types are distinguished by suffix: f for float, no suffix for double, l for long double.
Numerals for floating point types must have a ‘.’ or an exponent in them. The details are not
repeated in this example binding, see ISO/IEC 14882:1998, clause 2.9.1 Integer literals, and clause
2.9.4 Floating literals, or the corresponding clauses in a later edition.

C++ specifies numerals for infinities and NaNs:

+∞+∞+∞ numeric limits<FLT>::infinity() ?
qNaN numeric limits<FLT>::quiet NaN() ?
sNaN numeric limits<FLT>::signaling NaN() ?

as well as string formats for reading and writing these values as character strings.

C++ has completely undefined behaviour on arithmetic notification. An implementation that
wishes to conform to LIA-1 must provide recording in indicators (for all of the LIA notifications)
as one method of notification. (See 6.2.1.) The datatype Ind is identified with the datatype int.
The values representing individual indicators are distinct non-negative powers of two. Indicators
can be accessed by the following syntax:

inexact FE INEXACT †
underflow FE UNDERFLOW †
overflow FE OVERFLOW † (also for integers)
infinitary FE DIVBYZERO †
invalid FE INVALID †
absolute precision underflow FE ARGUMENT TOO IMPRECISE †, LIA-2, -3
union of all indicators FE ALL EXCEPT †

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-wise or. For example, the indicator subset

{overflow, underflow, infinitary}
would be denoted by the expression

FE OVERFLOW | FE UNDERFLOW | FE DIVBYZERO

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear indicators(C, S) feclearexcept(S) ?
set indicators(C, S) feraiseexcept(S) ?
current indicators(C) fetestexcept(FE ALL EXCEPT) ?
test indicators(C, S) fetestexcept(S) != 0 ?

where S is an expression of type int representing an indicator subset.

D.4 Fortran

The programming language Fortran is defined by ISO/IEC 1539-1:2004, Information technology
– Programming languages – Fortran – Part 1: Base language[22].
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An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided.

The Fortran datatype logical corresponds to LIA-1 datatype Boolean.

Every implementation of Fortran has at least one integer datatype, named integer. An im-
plementation is permitted to offer additional integer types (such as integer(kind=8)) with a
different range, parameterized with the kind parameter.

The LIA-1 parameters for an integer datatype can be accessed by the following syntax:

maxintI huge(x) ?
minintI minint(x) †
moduloI modint(x) †

where x is an expression of the appropriate integer type, and the result returned is appropriate for
the type of x. The parameter bounded I is always true, and need not be provided. The parameter
hasinfI is always false, and need not be provided.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) x .eq. y or x == y ?
neqI(x, y) x .ne. y or x /= y ?
lssI(x, y) x .lt. y or x < y ?
leqI(x, y) x .le. y or x <= y ?
gtrI(x, y) x .gt. y or x > y ?
geqI(x, y) x .ge. y or x >= y ?

negI(x) -x ?
addI(x, y) x + y ?
subI(x, y) x - y ?
mulI(x, y) x * y ?
absI(x) abs(x) ?
signumI(x) sign(1, x) ?
mulI(signumI(x), absI(y)) sign(y, x) ?

quotI(x, y) quotient(x, y) †
modI(x, y) modulo(x, y) ?
truncdivI(x, y) x / y (dangerous syntax) ? (bad sem., not LIA-1!)
truncremI(x, y) mod(x, y) (dangerous syntax) ? (bad sem., not LIA-1!)

where x and y are expressions involving integers of the same kind.

An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer oper-
ations for all the integer datatypes for which LIA-1 conformity is claimed.

Implementation of Fortran have at least two floating point datatypes, denoted as real (single
precision) and real(kind=8) (double precision). An implementation is permitted to offer
additional real types with different precision or range, parameterized with the kind parameter.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:
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rF radix(x) ?
pF digits(x) ?
emaxF maxexponent(x) ?
eminF minexponent(x) ?
denormF ieee support denormal(x) (?)
iec 559F ieee support standard(x) (?)

fmaxF huge(x) ?
fminNF tiny(x) ?
fminF tiniest(x) †
epsilonF epsilon(x) ?
rnd errorF rnd error(x) † (partial conf.)
rnd styleF ieee get rounding mode(x) (?) (partial conf.)

where x is an expression of the appropriate real(kind=k) datatype.

The allowed values returned from ieee get rounding mode are:

ieee nearest ? (default)
ieee up ?
ieee down ?
ieee to zero ?

Only the rounding mode ieee nearest conforms to LIA. LIA recommends using separate oper-
ations for other roundings, rather than using dynamic rounding modes. Separate operations are
in this case more reliable and less error prone.

The LIA-1 floating point operations are listed below, along with the syntax used to invoke
them:

eqF (x, y) x .EQ. y or x == y ?
neqF (x, y) x .NE. y or x /= y ?
lssF (x, y) x .LT. y or x < y ?
leqF (x, y) x .LE. y or x <= y ?
gtrF (x, y) x .GT. y or x > y ?
geqF (x, y) x .GE. y or x >= y ?

isnegzeroF (x) x == 0.0 .and. ieee is negative(x) (?)
istinyF (x) isTiny(x) †
istinyF (x) -tiny(x) < x .and. x < tiny(x) ?
isnanF (x) ieee is nan(x) (?)
issignanF (x) ieee is snan(x) †

negF (x) - x ?
addF→F ′(x, y) x + y ?
subF→F ′(x, y) x - y ?
mulF→F ′(x, y) x * y ?
divF→F ′(x, y) x / y ?
absF (x) abs(x) ?
signumF (x) sign(1.0, x) ?
mulF (signumF (x), absF (y)) sign(y, x) ?
residueF (x, y) ieee rem(x, y) (?)
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sqrtF→F ′(x) sqrt(x) ?

exponentF→I(x) exponent(x) ? (dev.: 0 if x = 0)
exponentF,I(x) floor(ieee logb(x)) + 1 (?)
fractionF (x) fraction(x) ?
scaleF,I(x, n) scale(x, n) ?
scaleF,I(x, n) ieee scalb(x, n) (?)
succF (x) nearest(x, 1.0) ?
succF (x) ieee next after(x, huge(x)) (?) (dev. at fmaxF )
predF (x) nearest(x,−1.0) ?
succF (x) ieee next after(x, -huge(x)) (?) (dev. at −fmaxF )
ulpF (x) spacing(x) ?

intpartF (x) aint(x) ?
fractpartF (x) x - aint(x) ?
truncF,I(x, n) trunc(x, n) †
roundF,I(x, n) round(x, n) †

where x and y are of a floating point datatype of the same kind, and n is of an integer type.

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in Fortran are always explicit, and the conversion function is
named like the target type, except when converting to/from string formats.

convertI→I′(x) int(x, kindi2) ?

lbl a format (Bn) ?(binary)
convertI′′→I(f) read (unit=#f,fmt=lbl a) r ?
convertI→I′′(x) write (unit=#h, fmt=lbl a) x ?

lbl b format (On) ?(octal)
convertI′′→I(f) read (UNIT=#f,fmt=lbl b) r ?
convertI→I′′(x) write (UNIT=#h, fmt=lbl b) x ?

lbl c format (In) ?(decimal)
convertI′′→I(f) read (UNIT=#f,fmt=lbl c) r ?
convertI→I′′(x) write (UNIT=#h, fmt=lbl c) x ?

lbl d format (Zn) ?(hexadecimal)
convertI′′→I(f) read (unit=#f,fmt=lbl d) r ?
convertI→I′′(x) write (unit=#h, fmt=lbl d) x ?

floorF→I(y) floor(y, kindi?) ?
roundingF→I(y) rounding(y, kindi?) †
ceilingF→I(y) ceiling(y, kindi?) ?

convertI→F (x) real(x, kind) or sometimes dble(x) ?

convertF→F ′(y) real(y, kind2) or sometimes dble(y) ?

lbl e format (Fw.d) ?
lbl f format (Dw.d) ?
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lbl g format (Ew.d) ?
lbl h format (Ew.dEe) ?
lbl i format (ENw.d) ?
lbl j format (ENw.dEe) ?
lbl k format (ESw.d) ?
lbl l format (ESw.dEe) ?

convertF ′′→F (f) read (unit=#f, fmt=lbl x) t ?
convertF→F ′′(y) write (unit=#h, fmt=lbl x) y ?

convertD′→F (f) read (unit=#f, fmt=lbl x) t ?

where x is an expression of type integer(kind=kindi), y is an expression of type real(kind=kind),
f is an input file with unit number #f , and h is an output file with unit number #h. w, d, and e
are literal digit (0-9) sequences, giving total, decimals, and exponent widths. lbl x is one of lbl e
to lbl l; all of the lbl s are labels for formats.

Fortran provides non-negative numerals for all its integer and floating point types in base 10.
Numerals for floating point types must have a ‘.’ in them. The details are not repeated in this
example binding, see ISO/IEC 1539-1:1997, clause 4.3.1.1 Integer type, and clause 4.3.1.2 Real
type, or the corresponding clauses in a later edition.

Fortran does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ infinity †
qNaN nan †
sNaN nansignalling †

as well as string formats for reading and writing these values as character strings.

Fortran implementations can provide recording of indicators for floating point arithmetic no-
tifications, the LIA preferred method. An implementation that wishes to conform to LIA-1 must
provide recording in indicators (for all of the LIA notifications) as one method of notification.
(See 6.2.1.) The datatype Ind is identified with the datatype integer. The values representing
individual indicators are distinct non-negative powers of two. Indicators can be accessed by the
following syntax:

inexact ieee inexact ?
underflow ieee underflow ?
overflow ieee overflow ? (use also for integers †)
infinitary ieee divide by zero ?
invalid ieee invalid ?
absolute precision underflow

lia density too sparse †
union of all indicators lia all indicators †

The empty set if indicators can be denoted by 0. Other indicator subsets can be named by adding
together individual indicators. For example, the indicator subset

{overflow, underflow}
would be denoted by the expression

ieee overflow + ieee underflow

The Fortran standard has subroutines that set or get the status of one exception flag (notifi-
cation indicator in LIA terminology) at the time:
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ieee set flag(f, .false.)clear a single notification indicator
ieee set flag(f, .true.) set (raise) a single notification indicator
ieee get flag(f, out) get the current value of a single notification indicator

where f is one of the values listed above, and out is a boolean variable.

However, handling arithmetic exception flags one by one is tedious and error-prone, and also
not conforming to LIA-1 nor to IEEE 754-2008.

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear indicators(C, S) loop lia clear indicators(S) †
set indicators(C, S) loop lia raise indicators(S) †
current indicators(C) loop lia get indicators() †
test indicators(C, S) loop lia test indicators(S) †

where S is an integer representing the set of indicators.

D.5 Common Lisp

The programming language Common Lisp is defined by ANSI X3.226-1994, Information Technol-
ogy – Programming Language – Common Lisp [38].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided.

Common Lisp does not have a single datatype that corresponds to the LIA-1 datatype Boolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp has one unbounded integer datatype. Any mathe-
matical integer is assumed to have a representation as a Common Lisp data object, subject only
to total memory limitations. Thus, the parameters bounded I (and moduloI) are always false,
maxintI is positive infinity, and minintI is negative infinity. LIA-1 requires for unbounded in-
teger types that hasinfI shall be true, and thus for there to be representations of positive and
negative infinity. Since these parameters have fixed values, the same for all implementations, they
need not be provided as program accessible parameters.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqI(x, y) (= x y) ?
neqI(x, y) (/= x y) ?
lssI(x, y) (< x y) ?
leqI(x, y) (<= x y) ?
gtrI(x, y) (> x y) ?
geqI(x, y) (>= x y) ?

negI(x) (- x) ?
addI(x, y) (+ x y) ?
subI(x, y) (- x y) ?
mulI(x, y) (* x y) ?
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absI(x) (abs x) ?
signumI(x) (sign x) †

(the floor, ceiling, round, and truncate can also accept floating point arguments)
(multiple-value-bind (flr md) (floor x y)) ?

quotI(x, y) flr or (floor x y) ?
modI(x, y) md or (mod x y) ?

(multiple-value-bind (rnd rm) (round x y)) ?
ratioI(x, y) rnd or (round x y) ?
residueI(x, y) rm

(multiple-value-bind (ceil pd) (ceiling x y)) ?
groupI(x, y) ceil or (ceiling x y) ?
padI(x, y) (- pd)

(multiple-value-bind (trunc rest) (ceiling x y)) ?
truncdivI(x, y) trunc or (truncate x y) ? (bad sem., not LIA-1!)
truncremI(x, y) rest or (rem x y) ? (bad sem., not LIA-1!)

where x and y are expressions of type integer.

An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer oper-
ations for the integer datatype.

Common Lisp has four floating point types: short-float, single-float, double-float, and
long-float. Not all of these floating point types must be distinct, though in light of the 2008
version of IEEE 754, it may be recommendable to map them, respectively, to binary16, binary32,
binary64, and binary128.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:

rF (float-radix x) ?
pF (float-digits x) ?
emaxF maxexp-T ?
eminF minexp-T ?
denormF denorm-T †
iec 559F ieee-754-T †
fmaxF most-positive-T ?
fminNF least-positive-normalized-T ?
fminF least-positive-T ?
epsilonF T-epsilon ?
rnd errorF T-rounding-error † (partial conf.)
rnd styleF rounding-style † (partial conf.)

where x is of type short-float, single-float, double-float or long-float, and T is the string
short-float, single-float, double-float, or long-float as approriate.

NOTE – LIA-1 requires sign symmetry in the range of floating point numbers. Thus the
Common Lisp constants of the form *-negative-* are not needed since they are simply the
negatives of their *-positive-* counterparts.

The value of the parameter rounding-style is an object of type rounding-styles. The values
of rounding-styles have the following names corresponding to LIA-1 rnd styleF values:

nearesttiestoeven nearesttiestoeven †
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nearest nearest †
truncate truncate †
other other †

There is no standard way of setting rounding mode (as per IEEE 754) in Common Lisp. Note
also that LIA recommends using separate operations for separate roundings, rather than using
dynamic rounding modes. Separate operations are in this case more reliable and less error prone.

The LIA-1 floating point operations are listed below, along with the syntax used to invoke
them:

eqF (x, y) (= x y) ?
neqF (x, y) (/= x y) ?
lssF (x, y) (< x y) ?
leqF (x, y) (<= x y) ?
gtrF (x, y) (> x y) ?
geqF (x, y) (>= x y) ?

isnegzeroF (x) (isNegativeZero x) †
istinyF (x) (isTiny x) †
isnanF (x) (isNaN x) †
isnanF (x) (/= x x) ?
issignanF (x) (isSigNaN x) †

negF (x) (- x) ?
addF→F ′(x, y) (+ x y) ?
subF→F ′(x, y) (- x y) ?
mulF→F ′(x, y) (* x y) ?
divF→F ′(x, y) (/ x y) ?
absF (x) (abs x) ?
signumF (x) (float-sign x) ?

(multiple-value-bind (rnd rm) (fround x y)) ?
residueF (x, y) rm ?
sqrtF→F ′(x, y) (sqrt x) ?

(multiple-value-bind (frc xpn sg) (decode-float x)) ?
exponentF→I(x) xpn ?
fractionF (x) frc ?
scaleF,I(x, n) (scale-float x n) ?
succF (x) (succ x) †
predF (x) (pred x) †
ulpF (x) (ulp x) †

(multiple-value-bind (int fract) (ftruncate x)) ?
intpartF (x) int ?
fractpartF (x) fract ?
truncF,I(x, n) (truncate-float x n) †
roundF,I(x, n) (round-float x n) †

where x and y are data objects of the same floating point type, and n is of integer type.
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An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in Common Lisp can be explicit or implicit. The rules for when
implicit conversions are done is implementation defined.

convertI→I′′(x) (format nil "~wB" x) ?(binary)
convertI→I′′(x) (format nil "~wO" x) ?(octal)
convertI→I′′(x) (format nil "~wD" x) ?(decimal)
convertI→I′′(x) (format nil "~wX" x) ?(hexadecimal)
convertI→I′′(x) (format nil "~r, wR" x) ?(radix r)
convertI→I′′(x) (format nil "~@R" x) ?(roman numeral)

floorF→I(y) (floor y) ?
roundingF→I(y) (round y) ?
ceilingF→I(y) (ceiling y) ?

convertI→F (x) (float x kind) ?

convertF→F ′(y) (float y kind2) ?
convertF→F ′′(y) (format nil "~wF" y) ?
convertF→F ′′(y) (format nil "~w, e, k, cE" y) ?
convertF→F ′′(y) (format nil "~w, e, k, cG" y) ?

convertF→D′(y) (format nil "~r, w,0,#F" y) ?

where x is an expression of type INT, y is an expression of type FLT, and kind and kind2 are
objects of the target floating point type. Conversion from string to numeric value is in Common
Lisp done via a general read procedure, which reads Common Lisp ‘S-expressions’.

Common Lisp provides non-negative numerals for all its integer and floating point datatypes
in base 10.

There is no differentiation between the numerals for different floating point datatypes, nor
between numerals for different integer datatypes, and integer numerals can be used for floating
point values.

Common Lisp does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ infinity-FLT †
qNaN nan-FLT †
sNaN signan-FLT †

as well as string formats for reading and writing these values as character strings.

Common Lisp has a notion of ‘exception’, alternation of control flow. However, Common Lisp
has no notion of compile time type checking, and an operation can return differently typed values
for different arguments. When justifiable, Common Lisp arithmetic operations return a rational
or a complex floating point value rather than giving a notification, even if the argument(s) to the
operation were not complex. For instance, (sqrt -1) (quietly) returns a representation of 0 + i.

The notification method required by Common Lisp is alteration of control flow as described
in 6.2.2. Notification is accomplished by signaling a condition of the appropriate type. LIA-1
exceptional values are represented by the following Common Lisp condition types:
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overflow floating-point-overflow ?
underflow floating-point-underflow ?
invalid arithmetic-error ?
infinitary division-by-zero ?

For LIA conformity, numeric notifications that do not cause Common Lisp exceptions must be
recorded in indicators. These condition types are subtypes of the serious-condition error
condition type, that is errors which are “serious enough to require interactive intervention if
not handled”. That includes floating-point-underflow, but treating underflow by change of
control flow is usually inappropriate.

An implementation that wishes to follow LIA must provide recording in indicators as an al-
ternative means of handling numeric notifications also for the notifications where the Common
Lisp standard requires alternation of control flow. (See 6.2.1.) Recording of indicators is the
LIA preferred means of handling numeric notifications. In this suggested binding non-negative
integer values in the datatype integer, are used to represent values in Ind. The datatype Ind is
identified with the datatype integer. The values representing individual indicators are distinct
non-negative powers of two. Indicators can be accessed by the following syntax:

inexact lia inexact †
underflow lia undeflow †
overflow lia overflow †
infinitary lia infinitary †
invalid lia invalid †
absolute precision underflowlia density too sparse † (LIA-2, -3)
union of all indicators lia all indicators †

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-wise or, or just addition, or by subtracting from lia all indicators.

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear indicators(C, S) (clear-indicators S) †
set indicators(C, S) (raise-indicators S) †
current indicators(C) (current-indicators) †
test indicators(C, S) (test-indicators S) †

where S is an expression of type integer representing an indicator subset.
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Annex E
(informative)

Example of a conformity statement

This annex presents an example of a conformity statement for a hypothetical implementation
of Fortran. The underlying hardware is assumed to provide 32-bit two’s complement integers, and
32- and 64-bit floating point numbers that conform to the IEEE 754 (IEC 60559) standard.

The sample conformity statement follows.

This implementation of Fortran conforms to the following standards:

ISO/IEC 1539-1:2004, Information technology – Programming languages – Fortran –
Part 1: Base language

IEEE Standard 754-2008, Standard for floating-point arithmetic

ISO/IEC 10967-1, Information technology – Language independent arithmetic – Part:
1 Integer and floating point arithmetic (LIA-1)

It also conforms to the suggested Fortran binding standard in D.4 of LIA-1.

Only implementation dependent information is directly provided here. The information in the
suggested language binding standard for Fortran (see D.4) is provided by reference. Together,
these two items satisfy the LIA-1 documentation requirement.

E.1 Types

There is one integer type, called integer (or integer(kind=4)). There are two floating point
types, called real (or real(kind=4)) and double precision (or real(kind=8)).

E.2 Integer parameters

The following table gives the parameters for integer, the names of the intrinsic inquiry functions
with which they can be accessed at run-time, and their values.

Parameters for integer

parameter inquiry function value

hasinfI (none) false
maxintI huge(x) 231 − 1
mininti minint(x) or -huge(x) - 1 −(231)
moduloI modint(x) false

where x is an expression of type integer.
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E.3 Floating point parameters

The following table gives the parameters for real(kind=4) and real(kind=8), the names of the
intrinsic inquiry functions with which they can be accessed at run-time, and their values.

Parameters for floating point

parameters inquiry function real(kind=4) real(kind=8)

rF radix(x) 2 2
pF digits(x) 24 53

emaxF maxexponent(x) 128 1024
eminF minexponent(x) −125 −1021
denorm ieee support denormal(x) true true
iec 559 ieee support standard(x) true true

where x is an expression of type real(kind=4) or real(kind=8), as appropriate.

The third table gives the derived constants, the names of the intrinsic inquiry functions with
which they can be accessed at run-time, and the (approximate) values for real(kind=4) and
real(kind=8). The inquiry functions return exact values for the derived constants.

Derived constants for floating point (default values for rnd errorF and rnd styleF )

constants inquiry function real(kind=4) real(kind=8)

fmaxF huge(x) 3.402823466 e+38 1.7976931349 e+308
fminNF tiny(x) 1.175494351 e−38 2.2250738585 e−308
fminF tiniest(x) 1.401298464 e−45 4.9406564584 e−324
epsilonF epsilon(x) 1.192092896 e−07 2.2204460493 e−016
rnd errorF rnd error(x) 0.5 0.5
rnd styleF ieee get rounding mode(x) ieee nearest ieee nearest

where x is an expression of type real(kind=4) or real(kind=8), as appropriate.

The Fortran standard function ieee set rounding mode can be used to dynamically change
the rounding mode, but only round-to-neares-ties-to-even conforms with LIA-1 (other roundings
are separate operations in LIA-1).

E.4 Expressions

Expressions that contain more than one LIA-1 arithmetic operation or that contain operands of
mixed precisions or types are evaluated strictly according to the rules of Fortran (see clause 7.1.7
of the Fortran standard).

E.5 Notification

Notifications are raised under all circumstances specified by the LIA-1 standard. The programmer
selects the method of notification by using a compiler directive. The relevant directives are:

!LIA$ NOTIFICATION=RECORDING (default)
!LIA$ NOTIFICATION=TERMINATE does not apply to inexact nor underflow
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If an notification (which is not inexact nor underflow) occurs when termination is the noti-
fication method, execution of the program will be stopped and a termination message written on
the standard error output.

If an exception occurs when recording of indicators is the selected method of notification, the
value specified by IEEE 754 is used as the value of the operation and execution continues. If
any indicator remains set when execution of the program is complete, an abbreviated termination
message will be written on the standard error output.

A full termination message, given only if the source has been compiled for debugging, provides
the following information:

a) name of the exceptional value (infinitary, overflow, invalid, or absolute precision
underflow),

b) kind of operation whose execution caused the notification,

c) values of the arguments to that operation, and

d) point in the program where the failing operation was invoked (i.e. the name of the source
file and the line number within the source file).

An abbreviated termination message only gives the names of the indicators that remain set.
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Annex F
(informative)

Example programs

This annex presents a few examples of how various LIA-1 features might be used. The program
fragments given here are written in Fortran, C, or Ada, and assume the bindings suggested in
D.4, D.2, and D.1, respectively.

F.1 Verifying platform acceptability

A particular numeric program may not be able to function if the floating point type available has
insufficient accuracy or range. Other programs may have other constraints.

Whenever the characteristics of the arithmetic are crucial to a program, that program should
check those characteristics early on.

Assume that an algorithm needs a representation precision of at least 1 part in a million. Such
an algorithm should be protected (in Fortran) by

if (1/epsilon(x) < 1.0e6) then

print 3, ’The actual floating point type used has insufficient precision.’

stop

end if

A range test might look like

if ((huge(x) < 1.0e30) .or. (tiny(x) > 1.0e-10)) ...

A check for 1
2 -ulp rounding would be

if (rnd error(x) /= 0.5) ...

A program that only run on IEC 60559 (IEEE 754) platforms would test

if (.not. ieee support standard(x)) ...

F.2 Selecting alternate code

Sometimes the ability to control rounding behavior is very useful. This ability is provided by IEC
60559 platforms. An example (in C) is

if ( STDC IEC 559 ) {
fesetround(FE UPWARD);

... calculate using round toward plus infinity ...

fesetround(FE DOWNWARD);

... calculate using round toward minus infinity ...

fesetround(FE NEAREST);

... combine the results ...

}
else {

... perform more costly (or less accurate) calculations ...

}
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LIA-1 recommends using separate operations for different roundings, rather that using rounding
mode setting.

F.3 Terminating a loop

Here’s an example of an iterative approximation algorithm. We choose to terminate the iteration
when two successive approximations are within N ulps of one another. In Ada, this is

Approx, Prev Approx: Float;

N: constant Float := 6.0; -- max ulp difference for loop termination

Prev Approx := First Guess(input);

Approx := Next Guess(input, Prev Approx);

while abs(Approx - Prev Approx) > N * Float’Unit Last Place(Approx) loop

Prev Approx := Approx;

Approx := Next Guess(input, Prev Approx);

end loop;

This example ignores exceptions and the possibility of non-convergence.

F.4 Estimating error

The following is a Fortran algorithm for dot product that makes an estimate of its own accuracy.
Again, we ignore exceptions to keep the example simple.

real A(100), B(100), dot, dotmax

integer I, loss

...

dot = 0.0

dotmax = 0.0

do I = 1, 100

dot = dot + A(I) * B(I)

dotmax = max (abs(dot), dotmax)

end do

loss = exponent(dotmax) - exponent(dot)

if (loss > digits(dot)/2) then

print 3, ’Half the precision may be lost.’

end if

F.5 Saving exception state

Sometimes a section of code needs to manipulate the notification indicators without losing no-
tifications pertinent to the surrounding program. The following code (in C) saves and restores
indicator settings around such a section of code.

int saved flags;

saved flags = fetestexcept(FE ALL EXCEPT);

feclearexcept(FE ALL EXCEPT);
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... run desired code ...

... examine indicators and take appropriate action ...

... clear any indicators that were compensated for ...

feraiseexcept(saved flags); /* merge-in previous state */

The net effect of this is that the nested code sets only those indicators that denote exceptions
that could not be compensated for. Previously set indicators stay set.

F.6 Fast versus accurate

Consider a problem which has two methods of solution. The first solution method is a fast
algorithm that works most of the time. However, it occasionally gives incorrect answers because
of internal floating point overflows. The second solution method is much more reliable, but is a
lot slower.

The following Fortran code tries the fast solution first, and, if that fails (detected via indicator
recorded notification(s)), uses the slow but reliable one.

saved flags = lia get indicators()

call lia clear indicators(lia all indicators)

result = FAST SOLUTION(input)

if (lia test indicators(ieee overflow)) then

call lia clear indicators(lia all indicators)

result = RELIABLE SOLUTION(input)

end if

call lia raise indicators(saved flags)

Demmel and Li discuss a number of similar algorithms in [45].

F.7 High-precision multiply

In general, the exact product of two p-digit numbers requires about 2 · p digits to represent.
Various algorithms are designed to use such an exact product represented as the sum of two
p-digit numbers. That is, given X and Y , we must compute U and V such that

U + V = X * Y

using only p-digit operations.

Sorenson and Tang [56] present an algorithm to compute U and V . They assume that X and
Y are of moderate size, so that no exceptions will occur. The Sorensen and Tang algorithm starts
out (in C) as

X1 = (double) (float) X ;

X2 = X - X1;

Y1 = (double) (float) Y;

Y2 = Y - Y1;

A1 = X1*Y1;

A2 = X1*Y2;
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A3 = X2*Y1;

A4 = X2*Y2;

where all values and operations are in double precision. The conversion to single precision and
back to double is intended to chop X and Y roughly in half. Unfortunately, this doesn’t always
work accurately, and as a result the calculation of one or more of the As is inexact.

Using LIA-1’s roundF operation, we can make all these calculations exact. This is done by
replacing the first four lines with

X1 = round (X, DBL MANT DIG/2);

X2 = X - X1;

Y1 = round (Y, DBL MANT DIG/2);

Y2 = Y - Y1;

LIA-2 specifies the operations add lowF , sub lowF , mul lowF , and other operations to support
higher precision calculations, or higher precision datatypes.
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