WORKING DRAFT © ISO/IEC ISO/IEC 11404:xxxx WD3

Information technology — Pregrammingtanguages;

hei) I : : : o
Language-independent-General purpose datatypes (GPD)
[Working Draft 3, dated 2003-01-13]

1 Scope

This International Standard specifies the nomenclature and shared semantics for a collection of datatypes commonly occurring
in programming languages and software interfaces, referred to as the Language-Hdependent-{h—-General Purpose (GP)
Datatypes (GPD). It specifies both primitive datatypes, in the sense of being defined ab initio without reference to other
datatypes, and non-primitive datatypes, in the sense of being wholly or partly defined in terms of other datatypes. The
specification of datatypes in this International Standard is "language-independent” in the sense that the datatypes specified are
classes of datatypes of which the actual datatypes used in programming languages and other entities requiring the concept
datatype are particular instances._ These datatypes are general in nature because they serve a wide variety of information
processing applications.

This International Standard expressly distinguishes three notions of "datatype”, namely:
« the conceptual, or abstract, notion of a datatype, which characterizes the datatype by its nominal values and properties;

« the structural notion of a datatype, which characterizes the datatype as a conceptual organization of specific component
datatypes with specific functionalities; and

« the implementation notion of a datatype, which characterizes the datatype by defining the rules for representation of the
datatype in a given environment.

This International Standard defines the abstract notions of many commonly used primitive and non-primitive datatypes which
possess the structural notion of atomicity. This International Standard does not define all atomic datatypes; it defines only
those which are common in programming languages and software interfaces. This International Standard defines structural
notions for the specification of other non-primitive datatypes and provides a means by which datatypes not defined herein can
be defined structurally in terms of the H-GP datatypes defined herein.

This International Standard defines a partial veeabutary-terminology for implementation notions of datatypes and provides for,
but does not require, the use of this veeabulary-terminology in the definition of datatypes. The primary purpose of this
voeabutary-terminology is to identify common implementation notions associated with datatypes and to distinguish them from
conceptua notions. Specifications for the use of implementation notions are deemed to be outside the scope of this
International Standard, which is concerned solely with the identification and distinction of datatypes.

This International Standard specifies the required elements of mappings between the £GP datatypes and the datatypes of
some other language. This International Standard does not specify the precise form of a mapping, but rather the required
information content of a mapping.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
liesThe — = — RPTART TR . " -

OmOwW O sca 1iCial G O cl Provrso 7V Oug Orstto W RWAY O O

| SO/IEC 8601:49832000, Data elements and interchange formats — Information interchange — Representation of dates and
times.

I SO/IEC 8824:1992002, Information technol ogy — Open-Systems-Hterconneetion—Spedfication-of- Abstract Syntax
Notation One (ASN.1).

| SO/IEC 8825:20@2, Information technology — ASN.1 Encoding Rules.

| SO/IEC 10646-1:19932000, Information technology — Universal Multi ple-Octet Coded Character Set (UCS) —
Part 1: Architedure and Basic Multili ngual Plane.

ISO/IEC 11179-3:2002, Information technology — Metadata registries (MDR) — Part 3: Metamode!.

3 Definitions

For the purposes of this International Standard, the following definiti ons apply.

NOTE — These definiti ons may nat coincide with accepted mathematical or programming language definiti ons of the same terms.

3.1 actual parametric datatype: a datatype appeaing as a parametric datatype in a use of a datatype generator, as opposed
to the formal-parametric-types appearing in the definition of the datatype generator.

3.2 actual parametric value: a value appeaing as a parametric value in a reference to a datatype family or datatype
generator, as opposed to the formal-parametric-values appeaing in the corresponding definitions.

3.3 aggregate datatype: a generated datatype eah of whose values is made up of values of the component datatypes, in
the sense that operations on all component values are meaningful.

3.4 annotation: adescriptive information urit attached to a datatype, or a component of a datatype, or a procedure (value),
to charaderize some aspead of the representations, variables, or operations associated with values of the datatype which goes
beyond the scope of this International Standard.

3.5 approximate: aproperty of adatatype indicaing that there is not a 1-to-1 relationship between values of the conceptual
datatype and the values of avalid computational model of the datatype.

3.6 bounded: aproperty of adatatype, meaning both bounded above and bounded below.

3.7 bounded above: aproperty of a datatype indicating that there is avalue U in the value space such that, for all values s
in the value space s< U.

3.8 bounded below: aproperty of a datatype indicaing that there is avalue L in the value spacesuch that, for al values s
inthevaluespace L <s.

3.9 characterizing operations:

(of adatatype): acolledion o operationson, or yielding, values of the datatype, which dstinguish this datatype from
other datatypes with identicd value spaces,

(of adatatype generator): acolledion d operations on, or yielding, values of any datatype resulting from an applicaion
of the datatype generator, which dstinguish this datatype generator from other datatype generators which produceidentica
value spaces from identica parametric datatypes.

3.10 component datatype: a datatype which is a parametric datatype to a datatype generator, i.e. a datatype on which the
datatype generator operates.

3.11 datatype: aset of distinct values, characterized by properties of those values and by operations on those values.

3.12 datatypedeclaration:

(2) the means provided by this International Standard for the definition of a Ll datatype which is not itself defined by
this International Standard;

(2) an instance of use of this means.

3.13 datatype family: acollection of datatypes which have equivalent characterizing operations and relationships, but value
spaces which differ in the number and identification of the individual values.

3.14 datatype generator: an operation on datatypes, as objects distinct from their values, which generates new datatypes.
3.15 defined datatype: adatatype defined by atype-declaration.
3.16 defined generator: adatatype generator defined by a type-declaration.

3.17 exact: aproperty of a datatype indicating that every value of the conceptual datatype is distinct from all others in any
valid computational model of the datatype.

3.18 formal-parametric-type: an identifier, appearing in the definition of a datatype generator, for which a Ll datatype will
be substituted in any reference to a (defined) datatype resulting from the generator.

3.19 formal-parametric-value: an identifier, appearing in the definition of a datatype family or datatype generator, for
which avalue will be substituted in any reference to a (defined) datatype in the family or resulting from the generator.

3.20 LGP datatype:
(1) adatatype defined by this International Standard, or
(2) adatatype defined by the means of datatype definition provided by this International Standard.

3.21 generated datatype: a datatype defined by the application of a datatype generator to one or more previously-defined
datatypes.

3.22 generated internal datatype: a datatype defined by the application of a datatype generator defined in a particular pro-
gramming language to one or more previously-defined internal datatypes.

3.23 generator: adatatype generator (g.v.).

3.24 generator declaration:

(2) the means provided by this International Standard for the definition of a datatype generator which is not itself
defined by this International Standard;

(2) an instance of use of this means.

3.25 internal datatype: a datatype whose syntax and semantics are defined by some other standard, language, product,
service or other information processing entity.

3.26 inward mapping: a conceptual association between the internal datatypes of alanguage and the LI datatypes which as-
signsto each LI datatype either a single semantically equivalent internal datatype or no equivalent internal datatype.

3.27 lower bound: in adatatype which is bounded below, the value L such that, for al valuessin thevalue space, L < s.

3.28 mapping:
(of datatypes): aformal specification of the relationship between the (internal) datatypes which are notions of, and spec-
ifiable in, a particular programming language and the (LI) datatypes specified in this International Standard;
(of values): a corresponding specification of the relationships between values of the internal datatypes and values of the
LI datatypes.

3.29 order: amathematical relationship among values (see 6.3.2).

3.30 ordered: aproperty of adatatype which is determined by the existence and specification of an order relationship on its
value space.

3.31 outward mapping: a conceptual association between the internal datatypes of a language and the LGP datatypes
which identifies each internal datatype with a single semanticdly equivalent -GP datatype.

3.32 parametric datatype: adatatype on which a datatype generator operates to produce agenerated-datatype.

3.33 parametric value:
(1) avaue which distinguishes one member of a datatype family from another, or
(2) avalue which is a parameter of a datatype or datatype generator defined by atype-declaration (see9.1).

3.34 primitive datatype: an identifiable datatype that cannot be decomposed into other identifiable datatypes without lossof
all semantics associated with the datatype.

3.35 primitive internal datatype: a datatype in a particular programming language whaose values are not viewed as being
constructed in any way from values of other datatypes in the language.

3.36 representation:

(of aLl datatype): the mapping from the value spaceof the H-GP datatype to the value spaceof someinterna datatype
of acomputer system, fil e system or communicaions environment;

(of avalue): theimage of that value in the representation of the datatype.

3.37 subtype: adatatype derived from ancther datatype by restricting the value space to a subset whil st maintaining all char-
aderizing operations.

3.38 upper bound: in adatatype which is bounded above, the value U such that, for all values sin the value space s< U.
3.39 value space: the set of values for agiven datatype.

3.40 variable: acomputational objed to which avalue of a particular datatype is asociated at any given time; and to which
diff erent values of the same datatype may be asociated at different times.

4 Conformance

An information processng product, system, element or other entity may conform to this International Standard either diredly,
by utilizing catatypes spedfied in this International Standard in a conforming manner (42.1), or indiredly, by means of
mappings between internal datatypes used by the entity and the datatypes edfied in this International Standard (42.2).

NOTE — The general term infor mation processing entity is used in this clause to include anything which processes information and
contains the concept of datatype. Information rocessng entities for which conformance to this International Standard may be appropriate
include other standards (e.g. standards for programming languages or language-related facilities), specifications, data handling facilities and
Services, etc.

4.1 Direct conformance
An information processng entity which conformsdirectly to this International Standard shall:

i) spedfy which of the datatypes and datatype generators edfied in Clause 8 and Clause 10 are provided by the entity
and which are not, and which, if any, of the dedaration mechanismsin Clause 9 it provides; and

ii) define the value spaces of the LGP datatypes used by the entity to be identicd to the value-spaces gedfied by this
International Standard ; and

iii) use the notation prescribed by Clause 7 through Clause 10 of this International Standard to refer to those datatypes
and to no athers; and

iv) to the extent that the entity provides operations other than movement or translation of values, define operations on
the £GP datatypes which can be derived from, or are otherwise consistent with, the charaderizing operations
spedfied by this International Standard.

NOTES

1. ThisInternational Standard defines a syntax for the denotation of values of each datatype it defines, but, in general, requirement (iii)
does not require conformance to that syntax. Conformance to the value-syntax for a datatype is required only in those casesin which the
value appearsin atype-specifier, that is, only where the valueis part of the identification of a datatype.

2. Therequirements above prohibit the use of atype-specifier defined in this International Standard to designate any other datatype. They
make no other limitation on the definition of additional datatypesin a conforming entity, although it is recommended that either the form in
Clause 8 or the form in Clause 10 be used.

3. Requirement (iv) does not require all characterizing operations to be supported and permits additional operationsto be provided. The
intention is to permit addition of semantic interpretation to the £GP datatypes and generators, aslong asit does not conflict with the |
interpretations given in this International Standard. A conflict arises only when a given characterizing operation could not be implemented

or would not be meaningful, given the entity-provided operations on the datatype.

4. Examplesof entities which could conform directly are language definitions or interface specifications whose datatypes, and the notation
for them, are those defined herein. In addition, the verbatim support by a software tool or application package of the datatype syntax and
definition facilities herein should not be precluded.

4.2 Indirect conformance
An information processing entity which conformsindirectly to this International Standard shall:

i) provide mappings between its internal datatypes and the H-GP datatypes conforming to the specifications of Clause
11 of this International Standard; and

ii) specify for which of the datatypes in Clause 8 and Clause 10 an inward mapping is provided, for which an outward
mapping is provided, and for which no mapping is provided.

NOTES
1. Standardsfor existing programming languages are expected to provide for indirect conformance rather than direct conformance.

2. Examples of entities which could conform indirectly are language definitions and implementations, information exchange specifications
and tools, software engineering tools and interface specifications, and many other entities which have a concept of datatype and an existing
notation for it.

4.3 Conformance of a mapping standard

In order to conform to this International Standard, a standard for a mapping shall include in its conformance requirements the
requirement to conform to this International Standard.

NOTES

1. Itisenvisaged that this International Standard will be accompanied by other standards specifying mappings between the internal
datatypes specified in language and language-related standards and the L1 datatypes. Such mapping standards are required to comply with
this International Standard.

2. Such mapping standards may define "generic’ mappings, in the sense that for a given internal datatype the standard specifies a parame-
trized H-GP datatype in which the parametric values are not derived from parametric values of the internal datatype nor specified by the |
standard itself, but rather are required to be specified by a"user" or "implementor” of the mapping standard. That is, instead of specifying a
particular H-GP datatype, the mapping specifies afamily of £GP datatypes and requires a further user or implementor to specify which
member of the family appliesto a particular use of the mapping standard. Thisis always necessary when the internal datatypes themselves
are, in theintention of the language standard, either explicitly or implicitly parametrized. For example, a programming language standard
may define a datatype INTEGER with the provision that a conforming processor will implement some range of Integer; hence the mapping
standard may map the internal datatype INTEGER to the LGP datatype-:

integer range (min..max),
and require a conforming processor to provide values for "min" and "max".

4.4 Program conformance

A program that confor ms to this |nternational Standard shall:

i) conform to the syntax rules spedfied in Clauses 5, 7, 8, and 9 of this International Standard:;

i) conform to the datatyping provisions of Clauses 6, 7, 8, 9, and 10 d this Internatioinal Standard.

5 Conventions Used in this International Standard

5.1 Formal syntax

This International Standard defines a formal datatype spedficaion language. The following notation, derived from Backus-
Naur form, is used in defining that language. In this clause, the word mark is used to refer to the charaders used to define the
syntax, whil e the word character is used to refer to the charaders used in the adual datatype spedfication language. Table 5-1
summarizes the syntadic metanotation.

Table 5-1 — Metanotation Marks

" (QUOTATION MARK) delimits aterminal symbol

" (APOSTROPHE) delimits atermina symbol
{} (CURLY BRACKETS) delimit arepeaed sequence (zero ar more OCcurrences)
[1 (SQUAREBRACKETS) delimit an optional sequence (zero or one occurrence)

| (VERTICAL LINE) delimits an alternative sequence
= (EQUALSSIGN) separates a non-terminal symbal from its definition
(FULL STOP) terminates a production

A terminal symboal is a sequence of marks beginning with either a QUOTATION MARK (") or an APOSTROPHE mark (')
and terminated by the next occurrence of the same mark. The terminal symbol represents the occurrence of the sequence of
charaders in an implementation charader-set corresponding to the marks enclosed by (but not including) the QUOTATION
MARK or APOSTROPHE delimiters.

A non-terminal symbol is a sequence of marks, each of which is either aletter or the HY PHEN-MINUS (-) mark, terminated
by the first mark which is neither a letter nor a HYPHEN-MINUS. A nonterminal symbol represents any sequence of
terminal symbadls which satisfies the production for that non-terminal symbol. For each non-terminal symbol there is exadly
one production in Clause 7, Clause 8, Clause 9, or Clause 10.

A sequence of symbols represents exadly one occurrence of a (group of) terminal symbol(s) represented by each symbadl in
the sequencein the order in which the symbols appea in the sequence, and no other symbals.

A repeated sequence is a sequence of terminal and/or non-terminal symbols enclosed between a LEFT CURLY BRACKET
mark ({) and aRIGHT CURLY BRACKET mark (}). A repedaed sequence represents any number of consecutive occurrences
of the sequence of symbols so enclosed, including no occurrence.

An optional sequence is asequence of terminal and/or non-termina symbols enclosed between a LEFT SQUARE BRACKET
mark ([) and aRIGHT SQUARE BRACKET mark (]). An optional sequence represents either exadly one occurrence of the
seguence of symbols so enclosed or no symbolsat all.

An alter native sequence is a sequence of terminal and/or non-terminal symbols preceded by a VERTICAL LINE (]) mark and
followed hy either aVERTICAL LINE mark or aFULL STOP mark (.). An dternative sequence represents the occurrence of
either the sequence of symbols so delimited or the sequence of symbols preceding the (first) VERTICAL LINE mark.

A production defines the valid sequences of symbols which a non-terminal symbol represents. A production has the form:
non-terminal-symbol = valid-sequence .

where valid-sequence is any sequence of terminal symbals, non-terminal symbols, optional sequences, repeaed sequences and

aternative sequences. The EQUALS SGN (=) mark separates the non-terminal symbal being defined from the vali d-sequence

which representsits definition. The FULL STOP mark terminates the vali d-sequence.

5.2 Text conventions

Within the text:
« A reference to aterminal symbol syntadic objed consists of the terminal symbol in guotation marks, e.g. "type".

» A reference to anon-terminal symbal syntadic objed consists of the non-terminal-symbol in itali c script, e.g. type-dec-
laration.

» Nortitalicized words which areidenticd or nearly identicd in spelli ng to a non-terminal-symbal refer to the conceptual
objed represented by the syntadic objed. In particular, xxx-type refers to the syntadic representation of an "xxx
datatype" in al occurrences.

6 Fundamental Notions

6.1 Datatype

A datatypeisaaset of distinct values, charaderized by properties of those values and by operations on those values. Charac
terizing operations are included in this International Standard solely in order to identify the datatype. In this International
Standard , charaderizing operations are purely informative and have no normative impad.

NOTE — Characterizing operations are included in order to asdst in theidentification o the gopropriate datatypes for particular purposes,
such as mapping to programming languages.

Theterm LI datatype (for Language-Independent datatype) is used to mean a datatype defined by this International Standard.
L1 datatypes (plural) refersto some or all of the datatypes defined by this International Standard.

The term internal datatype is used to mean a datatype whose syntax and semantics are defined by some other standard,
language, product, serviceor other information processng entity.

NOTE — The datatypes included in this gandard are "common", not in the sense that they are diredly suppated by, i.e. "built-in" to, many
langueges, but in the sense that they are common and useful generic concepts among wsers of datatypes, which include, but go well beyond,
programming languages.

6.2 Value space

A value spaceisthe colledion d valuesfor agiven datatype. The value space of agiven datatype can be defined in ore of the
following ways:

e enumerated ouright, or
« defined axiomaticdly from fundamental notions, or
« defined as the subset of those values from some dready defined value space which have a given set of properties, or

« defined as a combination of arbitrary values from some dready defined value spaces by a spedfied construction proce-
dure.

Every distinct value belongs to exadly one datatype, although it may belong to many subtypes of that datatype (see 8.2).

6.3 Datatype properties

The model of datatypes used in this International Standard is sid to be an "abstrad computational model”. It is
"computational" in the sense that it deds with the manipulation of information by computer systems and makes distinctionsin
the typing of information urits which are appropriate to that kind of manipulation. It is"abstrad" in the sense that it deds with
the perceived properties of the information wnits themselves, rather than with the properties of their representations in
computer systems.

NOTES

1. Itisimportant to diff erentiate between the values, relationships and qoerations for a datatype and the representations of those values, re-
lationships and goerations in computer systems. This International Standard specifies the charaderistics of the conceptual datatypes, but it
only provides ameans for spedfication of characteristics of representations of the datatypes.

2. Some mmputationa properties derive from the need for the information units to be representable in computers. Such properties are
deemed to be appropriate to the astract computational model, as oppased to purely representational properties, which derive from the
nature of specific representations of the information units.

3. Itisnot proper to describe the datatype model used herein as"mathematical”, because atruly mathematical model has no nations of "ac-
cessto information units' or "invocation of processng elements’, and these notions areimportant to the definition of characterizing
operations for datatypes and datatype generators.

6.3.2 Equality

In every value spacethereisanation of equality, for which the following rules hold:

« for any two instances (a, b) of values from the value space, either aisequal to b, denoted a= b, or ais not equal to b,
denoted a# b;

« thereisno pair of instances (g, b) of values from the value spacesuch that both a=b and a# b;
« for every value afrom the value space a=a;
« for any two instances (g, b) of values from the value space, a=bif and orly if b=g;

« for any threeinstances (a, b, ¢) of values from the value space if a=band b=c, thena=c.

On every datatype, the operation Equal is defined in terms of the equality property of the value space by:

« for any values a, b drawn from the value space Equal(a,b) istrueif a= b, and false otherwise.
6.3.3 Order

A vaue spaceis sid to be ordered if there exists for the value spaae an order relation, denated <, with the foll owing rules:
« for every pair of values (a, b) from the value space, either a< b or b < a, or both;
« for any two values (g, b) from the value space, if a<bandb<a thena=Db;

« for any threevalues (a, b, ¢) fromthevaue space if a<bandb<c,thena<c.
For convenience, the notation a< b is used herein to denote the simultaneous relationships: a<banda# b.

A datatype is said to be ordered if an order relation is defined on its value space A corresponding charaderizing operation,
cdled InOrder, isthen defined by:

« for any two values (a, b) from the value space, InOrder(a, b) istrueif a< b, and false otherwise.

NOTE — There may be several possble orderings of agiven value space. And there may be several different datatypes which have a
common value space, each using a different order relationship. The dhosen order relationship isa charaderistic of an ordered datatype and
may aff ect the definition of other operations on the datatype.

6.3.4 Bound

A datatypeis sid to be bounded aboveif it isordered and there isavalue U in the value spacesuch that, for al values sin the
value space, s<U. Thevalue U is then said to be an upper bound of the value space Similarly, a datatype is sid to be
bounded below if it is ordered and there isavalue L in the spacesuch that, for all valuessin thevalue space L <s. Thevalue
L isthen said to be a lower bound of the value space A datatype is sid to be bounded if its value spacehas both an upper
bound and alower bound.

NOTE — The upper bourd of avalue space, if it exists, must be unique under the equality relationship. For if U1 and U2 are both upper
bounds of the value space, then Ul < U2 and U2 < U1, and therefore U1 = U2, foll owing the second rule for the order relationship. And
similarly the lower bourd, if it exists, must also be unique.

On every datatype which is bounded below, the nil adic operation Lowerbound is defined to yield that value which is the lower
bound o the value space and, on every datatype which is bounded above the nil adic operation Upperbound is defined to yield
that value which is the upper bound of the value space

6.3.5 Cardinality

A value space has the mathematicd concept of cardinality: it may be finite, denumerably infinite (countable), or non-
denumerably infinite (uncountable). A datatypeis sid to have the ardinality of its value space. In the computational model,
there are threesignificant cases:

« datatypes whose value spaces are finite,
« datatypes whose value spaces are exad (see 6.3.5) and denumerably infinite,

« datatypes whose value spaces are approximate (see6.3.5), and therefore have afinite or denumerably infinite omputa-
tional model, although the conceptual value spacemay be non-denumerably infinite.

Every conceptualy finite datatype is necessarily exad. No computational datatype is non-denumerably infinite.

NOTE — For adenumerably infinite value space, there dways exist representation algorithms guch that notwo dstinct values have the same
representation and the representation of any given valueis of finite length. Conversely, in anon-denumerably infinite value space there
aways exist values which do nat have finite representations.

6.3.6 Exact and approximate

The computational model of a datatype may limit the degree to which values of the datatype can be distinguished. If every
value in the value spaceof the conceptual datatype is distinguishable in the computational model from every other value in the
value space, then the datatypeis sid to be exact.

Certain mathematicd datatypes having values which do na have finite representations are said to be approximate, in the fol-
lowing sense:

Let M be the mathematicd datatype and C be the corresponding computational datatype, and let P be the mapping from
the value spaceof M to the value spaceof C. Then for every value v' in C, there is a correspording value vin M and a red
value h such that P(x) =v' for al xin M suchthat |v- x|<h. Thatis, v' isthe gproximation in C to al valuesin M which are
"within distance h of value v'. Furthermore, for at least one value v' in C, there is more than one value y in M such that
P(y) =v'. Andthus Cisnot an exad model of M.

In this International Standard, all approximate datatypes have computational models which spedfy, via parametric values, a
degree of approximation, that is, they require a @rtain minimum set of values of the mathematicd datatype to be
distinguishable in the computational datatype.

NOTE — The coomputational model described above dl ows a mathematicall y dense datatype to be mapped to a datatype with fixed-length
representations and nanethelessevince intuitively acceptable mathematical behavior. When the real value h described abowve is constant over
the value space, the computational model is characterized as having "bounded absolute eror" and the result is a scaled datatype (8.1.9).
When h hastheform c « | v |, where c is constant over the value space, the computational model is characterized as having "bourded relative
error”, which isthe model used for the Real (8.1.10) and Complex (8.1.11) datatypes.

6.3.7 Numeric

A datatypeis sid to be numeric if its values are conceptually quantities (in some mathematica number system). A datatype
whose values do not have this property is said to be non-numeric.

NOTE — The significance of the numeric property isthat the representations of the values depend onsome radix, but can be algorithmicaly
transformed from one radix to ancther.

6.4 Primitive and non-primitive datatypes

In this International Standard, datatypes are categorized, for syntadic convenience, into:
* primitive datatypes, which are defined ab-initio-axiomaticdly without reference to ather datatypes, and
 generated datatypes, which are spedfied, and partly defined, in terms of other datatypes.

In addition, this International Standard identifies gructural and abstrad notions of datatypes. The structural notion of a
datatype charaderizes the datatype as either:

 conceptually atomic, having values which are intrinsicdly indivisible, or

« conceptually aggr egate, having values which can be seen as an arganizaion of spedfic component datatypes with
spedfic functionaliti es.

Aggregate datatypes may be:

¢ conceptually structured, having both degisnators (i.e., access methods) and datatypes known prior to use of the
aggregate datatype, or

» conceptually semi-structured, have either designators and datatypes known prior to use of the aggregate datatype, or

» conceptuall y unstructur ed, having neither designators and adatatypes known prior to use of the aggregate datatype.

NOTE — For semi-structured datatypes and unstructured datatypes, the designators (i.e., access methods) and datatypes may
be discovered via"introspedion".

All primitive datatypes are conceptually atomic, and therefore have, and are defined in terms of, well-defined abstrad notions.
Some generated datatypes are conceptually atomic but are dependent on spedficaions which involve other datatypes. These
too are defined in terms of their abstradt notions. Many other datatypes may represent objeds which are conceptualy atomic,
but are themselves conceptually aggregates, being organized colledions of accessble component values. For aggregate
datatypes, this International Standard defines a set of basic structural nations (see 6.8) which can be reaursively applied to
produce the value space of a given generated datatype. The only abstrad semantics assgned to such a datatype by this
International Standard are those which charaderizethe aggregate value structure itself.

NOTE — The astract notion of a datatype is the semantics of the values of the datatype itself, as oppased to its utili zation to represent
values of a particular information unit or a particular abstract objed. The ebdstract and structural notions provided by this International
Standard are sufficient to defineitsrole in the universe of discourse between two languages, but not to defineits role in the universe of
discourse between two programs. For example, Array datatypes are suppated as such by bah Fortran and Pascd, so that Array of Real has
sufficient semantics for procedure cdls between the two languages. By comparison, bath linea operators and lists of Cartesian pants may
be represented by Array of Real, and Array of Red isinsufficient to distinguish thase meanings in the programs.

6.5 Datatype generator

A datatype generator is a conceptual operation on one or more datatypes which yields a datatype. A datatype generator
operates on datatypes to generate adatatype, rather than on values to generate a value. Spedficdly, a datatype generator is the
combination of:

« a wlledion of criteriafor the number and charaderistics of the datatypes to be operated upon,

« a onstruction procedure which, given acolledion of datatypes meeing those criteria, creaes anew value spacefrom
the value spaces of those datatypes, and

« a olledion of charaderizing operations which attach to the resulting value space to compl ete the definition of a new
datatype.

The applicdion o a datatype generator to a spedfic olledion of datatypes meding the criteria for the datatype generator
forms a generated datatype. The generated dataype is metimes cdled the resulting datatype, and the colledion of
datatypes to which the datatype generator was applied are cdled its parametric datatypes.

6.6 Characterizing operations

The set of characterizing operations for a datatype comprises thase operations on, or yielding values of, the datatype that
distinguish this datatype from other datatypes having value spaces which are identicd except possbly for substitution of
symbols.

The set of characterizing operations for a datatype generator comprises thase operations on, or yielding values of, any

datatype resulting from an applicaion o the datatype generator that distinguish this datatype generator from other datatype
generators which produce identicd value spaces from identicd parametric datatypes.

10

NOTES

1. Characterizing operations are needed to distinguish datatypes whose value spaces differ only in what the values are called. For
example, the value spaces (one, two, three, four), (1, 2, 3, 4), and (red, yellow, green, blue) al have four distinct values and all the names
(symbols) are different. But one can claim that the first two support the characterizing operation Add, while the last does not:

Add(one, two) = three; and Add(1,2) = 3; but Add(red, yellow) # green.
It isthis characterizing operation (Add) which enables one to recognize that the first two datatypes are the same datatype, whilethelastisa
different datatype.

2. Thecharacterizing operations for an aggregate datatype are compositions of characterizing operations for its datatype generator with
characterizing operations for its component datatypes. Such operations are, of course, only sufficient to identify the datatype as a structure.

3. The characterizing operations on a datatype may be:
a) niladic operations which yield values of the given datatype,

b) monadic operations which map a value of the given datatype into a value of the given datatype or into a value of datatype
Boolean,

¢) dyadic operations which map a pair of values of the given datatype into avalue of the given datatype or into a value of datatype
Boolean,

d) n-adic operations which map ordered n-tuples of values, each of which is of a specified datatype, which may be the given datatype
or a parametric datatype, into values of the given datatype or a parametric datatype.

4. Ingeneral, thereisno unique collection of characterizing operations for agiven datatype. This International Standard specifies one col-
lection of characterizing operations for each datatype (or datatype generator) which is sufficient to distinguish the (resulting) datatype from
al other datatypes with value spaces of the same cardinality. While some effort has been made to minimize the collection of characterizing
operations for each datatype, no assertion is made that any of the specified collectionsis minimal.

5. Equality is always a characterizing operation on datatypes with the "equality" property.

6. InOrder is aways a characterizing operation on ordered datatypes (see 6.3.2).

6.7 Datatype families

If there is a one-to-one symbol substitution which maps the entire value space of one datatype (the domain) into a subset of the
value space of another datatype (the range) in such a way that the value relationships and characterizing operations of the
domain datatype are preserved in the corresponding value relationships and characterizing operations of the range datatype,
and if there are no additional characterizing operations on the range datatype, then the two datatypes are said to belong to the
same family of datatypes. An individual member of a family of datatypes is distinguished by the symbol set making up its
value space. InthisInternational Standard, the symbol set for an individual member of a datatype family is specified by one or
more values, called the parametric values of the datatype family.

6.8 Aggregate datatypes

An aggregate datatype is a generated datatype, each of whose values is, in principle, made up of values of the parametric
datatypes. The parametric datatypes of an aggregate datatype or its generator are also called component datatypes. An
aggregate datatype generator generates a datatype by

« applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space of the
aggregate datatype, and

 providing a set of characterizing operations specific to the generator.

Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of an aggregate value are
accessible through characterizing operations.

Aggregate datatypes of various kinds are distinguished one from another by properties which characterize relationships among
the component datatypes and relationships between each component and the aggregate value. This subclause defines those
properties.

The properties specific to an aggregate are independent of the properties of the component datatypes. (The fundamental prop-
erties of arrays, for example, do not depend on the nature of the elements.) In principle, any combination of the properties

11

spedfied in this subclause defines a particular form of aggregate datatype, athough most are only meaningful for
homogeneous aggregates (see6.8.1) and there are impli caions of some diredt accessmethods (see6.8.5).

6.8.1 Homogeneity

An aggregate datatype is homogeneous, if and only if all components must belong to a singe datatype. If different
components may belong to different datatypes, the aggregate datatype is sid to be heterogeneous. The mmponent datatype
of ahomogeneous aggregate is also cdled the element datatype.

NOTES

1. Homogeneous aggregates view all their elements as srving the same role or purpose. Heterogeneous aggregates divide their elements
into dfferent roles.

2. The aygregate datatype is homogeneous if its components all belong to the same datatype, even if the dement datatype isitself an heter-
ogeneous aggregate datatype. Consider the datatype label_list defined by:

type label = choice (state(name, handle)) of ((name): characterstring, (handle): integer);

type label_list = sequence of (label);

Formally, alabel_list value is a homogeneous sries of label values. One could arguethat it isreally a series of heterogeneous values,
because every label valueis of achoice datatype (see 8.3.1). Choiceis clealy heterogeneous because it is capable of introducing variation
in element type. But Sequence (see 8.4.4) is homogeneous because it itself introduces no variation in element type.

6.8.2 Size

The size of an aggregate-value is the number of component values it contains. The size of the aggregate datatype is fixed, if
and only if all valuesin its value spacecontain the same number of component values. Thesizeis variable, if different values
of the aggregate datatype may have different numbers of component values. Variability isthe more general case; fixed-sizeis
a onstraint.

6.8.3 Uniqueness

An aggregate-value has the uniqueness property if and anly if no value of the dement datatype occurs more than oncein the
aggregate-value. The aggregate datatype has the uniqueness property, if and orly if al valuesin its value space do.

6.8.4 Aggregate -imposed designator uniqueness

An aggregate-value has the designator uniqueness property if and ony if no designator (e.g., label, index) of the element
datatype occurs more than oncein the aggregate-value. The aggregate datatype has the designator uniquenessproperty, if and
only if al valuesin its value space do.

6.8.5 {Aggregate-imposedy ordering

An aggregate datatype has the ordering property, if and orly if thereisa canonicd first element of each nan-empty valuein its
value-spae. This ordering is (externaly) imposed by the aggregate value, as distinct from the value-space of the dement
datatype itself being (internally) ordered (see6.3.2). It is aso distinct from the value-spaceof the aggregate datatype being
ordered.

EXAMPLE — The type-generator sequence has the ordering property. The datatype characterstring is defined as

sequence of (character(repertoire)). The ordering property of sequence meansthat in every value of type characterstring, thereisa
first character value. For example, the first element value of the characterstring value “computation” is’c’. Thisis different from the
question o whether the dement datatype character(repertoire) is ordered: is’a <'c’'? It isaso different from the question of whether the
value space of datatype characterstring is ordered by some wllating-sequence, e.g. is “computation” < “ Computer”?

6.8.6 Access method

The access method for an aggregate datatype is the property which determines how component values can be extraded from a
given aggregate-value.

An aggregate datatype has a direct access method, if and only if there is an aggregate-imposed mapping between values of
one or more “index” (or “key”) datatypes and the component values of each aggregate value. Such amapping is required to be

12

single- valued, i.e. thereis at most one dement of ead aggregate value which corresponds to each (composite) value of the
index datatype(s). The dimension of an aggregate datatype is the number of index or key datatypes the aggregate has.

An aggregate datatype is said to be indexed, if and orly if it has a dired acessmethod, every index datatype is ordered, and
an element of the aggregate value is adually present and defined for every (composite) value in the value spaceof the index
datatype(s). Every indexed aggregate datatype has a fixed size, because of the 1-to-1 mapping from the index value space In
addition, an indexed datatype has a "partial ordering" in each dmension imposed by the order relationship on the index
datatype for that dimension; in particular, an aggregate datatype with a single ordered index datatype implicitly has the
ordering imposed by sequential indexing.

An aggregate datatype is sid to be keyed, if and only if it has a dired acess method, but either the index datatypes or the
mapping do not mee the requirements for indexed. That is, the “index” (or “key”) datatypes need not be ordered, and a value
of the aggregate datatype need na have dements corresponding to all of the key values.

An aggregate datatype is sid to have only indirect access methods if there is no aggregate-impaosed index mapping. Indirec
access may be by position (if the aggregate datatype has ordering), by value of the dement (if the aggregate datatype has
uniqueness), or by some implementation-dependent seledion mechanism, modell ed as random seledion.

NOTES

1. The acessmethods become characterizing operations on the aygregate types. It is preferable to define the types by their intrinsic prop-
erties and to see these accessproperties be derivable characterizing operations.

2. Sequence (see 8.4.4) is said to have indirect accessbecause the only way a given element value (or an element value satisfying some
given condtion) can be fourd isto traverse thelist in order until the desired element isthe “Head”. In general, therefore, one anna aaess
the desired element without first accessng al (undesired) elements appeaing ealier in the sequence. On the other hand, Array (see 8.4.5)
has direct accessbecaise the acces operation for a given element is“find the dement whose index isi” —the ith element can be accessed
without accessng any other element in the given Array. Of course, if the Array element which satisfies a conditi on not related to the index
value is wanted, accesswould be indirect.

6.8.7 Recursive structure

A datatype is sid to be recursive if avalue of the datatype can contain (or refer to) another value of the datatype. In this
International Standard , reaursivity is supported by the type-dedaration fadlity (see 9.1), and recursive datatypes can be
described using type-dedaration in combination with choice datatypes (8.3.1) or pointer datatypes (8.3.2). Thus recursive
structure is not considered to be a property of aggregate datatypes per se.

EXAMPLE — LISPhas svera "atomic" datatypes, collected under the generic datatype "atom", and a"list" datatype which is a sequence of
elements each of which can be an atom or alist. This datatype an be described using the Tree datatype generator defined in 10.2.2.

7 Elements of the Datatype Specification Language

This International Standard defines a datatype spedfication language, in arder to formali ze the identification and dedaration of
datatypes conforming to this International Standard. The language is a subset of the Interface Definition Notation defined in
I SO/IEC 13886:1996, Information technology — Programming languages — Language-independent procedure calli ng, which
iscompletely spedfied in Annex D. This clause defines the basic syntadic objeds used in that language.

7.1 IDN character-set

The foll owing productions define the charader-set of the datatype spedfication language, summarized in Table 7-1.

Table 7-1 — IDN Character Set

Syntax Characters
letter abcdefghijklmnopgrstuvwxyz
digit 01234567809

13

special () . , : ;
(parentheses) (full stop) (comma) (colon) (semicolon)

() / : " -

(curly brackets) (solidus) (asterisk) (circumflex) (equals sign)

underscore

(low line)
apostrophe
(apostrophe)
quote

(quotation mark)
escape !
(exclamation mark)
space

Ehyphen minus)
[]

(square brackets)

Ietter = Ilall | ||b|| | ||C|| | Ildll | Ilell | Ilfll | Ilgll | Ilhll | Ilill | Iljll | Ilkll | ||||| | ||m|| |

Ilnll | ||O|| | npn | nqn | Ilrll | ||S|| | ntn | u | ||V|| | IIWII | ||X|| | ||y|| | z
dlglt - IIOII | ||1|| | ||2|| | ||3|| | ||4|| | ||5|| | ||6|| | ||7|| | ||8|| | Ilgll .

special = (1YL LD LS T S LY T T

underscore
apostrophe
guote =

escape = "
space = .
non-quote-character = letter | digit | underscore | special | apostrophe | space .
bound-character = non-quote-character | quote .

added-character = not defined by this International Standard .

These productions are nominal. Lexical productions are always subject to minor changes from implementation to implementa-
tion, in order to handle the vagaries of available character-sets. The following rules, however, always apply:

1) The bound-characters, and the escape character, are required in any implementation to be associated with particular

members of the implementation character set.

2) The character space is required to be bound to the "space” member of ISO/IEC 10646-1:-39932000, but it only has

meaning within character-literals and string-literals.

3) A bound-character is required to be associated with the member having the corresponding symbol, if any, in any
implementation character-set derived from ISO/IEC 10646-1:39932000, except that no significance is attached to the

"case" of letters.

4) An added-character is any other member of the implementation character-set which is bound to the member having the

corresponding symbol in an ISO/IEC 10646-1 character-set.

7.2 Whitespace

A sequence of one or more space characters, except within a character-literal or string-literal (see 7.3), shall be considered
whitespace. Any use of this Internationa Standard may define any other characters or sequences of characters not in the above
character set to be whitespace as well, such as horizontal and vertical tabulators, end of line and end of page indicators, etc.

A comment is either of:

» Aany sequence of characters beginning with the sequence "/*" and terminating with the first occurrence thereafter of the

sequence "*/".

14

» Any sequence of characters beginning with the sequence "//" and terminating with the occurrence thereafter of a newline
character sequence.

Every character of a comment shall be considered whitespace.

With respect to interpretation of a syntactic object under this International Standard, any annotation (see 7.4) is considered
whitespace.

Any two lexical objects which occur consecutively may be separated by whitespace, without effect on the interpretation of the
syntactic construction. Whitespace shall not appear within lexical objects.

Any two consecutive keywords or identifiers, or a keyword preceded or followed by an identifier, shall be separated by
whitespace.

7.3 Lexical objects

The lexical objects are al termina symbols except those defined in 7.1, and the objects identifier, digit-string, character-
literal, string-literal.

7.3.1 Identifiers

An identifier is a terminal symbol used to name a datatype or datatype generator, a component of a generated datatype, or a
value of some datatype.

identifier = initial-letter-like { pseudo-letter-like } .

initial-letter-like = letter-like | special-like .

letter-like = letter | ISO/IEC-10176-extended-letter .
pseudo-letter-like = letter | digit | underscore .

digit-like = digit | ISO/IEC-10176-extended-digit .

special-like = underscore_| ISO/IEC-10176-extended-special .

Multiple identifiers with the same spelling are permitted, as long as the object to which the identifier refers can be determined
by the following rules:

1) Anidentifier X declared by atype-declaration or value-declaration shall not be declared in any other declaration.

2) Theidentifier X in a component of a type-specifier (Y) refers to that component of Y which Y declares X to identify, if
any, or whatever X refers to in the type-specifier which immediately contains Y, if any, or else the datatype or value
which X is declared to identify by a declaration.

7.3.2 Digit-string

A digit-string is a terminal-symbol consisting entirely of digits. It isused to designate a value of some datatype, with the inter-
pretation specified by that datatype definition.

digit-string = digit-like { digit-like } .

digit-like = digit | ISO/IEC-10176-extended-digit .

7.3.3 Character-literal and string-literal

A character-literal is a terminal-symbol delimited by apostrophe characters. It is used to designate a value of a character
datatype, as specified in 8.1.4.

character-literal = ™" any-character ™" .

15

any-character = bound-character | added-character | escape-character .
escape-character = escape character-name escape .

character-name = identifier { identifier } .

A string-literal is a terminal-symbol delimited by quote charaders. It is used to designate values of time datatypes (8.1.6),
bitstring datatypes (10.1.4), and charaderstring datatypes (10.1.5), with the interpretation spedfied for ead o those datatypes.
string-literal = quote { string-character } quote .

string-character = non-quote-character | added-character | escape-character .

Every charader appearing in a character-literal or string-literal shall be apart of the literal, even when that charader would
otherwise be whitespace

7.3.4 Keywords
The term keyword refers to any terminal symbol which also satisfies the production for identifier, i.e. is not composed of
spedal charaders. The keywords appeaing in Table 7-2 are “reserved-, in the sense that none of them shall be interpreted as

an identifier. All other keywords appeaing in this International Standard shall be interpreted as predefined identifiers for the
datatype or type-generator to which this International Standard defines them to refer.

Table 7-2 — Reserved Keywords

array choice default excluding from in inout
new of out plus pointer procedure raises
range record returns selecting size subtype table
termination to type value

NOTE — All of the above keywords are reserved becaise they introduce (or are part of) syntax which canna validly follow an identifier for
a datatype or type-generator. Most datatype identifiers defined in Clause 8 are syntactically equivalent to a type-reference (see8.5), except
for their appeaance in Clause 8.

7.4 Annotations

An annotation, or extension, is a syntadic objed defined by a standard or information processing entity which uses this
International Standard . All annotations dall have the form:

annotation = "[* annotation-label ":" annotation-text "]" .
annotation-label = objectidentifiercomponent-list .

annotation-text = not defined by this International Standard .

The annotation-label shall i dentify the standard or information processng entity which defines the meaning of the annotation-
text. The entity identified by the annotation-label shall also define the dlowable syntadic placament of a given type of
annotation and the syntadic objed(s), if any, to which the annotation applies. The objectidentifiercomponent-list shall have
the structure and meaning prescribed by clause 10.1.10.

NOTE — Of the several forms of objectidentifiercomponent-value specified in 10.1.10, the nameformis the most convenient for labelli ng
annatations. Following ISO/IEC 88241992002 every value of the objectidentifier datatype must have asits first comporent one of "iso",
"cdtt", or "joint-iso-ccitt”, but an implementation or use is permitted to specify an identifier which represents a sequence of comporent
values beginning with one of the abowe, as:

value rpc : objectidentifier = { iso(1) standard(0) 11578 };
and that identifier may then be used as the first (or only) comporent of an annotation-label, asin:

[rpc: discriminant = n].
(Thisexampleisfictitious. 1SO/IEC 11578:1995 des not define any annatations.)
Nonstandard annaations, defined by vendars or user organizations, for example, can acquire such labels through ae of the { iso member-
body<nation> ... } or { iso identified-organization <organizatiorn> ... } paths, using the appropriate national or international registration
authority.

16

7.5 Values

The identification of members of a datatype family, subtypes of a datatype, and the resulting datatypes of datatype generators
may require the syntactic designation of specific values of a datatype. For this reason, this International Standard provides a
notation for values of every datatype that is defined herein or can be defined using the features provided by Clause 10, except
for datatypes for which designation of specific valuesis not appropriate.
A value-expression designates a value of adatatype. Syntax:

value-expression = independent-value | dependent-value | formal-parametric-value .
An independent-value is a syntactic construction which resolves to a fixed value of some LI datatype. A dependent-value is a

syntactic construction which refers to the value possessed by another component of the same datatype. A formal-parametric-
value refers to the value of a formal-type-parameter in atype-declaration, as provided in 9.1.

7.5.1 Independent values

An independent-value designates a specific fixed value of adatatype. Syntax:
independent-value = explicit-value | value-reference .

explicit-value = boolean-literal | state-literal | enumerated-literal | character-literal
| ordinal-literal | time-literal | integer-literal | rational-literal
| scaled-literal | real-literal | complex-literal | void-literal
| extended-literal | pointer-literal | procedure-reference | string-literal
| bitstring-literal | objectidentifier-value | choice-value | record-value | class-value
| set-value | sequence-value | bag-value | array-value | table-value .

value-reference = value-identifier .

procedure-reference = procedure-identifier .

An explicit-value uses an explicit syntax for values of the datatype, as defined in Clause 8 and Clause 10. A value-reference
designates the value associated with the value-identifier by a value-declaration, as provided in 9.2. A procedure-reference
designates the value of a procedure datatype associated with a procedure-identifier, as described in 8.3.3.

NOTES

1. Two syntactically different explicit-values may designate the same value, such asrational-literals 3/4 and 6/8, or set of (integer)
values (1,3,4) and (4,3,1).

2. The same explicit-value syntax may designate values of two different datatypes, as 19940101 can be an Integer value, or an Ordinal
value. In general, the syntax requires that the intended datatype of a value-expression can be determined from context when the value-
expression is encountered.

3. The DN productions for value-reference and procedure-reference appearing in Annex D are more general. The above productions are
sufficient for the purposes of this International Standard.

7.5.2 Dependent values

When a parameterized datatype appears within a procedure parameter (see 8.3.3) or arecord datatype (see 8.4.1), it is possible
to specify that the parametric value is aways identical to the value of another parameter to the procedure or another component
within the record. Such avalueisreferred to as a dependent-value. Syntax:

dependent-value = primary-dependency { "." component-reference } .
primary-dependency = field-identifier | parameter-name .

component-reference = field-identifier | ™" .
A type-specifier x is said to involve a dependent-value if x contains the dependent-value and no component of x contains the
dependent-value. Thus, exactly one type-specifier involves a given dependent-value. A type-specifier which involves a

dependent- value is said to be a data-dependent type. Every data-dependent type shall be the datatype of a component of
some generated datatype.

17

The primary-dependency shall be the identifier of a (different) component of a procedure or record datatype which (also)
contains the data-dependent type. The component so identified will be referred to in the following as the primary
component; the generated datatype of which it is acomponent will be referred to as the subject datatype. That is, the subject
datatype shall have an immediate component to which the primary-dependency refers, and a different immediate component
which, at some level, contains the data-dependent type.

When the subject datatype is a procedure datatype, the primary-dependency shall be a parameter-name and shall identify a pa-
rameter of the subject datatype. If the direction of the parameter (component) which contains the data-dependent type is "in"
or "inout”, then the direction of the parameter designated by the primary-dependency shall also be "in" or "inout". If the
parameter which contains the data-dependent type is the return-parameter or has direction "out", then the primary-dependency
may designate any parameter in the parameter-list. If the parameter which contains the data-dependent type is a termination
parameter, then the primary-dependency shall designate another parameter in the same termination-parameter-list.

When the subject datatype is a record datatype, the primary-dependency shall be a field-identifier and shall identify a field of
the subject datatype.

When the dependent-value contains no component-references, it refers to the value of the primary component. Otherwise, the
primary component shall be considered the "0th component-reference”, and the following rules shall apply:

1) If the nth component-reference is the last component-reference of the dependent-value, the dependent-value shall refer to
the value to which the nth component-reference refers.

2) If the nth component-reference is not the last component-reference, then the datatype of the nth component-reference shall
be arecord datatype or a pointer datatype.

3) If the nth component-reference is not the last component-reference, and the datatype of the nth component-reference is a
record datatype, then the (n+1)th component-reference shall be a field-identifier which identifies a field of that record
datatype; and the (n+ 1)th component-reference shall refer to the value of that field of the value referred to by the nth com+
ponent-reference.

4) If the nth component-reference is not the last component-reference, and the datatype of the nth component-reference is a
pointer datatype, then the (n+ 1)th component-reference shall be "*"; and the (n+1)th component-reference shall refer to
the value resulting from Dereference applied to the value referred to by the nth component-reference.

NOTES

1. Thedatatype which involves a dependent-value must be a component of some generated datatype, but that generated datatype may itself
be a component of another generated datatype, and so on. The subject datatype may be several levels up this hierarchy.

2. The primary component, and thus the subject datatype, cannot be ambiguous, even when the primary-dependency identifier appears
more than once in such a hierarchy, according to the scope rules specified in 7.3.1.

3. Inthe same wise, an identifier which may be either avalue-identifier or a dependent-val ue can be resolved by application of the same
scoperules. If theidentifier X isfound to have a"declaration" anywhere within the outermost type-specifier which contains the reference to
X, then that declaration isused. If no such declaration is found, then a declaration of X ina"global" context, e.g. as avalue-identifier,

applies.

8 Datatypes

This clause defines the collection of LGP datatypes. A H-GP datatype is either:
 adatatype defined in this clause, or
 adatatype defined by a datatype declaration, as defined in 9.1.

Since this collection is unbounded, there are four formal methods used in the definition of the datatypes:

« explicit specification of primitive datatypes, which have universal well-defined abstract notions, each independent of
any other datatype.

« implicit specification of generated datatypes, which are syntactically and in some ways semantically dependent on
other datatypes used in their specification. Generated datatypes are specified implicitly by means of explicit
specification of datatype generators, which themselves embody independent abstract notions.

18

« gpecification of the means of datatype declar ation, which permits the association of additional identifiers and refine-
ments to primitive and generated datatypes and to datatype generators.

« gpecification of the means of defining subtypes of the datatypes defined by any of the foregoing methods.

A reference to a H-GP datatype is a type-specifier, with the following syntax:

type-specifier = primitive-type | subtype | generated-type | type-reference | formal-parametric-type .
A type-specifier shall not be a formal-parametric-type, except in some cases in type-declarations, as provided by clause 9.1.3.

This clause also provides syntax for the identification of values of LI datatypes. Notations for values of datatypes are required
in the syntactic designations for subtypes and for some primitive datatypes.

NOTES

1. For convenience, or correctness, some datatypes and characterizing operations are defined in terms of other H-GP datatypes. The use
of at+GP datatype defined in this clause aways refers to the datatype so defined.

2. Thenames used in this International Standard to identify the datatypes are derived in many cases from common programming language
usage, but nevertheless do not necessarily correspond to the names of equivalent datatypes in actual languages. The same appliesto the
names and symbols for the operations associated with the datatypes, and to the syntax for values of the datatypes.

8.2 Primitive datatypes
A datatype whose value space is defined either axiomatically or by enumeration is said to be a primitive datatype. All
primitive +-GP datatypes shall be defined by this International Standard.

primitive-type = boolean-type | state-type | enumerated-type | character-type
| ordinal-type | time-type | integer-type | rational-type
| scaled-type | real-type | complex-type | void-type .

Each primitive datatype, or datatype family, is defined by a separate subclause. The title of each such subclause gives the
informal name for the datatype, and the datatype is defined by a single occurrence of the following template:

Description: prose description of the conceptual datatype.

Syntax: the syntactic productions for the type-specifier for the datatype.

Parametric values: identification of any parametric values which are necessary for the complete identification of a
distinct member of adatatype family.

Values: enumerated or axiomatic definition of the value space.

Vaue-syntax: the syntactic productions for denotation of avalue of the datatype, and the identification of the value
denoted.

Properties: properties of the datatype which indicate its admissibility as a component datatype of certain datatype
generators: numeric or non-numeric, approximate or exact, unordered or ordered and, if ordered,
bounded or unbounded.

Operations: definitions of characterizing operations.

The definition of an operation herein has one of the forms:
operation-name (parameters) : result-datatype = formal-definition; or

operation-name (parameters) : result-datatype is prose-definition.

In either case, "parameters’ may be empty, or be a list, separated by commas, of one or more formal parameters of the
operation in the form:

parameter-name : parameter-datatype, or

parameter-name, , parameter-name, : parameter-datatype.

19

The operation-name is an identifier unique only within the datatype being defined. The parameter-names are formal
identifiers appeaing in the formal- or prose-definition. Each is understood to represent an arbitrary value of the datatype
designated by parameter-datatype, and all occurrences of the formal identifier represent the same value in any appli cation of
the operation. The result-datatype indicaes the datatype of the value resulting from an applicdion of the operation. A formal-
definition defines the operation in terms of other operations and constants. A prose-definition defines the operation in
somewhat formalized natural language. When there are constraints on the parameter values, they are expressed by a phrase
beginning "where" immediately before the = or is.

In some operation definitions, charaderizing operations of a previously defined datatype ae referenced with the form:
datatype.operation(parameters), where datatype is the type-specifier for the referenced datatype and operation is the name of a
charaderizing operation defined for that datatype.

8.2.1 Boolean

Description: Boolean is the mathematicd datatype associated with two-valued logic.
Syntax:
boolean-type = "boolean" .
Parametric Values: none.
Vaues: "true", "false", such that true # false.
Vaue-syntax:
boolean-literal = "true" | "false" .
Properties: unordered, exad, non-numeric.
Operations. Equal, Not, And, Or.

Equal(x, y: boolean): boolean is defined by tabulation:
X y Equal(x,y)
true true true
true fase false
fase true false
fase fase true

Not(x: bodlean): boolean is defined by tabulation:

X Not(x)
true false
false true

Or(x,y: boolean): boolean is defined by tabulation:
X y Or(x,y)
true true true
true fase true
fase true true
fase fase false

And(x, y: boolean): boolean = Not(Or(Not(x), Not(y))).

NOTE — Either And a Or is sufficient to charaderizethe bodean datatype, and given ane, the other can be defined in terms of it. They are
both defined here because baoth of them are used in the definiti ons of operations on aher datatypes.

8.2.2 State

Description: Stateis afamily of datatypes, each of which comprises afinite number of distinguished but unordered values.

Syntax:

state-type = "state" "(" state-value-list ")" .

state-value = state-value-list | state-value-source .

state-value-list = state-literal { "," state-literal } .

20

state-literal = identifier .

value-domain-source = "import" list-source-reference .

list-source-reference = identifier | " URI-text ™" .

Parametric Values: Each state-literal identifier shall be distinct from all other state-literal identifiers of the same state-type.

Vaues: Thevalue spaceof a state datatype is the set comprising exadly the named values in the state-value-list, ead of
which is designated by a unique state-literal.

Vaue-syntax:

state-literal = identifier .

A state-literal denotes that value of the state datatype which has the same identifier.
Properties: unordered, exad, non-numeric.
Operations. Equal.

Equal(x, y: state(state-value-list)): boolean istrueif x and y designate the same value in the state-value-list,
and false otherwise.

NOTE — Other uses of the IDN syntax make stronger requirements on the uniquenessof state-literal identifiers.

EXAMPLE — The declaration:
type switch = new state (on, off);

defines a state datatype aomprising two dstinguished but unardered values, which suppats the characterizing operation:
Invert(x: switch): switch isif x = off then on, else off.

8.2.3 Enumerated

Description: Enumerated is afamily of datatypes, each of which comprises afinite number of distinguished values having an
intrinsic order.

Syntax:

enumerated-type = "enumerated" "(" enumerated-value-tist ")" .

enumerated-value = enumerated-value-list |

enumerated-value-list = enumerated-literal { "," enumerated-literal } .
enumerated-literal = identifier .

Parametric Values. Each enumerated-literal identifier shall be distinct from all other enumerated-literal identifiers of the same
enumerated-type.

Vaues: The value spaceof an enumerated datatype is the set comprising exadly the named values in the enumer ated-value-
list, eath of which is designated by a unique enumerated-literal. The order of these valuesis given by the sequence of
their occurrencein the enumerated-value-list, designated the naming sequence.

Vaue-syntax:

enumerated-literal = identifier .

An enumerated-literal denotes that value of the enumerated datatype which has the same identifier.
Properties: ordered, exad, non-numeric, bounded.
Operations. Equal, InOrder, Successor

Equal(x, y: enumerated(enum-value-list)): booleanistrueif x and y designate the same value in the enum-value-list, and
false otherwise.

InOrder(x, y: enumerated(enum-value-list)): boolean, denoted x <y, istrueif x =y or if x precedesy in the naming
sequence, else false.

Successor(x: enumerated(enum-value-list)): enumerated(enum-value-list) is
if for al y: enumerated(enum-value-list), x <y implies x =y, then urdefined;
else the value y: enumerated(enum-value-list), such that x <y andfor all z# X, x<zimpliesy <z.

21

NOTE — Other uses of the IDN syntax make stronger requirements on the uniquenessof enumerated-literal identifiers.
8.2.4 Character

Description: Charader is afamily of datatypes whose value spaces are charader-sets.

Syntax:

character-type = "character" ["(" repertoire-list)"] .

repertoire-list = repertoire-identifier { "," repertoire-identifier } .
repertoire-identifier = value-expression .

Parametric Values: The value-expression for arepertoire-identifier shall designate avalue of the objedidentifier datatype (see
10.1.10), and that value shall refer to acharader-set. A repertoire-identifier shall not be a formal-parametric-value,
except in some caesin dedarations (see9.1). All repertoire-identifiersin a given repertoire-list shall designate subsets
of the same reference charader-set. When repertoire-list is not spedfied, it shall have adefault value. The means for
spedfication of the default is outside the scope of this International Standard.

Vadues: The value spaceof a charader datatype comprises exadly the members of the charader-sets identified by the
repertoire- list. In cases where the charader-setsidentified by the individual repertoire-identifiers have membersin
common, the value spaae of the charader datatype isthe (set) union of the charader-sets (without duplication).

Vaue-syntax:
character-literal = ™" any-character ™" .
any-character = bound-character | added-character | escape-character .
bound-character = non-quote-character | quote .
non-quote-character = letter | digit | underscore | special | apostrophe | space .
added-character = not defined by this International Standard .
escape-character = escape character-name escape .
character-name = identifier { "" identifier } .

Every character-literal denotes a single member of the charader-set identified by repertoire-list. A bound-character de-
notes that member which is associated with the symbol for the bound-character per 7.1. An added-character denctes that
member which is associated with the symbol for the added-character by the implementation, as provided in 7.1. An
escape- character denotes that member whose "charader name" in the (reference) charader-set identified by repertoire-
list isthe same & character-name.

Properties: unordered, exad, non-numeric.
Operations; Equal.

Equal(x, y: charader(repertoire-list)): boolean istrueif x and y designate the same member of the charader-set given by
repertoire-list, and false otherwise.

NOTES

1. The Character datatypes are distinct from the State datatypes in that the values of the datatype ae defined by other standards rather than
by this International Standard or by the application. Thisdistinction is smanticaly unimportant, but it is of grea significancein any use of
these standards.

2. The standardization d repertoire-identifier values will be necessary for any use of this International Standard and will of necessty
extend to charader sets which are defined by other than international standards. Such standardization is beyondthe scope of this
International Standard . A partial li st of the international standards defining such character-setsisincluded, for informative purpases only, in
Annex A.

3. Whilean order relationship isimportant in many applications of character datatypes, there is no standard order for any of the
International Standard charader sets, and many applications require the order relationship to conform to rules which are particular to the
application itself or its language environment. There will also be applications in which the order is unimportant. Since no standard order of
character-sets can be defined by this International Standard, character datatypes are said to be "unardered”, meaning, in this case, that the
order relationship is an application-defined additi on to the semantics of the datatype.

22

4. Theterms character-set, member, symbol and character-name are those of 1 SO/IEC 106461:399300Q but there shoud be analogous
nationsin any charader set referenceable by arepertoire-identifier.

5. Thevalue space of a Charader datatype isthe character set, nat the character codes, as those terms are defined by 1SO/IEC 10646
1:499200Q Theencoding of a character set is a representation issue and therefore out of the scope of this International Standard. Many
uses of thisInternational Standard , however, may require the association to codes implied by the repertoire-identifier.

6. An occurrence of three mnseautive APOSTROPHE charaders (") isavalid character-literal denoting the APOSTROPHE character.

EXAMPLE — character({ iso standard 8859 part 1 }) denctes a charader datatype whase values are the members of the character-set
spedfied by 1ISO 88591 (Latin aphabet No. 1). It ispossbleto give this datatype aconvenient name, by means of atype-declaration (see
9.1), eg.

e type Latinl = character({ iso standard 8859 1});
or by means of avalue-declaration (see 9.2):

value latin : objectidentifier = { iso(1) standard(0) 8859 part(1) };.

Now, the COLON mark (:) isamember of the SO 88591 charader set and therefore a value of datatype Latinl, or equivalently, of datatype
character(latin). Thus, "’ and'lcolon!’, among others, are valid character-literals denoting that value.

8.2.5 Ordinal

Description: Ordinal isthe datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype I nteger).
Ordinal isthe infinite enumerated datatype.

Syntax:
ordinal-type = "ordinal" .
Parametric Values: none.
Values: the mathematicd ordinal numbers: "first", "second", "third", etc., (a denumerably infinite li st).
Vaue-syntax:
ordinal-literal = number .
number = digit-string .

An ordinal-literal denctes that ordinal value which corresponds to the cardinal number identified by the digit-string, inter-
preted asadedmal number. An ordinal-literal shall not be zero.

Properties. ordered, exad, non-numeric, unbounded above, bounded below.

Operations. Equal, InOrder, Successor
Equal(x, y: ordinal): boolean istrueif x and y designate the same ordinal number, and fal se otherwise.
InOrder(x,y: ordina): boolean, denoted x<vy, istrueif x =y or if X precedesy in the ordinal numbers, else false.
Successor(x: ordinal): ordinal isthe valuey: ordinal, such that x <y and for al z# x, x < zimpliesy < z.

8.2.6 Date-and-Time

Description: Date-and-Timeis afamily of datatypes whose values are pointsin time to various common resolutions: year,
month, day, hour, minute, second, and fradions thereof.

Syntax:
time-type = "time" "(" time-unit ["," radix "," factor 1")" .
time-unit = "year" | "month" | "day" | "hour" | "minute" | "second" | formal-parametric-value .
radix = value-expression .
factor = value-expression .

Parametric Vaues: Time-unit shall be avalue of the datatype state(year, month, day, hour, minute, second), designating
the unit to which the paint in timeisresolved. If radix and factor are omitted, the resolution is to one of the spedfied
time-unit. If present, radix shall have an integer value greaer than 1, and factor shall have an integer value. When radix
and factor are present, the resolution isto one radix™*** of the spedfied time-unit. Time-unit, and radix and factor if

present, shall not be formal-parametric-values except in some occurrences in dedarations (see 9.1).

23

Vaues: Thevalue-spaceof a date-and-time datatype is the denumerably infinite set of all possble pointsin time with the reso-
lution (time-unit, radix, factor).

Vaue-syntax:
time-literal = string-literal .

A time-literal denotes adate-and-time value. The charaderstring value represented by the string-literal shall conform to
1SO 8601:19832000, Representation of dates and times. The time-literal denotes the date-and-time value spedfied by the
charaderstring as interpreted under 1SO 8601:49882000.

Properties: ordered, exad, non-numeric, unbounded.
Operations. Equal, InOrder, Difference, Round, Extend.

Equal(x, y: time(time-unit, radix, factor)): boolean istrueif x and y designate the same point in time to the resolution
(time- unit, radix, factor), and false otherwise.

InOrder(x, y: time(time-unit, radix, factor)): boolean istrueif the paint in time designated by x precedes that designated
by y; elsefalse.

Difference(x, y: time(time-unit, radix, factor)): timeinterval (time-unit, radix, factor) is:
if InOrder(x,y), then the number of time-units of the spedfied resolution elapsing between the time x and the time y;
else, let z be the number of time-units elapsing between the time y and the time x, then Negate(z).

Extend.resltores2(x: time(unitl, radix1, factorl)): time(unit2, radix2, factor2), where the resolution (res2) spedfied by
(unit2, radix2, factor?2) is more predse than the resolution (resl) specified by (unitl, radix1, factorl), is that value of
time(unit2, radix2, factor2) which designates the first instant of time occurring within the span o time(unit2, radix2,
factor2) identified by the instant x.

Round.resltores2(x: time(unitl, radix1, factor1)): time(unit2, radix2, factor2), where the resolution (res?) spedfied by
(unit2, radix2, factor?2) islesspredse than the resolution (resl) specified by (unitl, radixd, factorl), isthe largest
valuey of time(unit2, radix2, factor2) such that InOrder(Extend.res2toresl(y), X).

NOTE — The operations yiel ding specific time-unit elements from a time(unit, radix, factor) value, e.g. Yea, Month, DayofY ear, Dayof-
Month, TimeofDay, Hour, Minute, Seaond, can be derived from Round, Extend, and Difference.

EXAMPLE — time(second, 10, 0) designates a date-and-time datatype whose values are points in time with accuracy to the second
"19910401T120000" spedfies the value of that datatype which is exactly noan on April 1, 1991, universal time.

8.2.7 Integer

Description: Integer is the mathematica datatype comprising the exad integral values.
Syntax:

integer-type = "integer" .
Parametric Values: none.

Vdues. Mathematicdly, the infinite ring produced from the additi ve identity (0) and the multi pli cative identity (1) by
requiring 0< 1 and Add(x,1) zy foranyy<x. Thatis: ..., -2,-1,0, 1, 2, ... (adenumerably infinite list).

Vaue-syntax:
integer-literal = signed-number .
signed-number = ["-"] number .
number = digit-string .

An integer-literal denotes an integer value. If the negative-sign ("-") is not present, the value denoted is that of the digit-
string interpreted as a dedmal number. If the negative-signis present, the value denoted is the negative of that value.

Properties: ordered, exad, numeric, unbourded.
Operations. Equal, InOrder, NonNegative, Negate, Add, Multiply.
Equal(x, y: integer): bodean istrueif x and y designate the same integer value, and fal se otherwise.

Add(x,y: integer): integer isthe mathematicd additi ve operation.

24

Multiply(x, y: integer): integer isthe mathematical multiplicative operation.
Negate(x: integer): integer isthe valuey: integer such that Add(x, y) = 0.

NonNegative(x: integer): boolean is
trueif x = 0 or x can be developed by one or more iterations of adding 1,
i.e.if x=Add(1, Add(1, ... Add(1, Add(1,0)) ...));
elsefase.

InOrder(x,y: integer): boolean = NonNegative(Add(x, Negate(y))).

The following operations are defined solely in order to facilitate other datatype definitions:
Quotient(x, y: integer): integer, where 0 <y, is the upperbound of the set of all integers z such that Multiply(y,z) < x.
Remainder(x, y: integer): integer, where 0 < x and 0 <y, = Add(x, Negate(Multiply(y, Quotient(x,y))));

431:88.2.8 Rational

Description: Rational isthe mathematical datatype comprising the "rational numbers".
Syntax:
rational-type = "rational" .
Parametric Values: none.
Values: Mathematically, theinfinite field produced by closing the Integer ring under multiplicative-inverse.
Vaue-syntax:
rational-literal = signed-number ["/" number] .

Sgned-number and number shall denote the corresponding integer values. Number shall not designate thevalue 0. The
rational value denoted by the form signed-number is:

Promote(signed-number),
and the rational value denoted by the form signed-number/number is:

Multiply(Promote(signed-number), Reciprocal (Promote(number))).

Properties: ordered, exact, numeric, unbounded.

Operations. Equal, NonNegative, InOrder, Negate, Add, Multiply, Reciprocal, Promote.
Equal(x, y: rational): boolean istrueif x and y designate the same rational number, and false otherwise.
Promote(x: integer): rationa is the embedding isomorphism between the integers and the integral rational values.
Add(x,y: rationd): rational isthe mathematical additive operation.
Multiply(x, y: rational): rational is the mathematical multiplicative operation.
Negate(x: rational): rational isthe valuey: rational such that Add(x, y) = 0.
Reciprocal (x: rational): rational, where x # 0, isthe valuey: rational such that Multiply(x, y) = 1.

NonNegative(k: rational): boolean is defined by:
For every rational value k, there is a non-negative integer n, such that Multiply(n,k) is an integral value, and:
NonNegative(k) = integer.NonNegative(Multiply(n,k)).

InOrder(x,y: rational): boolean = NonNegative(Add(x, Negate(y)))
+1+:98.2.9 Scaled

Description: Scaled is afamily of datatypes whose value spaces are subsets of the rational value space, each individual
datatype having afixed denominator, but the scaled datatypes possess the concept of approximate value.

Syntax:

scaled-type = "scaled" "(" radix "," factor ")" .

radix = value-expression .

25

factor = value-expression .

Parametric Vaues. Radix shall have an integer value greaer than 1, and factor shall have an integer value. Radix and factor
shall not be formal-parametric-values except in some occurrences in dedarations (see9.1).

Vaues: Thevalue spaceof ascded datatypeisthat set of values of the rational datatype which are expressble a avalue of
datatype Integer divided by radix raised to the power factor.

Vaue-syntax:
scaled-literal = integer-literal ["*" scale-factor | .
scale-factor = number "' signed-number .

A scaled-literal denotes avalue of ascded datatype. Theinteger-literal isinterpreted as a dedmal integer value, and the
scale-factor, if present, isinterpreted as number raised to the power signed-number, where number and signed-number are
expressd as dedmal integers. Number should be the same as the radix of the datatype. If the scale-factor is not present,
the value isthat denoted by integer-literal. If the scale-factor is present, the value denoted isthe rational value

Multi ply(integer-literal, scale-factor).

Properties: ordered, exad, numeric, unbourded.
Operations. Equal, InOrder, Negate, Add, Round, Multiply, Divide
Equal(x, y: scded(r,f)): booleanistrueif x and y designate the same rational number, and false otherwise.
InOrder(x,y: scded (r,f)): boolean = rational .InOrder(x,y)
Negate(x: scaed (r,f)): scded (r,f) = rational.Negate(x)
Add(x,y: scded (r,f)): scded (r,f) = rational . Add(x,y)

Round(x: rational): scded(r,f) isthe valuey: scded(r,f) such that rational.InOrder(y, x) and for al z: scded(r,f),
rational .InOrder(z,x) implies rational.InOrder(z,y).

Multiply(x,y: scded(r,f)): scded(r,f) = Round(rationa .Multi ply(x,y))
Divide(x,y: scded(r,f)): scded(r,f) = Round(rational.Multi ply(x, Redprocd(y)))

EXAMPLES

1. A datatype representing monetary values exad to two decimal places can be defined by:

type currency = new scaled(10, 2);
where the keyword "new" is used because currency does not suppat the Multi ply and Divide operations characterizing scaled(10,2).

2. Thevalue 39.50 (or 39,50), i.e.thirty-nine and fifty one-hundedths, is represented by: 3950 * 10 ~ -2, whil e the value 10.00 (or 10,00)
may be represented by: 10.

NOTES

1. The caefactor =0, i.e. scaled(r, 0) for any r, has the same value-space as Integer, andisisomorphic to Integer uncer al operations
except Divide, which is not defined on Integer in this International Standard, but could be defined consistent with the Divide operation for
scaled(r, 0). It isrecommended that the datatype scaled(r, 0) not be used explicitly.

2. Anyreasonable rounding algorithm is equally acceptable. What is required isthat any rational value v which is not avalue of the scaled
datatype is mapped into one of the two scaed values ner®™ and (n+1)er”, such that in the Rational value space, ner'” <v < (n+1)er™ .

3. The proper definition of scaled arithmetic is complicated by the fact that scded datatypes with the same radix can be cmbined
arbitrarily in an arithmetic expresson and the arithmetic is eff ectively Rational until afinal result must be produced. At this paint, roundng
to the proper scale for the result operand occurs. Consequently, the given definiti on of arithmetic, for operands with a common scale factor,
shoud na be mnsidered a specification for arithmetic on the scded datatype.

4. Thevaluesin any scaled value space ae taken from the value space of the Rational datatype, and for that reason Scaled may appear to
be a"subtype" of both Rational and Red (see 8.2). But scaled datatypes do rot "inherit" the Rational or Real Multiply and Reciprocal opera-
tions. Therefore scaled datatypes are nat proper subtypes of datatype Real or Rational. The cncept of Round and special Multiply and
Divide operations, charaderizethe scded datatypes. Unlike Rational, Red and Complex, however, Scaled is not a mathematical group
uncer this definition of Multiply, athough the results are intuitively acceptable.

5. Thevalue space of a scded datatype contains the multiplicaive identity (1) if and ony if factor < 0.

26

6. Every scaled datatype is exad, because every valuein its value space can be distinguished in the computational model. (The value
space ca be mapped 1-to-1 orto the integers.) It isonly the operations on scded datatypes which are gpproximate.

7. Scaled-literals are interpreted as dedmal values regardlessof the radix of the scaled datatype to which they belong It was not fourd
necessry for this International Standard to provide for representation of valuesin other radices, particularly since representation of valuesin
radices greater than 10introduces additional syntactic complexity.

8.2.10 Real

Description: Red isafamily of datatypes which are computational approximations to the mathematicd datatype comprising
the "red numbers'. Spedficdly, eat red datatype designates a coll edion of mathematicd red values which are known
to certain appli caions to some finite predsion and must be distinguishable to at least that predsion in those applicétions.

Syntax:
real-type ="real" ["(" radix "," factor ")"] .
radix = value-expression .
factor = value-expression .

Parametric Vaues: Radix shall have an integer value greaer than 1, and factor shall have an integer value. Radix and factor
shall not be formal-parametric-values except in some occurrencesin dedarations (see9.1). When radix and factor are
not spedfied, they shall have default values. The means for spedficdion o these defaults is outside the scope of this
International Standard .

Vaues: The value spaceof the mathematicd red type comprises all values which are the limits of convergent sequences of ra-
tional numbers. The value spaceof a computational red datatype shall be a subset of the mathematicd red type,
charaderized by two parametric values, radix and factor, which, taken together, describe the precision to which values of
the datatype are distinguishable, in the foll owing sense:

Let O denote the mathematicd red value spaceand for vin [, let | v | denote the absolute value of v. Let V denote the
value space of datatype red(radix, factor), and let £ = radix™*. Then V shall be asubset of O with the foll owing
properties:

—0isinV,

—foreachrinOsuchthat |r | = €, thereexistsat least onerinVsuchthat [r-r|<|r|e¢€;

—foreachrin 0 suchthat | r | <€, there exists at least oner inV such that | r - r | < €%,

Vaue-syntax:
real-literal = integer-literal ["*" scale-factor] .
scale-factor = number "' signed-number .

A real-literal denotes avalue of ared datatype. The integer-literal isinterpreted as adedmal integer value, and the
scale- factor, if present, isinterpreted as number raised to the power signed-number, where number and signed-number
are expressed as dedmal integers. If the scale-factor isnot present, the value is that denoted by integer-literal. If the
scale-factor is present, the value denoted is the rational value Multi ply(integer-literal, scale-factor).

Properties: ordered, approximate, numeric, unbaunded.
Operations. Equal, InOrder, Promote, Negate, Add, Multiply, Redprocd.

In the following operation definitions, let M designate an approximation function which mapseadir in O into a
corresponding r in V with the properties given above and the further requirement that for eacivin V, M(v) = v.

Equal(x, y: red(radix, factor)): boolean istrue if x and y designate the same value, and false otherwise.

InOrder(x,y: red(radix, factor)): boolean istrue if x <y, where < designates the order relationship on 0, and false
otherwise.

Promote(x: rational): red(radix, factor) = M(x).

Add(x,y: red(radix, factor)): red(radix, factor) = M(x +y), where + designates the additi ve operation onthe
mathematicd reds.

Multiply(x, y: red(radix, factor)): red(radix, factor) = M(x * y), where « designates the multi pli cative operation on the
mathematicd reds.

27

Negate(x: red(radix, factor)): red(radix, factor) = M(-x), where -x isthe red additive inverse of x.

Redprocd(x: red(radix, factor)): red(radx, factor), where x # 0, = M(x’) where x’ isthered multiplicative inverse of x.
NOTES

1. ThelLl datatype Real isnot the abstract mathematical real datatype, nor isit an abstraction of floating-point implementations. Itisa
computational model of the mathematicd reals which is similar to the "scientific number" model used in many sciences. Detail s of the
relationship o area datatype to floating-point implementations may be spedfied by the use of annaations (see7.4). For languages whose
semantics in some way asaumes a floating-paint representation, the use of such annaations in the datatype mappings may be necessary. On
the other hand, for some gplications, the representation o areal datatype may be something other than floating-point, which the gplicaion
would spedfy by diff erent anndations.

2. Detailed requirements for the approximation function, its relationship to the charaderizing goerations, and the implementation o the
characterizing operationsin languages are provided by ISO/IEC 109671:19%, Information technology — Programming languages, their
envrionements and system software interfaces — Language-Independent arithmetic — Part 1. Integer andreal arithmetic. 1EC 5591983

Floating-Point Arithmetic for Microprocessors gedfies the requirements for floating-point implementations thereof.

EXAMPLES

real(10, 7) denates ared datatype with values which are accurate to 7 significant decimal figures.
real(2, 48) denates ared datatype whaose values have at least 48 bits of precision.

1* 10”9 denctesthevalue 1 000 000 0@, i.e. 10raised to the ninth pawver.

15 * 10 ” -4 denotes the value 0,0015, i.e. fifteen ten-thousandths.

3 *2 " -1 denatesthevaue 1.5, i.e. 3/2.

8.2.11 Complex

Description: Complex isafamily of datatypes, each of which isacomputationa approximation to the mathematicd datatype
comprising the "complex numbers'. Spedficdly, each complex datatype designates a wlledion of mathematica
complex values which are known to certain appli caions to some finite predsion and must be distinguishable to at least
that predsion in those applicaions.

Syntax:
complex-type = "complex" ["(" radix "," factor ")"] .
radix = value-expression .
factor = value-expression .

Parametric Values: Radix shall have an integer value greder than 1, and factor shall have an integer value. Radix and factor
shall not be formal-parametric-values except in some occurrencesin dedarations (see9.1). When radix and factor are
not spedfied, they shall have default values. The means for spedficdaion of these defaults is outside the scope of this
International Standard .

Values: The value spaceof the mathematica complex typeisthe field which is the solution space of all polynomial equations
having red coefficients. The value spaae of a computational complex datatype shall be asubset of the mathematicd
complex type, charaderized by two parametric values, radix and factor, which, taken together, describe the predsion to
which values of the datatype ae distinguishable, in the foll owing sense:

Let C denote the mathematica complex value spaceand for vin C, let | v | denote the absolute value of v. Let V denote
the value spaceof datatype complex(radix, factor), and let € = radix™. Then V shall be a subset of C with the foll owing
properties:
—0isinV,
—for eachvin C such that | v| = €, there exists at least onev inVsuchthat [v-v [<|v]e€;
—foreahvin Csuchthat | v| <, there exists at least one v in V such that | v - v | < €%,
Vaue-syntax:
complex-literal = "(" real-part "," imaginary-part ")" .
real-part = real-literal .

imaginary-part = real-literal .

28

A complexliteral denotes avalue of acomplex datatype. The real-part and the imaginary-part are interpreted asred val-
ues, and the complex value denoted is: M(real-part + (imaginary-part « i)), where + is the additi ve operation on the math-
ematica complex numbers and « is the multi pli caive operation on the mathematica complex numbers, andi isthe
"principal square root" of -1 (one of the two solutionsto X + 1 = 0).

Properties: approximate, numeric, unordered.
Operations. Equal, Promote, Negate, Add, Multiply, Redprocd, SquareRoat.

In the following operation definitions, let M designate an approximation function which mapseadivin Cinto a
corresponding v in V with the properties given above and the further requirement that for eadvin Vv, M(v) = v.

Equal(x, y: complex(radix, factor)): boolean istrue if x and y designate the same value, and false otherwise.
Promote(x: red(radix, factor)): complex(radix, factor) = M(x), considering x as a mathematicd red value.

Add(x,y: complex(radix, factor)): complex(radix, factor) = M(x + y), where + designates the additi ve operation on the
mathematica complex numbers.

Multiply(x, y: complex(radix, factor)): complex(radix, factor) = M(x * y), where « designates the multi pli cative operation
on the mathematicd complex numbers.

Negate(x: complex(radix, factor)): complex(radix, factor) = M(-x), where -x is the complex additive inverse of x.

Redprocd(x: complex(radix, factor)): complex(radix, factor), where x # 0, = M(x’) where X’ is the complex
multi pli cative inverse of x.

SquareRoot(x: complex(radix, factor)): complex(radix, factor) = M(y), wherey is one of the two mathematica complex
valuessuch thaty « y = x. Every complex number can be uniquely represented in theform a+ b« i, wherei isthe
"principal square root" of -1, in which ais designated the real part and bis designated the imaginary part. They
value used isthat in which thered part of y is positive, if any, else that in which thered part of y is zero and the
imaginary part is non-negative.

NOTE — Detailed requirements for the approximation function, its relationship to the charaderizing qerations, and the implementation of
the dcharacterizing qperations in languages are to be provided by (future) Parts of |SO/IEC 10967 Language-lndependent Arithmetic.

8.2.12 Void

Description: Void is the datatype representing an oljed whose presence is /ntadicdly or semanticdly required, but caries
no information in agiven instance

Syntax:
void-type = "void" .
Parametric Values: none.

Vaues: Conceptualy, the value space of the void datatype is empty, but asingle nominal value is necessary to perform the
"presencerequired” function.

Vaue-syntax:

void-literal = "nil
"nil" isthe syntadic representation d an occurrence of void as avalue.
Properties: none.
Operations. Equal.
Equal(x, y: void) = true;
NOTES

1. Thevoid datatypeisused asthe implicit type of the result parameter of a procedure datatype (8.3.3) which returns no value, or asan a-
ternative of a choice datatype (8.3.1) when that alternative has no content.

2. Thevoid datatype is represented in some languages as a record datatype (see 8.4.1) which hasnofields. In thisInternational Standard,
the void datatypeis not arecord datatype, because it has none of the properties or operations of arecord datatype.

29

3. Likethe motivation for the void datatype itself, Equal isrequired in order to support the comparison of aggregate values containing void
and it must yield "true”.

4. The"empty set" isnot avalue of datatype Void, but rather a value of the appropriate set datatype (see 8.4.2).

8.3 Subtypes and extended types

A subtype is a datatype derived from an existing datatype, designated the base datatype, by restricting the value space to a
subset of that of the base datatype whilst maintaining all characterizing operations. Subtypes are created by akind of datatype
generator which is unusual in that its only function is to define the relationship between the value spaces of the base datatype
and the subtype.

subtype = range-subtype | selecting-subtype | excluding-subtype
| size-subtype | explicit-subtype | extended-type .

Each subtype generator is defined by a separate subclause. The title of each such subclause gives the informal name for the
subtype generator, and the subtype generator is defined by a single occurrence of the following template:

Description: prose description of the subtype value space.

Syntax: the syntactic production for a subtype resulting from the subtype generator, including identification of
all parametric values which are necessary for the complete identification of a distinct subtype.

Components: constraints on the base datatype and parametric values.

Values: formal definition of resulting value space.

Properties: all datatype properties are the same in the subtype as in the base datatype, except possibly the

presence and values of the bounds. This entry therefore defines only the effects of the subtype
generator on the bounds.

All characterizing operations are the same in the subtype as in the base datatype, but the domain of a characterizing operation
in the subtype may not be identical to the domain in the base datatype. Those values from the value space of the subtype
which, under the operation on the base datatype, produce result values which lie outside the value space of the subtype, are
deleted from the domain of the operation in the subtype.

8.3.1 Range

Description: Range creates a subtype of any ordered datatype by placing new upper and/or lower bounds on the value space.
Syntax:

range-subtype = base "range" "(" select-range ")" .

select-range = lowerbound ".." upperbound .

lowerbound = value-expression | "*" .

upperbound = value-expression | "*" .

base = type-specifier .

Components. Base shall designate an ordered datatype. When lowerbound and upperbound are value-expressions, they shall
have values of the base datatype such that InOrder(lowerbound, upperbound). When lowerbound is"*", it indicates that
no lower bound is being specified, and when upperbound is"*", it indicates that no upper bound is being specified.
Lowerbound and upperbound shall not be formal-parametric-values, except in some occurrences in declarations (see 9.1).

Values: all valuesv from the base datatype such that lowerbound <v, if lowerbound is specified, and v < upperbound, if
upperbound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the select-range specifies the
corresponding bounds.

8.3.2 Selecting

Description: Selecting creates a subtype of any exact datatype by enumerating the values in the subtype value-space.

30

Syntax:
selecting-subtype = base "selecting" "(" select-list ")" .
select-list = select-item { "" select-item } .
select-item = value-expression | select-range .
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | "*" .
upperbound = value-expression | "*" .
base = type-specifier .

Components. Base shall designate an exact datatype. When the select-items are value-expressions, they shall have values of
the base datatype, and each value shall be distinct from all othersin the select-list. A select-item shall not be a select-
range unless the base datatype is ordered. When lowerbound and upperbound are value-expressions, they shall have
values of the base datatype such that InOrder(lowerbound, upperbound). When lowerbound is"*", it indicates that no
lower bound is being specified, and when upperbound is"*", it indicates that no upper bound is being specified. No
value-expression occurring in the select-list shall be a formal-parametric-value, except in some occurrencesin
declarations (see 9.1).

Vaues: The values specified by the select-list designate those values from the value-space of the base datatype which
comprise the value-space of the selecting subtype. A select-itemwhich is avalue-expression specifies the single value
designated by that value-expression. A select-item which is a select-range specifies all values v of the base datatype such
that lowerbound <, if lowerbound is specified, and v < upperbound, if upperbound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if no select-range appearsin the
select-list or if all select-ranges in the select-list specify the corresponding bounds.
8.3.3 Excluding
Description: Excluding creates a subtype of any exact datatype by enumerating the values which are to be excluded in
constructing the subtype vaue-space.
Syntax:
excluding-subtype = base "excluding" "(" select-list ")" .
select-list = select-item { "" select-item } .
select-item = value-expression | select-range .
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | "*" .
upperbound = value-expression | "*" .
base = type-specifier .

Components. Base shall designate an exact datatype. A select-item shall not be a select-range unless the base datatype is
ordered. When lowerbound and upperbound are value-expressions, they shall have values of the base datatype such that
InOrder(lowerbound, upperbound). When lowerbound is"*", it indicates that no lower bound is being specified, and
when upperbound is"*", it indicates that no upper bound is being specified. No value-expression occurring in the select-
list shall be a formal- parametric-value, except in some occurrences in declarations (see 9.1).

Vaues: The value space of the Excluding subtype comprises al values of the base datatype except for those specified by the
select-list. A select-item which is a value-expression specifies the single value designated by that value-expression. A

select-itemwhich is a select-range specifies all values v of the base datatype such that lowerbound <, if alower bound
is specified, and v < upperbound, if an upper bound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if some select-range appearsin
the select-list and does not specify the corresponding bound.

31

8.3.4 Size

Description: Size creates a subtype of any Sequence, Set, Bag or Table datatype by specifying bounds on the number of
elements any value of the base datatype may contain.

Syntax:
size-subtype = base "size" "(" minimum-size [".." maximum-size] ")" .
maximum-size = value-expression | "*" .
minimum-size = value-expression .
base = type-specifier .

Components. Base shall designate a generated datatype resulting from the Sequence, Set, Bag or Table generator, or from a
"new" datatype generator whose value space is constructed by such a generator (see 9.1.3). Minimum-size shall have an
integer value greater than or equal to zero, and maximum-size, if it is a value-expression, shall have an integer value such
that minimum-size < maximum-size. If maximum-size is omitted, the maximum size is taken to be equal to the minimum-
size, and if maximum-sizeis"*", the maximum size is taken to be unlimited. Minimum-size and maximum-size shall not
be formal-parametric-values, except in some occurrences in declarations (see 9.1).

Vaues: The value space of the subtype consists of all values of the base datatype which contain at least minimum-size values
and at most maximum:-size values of the element datatype.

Subtypes: Any size subtype of the same base datatype, such that base-minimum-size < subtype-minimum-size, and
subtype-maximum-size < base-maximum-size.

Properties: those of the base datatype; the aggregate subtype has fixed size if the maximum sizeis (explicitly or implicitly)
equal to the minimum size.
8.3.5 Explicit subtypes

Description: Explicit subtyping identifies a datatype as a subtype of the base datatype and defines the construction procedure
for the subset value space in terms of LI datatypes or datatype generators.

Syntax:
explicit-subtype = base "subtype" "(" subtype-definition ")" .
base = type-specifier .
subtype-definition = type-specifier .

Components. Base may designate any datatype. The subtype-definition shall designate a datatype whose value spaceis
(isomorphic to) a subset of the value space of the base datatype.

Vaues: The subtype value spaceis identical to the value space of the datatype designated by the subtype-definition.
Properties. exactly those of the subtype-definition datatype.
NOTES

1. When the base datatype is generated by a datatype generator, the ways in which a subset val ue space can be constructed are complex
and dependent on the nature of the base datatype itself. Clause 8.3 specifies the subtyping possibilities associated with each datatype
generator.

2. Itisredundant, but syntactically acceptable, for the subtype-definition to be an occurrence of a subtype-generator, e.g.
integer subtype (integer selecting(0..5)).

8.3.6 Extended

Description: Extended creates a datatype whose val ue-space contains the value-space of the base datatype as a proper subset.
Syntax:

extended-type = base "plus" "(" extended-value-list ")" .

extended-value-list = extended-value { "," extended-value } .

32

extended-value = extended-literal | formal-parametric-value .
extended-literal = identifier .
base = type-specifier .

Components. Base may designate any datatype. An extended-value shall be an extended-literal, except in some occurrences
in declarations (see 9.1). Each extended-literal shall be distinct from all value-literals and value-identifiers, if any, of the
base datatype and distinct from all othersin the extended-value-list.

Vaues: The value space of the extended datatype comprises all values in the value-space of the base datatype plus those addi-
tional values specified in the extended-value-list.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the additional values are
upper or lower bounds.

The definition of an extended datatype shall include specification of the characterizing operations on the base datatype as
applied to, or yielding, the added values in the extended-value-list. In particular, when the base datatype is ordered, the
behavior of the InOrder operation on the added values shall be specified.

NOTES

1. Extended produces a subtype relationship in which the base datatype is the subtype and the extended datatype has the larger value
space.

2. Other uses of the IDN syntax make stronger regquirements on the uniqueness of extended-literal identifiers.
8.3.7 Ordered

Description: Specifies that the components of aggregate type are Ordered.
Syntax:

ordered-subtype = "ordered" base .

base = type-specifier .

Components: Base shall designate an aggregate datatype.

Properties: The subtypeis Ordered.

8.3.8 Unordered

Description: Specifies that the components of aggregate type are not Ordered.

Syntax:
unordered-subtype = "unordered" base .

base = type-specifier .

Components: Base shall designate an aggregate datatype.

Properties: The subtypeis not Ordered.

8.3.9 Unique

Description: Specifies that the identifiers of aggregate type shall be distinct.
Syntax:

unique-subtype = "unique" base .

base = type-specifier .

Components. Base shall designate an aggregate datatype.

8.3.10 Non-unique

Description: Specifies that the identifiers of aggregate type are may not be distinct.

33

ntax:

unigue-subtype = "nonunique" base .

base = type-specifier .

Components. Base shall designate an aggregate datatype.

8.3.11 Extendable

Description: Specifies that additional components may be added, at run-time, to a state, enumerated, or aggregate type.
Syntax:

extendable-subtype = "extendable" base .

base = type-specifier .

Components: Base shall designate a state, enumerated, record datatype.

Properties: The same as the subtype.

8.3.12 Non-extendable

Description: Specifies that no additional components shall be added, at run-time, to a state, enumerated, or aggregate type.
Syntax:

non-extendable-subtype = "nonextendable" base .

base = type-specifier .

Components. Base shall designate a state, enumerated, record datatype.

Properties. The same as the subtype.

8.3.13 Qverride

Description: Specifies that the labeled class member definition that follows replaces the prior class member definition with the
same |abel.

Syntax:

override-qualifier = "override" .

Components:. Override may be used with a class member definition.

Properties. The same as the subtype.

8:3-138.3.14 Obsolete

Description: Specifies that the base type is intended to be removed from future datatype specifications.
Syntax:

ordered-subtype = "obsolete" base .

base = type-specifier .

NOTE: The use of this subtype isintended to cause a diagnostic message.

8:3-148.3.15 Reserved

Description: Specifies that the base type isinvalid abd may be included from future datatype specifications. And use of the
instance of the subtypeis an error and shall cause a diagnostic message.

Syntax:

ordered-subtype = "reserved" base .

base = type-specifier .

NOTE: The use of this subtype isintende to cause adiagnostic message, possbly different than the diagnaostic message that
"obsolete" causes.

8.4 Generated datatypes

A generated datatype is a datatype resulting from an applicaion d a datatype generator. A datatype generator is a
conceptual operation on ore or more datatypes which yields a datatype. A datatype generator operates on datatypes to
generate adatatype, rather than on values to generate avalue. The datatypes on which a datatype generator operates are said to
be its parametric or component datatypes. The generated datatype is semanticaly dependent on the parametric datatypes,
but has its own charaderizing operations. An important charaderistic of al datatype generators is that the generator can be
applied to many different parametric datatypes. The Pointer and Procedure generators generate datatypes whose values are
atomic, while Choice and the generators of aggregate datatypes generate datatypes whose values admit of decomposition. A
generated-type designates a generated datatype.

generated-type = pointer-type | procedure-type | choice-type | aggregate-type | import-type .

This International Standard defines common datatype generators by which an applicaion d this International Standard may
define generated datatypes. (An applicaion may also define "new" generators, as provided in clause 9.1.3.) Each datatype
generator is defined by a separate subclause. The title of ead such subclause gives the informa name for the datatype
generator, and the datatype generator is defined by a single occurrence of the foll owing template:

Description: prose description of the datatypes resulting from the generator.

Syntax: the syntadic production for a generated datatype resulting from the datatype generator, including
identification of all parametric datatypes which are necessary for the complete identificaiion of a
distinct datatype.

Components: number of and constraints on the parametric datatypes and parametric values used by the generator.
Values: formal definition d resulting value space
Properties: properties of the resulting datatype which indicae its admisshbility as a component datatype of certain

datatype generators: numeric or non-numeric, approximate or exad, ordered or unordered, and if
ordered, bounded or unbounded.

Subtypes: generators, subtype-generators and parametric values which produce subset value spaces.

Operations: charaderizing operations for the resulting datatype which associate to the datatype generator. The
definitions of operations have the form described in 8.1.

NOTE — Unlike subtype generators, datatype generators yield resulti ng datatypes whaose val ue spaces are entirely distinct from those of the
comporent datatypes of the datatype generator.

8.4.1 Choice

Description: Choice generates a datatype cdl ed a choice datatype, each of whose valuesis a singe value from any of a set of
dternative datatypes. The alternative datatypes of a choice datatype are logicaly distinguished by their correspondence to
values of another datatype, cdl ed the tag datatype.

Syntax:

choice-type = "choice" "(" [field-identifier ":"] tag-type ["=" discriminant] ")"
"of* "(" alternative-list ")" .

field-identifier = identifier .

tag-type = type-specifier .

discriminant = value-expression .

alternative-list = alternative { "," alternative } [default-alternative] .
alternative = tag-value-list [field-identifier 1 ™" alternative-type .
default-alternative = "default" ":" alternative-type .

alternative-type = type-specifier .

35

tag-value-list = "(" select-list ")"

select-list = select-item { "," select-item } .
select-item = value-expression | select-range .
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | "*" .

upperbound = value-expression | "*" .

Components. Each alternative-type in the alter native-list may be any datatype. The tag-type shall be an exact datatype. The

tag-value-list of each alternative shall specify valuesin the value space of the (tag) datatype designated by tag-type. A
select-item shall not be a select-range unless the tag datatype is ordered. When lowerbound and upperbound are value-
expressions, they shall have values of the tag datatype such that InOrder(lowerbound, upperbound). When lowerbound is
"*" it indicates that no lowerbound is being specified, and when upperbound is"*", it indicates that no upperbound is
being specified. No value-expression in the select-list shall be a parametric value, except in some occurrencesin
declarations (see 9.1).

A choice datatype defines an association from the value space of the tag datatype to the set of alternative datatypesin the
alternative-list, such that each value of the tag datatype associates with exactly one alternative datatype. The tag-value-
list of an alternative specifies those values of the tag datatype which are associated with the alternative datatype
designated by the alternative-type in the alternative. A select-itemwhich is a value-expression specifies the single value
of the tag datatype designated by that value-expression. A select-item which is a select-range specifies all valuesv of the
tag datatype such that lowerbound <v, if lowerbound is specified, and v < upperbound, if upperbound is specified. The
default-alternative, if present, specifiesthat all values of the tag datatype which do not appear in any other alternative are
associated with the alternative datatype designated by its alternative-type.

No value of the tag datatype shall appear in the tag-value-list of more than one alternative.

The occurrence of afield-identifier before the tag-type or in an alternative has no meaning in the resulting choice-type.
Its purpose is to facilitate mappings to programming languages.

The discriminant, if present, shall designate a value of the tag datatype. It identifies the tag value, or the source of the tag
value, to be used in a particular occurrence of the choice datatype.

Vaues: al values having the conceptual form (tag-value, alternative-value), where tag-value is a value of the tag datatype

which occurs (explicitly or implicitly) in some alternative in the alternative-list and is uniquely mapped to an alternative
datatype thereby, and alternative-value is any value of that alternative datatype.

Vaue-syntax:

choice-value = "(" tag-value ™" alternative-value ")" .
tag-value = independent-value .
alternative-value = independent-value .

A choice-value denotes a value of achoice datatype. The tag-value of a choice-value shall be avalue of the tag datatype
of the choice datatype, and the alternative-value shall designate avalue of the corresponding alternative datatype. The
value denoted shall be that value having the conceptual form (tag-value, alter native-value).

Properties: unordered, exact if and only if al alternative datatypes are exact, non-numeric.

Subtypes: any choice datatype in which the tag datatype is the same as, or a subtype of, the tag datatype of the base datatype,

and the alternative datatype corresponding to each value of the tag datatype in the subtype is the same as, or a subtype of,
the alternative datatype corresponding to that value in the base datatype.

Operations. Equal, Tag, Cast, Discriminant.

36

Discriminant(x: choice (tag-type) of (alternative-list)): tag-type is the tag-value of the value x.

Tag.type(X: type, s. tag-type): choice (tag-type) of (alternative-list), where type is that aternative datatype in alternative-
list which corresponds to the value s, is that value of the choice datatype which has tag-value s and alternative-value
X.

Cast.type(x: choice (tag-type) of (alternative-list)): type, where type is an aternative datatype in alternative-list, is:
if the tag value of x selects an alternative whose alter native-type is type, then that value of type which isthe
(alternative) value of X, else undefined.

Equal(x, y: choice (tag-type) of (alternative-list)): booleanis:
if Discriminant(x) and Discrminant(y) seled the same dternative, then
type.Equal (Cast.type(x), Cast.type(y)),
where type is the dternative datatype of the seleded aternative and type.Equal isthe Equal operation on the
datatype type,
elsefase.

NOTES

1. The Choice datatype generator is referred to in some programming languages as a " (discriminated) union” datatype, and in others as a
datatype with "variants'. The generator defined here represents the Pascd/Ada "variant-record” concept, but it all ows the C-language
"union”, and similar discriminated union concepts, to be suppated by adight subterfuge. E.g. the C datatype:
union {
float al;
int a2;
char* a3; }
may be represented hy:
choice (state(al, a2, a3)) of (
(al): real,
(a2): integer,
(a3): characterstring).

2. The atual value space of the tag datatype from which tag-values may be drawn is actually a subtype of the value space of the
designated tag datatype, namely that subtype cnsisting exactly of the values which are mapped into alternative datatypes by the alterntaive-
list. The set of tag values appearing explictly or implicitly in the alternative-list is not required to cover the value space of the tag datatype.

3. The subtypes of achoice datatype aetypicaly choice datatypes with a smaller list of alternatives, andin the smplest case, thelistis
reduced to a single datatype.

4. The operation Discriminant is a conceptual operation which refleds the abilit y to determine which aternative of a choice-typeis
seleded in agiven value. When achoice-value is moved between two contexts, as between a program and a data repository, representation
of the chosen alternative is required, and most implemenations explicitly incorporate the tag-value.

5. Anocther useful model of Choiceis choice (field-list), where exactly onefield is present in any given value, and the means of
discrimination is not specified. In this model, the operation:

IsField.field(x: choice (field-list)): bodean = trueif the designated field is present in the value x, otherwise false;
replaces Discriminant, with correspondng changes to the other characterizing operatoins. It is recogrized that this model is mathematicdly
more degant (the Or-graph to match the And-graph o the fields in Record), but in parctice, either IsField is not provided (which makes all
operations user-defined) or IsField isimplemented by tag-value (which makes IsField equivalent to Discriminant).

EXAMPLES — see10.2.2 and 10.2.4.
8.4.2 Pointer

Description: Pointer generates a datatype, cdled a pointer datatype, each of whose values congtitutes a means of reference to
values of another datatype, designated the element datatype. The values of a pointer datatype are atomic.

Syntax:
pointer-type = "pointer" "to" "(" element-type ")" .
element-type = type-specifier .

Components. Any single datatype, designated the element-type.

Vaues: The value spaceisthat of an unspedfied state datatype, each of whose values, save one, is asociated with a vaue of
the dement datatype. The single value null may belong to the value spacebut it is never associated with any value of the
element datatype.

Vaue-syntax:
pointer-literal ="null" .
"Null" denotes the null value. Thereisno denotation for any other value of apointer datatype.

Properties: unordered, exad, non-numeric.

37

Subtypes: any pointer datatype for which the dement datatype is a subtype of the dement datatype of the base pointer
datatype.

Operations. Equal, Dereference

Equal(x, y: pointer(element)): booleanistrueif the values x and y are identicd values of the unspedfied state datatype,
elsefase

Dereference(x: pointer(element)): element, where x £ null, isthe value of the dement datatype associated with the value
X.

NOTES

1. A painter datatype defines an asociation from the "unspecified state datatype” into the dement datatype. There may be many values of
the pointer datatype which are sssciated with the same value of the dement datatype; and there may be members of the element datatype
which are not associated with any value of the pointer datatype. The notion that there may be values of the "unspedfied state datatype” to
which noelement value is asociated, however, is an artifact of implementations — conceptuall y, except for null, those values of the
(universal) "unspedfied state datatype" which are not associated with values of the dement datatype ae not in the value space of the pointer
datatype.

2. Two pdnter values are equal only if they areidentical; it does nat suffice that they are associated with the same value of the element
datatype. The operation which comparesthe sswciated valuesis

Equal.element(Dereference(x), Dereference(y)),
where Equal.element is the Equal operation onthe element datatype.

3. The computational model of the pointer datatype often all ows the asciation to vary over time. E.g., if x isavalue of datatype pointer
to (integer), then x may be aciated with the value 0 at one time and with the value 1 at ancther. Thisimpliesthat such pointer datatypes
also suppat an gperation, called assignment, which associates a (new) value of datatype e to avalue of datatype pointer(€), thus changing the
value returned by the Dereference operation on the value of datatype pointer to e. This assgnment operation was not found to be necessary
to characterize the pointer datatype, and listing it as a charaderizing goeration would imply that suppat of the pointer datatype requiresit,
which is not the intention.

4. Theterm Ivalue appeas in some language standards, meaning "a value which refers to a storage object or ared'. Since the storage
objed isameans of aswociation, an Ivalue is therefore a value of some pointer datatype. Similarly, theimplementation ndion machine-
address, to the extent that it can be manipulated by a programming language, is often a value of some pointer datatype.

5. The hardware implementation of the "means of reference to" a value of the element-typeis usually amemory cel or cdlswhich contain
avalue of the dement-type. The memory cell has an "address', which is the "value of the unspedfied state datatype". The memory cdl
physicdly maintains the association between the aldress(painter-value) and the dement-value which is gored in the cell. The Dereference
operation is conceptually applied to the "address', but isimplemented by a"fetch" from the memory cdl. Thusin the computational model
used here, the "address' and the "memory cell" are nat distinguished: a painter-value is both the ceél and its address because the cll can
only be manipulated through its address The cél, which isthe pointer-value, is distingushed from its contents, which is the element-value.

The notion "variable of datatype T" appeasin programming languages and is usually implemented as a cél which contains a value of
type T. Language standards often distinguish between the "addressof the variable" and the "value of the variable" and the "name of the vari-
able", and one might conclude that the "variable" isthe cell itself. But all operations on such a"variable" actually operate on either the
"addressof the variable" — the value of LI datatype "pointer to (T)" — or the "value of the variable" — the value of LI datatype T. And
thusthose ae the only objects which are needed in the datatype model. This nationisfurther elaborated in ISO/IEC 138861995,
Language-independent procedure calling, which relates pointer-values to the "boxes" (or "cells") which are dements of the state of a
running program.

8.4.3 Procedure

Description: Procedure generates a datatype, cdled a procedur e datatype, each of whose valuesis an operation on values of
other datatypes, designated the parameter datatypes. That is, a procedure datatype comprises the set of all operations on
values of a particular colledion o datatypes. All values of a procedure datatype ae conceptually atomic.

Syntax:

procedure-type = "procedure” "(" [parameter-list 1 ")" ["returns" "(" return-parameter ")"]
["raises" "(" termination-list ")"] .

parameter-list = parameter-declaration { "," parameter-declaration } .

parameter-declaration = direction parameter .

direction = "in" | "out" | "inout" .

parameter = [parameter-name ™" | parameter-type .

38

parameter-type = type-specifier .
parameter-name = identifier .

return-parameter = [parameter-name "] parameter-type .

termination-list = termination-reference { "," termination-reference } .
termination-reference = termination-identifier .

Components. A parameter-type may designate any datatype. The parameter-names of parametersin the parameter-list shall
be distinct from each other and from the parameter-name of the return-parameter, if any. The termination-referencesin
the termination-list, if any, shall be distinct.

Vaues: Conceptually, avaue of aprocedure datatype is a function which maps an input space to aresult space. A parameter
in the parameter-list is said to be an input parameter if its parameter-declaration contains the direction "in" or "inout".
Theinput space is the cross-product of the value spaces of the datatypes designated by the parameter-types of all the input
parameters. A parameter issaid to be aresult parameter if it isthe return-parameter or it appearsin the parameter-list
and its parameter-declaration contains the direction "out" or "inout". The normal result space is the cross-product of
the value spaces of the datatypes designated by the parameter-types of al the result parameters, if any, and otherwise the
value space of the void datatype. When there is no termination-list, the result space of the procedure datatype is the
normal result space, and every value p of the procedure datatype is afunction of the mathematical form:

pr ILxELX..xl - RRXRXR,X...XR,
where |, isthe value space of the parameter datatype of the kth input parameter, R, is the value space of the parameter
datatype of the kth result parameter, and R, is the value space of the return-parameter.

When atermination-list is present, each termination-reference shall be associated, by some termination-declaration (see
9.3), with an alter native result space which isthe cross-product of the value spaces of the datatypes designated by the
parameter -types of the parametersin the termination-parameter-list. Let A’ be the alternative result space of the jth
termination. Then:

A = E/xE/x..xE},
where E/ is the value space of the parameter datatype of the kth parameter in the termination-parameter-list of the jth ter-
mination. The normal result space then becomes the alternative result space associated with normal termination (A°),
modelled as having termination-identifier "*normal”. Consider the termination-references, and "*normal", to represent
values of an unspecified state datatype S,. Then the result space of the procedure datatypeis:

S, x (A"|AT|A*] ... |AY),
where A’ is the normal result space and A" is the alternative result space of the kth termination; and every value of the pro-
cedure datatype is afunction of the form:

pr XL XXl - S x (A°|AT|A%] ... |AY).

Any of theinput space, the normal result space and the alternative result space corresponding to a given termination-iden-
tifier may be empty. An empty space can be modelled mathematically by substituting for the empty space the value space
of the datatype Void (see 8.1.12).

The value space of a procedure datatype conceptually comprises all operations which conform to the above model, i.e.
those which operate on a collection of values whose datatypes correspond to the input parameter datatypes and yield a
collection of values whose datatypes correspond to the parameter datatypes of the normal result space or the appropriate
aternative result space. The term corresponding in thisregard means that to each parameter datatype in the respective
product space the "collection of values' shall associate exactly one value of that datatype. When the input space is empty,
the value space of the procedure datatype comprises all niladic operations yielding values in the result space. When the
result space is empty, the mathematical value space contains only one value, but the value space of the computational
procedure datatype many contain many distinct values which differ in their effects on the "real world", i.e. physical
operations outside of the information space.

Vaue-syntax:

procedure-declaration = "procedure" procedure-identifier "(" [parameter-list] ")"
["returns" "(" return-parameter ")"] ["raises" "(" termination-list)"] .

procedure-identifier = identifier .

A procedure-declaration declares the procedure-identifier to refer to a (specific) value of the procedure datatype whose
type-specifier isidentical to the procedure-declaration after deletion of the procedure-identifier. The means of
association of the procedure-identifier with a particular value of the procedure datatype is outside the scope of this
International Standard .

39

Properties: unordered, exact, non-numeric.
Subtypes: For two procedure datatypes P and Q:

* Pissaidto be formally compatible with Q if their parameter-lists are of the same length, the direction of each
parameter in the parameter-list of P isthe same as the corresponding parameter in the parameter-list of Q, both have a
return-parameter or neither does, and the termination-lists of P and Q, if present, contain the same ter mination-
references.

« If Pisformally compatible with Q, and for every result parameter of Q , the parameter datatype of the corresponding
parameter of P isa(not necessarily proper) subtype of the parameter datatype of the parameter of Q, then P is said to be
aresult-subtype of Q. If the return parameter datatype and all of the parameter datatypes in the parameter-list of P and
Q areidentical (none are proper subtypes), then each is a result-subtype of the other.

« If Pisformally compatible with Q, and for every input parameter of Q , the parameter datatype of the corresponding pa
rameter of P isa (not necessarily proper) subtype of the parameter datatype of the parameter of Q, then Q issaid to be
an input-subtype of P. If al of the input parameter datatypesin the parameter-lists of P and Q areidentical (none are
proper subtypes), then each is an input-subtype of the other.

Every subtype of a procedure datatype shall be both an input-subtype of that procedure datatype and a result-subtype of
that procedure datatype.

Operations: Equal, Invoke.

The definitions of Invoke and Equals below are templates for the definition of specific Invoke and Equals operators for
each individua procedure datatype. Each procedure datatype has its own Invoke operator whose first parameter is avalue
of the procedure datatype, and whose remaining input parameters, if any, have the datatypes in the input space of that
procedure datatype, and whose result-list has the datatypes of the result space of the procedure datatype.

Invoke(x: procedure(parameter-list), v,: 1,, ..., v,: 1): record (r: R, ..., r,: R)) isthat value in the result space which is
produced by the procedure x operating on the value of the input space which correspondsto values (v,, ..., V,).

Equal(x, y: procedure(parameter-list)): boolean is:
trueif for each collection of values (v,: I, ..., v.: 1), corresponding to avalue in the input space of x and y, either:
neither x nor y isdefined on (v, ..., v,), or
Invoke(x, v,, ..., v,) = Invoke(y, v,, ..., V.);
and false otherwise.

NOTES

1. Thedefinition of Invoke aboveis simplistic and ignores the concept of alternative terminations, the implications of procedure and
pointer datatypes appearing in the parameter-list, etc. The true definition of Invoke is beyond the scope of this International Standard and
forms aprincipal part of ISO/IEC 13886:1996, Language-independent procedure calling.

2. Considered as afunction, agiven value of a procedure datatype may not be defined on the entire input space, that is, it may not yield a
value for every possible input. In describing a specific value of the procedure datatype it is necessary to specify limitations on the input
domain on which the procedure value is defined. In the general case, these limitations are on combinations of values which go beyond
specifying proper subtypes of the individual parameter datatypes. Such limitations are therefore not considered to affect the admissibility of
agiven procedure as a value of the procedure datatype.

3. The subtyping of procedure datatypes may be counterintuitive. Assume the declarations:
type P = procedure (in a: integer range (0..100), out b: typeX);
type Q = procedure (in a: integer range (0..100), out b: typeY);
type R = procedure (in a: integer, out b: typeX);

If typeX isasubtype of tyPEY then P isa subtype of Q, as one might expect. But integer range (0..100) is a subtype of integer, which
makes R a subtype of P, and not thereverse! In general, the collection of procedures which can accept an arbitrary input from the larger
input datatype (integer) is a subset of the collection of procedures which can accept an input from the more restricted input datatype
(integer range (0..100)). If aprocedureis required to be of type P, then it is presumed to be applicable to valuesin

integer range (0..100). If aprocedure of type R isactually used, it can indeed be safely applied to any value in integer range (0..100),
because integer range (0..100) is a subtype of the domain of the proceduresin R. But the converseisnot true. If a procedure isrequired to
be of type R, then it is presumed to be applicable to an arbitrary integer value, for example, -1, and therefore a procedure of type P, whichis
not necessarily defined at -1, cannot be used.

4. Indescribing individual values of a procedure datatype, it is common in programming languages to specify parameter-names, in
addition to parameter datatypes, for the parameters. These identifiers provide a means of distinguishing the functionality of the individual

40

parameter values. But while this functiondlity isimportant in distinguishing one value of a procedure datatype from ancther, it has no
meaning at all for the procedure datatypeitself. For example, Subtract(in a:real, in b:real, out diff: real) and Multiply(in a:real, in
b:real, out prod: real) are bath values of the procedure datatype procedure(in real, in real, out real), but the functionality of the
parameters a and b in the two procedure valuesis unrelated.

5. In describing procedures in programming languages, it is common to distingui sh parameters as input, output, and input/output, to import
information from common interchange aeas, and to distinguish returning a single result value from returning values throughthe parameters
and/or the interchange aeas. These distinctions are suppated by the syntax, but conceptually, a procedure operates on an set of inpu values
to prodice aset of output values. The syntadic distinctions relate to the methods of moving values between program elements, which are
outside the scope of this International Standard. This g/ntax is used in other international standards which define such medhanisms. It is
used here to facilitate the mapping to programming language constructs.

6. Asmay be apparent from the definition d Invoke above, thereis a natural isomorphism between the normal result space of a procedure
datatype and the value space of some record datatype (see 8.4.1). Similarly, there is an isomorphism between the general form of the result
space ad the value space of a choice datatype (see 8.3.1) in which the tag datatype is the unspecified state datatype and each aternative, in-
cluding "normal”, has the form:

termination-name: alter native-result-space (record-type).

8.5 Aggregate Datatypes

An aggregate datatype is a generated datatype ead of whose values is, in principle, made up d values of the component
datatypes. An aggregate datatype generator generates a datatype by

 applying an algorithmic procedure to the value spaces of its component datatypes to yield the value spaceof the
aggregate datatype, and

« providing a set of charaderizing operations spedfic to the generator.
Thus, many of the properties of aggregate datatypes are those of the generator, independent of the datatypes of the
components. Unlike other generated datatypes, it is charaderistic of aggregate datatypes that the component values of an
aggregate value ae accessble through characterizing gperations.

This clause describes commonly encountered aggregate datatype generators, attaching to them only the semantics which derive
from the construction procedure.

aggregate-type = record-type | class-type | set-type | sequence-type | bag-type |
-array-type | table-type .

The definition template for an aggregate datatype is that used for all datatype generators (see8.3), with an addition dof the Prop-
erties paragraph to describe which of the aggregate properties described in clause 6.8 are passessed by that generator.

NOTES

1. In general, an aggregate-value contains more than one component value. This does not, however, preclude degenerate cases where the
“aggregate” value has only one comporent, or even nore & all.

2. Many characterizing operations on aggregate datatypes are "constructors', which construct a value of the aggregate datatype from a l-
ledion o values of the comporent datatypes, or "selectors’, which select avalue of a mmporent datatype from a value of the aggregate
datatype. Since compositionisinherent in the concept of aggregate, the existence of construction and selection operationsisnot in itself
characterizing. However, the nature of such operations, together with ather operations on the aggregate as awhale, is characterizing.

3. Inprinciple, from eat aggregate it is possble to extract asingle mmporent, using seledion qerations of some form. But some lan-
guages may specify that particular (logical) aggregates must be treaed as atomic values, and hence not provide such operations for them.

For example, a character string may be regarded as an atomic value or as an aggregrate of Character components. This international standard
models characterstring (10.1.5) as an aggregate, in order to suppat languages whaose fundamental datatype is (single) Character. But Basic,
for example, seesthe charaderstring as the primitive type, and defines operations on it which yield other characterstring values, wherein 1-
character strings are not even a specia case. This difference in viewpoint does nat prevent a meaningful mapping between the characterstring
datatype and Basic strings.

4. Some tharacterizations of aggregate datatypes are esentiall y implementations, whereas others convey essential semantics of the
datatype. For example, an abject which is conceptually atree may be defined by either:
type tree = record (
label: character_string ({ iso standard 8859 1}),
branches: set of (tree));

or:

41

type tree = record (
label: character_string ({ iso standard 8859 1 }),
son: pointer to (tree),
sibling: pointer to (tree)).
Thefirst isaproper conceptua definition, while the secondis clealy the definition of a particular implementation of atree. Which of these
datatype definitions is appropriate to a given usage, however, depends on the purpase to which this International Standard is being employed
in that usage.

5. Thereisno "generic" aggregate datatype. Thereisno "generic" construction algorithm, and the "generic" form of aggregate has no
characterizing operations onthe aygregate values. Every aggregateis, in apurely mathematical sense, at least a"bag" (see 8.4.3). Andthus
the ability to “select one” from any aggregate value is a mathematical requirement given by the axiom of chaoice. The &ility to perform any
particular operation on ead element of an aggregate is ©metimes cited as charaderizing. But in this International Standard, this capabil ity
is modelled as a composition of more primitive functions, viz.:
Applytoall (A: aggregate-type, P: procedure-type) is:
if not IsEmpty(A) begin
e:= Select(A);
Invoke (P, e);
Applytoall (Delete(A, €), P);
end;
and the particular “ Select” operations available, aswell asthe need for IsEmpty and Delete, are characterizing.

8.5.2 Record
Description: Reaord generates a datatype, cdled arecord datatype, whose values are heterogeneous aggregations of values of
component datatypes, each aggregation having one value for each component datatype, keyed by afixed "field-identifier”.
Syntax:
record-type = "record" "(" field-list ")" .
field-list = field { "," field } .
field = field-identifier ":" field-type .
field-identifier = identifier .
field-type = type-specifier .

Components. A list of fields, each of which associates a field-identifier with asingle field datatype, designated by the field-
type, which may be any datatype. All field-identifiers of fields in the field-list shall be distinct.

Vaues: al colledions of named values, one per field in the field-list, such that the datatype of ead value is the field datatype
of thefield to which it corresponds.

Vaue-syntax:
record-value = field-value-list | value-list .
field-value-list = "(" field-value { "," field-value } ")" .
field-value = field-identifier ":" independent-value .
value-list = "(" independent-value { "," independent-value } ")" .

A record-value denotes avaue of arecord datatype. When the record-valueis afield-value-list, ead field-identifier in
the field-list of the record detatype to which the record-value belongs dhall occur exadly oncein the field-value-list, eah
field- identifier in the record-value shall be one of the field-identifiersin the field-list of the record-type, and the
corresponding independent-value shall designate a value of the corresponding field datatype. When therecord-valueisa
value-list, the number of independent-values in the value-list shall be equal to the number of fieldsin the field-list of the
record datatype to which the value belongs, each independent-value shall be associated with the field in the corresponding
position, and each independent-value shall designate avalue of the field datatype of the associated field.

Properties: non-numeric, unordered, exad if and only if all component datatypes are exad.

Aggregate properties: heterogeneous, fixed size, no ordering, no uniqueness accessis keyed by field-identifier, one
dimensional.

Subtypes: any record datatype with exadly the same field-identifiers as the base datatype, such that the field datatype of eat
field of the subtype isthe same as, or is a subtype of, the corresponding field datatype of the base datatype.

42

Operations. Equal, FieldSelect, Aggregate.

Equal(x, y: record (field-list)): boolean istrueif for every field-identifier f of the record datatype,
field-type.Equal (FieldSelect.f(x), FieldSelect.f(y)), else false
(where field-type.Equal is the equality relationship on the field datatype corresponding to f).

There is one FieldSelect and one FieldReplace operation for each field in the record datatype, of the forms:

FieldSelect.field-identifier (x: record (field-list)): field-typeis
the value of the field of record x whose field-identifier is field-identifier.

FieldReplace.field-identifier (x: record (field-list), y: field-type): record (field-list) is that value z: record(field-list) such
that FieldSelect.field-identifier(z) =y, and for al other fields f in record(field-list), FieldSelect.f(x) = FieldSelect.f(z)
i.e. FieldReplace yields the record value in which the value of the designated field of x has been replaced by y.

NOTES

1. Thesequence of fieldsin a Record datatype is not semantically significant in the definition of the Record datatype generator. Animple-
mentation of a Record datatype may define a representation convention which is an ordering of physically distinct fields, but that isa
pragmatic consideration and not a part of the conceptual notion of the datatype. Indeed, the optimal representation for certain Record values
might be a hit string, and then Fiel dReplace would be an encoding operation and FieldSelect would be a decoding operation. Notethatina
record-value which is a value-list, however, the physical sequence of fieldsis significant: it is the convention used to associate the
component values in the value-list with the fields of the Record value.

2. A record datatype can be modelled as a heterogeneous aggregate of fixed size which is accessed by key, where the key datatypeisa
state datatype whose values are the field identifiers. But in avalue of arecord datatype, totality of the mapping is required: no field (keyed
value) can be missing.

3. A record datatype with a subset of the fields of a base record datatype (a "sub-record" or "projection” of the record datatype) is not a
subtype of the base record datatype: none of the valuesin the sub-record val ue space appears in the base value-space. And there are, in
general, agreat many different "embeddings" which map the sub-record datatype into the base datatype, each of which supplies different
values for the missing fields. Supplying void vaues for the missing fieldsis only possible if the datatypes of those fields are of the form
choice (tag-type) of (..., v: void).

4. "Subtypes' of a"record" datatype which have additional fieldsis an object-oriented notion which goes beyond the scope of this
International Standard .

8.5.3 Class

Description: Class generates a datatype, called a class datatype, whose values are heterogeneous aggregations of values of
component datatypes, each aggregation having one value for each component datatype, keyed by afixed "field-identifier".
Components of aclass may include procedure definitions.

Syntax:

class-type = "class" "(" field-list ")" .

member-list = member { "," member } .

member = { "override" } member-identifier ":" member-type .

member-identifier = identifier .

member-type = type-specifier .

Components. A list of members, each of which associates a member-identifier with asingle member datatype, designated by
the member-type, which may be any datatype. All member-identifiers of membersin the member-list shall be distinct.

Values: all collections of named values, one per member in the member-list, such that the datatype of each valueis the
member datatype of the member to which it corresponds.

Value-syntax:
class-value = member-value-list | value-list .

member-value-list = "(" _member-value { "." member-value } ")" .
member-value = member-identifier ":" independent-value .
value-list = "(" independent-value { "," independent-value })" .

43

A class-value denotes a value of aclass datatype. When the class-value is a member-value-list, each member-identifier in
the member-list of the class datatype to which the class-value belongs shall occur exactly once in the member-value-list,
each member- identifier in the class-value shall be one of the member-identifiers in the member-list of the class-type, and
the corresponding independent-value shall designate a value of the corresponding member datatype. When the class-
valueisavalue-list, the number of independent-values in the value-list shall be equal to the number of membersin the
member-list of the class datatype to which the value belongs, each independent-value shall be associated with the member
in the corresponding position, and each independent-value shall designate a value of the member datatype of the
associated member.

Properties. non-numeric, unordered.

Adggregate properties: heterogeneous, no ordering, no unigueness, access is keyed by member-identifier, one dimensional.

Subtypes. any class datatype with exactly the same member-identifiers as the base datatype, such that the member datatype of
each member of the subtypeis the same as, or is a subtype of, the corresponding member datatype of the base datatype.

Operations: Equal, MemberSelect, Aggregate.

Equal(x, y: class (member-list)): boolean If there exists an Equal method procedure for the class, then is Equal(X,y).
Otherwise if there are no method procedures then is true if for every member-identifier f of the class datatype,
member-type.Equal (M emberSelect.f(x), MemberSelect.f(y)), else false
(where member-type.Equal is the equality relationship on the member datatype corresponding to f). Otherwiseis
indeterminate.

There is one MemberSelect and one MemberReplace operation for each member in the class datatype that is not a
member procedure, of the forms:

M ember Sel ect.member -identifier (x: class (member-list)): member-typeis
the value of the member of class x whose member-identifier is member-identifier.

MemberReplace.member-identifier (x: class (member-list), y: member-type): class (member-list) is that value z:
class(member-list) such that MemberSelect.member -identifier(z) = y, and for all other membersf in class(member -
list), MemberSelect.f(x) = MemberSel ect.f(z)

i.e. MemberReplace yields the class value in which the value of the designated member of x has been replaced by .

There is one MemberSelect and one M emberReplace operation for each member in the class datatype that is a member
procedure, of the forms:

M emberFunctionlnvoke.member-identifier (x: class (member-list)): member-type(parameter-list) is
the value of the member function of class x whose member-identifier is member-identifier.

M emberFunctionOverride.member-identifier (x: class (member-list), y: member-type): class (member-list) is that function
Z: class(member-list) such that M emberFunctionl nvoke.member-identifier (z) isy, and for al other membersfin
class(member-list), MemberFunctionl nvoke.f(x) = MemberFunctionlnvoke.f(z)

i.e. MemberFunctionOverride vields the class datatype in which the function of the designated member of x has been

replaced by v.

NOTES

1. "Subtypes' of a"class' datatype which have additional members is an object-oriented notion.

8538.5.4 Set

Description: Set generates a datatype, called a set datatype, whose value-space is the set of al subsets of the value space of
the element datatype, with operations appropriate to the mathematical set.

Syntax:
set-type = "set" "of" "(" element-type ")" .
element-type = type-specifier .

Components. The element-type shall designate an exact datatype, called the element datatype.

Values: every set of distinct values from the value space of the element datatype, including the set of no values, called the
empty- set. A vaue of aset datatype can be modelled as a mathematical function whose domain is the value space of the

element datatype and whose range is the value spaceof the boolean datatype (true, false), i.e., if sisavalue of datatype

set of (E), thens: E B, and for any value e in the value spaceof E, s(€) = true means e "is amember of" the set-value s,
and s(e) = false means e "is not a member of" the set-value s. The value-space of the set datatype then comprises all
functions swhich are distinct (different at some value e of the dement datatype).

Vaue-syntax:
set-value = empty-value | value-list .
empty-value = "(" ")"
value-list = "(" independent-value { "," independent-value } ")" .

Eadh independent-value in the value-list shall designate a value of the dement datatype. A set-value denotes avalue of a
set datatype, namely the set containing exadly the distinct values of the dement datatype which appear in the value-list,
or equivalently the function swhich yieldstrue & every value in the value-list and false at all other valuesin the dement
value space.

Properties: non-numeric, unordered, exad.
Aggregate properties. homogeneous, variable size, uniqueness no ordering, acessindired (by value).
Subtypes:

a) any set datatype in which the dement datatype of the subtype is the same &, or a subtype of, the dement datatype of
the base set datatype; or

b) any datatype derived from a base set datatype conforming to (@) by use of the Size subtype-generator (see8.2.4).
Operations. Isin, Subset, Equal, Difference, Union, Intersedion, Empty, Setof, Seledt
IsIn(x: element-type, y: set of (element-type)): boolean = y(X), i.e. trueif the value x is amember of the set y, elsefalse;

Subset(x,y: set of (element-type)): bodean istrueif for every value v of the dement datatype,
Or(Not(IsIn(v,x)), Isin(v,y)) = true, elsefalse; i.e. trueif and only if every member of x isamember of y;

Equal(x, y: set of (element-type)): boolean = And(Subset(x,y), Subset(y,x));

Difference(x, y: set of (element-type)): set of (element-type) is the set consisting of al valuesv of the dement datatype
such that And(Isin(v, x), Not(IsIn(v,y)));

Union(x, y: set of (element-type)): set of (element-type) is the set consisting of all valuesv of the dement datatype such
that Or(IsIn(v,x), IsIn(v,y));

Intersedion(x, y: set of (element-type)): set of (element-type) isthe set consisting of all valuesv of the dement datatype
such that And(IsIn(v,x), Isin(v,y));

Empty(): set of (element-type) isthe function s such that for al values v of the element datatype, S(v) = false; i.e. the set
which consists of no values of the dement datatype;

Setof(y: element-type): set of (element-type) is the function s such that s(y) = true and for al valuesv _y, s(v) = false;
i.e. the set consisting of the single valueyy;

Seled(x: set of (element-type)): element-type, where Not(Equal (x, Empty()), is some one value from the value space of
element datatype which appeas in the set x.

NOTE — Set is modelled as having aly the (uncefined) Select operation derived from the axiom of choice. In ancther sense, the access
method for an element of a set value is “find the element (if any) with value v’, which adually uses the charaderizing “Isin” operation, and
the uniquenessproperty.

+1+485.5 Bag

Description: Bag generates a datatype, cdled abag datatype, whose values are coll edions of instances of values from the de-
ment datatype. Multiple instances of the same value may occur in a given coll edion; and the ordering o the value
instances is not significant.

Syntax:
bag-type ="bag" "of" "(" element-type ")" .

element-type = type-specifier .

45

Components. The element-type shall designate an exact datatype, called the element datatype.

Vadues: al finite collections of instances of values from the element datatype, including the empty collection. A value of a
bag datatype can be modelled as a mathematical function whose domain is the value space of the element datatype and
whose range is the nonnegative integers, i.e., if b isavaue of datatype bag of (E), then b: E Z, and for any value ein the
value space of E, b(e) = 0 means e "does not occur in" the bag-value b, and b(e) = n, wherenis a positive integer, means e
"occurs ntimesin” the bag-value b. The value-space of the bag datatype then comprises all functions b which are
distinct.

Vaue-syntax:
bag-value = empty-value | value-list .
empty-value = "(* ")"

value-list = "(" independent-value { "," independent-value } ")" .

Each independent-value in the value-list shall designate a value of the element datatype. A bag-value denotes avalue of a
bag datatype, namely that function which at each value e of the element datatype yields the number of occurrences of ein
the value-list. .

Properties: non-numeric, unordered, exact.
Aggregate properties: homogeneous, variable size, no uniqueness, no ordering, access indirect.
Subtypes:

a) any bag datatype in which the element datatype of the subtype is the same as, or a subtype of, the element datatype of
the base bag datatype; or

b) any datatype derived from a base bag datatype conforming to (a) by use of the Size subtype-generator (see 8.2.4).
Operations. IsEmpty, Equal, Empty, Serialize, Select, Delete, Insert

IsEmpty(x: bag of (element-type)): boolean istrueif for all ein the element value space, x(€) = 0, elsefalse;

Equal(x, y: bag of (element-type)): boolean istrue if for al e in the element value space, x(e) = y(e), elsefasg;

Empty(): bag of (element-type) is that function x such that for al ein the element value space, x(e) = 0;

Serialize(x: bag of (element-type)): sequence of (element-type) is:

if IsEmpty(x), then (),

else any segquence value s such that for each e in the element value space, e occurs exactly x(e) timesin s;
Select(x: bag of (element-type)): element-type = Sequence.Head(Serialize(x));

Delete(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of (element-type) such
that:
forale_y, z(e) = x(e), and
if x(y) > 0then z(y) = x(y) - 1 and if x(y) = 0 then z(y) =0;
i.e. the collection formed by deleting one instance of the valuey, if any, from the collection x;

Insert(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of (element-type) such
that:
foral e vy, z(e) =x(e), and z(y) = x(y) + 1,
i.e. the collection formed by adding one instance of the valuey to the collection x;

8:5:58.5.6 Sequence

Description: Sequence generates a datatype, called a sequence datatype, whose values are ordered sequences of values from
the element datatype. The ordering isimposed on the values and not intrinsic in the underlying datatype; the same value
may occur more than once in a given sequence.

Syntax:

sequence-type = "sequence" "of" "(" element-type ")" .
element-type = type-specifier .

Components. The element-type shall designate any datatype, called the element datatype.

46

Vadues: al finite sequences of values from the element datatype, including the empty sequence.
Vaue-syntax:

sequence-value = empty-value | value-list .

empty-value = "(" ")"

value-list = "(" independent-value { "," independent-value } ")" .

Each independent-value in the value-list shall designate a value of the element datatype. A sequence-value denotes a
value of a sequence datatype, namely the sequence containing exactly the valuesin the value-list, in the order of their
occurrence in the value-list. .

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.
Aggregate properties: homogeneous, variable size, no uniqueness, imposed ordering, access indirect (by position).
Subtypes:

a) any seguence datatype in which the element datatype of the subtype is the same as, or a subtype of, the element
datatype of the base sequence datatype; or

b) any datatype derived from a base sequence datatype conforming to (a) by use of the Size subtype-generator (see
8.2.4).

Operations: IsEmpty, Head, Tail, Equal, Empty, Append.
ISEmpty(x: sequence of (element-type)): boolean is true if the sequence x contains no values, else false;
Head(x: sequence of (element-type)): element-type, where Not(ISEmpty(x)), is the first value in the sequence x;

Tail(x: sequence of (element-type)): sequence of (element-type) is the sequence of values formed by deleting the first
value, if any, from the sequence x;

Equal(x, y: sequence of (element-type)): boolean is:
if IsEmpty(x), then IsEmpty(y);
elseif Head(x) = Head(y), then Equal (Tail(x), Tail(y));
else, false;

Empty(): sequence of (element-type) is the sequence containing no values;

Append(x: sequence of (element-type), y: element-type): sequence of (element-type) is
the sequence formed by adding the single value y to the end of the sequence x.

NOTES

1. Sequence differsfrom Bag in that the ordering of the values is significant and therefore the operations Head, Tail, and Append, which
depend on position, are provided instead of Select, Delete and Insert, which depend on value.

2. Theextended operation Concatenate(x, y: sequence of (E)): sequence of (E) is:
if IsEmpty(y) then x; else Concatenate(Append(x, Head(y)), Tail(y));

3. Thenotion sequential file, meaning "a sequence of values of a given datatype, usually stored on some external medium", isan
implementation of datatype Sequence.

8:5:68.5.7 Array

Description: Array generates a datatype, called an array datatype, whose values are associations between the product space
of one or more finite datatypes, designated the index datatypes, and the value space of the element datatype, such that
every value in the product space of the index datatypes associates to exactly one value of the element datatype.

Syntax:
array-type = "array" "(" index-type-list ")* "of" "(" element-type ")" .
index-type-list = index-type { "," index-type } .
index-type = type-specifier | index-lowerbound ".." index-upperbound .

index-lowerbound = value-expression .

47

index-upperbound = value-expression .
element-type = type-specifier .

Components. The element-type shall designate any datatype, called the element datatype. Each index-type shall designate an
ordered and finite exact datatype, called an index datatype. When the index-type has the form:
index-lowerbound .. index-upperbound,
the implied index datatypeis:
integer range(index-lowerbound .. index-upperbound),
and index-lower bound and index-upperbound shall have integer values, such that index-lowerbound < index-upperbound.

The value-expressions for index-lowerbound and index-upperbound may be dependent-values when the array datatype ap-
pears as a parameter-type, or in a component of a parameter-type, of a procedure datatype, or in a component of arecord
datatype. Neither index-lowerbound nor index-upperbound shall be dependent-valuesin any other case. Neither index-
lower bound nor index-upperbound shall be formal-parametric-values, except in certain casesin declarations (see 9.1).

Vaues: al functions from the cross-product of the value spaces of the index datatypes appearing in the index-type-list,
designated the index product space, into the value space of the element datatype, such that each value in the index
product space associates to exactly one value of the element datatype.

Vaue-syntax:

array-value = value-list .

value-list = "(" independent-value { "," independent-value } ")" .

An array-value denotes avalue of an array datatype. The number of independent-values in the value-list shall be equal to
the cardinality of the index product space, and each independent-value shall designate a value of the element datatype. To
define the associations, the index product space isfirst ordered lexically, with the last-occurring index datatype varying
most rapidly, then the second-last, etc., with the first-occurring index datatype varying least rapidly. Thefirst
independent-value in the array-value associates to the first value in the product space thus ordered, the second to the
second, etc. The array- value denotes that value of the array datatype which makes exactly those associations.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, fixed size, no uniqueness, no ordering, access isindexed, dimensionality is equal to the
number of index-typesin the index-type-list.

Subtypes: any array datatype having the same index datatypes as the base datatype and an element datatype which is a subtype
of the base element datatype.

Operations; Equal, Select, Replace.

Select(x: array (index,, ..., index) of (element-type), y,: index,, ..., y,: index): element-type is that value of the element
datatype which x associates with the value (y,, ..., y,) in the index product space;

Equal(x, y: array (index,, ..., index) of (element-type)): boolean istrueif for every value (v,, ..., v,) in the index product
space, Select(x, v,, ..., V,) = Select(y, v, ..., V), elsefalsg;

Replace(x: array (index,, ..., index) of (element-type), y,: index,, ..., y,: index,, z: element-type): array (index,, ..., index,)
of (element-type) is that value w of the array datatype such that w: (y,, ..., y,) - z,
and for al values p of the index product space except (y,, ..., ¥.), W: p — X(p);
i.e. Replace yields the function which associates z with the value (y,, ..., y,) and is otherwise identical to x.

NOTES

1. Thegenerd array datatype is"multidimensional, where the number of dimensions and the index datatypes themselves are part of the
conceptual datatype. The index space is an unordered product space, athough it is necessarily ordered in each "dimension"”, that is, within
each index datatype. This model was chosen in lieu of the "array of array" model, in which an array has a single ordered index datatype, in
the belief that it facilitates the mappings to programming languages. Note that:

type arrayA = array (1..m, 1..n) of (integer);
defines arrayA to be a 2-dimensional datatype, whereas

type arrayB = array (1..m) of (array [1..n] of (integer));
defines arrayB to be a 1-dimensional (with element datatype array (1..n) of (integer), rather than integer). This allows languages in which
Ai][j] isdistinguished from A[i, j] to maintain the distinction in mappings to the L1 Datatypes. Similarly, languages which disallow the A[i][j]
construct can properly state the limitation in the mapping or treat it as the same as A[i, j], as appropriate.

48

2. The aray of asingledimension is smply the case in which the number of index datatypesis 1 and the index product space isthe value
spaceof that datatype. The order of the index datatype then determines the association to the independent-valuesin a correspondng array-
value.

3. Suppat for index datatypes other than integer is necessary to model certain Pascal and Ada datatypes (and passbly others) with
equivalent semantics.

4. Itisnot required that the spedfic index values be preserved in any mapping of an array datatype, but rather that each index datatype be
mapped 1-to-1 onto a mrrespondng index datatype and the mrrespondng indexing functions be preserved.

5. Sincethe values of an array datatype are functions, the aray datatype is conceptually a special case of the procedure datatype (see
8.3.3). In most programming langueges, however, arrays are anceptually aggregates, not procedures, and have such constraints as to ensure
that the function can be represented by a sequence of values of the element datatype, where the size of the sequence isfixed and equal to the
cadinality of theindex product space.

6. In arder to define an interchangeable representation of the Array as a sequence of element values, it isfirst necessary to define the
function which maps the index product spaceto the ordinal datatype. There ae many such functions. The one used in interpreting the
array-value construct is as follows:

Let A be avalue of datatype array(array (index,, ..., index) of (element-type). For each index datatype index, |et lowerbound, and
upperbound be the lower and upper bounds onits value space. Define the operation Map, to map the index datatype index into arange of
integer by:

Map,(x: index): integer is:

Map,(lowerbound) = 0; and
Map,(Successor,(x)) = Map,(x) + 1, for all x # upperbound.
And define the constant: size = Map,(upperbound) - Map,(lowerbound) + 1. Then

Ord(x,: index,, ..., X.: index): ordinal isthe ordina value corresponding to the integer value:
where the non-existent size,,, istakento be 1. Andthe Ord(x,, ..., x)th pasitionin the sequence representation is occupied by A(x,, ...,X).

EXAMPLE — The Fortran declaration:
CHARACTER*1 SCREEN (80, 24)

dedaresthe variable "screen” to have the LI datatype:
array (1..80, 1..24) of character (unspecified).

And the Fortran subscript operation:
S = SCREEN (COLUMN, ROW)

isequivalent to the characterizing operation:
Seled (screen, column, row);
while
SCREEN(COLUMN, ROW) = S

isequivalent to the characterizing operation:

Replace(screen, column, row, S).
The Fortran standard (ISO/IEC 15391991, Information techndogy — Programning languages —Fortran), however, requires a mapping
function which gives a diff erent sequence representation from that given in Note 6.

8:5-78.5.8 Table

Description: Table generates a datatype, cdl ed atable datatype, whose values are colledions of valuesin the product space
of one or more field datatypes, such that each value in the product spacerepresents an association among the values of its
fields. Although the field datatypes may beinfinite, any given value of atable datatype contains a finite number of
assciations.

Syntax:
table-type = "table" "(" field-list ")" .
field-list = field { "," field } .
field = field-identifier ":" field-type .
field-identifier = identifier .
field-type = type-specifier .

Components: A list of fields, each of which associates a field-identifier with asingle field datatype, designated by the field-
type, which may be any datatype. All field-identifiers of fieldsin the field-list shall be distinct..

49

Values: The value space of table (field-list) isisomorphic to the value space of bag of (record(field-list)), that is, all finite col-
lections of associations represented by values from the cross-product of the value spaces of all the field datatypesin the
field-list.

Vaue-syntax:
table-value = empty-value | "(" table-entry { "," table-entry } ")" .

table-entry = field-value-list | value-list .

field-value-list = "(* field-value { "," field-value } ")" .
field-value = field-identifier ":" independent-value .
value-list = "(" independent-value { "," independent-value } ")" .

A table-value denotes a value of atable datatype, namely the collection comprising exactly the associations designated by
the table-entrys appearing in the table-value. A table-entry denotes avaluein the product space of the field datatypesin
the field-list of the table-type. When the table-entry is afield-value-list, each field-identifier in the field-list of the table
datatype to which the table-value belongs shall occur exactly once in the field-value-list, each field-identifier in the table-
entry shall be one of the field-identifiersin the field-list of the table-type, and the corresponding independent-val ue shall
designate a value of the corresponding field datatype. When the table-entry is a value-list, the number of independent-
valuesin the value-list shall be equal to the number of fieldsin the field-list of the table datatype to which the value
belongs, each independent-value shall be associated with the field in the corresponding position, and each independent-
value shall designate avalue of the field datatype of the associated field.

Properties: non-numeric, unordered, exact if and only if all field datatypes are exact.
Aggregate properties: heterogeneous, variable size, no uniqueness, no ordering, dimensionality is two.
Subtypes:

a) any table datatype which has exactly the same field-identifiersin the field-list, and the field datatype of each field of
the subtype is the same as, or is a subtype of, the corresponding field datatype of the base datatype; or

b) any table datatype derived from a base table datatype conforming to (a) by use of the Size subtype-generator (see
8.2.4).

Operations. MaptoBag, MaptoTable, Serialize, IsEmpty, Equal, Empty, Delete, Insert, Select, Fetch.
MaptoBag(x: table(field-list)): bag of (record(field-list)) is the isomorphism which maps the table to a bag of records.
MaptoTable(x: bag of (record(field-list))): table(field-list) is the inverse of the MaptoBag isomorphism.
Seridize(x: table(field-list)): sequence of (record(field-list)) = Bag.Serialize(MaptoBag(x));
IsEmpty(x: table(field-list)): boolean = Bag.I sSEmpty(MaptoBag(x));
Equal(x, y: table(field-list)): boolean = Bag.Equal(MaptoBag(x), MaptoBag(y));
Empty(): table(field-list) = ();
Delete(x: table(field-list), y: record(field-list)): table(field-list) = MaptoTable(Bag.Delete(MaptoBag(x), v));
Insert(x: table(field-list), y: record(field-list)): table(field-list) = MaptoTable(Bag.|nsert(MaptoBag(x), Y));

Select(x: table (field-list), criterion: procedure(in row: record(field-list)): boolean): table(field-list) = MaptoTable(z),
where z is the bag value whose elements are exactly those record valuesr in MaptoBag(x) for which
criterion(r) = true.

Fetch(x: table(field-list)): record(field-list), where Not(ISEmpty(x)), = Sequence.Head(Serialize(x));
NOTES

1. Tablewould be adefined-generator (asin 10.2), but the type (generator) declaration syntax (see 9.1) does not permit the parametric ele-
ment list to be avariable length list of field-specifiers.

2. Thisdefinition of Tableis aligned with the notion of Table specified by SO 9075:1990, Structured Query Language (SQL) . In SQL,

the "select procedure” may take as input rows from more than one table, but thisis a generalization of the characterizing operation Select,
rather than an extension to the Table datatype concept.

50

3. Ingeneral, accessto aTableisindirect, via Fetch or MaptoBag. Accessto a Tableis sometimes said to be "keyed" because the
common utilization of this data structure represents "relationships’ in which somefield or fields are designated "keys" on which the values of
al other fields are said to be "dependent", thus creating a mapping between the product space of the key value spaces and the val ue spaces of
the other fields. (In database terminology, such arelationship is said to be of the "third normal form".) The specification of this mapping,
when present, is a complex part of the SQL language standard and goes beyond the scope of this International Standard.

8.5.9 Import

Description: Import retrieves the contents of atype definition.

Syntax:
import-type = "import" URI-or-type-identifier

{"including" "(" select-list)" | "excluding" "(" select-list")"} .

URI-or-type-identifier = URI | identifier .

tag-type = type-specifier .

discriminant = value-expression .

select-list = select-item { "," select-item } .

select-item = identifier .

Components: Each datatype in the source, as specified by the URI or type idenfier isincluded asif it were presented as source
text of the datatype specification. If the "including” keyword is used, then only those elementsin the source. If the
"excluding" keyword is used, then all other elements are included in the source.

NOTES

1. Theimport datatype generator is referred to in some programming languages as #include operator:

record (
import "http://headers.org/my public_api_definition/record.txt",
)

42. Theimport datatype generator might be used to perform basic inheritence and subclassing:
class
import superclass,
override methodl: procedure // ...,

).

8.6 Defined Datatypes

A defined datatype is a datatype defined by a type-declaration (see 9.1). It is denoted syntactically by a type-reference, with
the following syntax:

type-reference = type-identifier ["(" actual-type-parameter-list ")"] .

type-identifier = identifier .

actual-type-parameter-list = actual-type-parameter { "," actual-type-parameter } .

actual-type-parameter = value-expression | type-specifier .

The type-identifier shall be the type-identifier of some type-declaration and shall refer to the datatype or datatype generator
thereby defined. The actual-type-parameters, if any, shall correspond in number and in type to the formal-type-parameters of
the type-declaration. That is, each actual-type-parameter corresponds to the formal-type-parameter in the corresponding
position in the formal-type-parameter-list. If the formal-parameter-type is a type-specifier, then the actual-type-parameter
shall be a value-expression designating a value of the datatype specified by the formal-parameter-type. If the formal-
parameter-type is "type", then the actual-type-parameter shall be a type-specifier and shall have the properties required of that
parametric datatype in the generator-declaration.

The type-declaration identifies the type-identifier in the type-reference with a single datatype, a family of datatypes, or a

datatype generator. If the type-identifier designates a single datatype, then the type-reference refers to that datatype. If the
type-identifier designates a datatype family, then the type-reference refers to that member of the family whose value space is

51

identified by the type-definition after substitution of each actual-type-parameter value for al occurrences of the corresponding
formal-parametric-value. If the type-identifier designates a datatype generator, then the type-reference designates the datatype
resulting from applicaion d the datatype generator to the adual parametric datatypes, that is, the datatype whose value space
is identified by the type-definition after substitution of each actual-type-parameter datatype for all occurrences of the
corresponding formal- parametric-type. In al cases, the defined datatype has the values, properties and charaderizing
operations defined, explicitly or implicitly, by the type-declaration.

When a type-reference occurs in a type-declaration, the requirements for its actual-type-parameters are as gedfied by clause
9.1. In any other occurrence of a type-reference, no actual-type-parameter shall be aformal-parametric-value or a formal-
parametric-type.

9 Declarations

This International Standard spedfies an indefinite number of generated datatypes, implicitly, as recursive gplications of the
datatype generators to the primitive datatypes. This clause defines dedaration mechanisms by which new datatypes and gener-
ators can be derived from the datatypes and generators of Clause 8, named and constrained. It also spedfies a dedaration
medhanism for naming values and a mechanism for dedaring alternative terminations of procedure datatypes (see8.3.3).

declaration = type-declaration | value-declaration | procedure-declaration | termination-declaration .

NOTE — This clause provides the mechanisms by which the facilities of this International Standard can be extended to mee the needs of a
particular application. These mechanisms are intended to fadlitate mappings by all owing for definition of datatypes and subtypes
appropriate to a particular languege, and to fadlitate definition o application services by all owing the definition o more astract datatypes.

9.1 Type Declarations

A type-declaration defines a new type-identifier to refer to a datatype or a datatype generator. A datatype dedaration may be
used to acamplish any of the following:

« to rename an existing datatype or name an existing datatype which has a complex syntax, or
« asthe syntadic component of the definition of a new datatype, or

* asthe syntadic component of the definition of a new datatype generator.

Syntax:

type-declaration = "type" type-identifier [(" formal-type-parameter-list ")"]
n_n ["neW"] type—definition .

type-identifier = identifier .

formal-type-parameter-list = formal-type-parameter { "," formal-type-parameter } .
formal-type-parameter = formal-parameter-name ":" formal-parameter-type .
formal-parameter-name = identifier .

formal-parameter-type = type-specifier | "type" .

type-definition = type-specifier .

formal-parametric-value = formal-parameter-name .

formal-parametric-type = formal-parameter-name .

Every formal-parameter-name appearing in the formal-type-parameter-list shall appear at least once in the type-definition.
Each formal-parameter-name whose formal-parameter-type is a type-specifier shal appea as a formal-parametric-value and
ead formal-parameter-name whase formal-parameter-type is "type" shal appear as a formal-parametric-type. Except for
such ocaurrences, no value-expression appeaing in the type-definition shall be aformal-parametric-value and ro type-
specifier appeaing in the type-definition shall be aformal-parametric-type.

52

The type-identifier dedared in atype-declaration may be referenced in a subsequent use of a type-reference (see8.5). The for-
mal-type-parameter-list dedares the number and required nature of the actual-type-parameters which must appea in a type-
reference which references this type-identifier. A type-reference which references this type-identifier may appea in an
alternative- type of a choice-type or in the element-type of a pointer-type in the type-definition of this or any precaling type-
declaration. In any other case, the type-declaration for the type-identifier shall appear before the first referenceto it in atype-
reference.

No type-identifier shall be dedared more than oncein agiven context.

What the type-identifier is adually dedared to refer to depends on whether the keyword "new" is present and whether the
formal- parameter-type "type" is present.

9.1.1 Renaming declarations

A type-declaration which does not contain the keyword "new" dedares the type-identifier to be a synonym for the type-
definition. A type-reference referencing the type-identifier refers to the LI datatype identified by the type-definition, after
substitution of the adual datatype parameters for the corresponding formal datatype parameters.

9.1.2 New datatype declarations

A type-declaration which contains the keyword "new" and does not contain the formal-parameter-type "type" is sid to be a
datatype declaration. It defines the value-space of anew LI datatype, which is distinct from any other L1 datatype. If the for-
mal-type-parameter-list is not present, then the type-identifier is dedared to identify a single LI datatype. If the formal-type-
parameter-list is present, then the type-identifier is dedared to identify afamily of datatypes parametrized by the formal-type-
parameters.

The type-definition defines the value space of the new datatype (family) — there is a one-to-one rrespondence between
values of the new datatype and values of the datatype described by the type-definition. The charaderizing operations, and any
other property of the new datatype which cannot be deduced from the value space, shal be provided along with the type-
declaration to complete the definition of the new datatype (family). The charaderizing operations may be taken from those of
the datatype (family) described by the type-definition diredly, or defined by some algorithmic means using those operations.

NOTE — The purpose of the "new" declarationisto all ow bath syntadic and semantic distinction between datatypes with identicd value
spaces. Itisnot required that the characterizing operations on the new datatype be different from thase of the type-definition. A semantic
distinction based on application concerns too complex to appear in the basic characterizing operationsis possble. For example, accderation
and velocity may have identical computational value spaces and operations (datatype "red") but quite different physicd ones.

9.1.3 New generator declarations

A type-declaration which contains the keyword "new" and at least one formal-type-parameter whaose formal-parameter-type is
"type" is said to be agenerator declaration. A generator dedaration dedares the type-identifier to be a new datatype
generator parametrized by the formal-type-parameters, and the associated value space construction algorithm to be that
spedfied by the type-definition. The charaderizing operations, and other properties of the datatypes resulting from the
generator which cannot be deduced from the value space, shall be provided along with the generator dedaration to complete
the definition of the new datatype generator.

The formal-type-parameters whose formal-parameter-type is "type" are said to be parametric datatypes. A generator
dedaration shall be acompanied by a statement of the constraints on the parametric datatypes and on the values of the other
formal- type-parameters, if any.

9.2 Value Declarations

A value-declaration dedares an identifier to refer to aspedfic value of a spedfic datatype. Syntax:
value-declaration = "value" value-identifier ":" type-specifier "=" independent-value .
value-identifier = identifier .
The value-declaration dedares the identifier value-identifier to dencte that value of the datatype designated by the type-

specifier which is denoted by the given independent-value (see 7.5.1). The independent-value shall (be interpreted to)
designate avalue of the designated L1 datatype, as spedfied by Clause 8 ar Clause 10.

53

No independent-value appearing in a value-declaration shall be a formal-parametric-value and no type-specifier appearing in a
value-declaration shall be a formal-parametric-type.

9.3 Termination Declarations
A termination-declaration declares a termination-identifier to refer to an alternate termination common to multiple procedures
or procedure datatypes (see 8.3.3) and declares the collection of procedure parameters returned by that termination.
termination-declaration = "termination” termination-identifier ["(* termination-parameter-list)"] .
termination-identifier = identifier .
termination-parameter-list = parameter { "," parameter } .
parameter = [parameter-name ":"] parameter-type .
parameter-type = type-specifier .

parameter-name = identifier .

The parameter-names of the parameters in a termination-parameter-list shall be distinct. No termination-identifier shall be
declared more than once, nor shall it be the same as any type-identifier.

The termination-declaration is a purely syntactic object. All semantics are derived from the use of the termination-identifier
as atermination-reference in a procedure or procedure datatype (see 8.3.3).

10 Defined Datatypes and Generators

This clause specifies the declarations for commonly occurring datatypes and generators which can be derived from the
datatypes and generators defined in Clause 8 using the declaration mechanisms defined in Clause 9. They are included in this
International Standard in order to standardize their designations and definitions for interchange purposes.

10.1 Defined datatypes

This clause specifies the declarations for a collection of commonly occurring datatypes which are treated as primitive datatypes
by some common programming languages, but can be derived from the datatypes and generators defined in Clause 8.
The template for definition of such adatatypeis:

Description: prose description of the datatype.

Declaration: atype-declaration for the datatype.

Parametric values. when the defined datatype is afamily of datatypes, identification of and constraints on the parametric
values of the family.

Values: formal definition of the value space.

Vaue-syntax: when there is a special notation for values of this datatype, the requisite syntactic productions, and
identification of the values denoted thereby.

Properties: properties of the datatype which indicate its admissibility as a component datatype of certain datatype
generators. numeric or non-numeric, approximate or exact, ordered or unordered, and if ordered,
bounded or unbounded.

Operations: characterizing operations for the datatype.

The notation for values of adefined datatype may be of two kinds:

1) If the datatype is declared to have a specific value syntax, then that value syntax is a valid notation for values of the
datatype, and has the interpretation given in this clause.

2) If the datatype is not declared to have a specific value syntax, then the syntax for explicit-values of the datatype identified
by the type-definition is avalid notation for values of the defined datatype.

54

10.1.2 Natural number

Description: Naturalnumber is the datatype of the cardinal or natural numbers.
Declaration:
type naturalnumber = integer range (0..%);
Parametric Vaues: none.
Vadues: the non-negative subset of the value-space of datatype Integer.
Properties: ordered, exact, numeric, unbounded above, bounded below.
Operations. all those of datatype Integer, except Negate (which is undefined everywhere).

10.1.3 Modulo

Description: Modulo isafamily of dataypes derived from Integer by replacing the operations with arithmetic operations using
the modulus characteristic.

Declaration:
type modulo (modulus: integer) = new integer range(0..modulus) excluding(modulus);

Parametric Vaues. modulusisan integer value, such that 1 < modulus, designated the modulus of the Modulo datatype.

Vaues: al Integer valuesv such that 0 < v and v < modulus.

Properties: ordered, exact, numeric.

Operations. Equal, InOrder from Integer; Add, Multiply, Negate.

Add(x,y: modulo (modulus)): modulo(modulus) =
I nteger.Remainder(integer. Add(x,y), modulus).

Negate(x: modulo (modulus)): modulo (modulus) is the (unique) valuey in the value space of modulo(modulus) such that
Add(x, y) =0.

Multiply(x,y: modulo (modulus)): modulo(modulus) =
Integer.Remainder(integer.Multiply(x,y), modulus).
10.1.4 Bit
Description: Bit is the datatype representing the finite field of two symbols designated "0", the additive identity, and "1", the
multiplicative identity.
Declaration:
type bit = modulo(2);
Parametric Values: none.
Vaues: 0,1
Properties. ordered, exact, numeric, bounded.
Operations: (Equal, InOrder, Add, Multiply) from Modulo.

10.1.5 Bit string

Description: Bitstring is the datatype of variable-length strings of binary digits.
Declaration:

type bitstring = new sequence of (bit);
Parametric Values: none.

Vaues: Each value of datatype bitstring is a finite sequence of values of datatype bit. The value-space comprisesall such
values.

55

Vaue-syntax:
bitstring-literal = quote { bit-literal } quote .
bit-literal = "0" | "1" .

The bitstring-literal denotes that value in which the first value in the sequence is that denoted by the leftmost bit-literal,
the second value in the sequence is that denoted by the next bit-literal, etc. If there are no hit-literalsin the bitstring-
literal, then the value denoted is the sequence of length zero.

Properties: unordered, exact, non-numeric.
Operations. (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTES
1. Bitstring is assumed to be a Sequence, rather than an Array, in that the values may be of different lengths.

2. Thedescription and properties of bitstring are identical to those of sequence of (bit). Bitstring is said to be "new" in order to facilitate
mappings. Entities may need to attach special properties to the bitstring datatype.

10.1.6 Character string

Description: Characterstring is afamily of datatypes which represent strings of symbols from standard character-sets.
Declaration:

type characterstring (repertoire: objectidentifier) = new sequence of (character (repertoire));
Parametric Values: repertoireisa"repertoire-identifier” (see 8.1.4).

Vadues: Each value of acharacterstring datatype is afinite sequence of members of the character-set identified by repertoire.
The value-space comprises the collection of all such values.

Vaue syntax:
string-literal = quote { string-character } quote .
string-character = non-quote-character | added-character | escape-character .
non-quote-character = letter | digit | underscore | special | apostrophe | space .
added-character = not defined by this International Standard .
escape-character = escape character-name escape .

character-name = identifier { identifier } .

Each string-character in the string-literal denotes a single member of the character-set identified by repertoire, as
provided in 8.1.4. The string-literal denotes that value of the characterstring datatype in which the first value in the
sequence is that denoted by the leftmost string-character, the second value in the sequence is that denoted by the next
string-character, etc. If there are no string-charactersin the string-literal, then the value denoted is the sequence of
length zero.

Properties: unordered, exact, non-numeric, denumerable.
Operations. (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).
NOTES

1. Thereisno genera international standard for collating sequences, although certain international character-set standards require specific
collating sequences. Applications which need the order relationship on characterstring, and which share a character-set for which thereis no
standard collating sequence, need to create a defined datatype or a repertoire-identifier which refersto the character-set and the agreed-upon
collating segquence.

2. Characterstring is defined to be a Sequence, rather than an Array, to permit values to be of different lengths.

3. Thedescription and properties of the characterstring(r) datatype are identical to those of sequence of (character(r)). Characterstring
datatypes are said to be "new" in order to facilitate mappings. Entities may need to attach special properties to character string datatypes.

56

4. Many languages distinguish as sparate datatypes objeds represented by charader strings with spedfic syntactic requirements. For ex-
ample, LISPhas dynamic evaluation of "s-expressons’; Prolog has a similar construct; COBOL represents currency as a "numeric edited
string"; and several languages have an "identifier" datatype whaose values are treaed as user-defined objects to which properties will be
attached. 1n a multi-language environment, such objeds can probably be manipulated only as datatype characterstring, except in the
language in which the special properties were intended to be interpreted. Thus, such datatypes sioud be declared as L1 datatypes "derived
from characterstring’, e.g.:

type identifier = new characterstring(repertoire) size(1..maxidsize);

or:
type editcharacter = character({iso standard 646}) selecting ('0"..’9", ".", ',", '+, ™", '§’, '#, '*);
type numericedited = new sequence of (editcharacter);

In each case, the keyword "new" shoud be used to indicate the presence of unusual characterizing operations, formation rules and interpreta-
tions (see 9.1.2).

10.1.7 Time interval

Description: Timeinterval isafamily of datatypes representing elapsed time in seconds or fradions of a second (as opposed to
Date-and-time, which represents apoint in time, see8.1.6). It isagenerated datatype derived from a scded datatype by
limiting the operations.

Dedaration:
type timeinterval(unit: timeunit, radix: integer, factor: integer) = new scaled (radix, factor);
type timeunit = state(year, month, day, hour, minute, second);
Parametric Values: Radix isapasitive integer value, and factor is an integer value.
Values: all valueswhich areintegral multiples of one radix™** unit of the spedfied timeunit.
Properties: ordered, exad, numeric, unbourded.
Operations. (Equal, Add, Negate) from Scded; ScdarMultiply.
Let scded.Multiply() be the Multiply operation defined on scded datatypes. Then:
ScdarMultiply(x: scded(r,f), y: timeinterval (u,r,f)): timeinterval (u,r,f) = scded.Multiply(x,y).

EXAMPLE — timeinterval(second, 10, 3) isthe datatype of elapsed time in milli secondks.
10.1.8 Octet

Description: Octet is the datatype of 8-bit codes, as used for charader-sets and private encodings.
Dedaration:
type octet = new integer range (0..255);
Parametric Values: none.
Vaues: Eac value of datatype Octet is a code, represented by a non-negative integer value in the range [0, 255].
Properties: ordered, bounded, exad, non-numeric, finite.
Operations: (Equal, InOrder) from Integer.

NOTES
1. Octet isacommon datatype in communications protocols.

2. Itiscommon to define "characterizing operations’ that convert an octet value to a bitstring value or an array of bit value, but thereis
no agreement on which bit of the octet isfirst in the bit string, or equivalently, how the array indices map to the bits.

10.1.9 Octet string

Description: Octetstring is the datatype of variable-length encodings using 8-bit codes.
Dedaration:

type octetstring = sequence of (octet);

57

Parametric Values: none.

Vaues: Ead value of the octetstring datatypeis afinite sequence of codes represented by octet values. The value-space om-
prisesthe colledion d al such values, including the empty sequence.

Properties: unordered, exad, non-numeric, denumerable.
Operations. (Head, Tail, Append, Equal, Empty, ISEmpty) from Sequence (8.4.4).

NOTE — Among other uses, an octetstring value is the representation of a charaderstring value, and is used when the charaderstring isto be
manipulated as codes. In particular, octetstring shoud be preferred when the values may contain codes which are not associated with
charactersin the repertoire.

10.1.10 Private

Description: A Private datatype represents an appli cation-defined value-space and operation set which are intentionally con-
ceded from certain processng entities.

Dedaration:
type private(length: NaturalNumber) = new array (1..length) of (bit);

Parametric Vaues: Length shall have a positive integer value.

Vaues: application-defined.

Properties: unordered, exad, non-numeric.

Operations. none.
NOTES
1. Thereisno denotation for avalue of a Private datatype.

2. Thepurpose of the Private datatype is to provide ameans by which:

a) an olbea of anonstandard datatype, having a complex internal structure, can be passed between two parties which understand the
type througha standard-conforming service withou the service having to interpret the internal structure, or

b) vaues of adatatype which is meaningessto all parties but one, such as"handes', can be provided to an end-user for later use by
the knowledgeable service, for example, as part of a padage interface

In either case, the length and ardering d the bits must be properly maintained by all intermediaries. In the former case, the Private datatype
may be encoded by the provider (or his marshalling agent) and decoded by the redpient (or his marshalling agent). In the latter case the
Private datatype will be encoded and decoded only by the knowledgeable agent, and all others, including end-users, will hande it as a bit-

array.
10.1.11 Object identifier

Description: Objedidentifier is the datatype of "objed identifiers’, i.e. valueswhich uriquely identify obedsin a (Open
Systems Interconnedion) communicaions protocol, using the formal structure defined by Abstrad Syntax Notation One
(ISO/IEC 8824:1990).

Dedaration:
type objectidentifier = new sequence of (objectidentifiercomponent) size(1..%);
type objectidentifiercomponent = new integer range(0..%);

Parametric Values: none.

Vaues: The value spaceof datatype objedidentifiercomponent isisomorphic to the cardinal numbers (10.1.1), but the
meaning of ead value is determined by its position in an objedidentifier value.

The value-spaceof datatype objedidentifier comprises all non-empty finite sequences of objedidentifiercomponent
values. The meaning of each objedidentifiercomponent value within the objedidentifier value is determined by the
sequence of values precaling it, as provided by | SO/IEC 8824:1990. The sequence cnstituting a single value of datatype
objedidentifier uniquely identifies an ojed.

Vaue syntax:

objectidentifier-value = ASN-object-identifier | collection-identifier .

58

ASN-object-identifier = “{* objectidentifiercomponent-list “}" .

objectidentifiercomponent-list = objectidentifiercomponent-value { objectidentifiercomponent-value } .
objectidentifiercomponent-value = nameform | numberform | nameandnumberform .

nameform = identifier .

numberform = number .

nameandnumberform = identifier “(* numberform “)" .

collection-identifier = registry-name registry-index .

registry-name = "ISO_10646" | "ISO_2375" | "ISO_7350" | "ISO_10036" .

registry-index = number .

An objectidentifier-value denotes a value of datatype objectidentifier. An objectidentifiercomponent-value denotes a
value of datatype objectidentifiercomponent. A value-identifier appearing in the numberform shall refer to a non-negative
integer value. In all cases, the value denoted by an ASN-object-identifier is that prescribed by 1SO/IEC 8824:1990
Abstract Syntax Notation One.

A collection-identifier denotes a value of datatype objectidentifier which refersto aregistered character-set.

The keyword "ISO_10646" refers to the collections defined in Annex A of 1SO/IEC 10646-1:1993 and the collection
designated is that collection whose "collection-number" is the value of registry-index. The form of the object identifier
vaueis

{ is0(1) standard(0) 10646 part1(1) registry-index}.

A collection-identifier beginning with the keyword "ISO_2375" designates the collection registered under the provisions
of 1S0O 2375:1985 whose registration-number is the value of registry-index. The form of the object identifier valueis:
{ is0(1) standard(0) 2375 registry-index } .

A collection-identifier beginning with the keyword "ISO_7350" designates the collection registered under the provisions
of 1SO 7350:1991 whose registration-number is the value of registry-index. The form of the object identifier valueis:

{ 1s0(1) standard(0) 7350 registry-index } .

A collection-identifier beginning with the keyword "ISO_10036" designates the collection registered under the
provisions of SO 10036:1991 whose registration-number is the value of registry-index. The form of the object identifier
vaueis

{ is0(1) standard(0) 10036 registry-index }.

Properties. unordered, exact, non-numeric.
Operations on objectidentifiercomponent: Equal from Integer;
Operations on objectidentifier: Append from Segquence; Equal, Length, Detach, Last.
Length(x: objectidentifier): integer is the number of objectidentifiercomponent valuesin the sequence x;

Detach(x: objectidentifier): objectidentifier, where Length(x) > 1, is the objectidentifier formed by removing the last
objectidentifiercomponent value from the sequence x;

Last(x: objectidentifier): objectidentifiercomponent is the objectidentifiercomponent value which is the last element of the
sequence x;

Equal(x,y: objectidentifier): boolean =
if Not(Length(x) = Length(y)) then false,
elseif Not(objectidentifiercomponent.Equal (Last(x), Last(y))) then false,
elseif Length(x) = 1 then true,
else Equal (Detach(x), Detach(y));

NOTES

1. IsEmpty, Head and Tail from Sequence are not meaningful on datatype objectidentifier. Therefore, Length and Equal are defined here,
athough they could be derived by using the Sequence operations.

59

2. Objectldentifier istreated as a primitive type by many applications, but the mechanism of definition of its value space, and the use of
that mechanism by some applications, such as Directory Servicesfor OSl, requires the valuesto be lists of an accessible element datatype
(objectidentifiercomponent).

10.2 Defined generators

This clause specifies the declarations for a collection of commonly occurring datatype generators which can be derived from
the datatypes and generators appearing in Clause 8.

The template for definition of such adatatype generator is.

Description: prose description of the datatype generator.

Declaration: atype-declaration for the datatype generator.

Components: number of, and constraints on, the parametric datatypes and parametric values used by the generation
procedure.

Values: formal definition of the resulting value space.

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype of certain

datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered, and if
ordered, bounded or unbounded.

When the generator generates an aggregate datatype, the aggregate properties described in clause 6.8
are also specified.

Operations: characterizing operations for the resulting datatype which associate to the datatype generator. The
definitions of operations have the form described in 8.1.
10.2.1 Stack

Description: Stack isagenerator derived from Sequence by replacing the characterizing operation Append with the
characterizing operation Push. That is, the insertion operation (Push) puts the values on the beginning of the sequence
rather than the end of the sequence (Append).

Declaration:
type stack (element: type) = new sequence of (element);
Components: element may be any datatype.
Vdues: al finite sequences of values from the element datatype.
Properties: non-numeric, unordered, exact if and only if the element datatype is exact.
Aggregate properties: homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by position).
Operations. (IsEmpty, Equal, Empty) from Sequence; Top, Pop, Push.
Top(x: stack (element)): element = sequence.Head(x).
Pop(x: stack (element)): stack (element) = sequence.Tail(x).
Push(x: stack (element), y: element): stack (element) is the sequence formed by adding the single value y to the beginning
of the sequence x.
10.2.2 Tree

Description: Treeisagenerator which generates recursive list structures.
Declaration:

type tree (leaf: type) = new sequence of (choice(state(atom, list)) of (
(atom): leaf,
(list): tree(leaf)));

Components: leaf shall be any datatype.

60

Vadues: al finite recursive sequences in which every valueis either avalue of the leaf datatype, or a (sub-)treeitself.
Ultimately, every "termina"” valueis of the led datatype.

Properties: unordered, non-numeric, exad if and only if the leaf type is exad, denumerable.
Aggregate properties: homogeneous, variable-size, no uriqueness, imposed ordering, acessindired (by position).
Operations. (IsEmpty, Equal, Empty, Head, Tail) from Sequence Join.
To fadlit ate definition of the operations, the datatype tree_ member is introduced, with the dedaration:
type tree_member(leaf: type) = choice(state(atom, list)) of ((atom): leaf, (list): tree(leaf));
tree_ member(leaf) isthen the dement datatype of the sequence datatype underlying the treedatatype.

Join(x: treg(leaf), y: tree_member(leaf)): tree(leaf) is the sequencewhose Head (first member) isthe valuey, and whose
Tail isal members of the sequence x.

NOTE — Treeis an aggregate datatype which is formally an aggregate (sequence) of tree members. Conceptually, treeis an aggregate
datatype whose values are aygregates of leaf values. In either case, it is proper to consider Tree a homogeneous aggregate.

10.2.3 Cyclic enumerated

Description: Cyclic (enumerated) is a generator which redefines the successor operation on an enumerated datatype, so that
the successor of the last value isthefirst value.

Dedaration:
type cyclic of (base: type) = new base;
Components. base shall designate an enumerated datatype.
Vaues: dl valuesv of the base datatype.
Properties: ordered, exad, non-numeric.
Operations. (Equal, InOrder) from the base datatype; Successor.
L et base.Successor denote the Successor operation defined on the base datatype; then:

Successor(x: cyclic of (base)): cyclic of (base) is
if for al y in the value spaceof base, Or(Not(InOrder(x,y)), Equal(x,y)), then that value z in the value space of base
such that for all y in the value space of base, Or(Not(InOrder(y,z)), Equal(y,z));else base.Successor(x).

10.2.4 Optional

Description: Optiona is agenerator which eff edively adds the "nil" value to the value spaceof abase datatype.
Dedaration:

type optional(base: type) = new choice (boolean) of ((true): base, (false): void);
Components. base shall designate any datatype.

Vaues: al valuesv of the base datatype plusthe "nil value" of void. Thistypeisisomorphic to the set of pairs:
{ (true, v) | vinbase} union { (false, nil) },
which isthe modell ed value spaceof the choice-type.

Properties: all properties of the base datatype, except for the value "nil".
Operations. IsPresent (= Discriminant from Choice); al operations on the base datatype, modified asindicated below.
IsPresent(x: optional (base)): boolean = Discriminant(x);
All unary operations of the form: Unary-op(x: base): result-type are defined on gotional(base) by:
Unary-op(x: optional (base)): result-typeisif IsPresent(x) then Unary-op(Cast.base(x)), else undefined.
All binary operations of the form: Binary-op(X, y: base): result-type ae defined on optional (base) by:

61

Binary-op(x, y: optional (base)): result-typeis:
if And(IsPresent(x), IsPresent(y)), then Binary-op(Cast.base(x), Cast.base(y)),
else undefined.

Other operations are defined similarly.

NOTE — An ogtional datatype is the proper type of an objed, such as a parameter to a procedure or afield of arecord, which in some
instances may have no value.

EXAMPLES

1. A reoord-type containing optional (sometimes not present or "undefined") values can be declared:
record (
required_name: characterstring,
optional_value: optional(integer));

2. A procedure parameter which may only sometimes be provided can be declared:
procedure search(in t: T,
in tableT: sequence of (T),
in index: optional(procedure(in i: integer, in j: integer): integer)
): boolean;
The parameter index, which is an indexing function for tableT, need na aways be provided. That is, it may have value "nil".

11 Mappings

This clause defines the general form of and requirements for mappings between the datatypes of a programming o
spedfication language and the LI datatypes.

The internal datatypes of a language are considered to include the information type and structure notions which can be
expressd in that language, particularly those which describe the nature of objeds manipulated by the language primitives.
Like the LI datatypes, the datatype notions of alanguage can be divided into primitive datatypes and datatype generators. The
primiti ve datatypes of alanguage are those objed types which are considered in the language semantics to be primitive, that is,
not to be generated from other internal datatypes. The datatype generators of alanguage are those language constructs which
can be used to produce new datatypes, objeds with new datatypes, more daborate information structures or static inter-objed
relationships.

This International Standard defines a neutral language for the formal identification of predse semantic datatype notions — the
LI datatypes. The notion of a mapping between the internal datatypes of a language and the LI datatypes is the conceptual
identification of semanticdly equivalent nations in the two languages. There are then two kinds of mappings between the
internal datatypes of alanguage and the L1 datatypes:

< amapping from the internal datatypes of the language into the LI datatypes, referred to as an outward mapping, and
< amapping from the L1 datatypes to the internal datatypes of the language, referred to as an inward mapping.

This International Standard does not spedfy the predse form of a mapping, because many detail s of the form of a mapping are
language-dependent. This clause spedfies requirements for the information content of inward and outward mappings and con-
ditions for the aceptability of such mappings.

NOTES

1. Mapping, inthis $nse, does nat apply to program modues or service specificaions diredly, because they manipul ate specific object-
types, which have spedfic datatypes expressed in a specific language or languages. The datatypes of a program modue or service
spedficaion can therefore be described in the L1 datatypes language directly, or inferred from the inward and autward mappings of the
languege in which the module or specification iswritten.

2. The companion rotion d conversion of values from an internal representation to aneutral representation associated with L1 datatypesis
not apart of this International Standard, but may be apart of standards which refer to this International Standard.

62

11.2 Outward Mappings

An outward mapping for a primitive internal datatype shall identify the syntactic and semantic constructs and relationships in
the language which together uniquely represent that internal datatype and associate the interna datatype with a corresponding
LI datatype expressed in the formal language defined by Clause 7 through Clause 10.

An outward mapping for an internal datatype generator shall identify the syntactic and semantic constructs and relationships in
the language which together uniquely represent that internal datatype generator and associate the internal datatype generator
with a corresponding LI datatype generator expressed in the formal language defined in this International Standard.

The collection of outward mappings for the datatypes and datatype generators of a language shall be said to constitute the
outward mapping of the language and shall have the following properties:

i) toeach primitive or generated interna datatype, the mapping shall associate a single corresponding L1 datatype; and

ii) for each internal datatype, the mapping shall specify the relationship between each alowed value of the internal
datatype and the equivalent value of the corresponding LI datatype; and

iii) for each value of each LI datatype appearing in the mapping, the mapping shall specify whether any value of any in-
ternal datatype is mapped onto it, and if so, which values of the internal datatypes are mapped onto it.

NOTES

1. Thereisno requirement for aprimitive internal datatype to be mapped to a primitive LI datatype. This International Standard provides
avariety of conceptual mechanisms for creating generated L1 datatypes from primitive or previously-created datatypes, which are, inter alia,
intended to facilitate mappings.

2. Aninternal datatype constructed by application of an internal datatype generator to a collection of internal parametric datatypes will be
implicitly mapped to the L1 datatype generated by application of the mapped datatype generator to the mapped parametric datatypes. In this
way, property (i) above may be satisfied for internal generated datatypes.

3. The conceptual mapping to LI datatypes may not be either 1-to-1 or onto. A mapping must document the anomalies in the identification
of internal datatypes with L1 datatypes, specifically those values which are distinct in the language, but not distinct in the L1 datatype, and
those values of the LI datatype which are not accessible in the language.

4. Among other uses, an outward mapping may be used to identify an internal datatype with a particular LI datatype in order to require op-
eration or representation definitions specified for LI datatypes by another standard to be properly applied to the internal datatype.

5. An outward mapping may be used to ensure that interfaces between two program units using a common programming language are
properly provided by athird-party service which isignorant of the language involved.

11.3 Inward Mappings

An inward mapping for a primitive L1 datatype, or asingle generated L1 datatype, shall associate the L1 datatype with a single
internal datatype, defined by the syntactic and semantic constructs and relationships in the language which together uniquely
represent that internal datatype. Such a mapping shall specify limitations on the parametric values of any LI datatype family
which exclude members of that family from the mapping. Different members of a single LI datatype family may be mapped
onto dissimilar internal datatypes.

An inward mapping for a LI datatype generator shall associate the LI datatype generator with an internal datatype generator,
defined by the syntactic and semantic constructs and relationships in the language which together uniquely represent that
internal datatype generator. Such a mapping shall specify limitations on the parametric datatypes of any LI datatype generator
which exclude corresponding classes of generated datatypes from the mapping. The same LI datatype generator with different
parametric datatypes may be mapped onto dissimilar internal datatype generators.

An inward mapping for a LI datatype shall associate the LI datatype with an internal datatype on which it is possible to
implement all of the characterizing operations specified for that LI datatype.

The collection of inward mappings for the LI datatypes and datatype generators onto the internal datatypes and datatype

generators of a language shall be said to constitute the inward mapping of the language and shall have the following
properties:

63

i) for each LI datatype (primitive or generated), the mapping shall specify whether the LI datatype is supported by the
language (as specified in 11.4), and if so, identify a single corresponding internal datatype; and

i) for each LI datatype which is supported, the mapping shall specify the relationship between each allowed value of
the LI datatype and the equivalent value of the corresponding internal datatype; and

iii) for each value of an internal datatype, the mapping shall specify whether that value is the image (under the mapping)
of any value of any LI datatype, and if so, which values of which LI datatypes are mapped onto it.

NOTES

1. A LI generated datatype which is not specifically mapped by a primitive datatype mapping, and whose parametric datatypes are admis-
sible under the constraints on the datatype generator mapping, will be implicitly mapped onto an internal datatype constructed by application
of the mapped internal datatype generator to the mapped internal parametric datatypes.

2. Whenall datatype, primitive or generated, is mapped onto a language datatype, whether explicitly or implicitly by mapping the gener-
ators, the associated internal datatype should support the semantics of the LI datatype. The proof of this support is the ability to perform the
characterizing operations on the internal datatype. It isnot necessary for the language to support the characterizing operations directly (by
operator or built-in function or anything the like), but it is necessary for the characterizing operations to be conceptually supported by the
internal datatype. Either it should be possible to write procedures in the language which perform the characterizing operations on objects of
the associated internal datatype, or the language standard should require this support in the further mappings of itsinternal datatypes,
whether into representations or into programming languages.

3. The conceptual mapping onto internal datatypes may not be either 1-to-1 or onto. A mapping must document the anomaliesin the asso-
ciation of internal datatypes with LI datatypes, specifically those values which are distinct in the LI datatype, but not distinct in the language,
and those values of the interna datatype which are not accessible through interfaces using LI datatypes.

4. Aninward mapping to a programming language may be used to ensure that an interface between two program units specified in terms
of LI datatypes can be properly used by programs written in that language, with language-specific, but not application-specific, software
tools providing conversions of information units.

11.4 Reverse Inward Mapping

An inward mapping from a LI datatype into the internal datatypes of a language defines a particular set of values of internal
datatypes to be the image of the LI datatype in the language. The reverse inward mapping for a LI datatype maps those
values of the internal datatypes which constitute its image to the corresponding values of that LI datatype using the
correspondence which is established by the inward mapping. For the reverse inward mapping to be unambiguous, the inward
mapping of each L1 datatype must be 1-to-1. Thisisformalized asfollows:

i) if aisavalue of the LI datatype and the inward mapping maps a to avalue @ of some internal datatype, then the
inward mapping shall not map any value b of the same LI datatypeinto a’, unlessb = a; and

i) if aisavaue of alLl datatype and the inward mapping maps a to a value @' of some internal datatype, then the
reverse inward mapping mapsa’ to a; and

iii) if cisavalueof aLl datatype which is excepted from the domain of the inward mapping, i.e. maps to no value of the
corresponding internal datatype, then there is no value ¢’ of any interna datatype such that the reverse inward
mapping maps c’ to c.

Thereverseinward mapping for a language is the collection of the reverse inward mappings for the L1 Datatypes.

NOTES

1. When aninterface between two program unitsis specified in terms of L1 datatypes, it is possible for the interface to be utilized by
program units written in different languages and supported by a service which isignorant of the languages involved. The inward mapping
for each language is used by the programmer for that program unit to select appropriate internal datatypes and values to represent the
information which isused in the interface. Information isthen sent by one program unit, using the reverse inward mapping for its language
to map theinternal values to the intended values of the LI datatypes, and received by the other program unit, using the inward mapping to
map the LI datatype values passed into suitable internal values. The actual transmission of the information may involve three software tools:
one to perform the conversion between the sender form and the interchange form, automating the reverse inward mapping, one to transmit
the interchange form based on LI datatypes, and one to perform the conversion between the interchange form and the receiving internal form,
automating the inward mapping. None of these intermediate tools depends on the particular interface being used. Thus, it is possible to

64

implement an arbitrary interface using LI datatypes, in any programming language which supparts thase datatypes without interface-spedfic
todls.

2. Thereverse inward mapping for alanguage does not have useful formal properties. The sameinternal value can be mapped to severa

different values, aslongas the different values belong to different LI datatypes. It is the per-datatype reverse inward mapping which is
useful.

11.5 Support of Datatypes

An information processng entity is said to support a LI datatype if its mapping o that datatype into some interna datatype
(seel1.2) preserves the properties of that datatype (see6.3) as defined in this subclause.

NOTE — For aggregate datatypes, preservation d the "aggregate properties’ defined in 6.8 is nat required.
11.5.1 Support of equality

For a mapping to preserve the equality property, any two instances a, b o values of the internal datatype shall be considered
equal if and only if the corresponding values a, b’ of the LI datatype are equal.

11.5.2 Support of order

For amapping to preserve the order property, the order relationship defined onthe internal datatype shall be consistent with the
order relationship defined on the LI datatype. That is, for any two instances a, b of values of the internal datatype, a < b shall
betrueif and orly if, for the mrresponding valuesa’, b’ of the LI datatype, @ <b’.

11.5.3 Support of bounds

For a mapping to preserve the bourds, the internal datatype shall be bounded above if and only if the LI datatype is bounded
above, and theinternal datatype shall be bounded below if and only if the L1 datatype is bounded below.

NOTE — It follows that the values of the bounds must correspond
11.5.4 Support of cardinality

For a mapping to preserve the ardindity of a finite datatype, the internal datatype shall have exadly the same number of
values as the LI datatype. For a mapping to preserve the cardinality of an exad, denumerably infinite datatype, there shall be
exadly oreinterna value for every value of the LI datatype and there shall be no a priori limitation on the values which can
be represented. For a mapping to preserve the crdinality of an approximate datatype, it suffices that it preserve the
approximate property, as provided in 6.3.5.

NOTES

1. There may be addental li mitations onthe values of exact, denumerably infinite datatypes which can be represented, such asthe total
amourt of storage avail able to a particular user, or the physical size of the machine. Such alimitation is not an intentional limitation onthe
datatype as implemented by a particular information processng entity, and is thus not considered to affect suppat.

2. Anentity which a priori limitsinteger values to those which can be represented in 32 hits or charaderstrings to alength of 256

characters, however, is nat considered to suppat the mathematically infinite Integer and CharadterString datatypes. Rather such an entity
suppats describable subtypes of those datatypes (see 8.2).

11.5.5 Support for the exact or approximate property

To preserve the exad property, the mapping between values of the LI datatype and values of the internal datatype shall be 1-to-
1

For an inward mapping to preserve the approximate property, every value which is distinguishable in the LI datatype must be
distinguishable in the internal datatype.

NOTE — Theinternal datatype may have more \aluesthan the LI datatype, i.e. afiner degree of approximation.

65

For an outward mapping to preserve the approximate property, every value which is distinguishable in the internal datatype
must be distinguishable in the L1 datatype.

11.5.6 Support for the numeric property

There are no requirements for support of the numeric property. Support for the numeric property is a requirement on represen-
tations of the values of the datatype, which is outside the scope of this International Standard.

66

