
ISO/IEC JTC 1/SC22 WG11 N445

Willem Wakker- WG11 N455 - i

ISO/IEC PDTR 14369:1998(E)

Title:
Information technology – Programming Languages, their environments and system
software interfaces – Guidelines for the preparation of language-independent service
specifications (LISS)

Reference Language Version: English _ French �
Introductory Note

Source: SC22 WG11 LISS Project Editor

Status: PDTR Text for ballot in JTC1 SC22

ISO/IEC PDTR 14369:1998(E)

iii

Contents Page

INTRODUCTION.. IX

Background... ix

Principles .. ix

1. SCOPE ..1

2. REFERENCES ..1

3. DEFINITIONS AND ABBREVIATIONS..2

3.1 Definitions .. 2

3.2 Abbreviations ... 3

4. OVERVIEW..5

4.1 Services, interfaces, service providers and service users ... 5

4.2 Information technology services .. 5

4.3 Services and language independence... 6

4.4 Language-independent specifications ... 7

4.5 Problems of language dependence and inbuilt assumptions .. 7
4.5.1 Representational assumptions... 8
4.5.2 Implementation assumptions ... 8

5. GUIDELINES ON STRATEGY...9

5.1 General guidelines ... 9
5.1.1 Guideline: Dependence of the interface on the service.. 9
5.1.2 Guideline: What to do when there are interoperability, concurrency, or time constraint issues9
5.1.3 Guideline: Use of marshalling/unmarshalling ... 9
5.1.4 Guideline: Recruiting expertise from a variety of backgrounds .. 10

5.2 What to do if starting from scratch ... 10
5.2.1 General guidelines ... 10
5.2.2 Specifying the service in language-independent form... 10
5.2.3 Specifying the interface to the service in language-independent form.................................... 11

5.3 What to do if starting from an existing language-dependent specification .. 11
5.3.1 General guidelines ... 12
5.3.2 Converting an existing language-dependent specification of the service into language-
independent form... 13
5.3.3 Converting an existing implicit interface into an explicit language-independent interface....... 14
5.3.4 Specifying a language-independent interface to a service whose specification is language-
dependent .. 15

ISO/IEC PDTR 14369:1998(E)

iv

6. GUIDELINES ON DOCUMENT ORGANISATION .. 17

6.1 Guideline: The general framework ... 17
6.1.1 Checklist of parts for inclusion... 17

6.2 Guideline: Production and publication.. 18

6.3 Guideline: Document organisation when starting from a language-specific specification 19

7. GUIDELINES ON TERMINOLOGY... 20

7.1 Guideline: The need for rigour.. 20

7.2 Guideline: The need for consistency .. 20

7.3 Guideline: Use of undefined terms ... 20

7.4 Guideline: Use of ISO 2382.. 20

7.5 Guideline: Use of definition by reference ... 21

7.6 Guideline: Terminology used in bindings ... 21

8. GUIDELINES ON USE OF FORMAL SPECIFICATION LANGUAGES 22

8.1 Guideline: Use of a formal specification language ... 22

8.2 Checklist of formal specification languages .. 22
8.2.1 Estelle .. 22
8.2.2 Lotos.. 22
8.2.3 VDM-SL ... 23
8.2.4 Z... 23

8.3 Guideline: Using formal specifications from the outset .. 23

8.4 Guideline: Use of operational semantics.. 24

9. GUIDELINES ON INTEROPERABILITY ... 25

9.1 Introduction .. 25
9.1.1 Interoperability with what?... 25
9.1.2 The nature of the interoperation .. 26
9.1.3 How interoperation is invoked ... 26

9.2 Guidelines on interoperability with other instantiations of the same service..................................... 26
9.2.1 Guideline: Identifying features affecting interoperability... 26
9.2.2 Guideline: Precise definition and rigorous conformity requirements...................................... 26
9.2.3 Guideline: Importance of exchange values .. 27

9.3 Guidelines on interoperability with other services ... 27
9.3.1 Guideline: Interoperability with other services being defined at the same time 27
9.3.2 Guideline: Interoperability with a pre-defined service .. 28

10. GUIDELINES ON CONCURRENCY ISSUES... 29

10.1 Guidelines on concurrency within the service specification .. 29
10.1.1 Guideline: Avoidance of unnecessary concurrency requirements 29

ISO/IEC PDTR 14369:1998(E)

v

10.2 Guidelines on concurrency of interaction with service users... 29
10.2.1 Guideline: Handling of concurrent service requests ... 30
10.2.2 Guideline: Number of concurrent service requests handled... 30
10.2.3 Guideline: Order of processing of service requests.. 30
10.2.4 Guideline: Criteria for prioritizing service requests ... 30

10.3 Guidelines on concurrency requirements on bindings... 30
10.3.1 Guideline: Avoidance of concurrency requirements ... 30
10.3.2 Guideline: Specification of unavoidable concurrency requirements 31

11. GUIDELINES ON THE SELECTION AND SPECIFICATION OF DATATYPES32

11.1 Guideline: Use of ISO/IEC 11404:1996 Language-independent datatypes 32

11.2 Guideline: Specification of datatype parameter values .. 32

11.3 Guideline: Treatment of values outside the set defined for the datatype 32

11.4 Guideline: Specification of operations on data values.. 33

11.5 Guideline: Recommended basic set of datatypes .. 33

11.6 Guideline: Specification of arithmetic datatypes... 33

11.7 Guideline: Approach to language bindings of datatypes .. 34

11.8 Guideline: Avoidance of representational definitions.. 34

12. GUIDELINES ON SPECIFICATION OF PROCEDURE CALLS35

12.1 Guideline: Avoidance of unnecessary operational assumptions or detail 35

12.2 Guideline: Use of ISO/IEC 13886:1996 (LIPC) procedure calling model 35

12.3 Guidelines on the use of ISO/IEC 13886:1996 (LIPC) .. 35
12.3.1 Guideline: Selection of datatypes of parameters .. 36
12.3.2 Guideline: Selection of parameter passing modes ... 37
12.3.3 Guideline: Use of bindings to LIPC... 37

12.4 Interfacing via remote procedure calling (RPC)... 37
12.4.1 Guideline: Avoid limiting the service specification because of constraints on the interface
specification ... 38
12.4.2 Guideline: Specification of RPC interface... 38
12.4.3 Guideline: Use of subsets ... 38
12.4.4 Guideline: Use of ISO/IEC 11578 (RPC) .. 38

12.5 Guideline: Guidance concerning procedure calling to those defining language bindings to the
language-independent service specification.. 39

13. GUIDELINES ON SPECIFICATION OF FAULT HANDLING.................................40

13.1 Guideline: Fault detection requirements ... 40

13.2 Checklist of potential faults .. 40
13.2.1 Invocation faults ... 40
13.2.2 Execution faults.. 41

13.3 Guideline: Recovery from non-fatal faults... 41

ISO/IEC PDTR 14369:1998(E)

vi

14. GUIDELINES ON OPTIONS AND IMPLEMENTATION DEPENDENCE 42

14.1 Guidelines on service options ... 42
14.1.1 Guideline: Optional service features .. 42
14.1.2 Guideline: Avoidance of assumptions about the use of the service................................... 42
14.1.3 Guideline: Management of optional service features ... 43
14.1.4 Guideline: Definition of optional features.. 43

14.2 Guidelines on interface options ... 43
14.2.1 Guideline: Completeness of interface ... 43
14.2.2 Guideline: Interface to service with options... 43

14.3 Guidelines on binding options ... 43
14.3.1 Guideline: Completeness of binding.. 43
14.3.2 Guideline: Binding to a service with options.. 44
14.3.3 Guideline: Binding to a language with optional features ... 44

14.4 Guidelines on implementation dependence .. 44
14.4.1 Guideline: Completeness of definition... 44
14.4.2 Guideline: Provision of implementation options .. 44
14.4.3 Guideline: Implementation-defined limits ... 45

15. GUIDELINES ON CONFORMITY REQUIREMENTS ... 47

15.1 Guidelines for specifying conformity of implementations of the service...................................... 48
15.1.1 Guideline: Avoidance of assumptions about the implementation language....................... 48
15.1.2 Guideline: Avoidance of representational assumptions ... 48
15.1.3 Guideline: Avoidance of implementation model ... 48
15.1.4 Guideline: Requiring end results rather than methods... 48

15.2 Guidelines for specifying conformity of implementations of the interface 48
15.2.1 Guideline: Requirements on implementation-defined aspects... 48

15.3 Guidelines for specifying conformity of bindings ... 48
15.3.1 Guideline: Propagating requirements to conforming bindings ... 48
15.3.2 Guideline: Adherence to defined semantics... 49

16. GUIDELINES ON SPECIFYING A LANGUAGE BINDING TO A LANGUAGE-
INDEPENDENT INTERFACE SPECIFICATION ... 50

16.1 Guideline: Use of bindings to LID and LIPC... 50

16.2 Guideline: Adherence to defined semantics... 50

16.3 Guideline: Binding document organisation... 50

16.4 Guideline: "Reference card" binding documents.. 51

17. GUIDELINES ON REVISIONS.. 52

17.1 Kinds of change that a revision can introduce .. 52
17.1.1 Addition of a new feature... 52
17.1.2 Change to the specification of a well-defined feature ... 52
17.1.3 Deletion of a well-defined feature.. 52
17.1.4 Deletion of ill-defined feature... 53
17.1.5 Clarification of ill-defined feature ... 53
17.1.6 Change or deletion of obsolescent feature.. 53

ISO/IEC PDTR 14369:1998(E)

vii

17.1.7 Change of level definition... 53
17.1.8 Change of specified limit to implementation-defined value. .. 53
17.1.9 Change of other implementation requirement ... 53
17.1.10 Change of conformity clause ... 53

17.2 General guidelines applicable to revisions .. 53
17.2.1 Guideline: Revision compatibility .. 53

17.3 Guidelines on revision of the service specification .. 54
17.3.1 Guideline: Determining impact on interface and language bindings 54
17.3.2 Guideline: Minimising impact on interface and language bindings..................................... 54
17.3.3 Guideline: Use of incremental approach to revision ... 54

17.4 Guidelines on revision of the service interface .. 54
17.4.1 Guideline: Buffering unrevised bindings from changes .. 54
17.4.2 Guideline: Use of incremental amendments... 54

17.5 Guidelines on revision of language bindings following revision of the service interface 54
17.5.1 Guideline: Buffering application programs from changes... 54
17.5.2 Guideline: Use of incremental amendments... 55

17.6 Guidelines on revision of a language binding following revision of the language 55
17.6.1 Guideline: Use of new language features... 55
17.6.2 Guideline: Buffering "legacy" application programs from changes..................................... 55
17.6.3 Guideline: Buffering application programs by use of options ... 55

ISO/IEC PDTR 14369:1998(E)

viii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com-
mission) together form a system for worldwide standardization as a whole. National bodies that are mem-
bers of ISO or IEC participate in the development of International Standards and Technical Reports
through technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other interna-
tional organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in
the work.

The main task of a technical committee is to prepare International Standards but in exceptional circum-
stances, the publication of a Technical Report of one of the following types may be proposed:

- type 1, when the required support cannot be obtained for the publication of an International
Standard, despite repeated efforts;

- type 2, when the subject is still under technical development or where for any other reason there
is the future but not immediate possibility of an agreement on an International Standard;

- type 3, when a technical committee has collected data of a different kind from that which is nor-
mally published as an International Standard ("state of the art", for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide
whether they can be transformed into International Standards. Technical reports of type 3 do not neces-
sarily have to be reviewed until the data they provide are considered to be no longer valid or useful.

This Technical Report is dedicated to Brian L. Meek in grateful recognition of his leadership and vision in
the development of the concepts on programming language independent specifications, and his efforts in
producing a set of standards documents in this area. Without his commitment this Technical Report never
would have been published.

ISO/IEC PDTR 14369:1998(E)

ix

Introduction

Background

This Technical Report provides guidance to those writing specifications of services, and of interfaces to
services, in a language-independent way, in particular as standards. It can be regarded as complemen-
tary to ISO/IEC TR 10182 Guidelines for language bindings, which provides guidance to those performing
language bindings for such services and their interfaces.

Notes
1. Here and throughout, "language", on its own or in compounds like "language-independent", means "programming

language", not "specification language" nor "natural (human) language", unless explicitly stated.

2. A "language-independent" service or interface specification may be expressed using either or both of a natural lan-
guage like English or a formal specification language like VDM-SL or Z; in a sense, a specification might be regarded
as "dependent" on (say) VDM-SL. The term "language-independent" does not imply otherwise, since it refers only to
the situation where programming language(s) might otherwise be used in defining the service or interface.

The development of this Technical Report was prompted by the existence of an earlier draft IEEE Techni-
cal Report (IEEE TCOS-SCC Technical Report on Programming Language Independent Specification
Methods, draft 4, May 1991). The TCOS draft was concerned with specifications of services in a POSIX
systems environment, and as such contained much detailed POSIX-specific guidance; nevertheless it was
clear that many of the principles, if not the detail, were applicable much more generally. This Technical
Report was conceived as a means of providing such more general guidance. Because of the very differ-
ent formats, and the POSIX-related detail in the TCOS draft, there is almost no direct correspondence
between the two documents, except in the discussion of the benefits of a language-independent principles
below. However, the spirit and principles of the TCOS draft were of great value in developing this Techni-
cal Report, and reappear herein, albeit in much altered and more general form.

Note - The TCOS draft has not in fact been published, as the result of an IEEE decision to concentrate activities in other
POSIX areas.

Principles

Service or interface specifications that are independent of any particular language, particularly when em-
bodied in recognized standards, are increasingly seen as an important factor in promoting interoperation
and substitution of system components, and reducing dependence on and consequent limitations due to
particular language platforms.

Note - It is of course possible for a specification to be "independent" of a particular language in a formal sense, but still be
dependent on it through inbuilt assumptions derived from that language which do not necessarily hold for other lan-
guages. The term "language-independent" here is meant in a much stronger sense than that, though complete inde-
pendence from all inbuilt assumptions may be difficult if not impossible to achieve.

Potential benefits from language-independent service or interface specifications include:

- A language-independent interface specification specifies those requirements that are common to all
language bindings to that interface, and hence provides a specification to which language bindings
may conform.

- A language-independent interface specification is a re-usable component for constructing language
bindings.

- A language-independent interface specification aids the construction of language bindings by provid-
ing a common reference to which all bindings can relate. Through this common reference its is possi-

ISO/IEC PDTR 14369:1998(E)

x

ble to make use of pre-existing language bindings to language-independent standards for common
features such as datatypes and procedure calls, and to other language-independent specifications
with related concepts.

- A language-independent service or interface specification provides an abstract specification of a
service in isolation from language-dependent extensions or restrictions, and hence facilitates more
rigorous modelling of services and interfaces.

- Language-independent service specifications facilitate the specification of relationships between one
service and another, by making it easier to relate common concepts than is generally possible when
the specifications are dependent on different languages.

- A language-independent interface specification facilitates the definition of relationships between dif-
ferent language bindings to a common service (such as requirements for interoperability between ap-
plications based on different languages that are sharing a common service implementation), by pro-
viding a common reference specification to which all the languages can relate.

- A language-independent interface specification facilitates the definition of relations between bindings
to multiple services, including the requirements on management of multiple name spaces.

- A language-independent service or interface specification brings economic benefits by reducing the
effort and resources needed to ensure compatibility and consistency of behaviour between imple-
mentations of the same service in different languages or between applications based on different lan-
guages using the same interface.

ISO/IEC PDTR 14369:1998(E)

xi

ISO/IEC PDTR 14369:1998(E)

1

1. Scope

This Technical Report provides guidelines to those concerned with developing specifications of informa-
tion technology services and their interfaces intended for use by clients of the services, in particular by
external applications that do not necessarily all share the environment and assumptions of one particular
programming language. The guidelines do not directly or fully cover all aspects of service or interface
specifications, but they do cover those aspects required to achieve language independence, i.e. required
to make a specification neutral with respect to the language environment from which the service is in-
voked. The guidelines are primarily concerned with the interface between the service and the external
applications making use of the service, including the special case where the service itself is already
specified in a language-dependent way but needs to be invoked from environments of other languages.
Language bindings, already addressed by another Technical Report, ISO/IEC TR 10182 Guidelines for
language bindings, are dealt with by providing advice on how to use the two Technical Reports together.

This Technical Report provides technical guidelines, rather than organizational or administrative guide-
lines for the management of the development process, though in some cases the technical guidelines
may have organizational or administrative implications.

2. References

ISO 8807:1989, Information processing systems – Open Systems Interconnection – LOTOS – A formal
description technique based on temporal ordering of observational behaviour

ISO/IEC 9074:1997, Information technology – Open Systems Interconnection – Estell: A formal descrip-
tion technique based on an extended state transition model

ISO/IEC TR 10034:1990, Guidelines for the preparation of conformity rules in programming language
standards

ISO/IEC TR 10176:1991, Information Technology – Guidelines for the preparation of programming lan-
guage standards

ISO/IEC TR 10182:1993, Information Technology – Programming languages, their environments and
system software interfaces – Guidelines for language bindings

ISO/IEC 10967-1:1994, Information Technology – Language independent arithmetic – Part 1: Integer and
floating point arithmetic

ISO/IEC 11404:1996, Information Technology – Programming languages, their environments and system
software interfaces – Language-independent datatypes

ISO/IEC 11578:1996, Information technology – Open Systems Interconnection – Remote Procedure Call
(RPC)

ISO/IEC 13719:1995, Information Technology – Portable Common Tools Environment (PCTE)

ISO/IEC 13817-1:1996, Information Technology – Programming languages, their environments and sys-
tem software interfaces – Vienna Development Method – Specification Language – Part 1: Base language

ISO/IEC 13886:1996, Information Technology – Language-Independent Procedure Calling (LIPC)

ISO/IEC PDTR 14369:1998(E)

2

3. Definitions and Abbreviations

3.1 Definitions

3.1.1 client
See service user.

3.1.2 datatype
A set of values, usually accompanied by a set of operations on those values.

3.1.3 formal language, formal specification language
See specification language.

3.1.4 interface
In this Technical Report, ”interface” means the mechanism by which a service user invokes and
makes use of a service.

3.1.5 language
Unless otherwise qualified, in this Technical Report "language" means "programming language",
not "specification language" or "natural (human) language".

3.1.6 language binding
A specification of the standard interface to a service, or set of services, for applications written in
a particular programming language.

3.1.7 language-dependent
Making use of the concepts, features or assumptions of a particular programming language.

3.1.8 language-independent
Not making use of the concepts, features or assumptions of any particular programming language
or style of language.

3.1.9 language processor
The entire computing system which enables a programming language user to translate and exe-
cute programs written in the language, in general consisting both of hardware and of the relevant
associated software.

Note - This definition comes from ISO/IEC TR 10176, Guidelines for the preparation of programming language
standards.

3.1.10 mapping
(noun) A defined association between elements (such as concepts, features or facilities) of one
entity (such as a programming language, or a specification, or a standard) with corresponding
elements of another entity. Mappings are usually defined as being from one entity into another.
A language binding of a language L into a standard S usually incorporates both a mapping from L
into S and a mapping from S into L.
(verb) The process of determining or utilizing a mapping.

Note - Depending upon what is being mapped, a mapping is not necessarily one-to-one. This means that map-
ping an element E from system A into an element E' of system B, followed by mapping E' back into system
A, may not necessarily get back to the original E. In such situations, if a two-way correspondence is to be
preserved, execution of the mappings must include recording the place of origin and returning to it.

3.1.11 marshalling

ISO/IEC PDTR 14369:1998(E)

3

The process of collecting the actual parameters used in a procedure call, converting them if nec-
essary, and assembling them for transfer to the called procedure. This process is also carried out
by the called procedure when preparing to return the results of the call to the caller.

Note - Marshalling can be regarded as being performed by a service user when preparing input values for a serv-
ice provider, the service concerned being regarded as the procedure being called.

3.1.12 procedure
In this Technical Report, the term "procedure" is used in the generic sense to cover both those
(sometimes called subroutines) which do not return a value associated with the procedure name,
and those (sometimes called functions) which do, and hence can be called from within expres-
sions).

Note - Primarily for historical reasons, some programming languages use different terminology.

3.1.13 server
See service provider

3.1.14 service
In this Technical Report, "service" means a facility or set of facilities made available to service us-
ers through an interface.

3.1.15 service provider
In this Technical Report, "service provider" means a computer system or set of computer systems
that implements a service and makes it available to service users.

Notes
1. In this definition, "computer system" means a logical system, not a physical system; it may correspond to

part of all of one or more physical computer systems.
2. The term "server" is often used in a similar sense, though sometimes implying a physical computer system

that has no other function that to provide its service.

3.1.16 service user
In this Technical Report, "service user" means an application (typically a program in some lan-
guage) which makes use of a service.

Note - The term "client" is often used in a similar sense, though sometimes implying the physical computer system
on which the application is running, rather than just the application itself.

3.1.17 specification language
A formal language for defining the semantics of a service or an interface precisely and without
ambiguity.

3.1.18 unmarshalling
The process of receiving and disassembling transferred parameters, and converting them if nec-
essary, to prepare the values for further use. This process is carried out by the called procedure
on receipt of the actual parameters for the call, and by the caller on receipt of the returned results
of the call.

Note - Unmarshalling can be regarded as being performed by a service provider when receiving input values from
a service user, and by a service user when receiving results from a service provider, the service concerned
being regarded as the procedure being called.

3.2 Abbreviations

3.2.1 LID
Language-independent datatypes, as defined in ISO/IEC 11404:1996.

3.2.1 LIPC

ISO/IEC PDTR 14369:1998(E)

4

Language-Independent Procedure Calling, as defined in ISO/IEC 13886:1996.

ISO/IEC PDTR 14369:1998(E)

5

4. Overview

4.1 Services, interfaces, service providers and service users

The concept of a "service" is a very general one. In some contexts it is customary to use it in a restricted
sense, e.g. when talking about "service industries" as contrasted with "manufacturing industries". Despite
such usages, almost any activity or behaviour can be regarded as a "service", if it serves some useful
purpose to do so (for example, manufacturing spoons can be regarded as a service for those needing
spoons).

With the concept of a service come the concepts of a "service provider" and a "service user". The pro-
vider performs the activity that constitutes the service; the user is the customer or the client for the serv-
ice, for whom the service is performed. In the information technology field, the "client-server model" in-
corporates these concepts: the server provides, the client uses.

Between the service provider and the service user is an interface that allows them to communicate. The
service user communicates through the interface the requirement for the service, and any relevant infor-
mation (e.g. not only the need for spoons, but the number and size of spoons required), and the service
provider communicates through the interface the response to the order for the service, and any addition
information or queries (e.g. the spoons can be delivered in six days, do you want silver spoons or plastic
spoons?). In the information technology field, such interfaces are usually explicit, realized in hardware or
software or both. In the world in general, they are sometimes explicit, but sometimes subsumed in more
general human or other interactions.

This distinction between provider and user (client and server) must not be assumed to correspond to
identifiable distinct entities. The distinction, and the service interface, may be purely notional, and possi-
bly not normally thought of in that way. The service itself may similarly not correspond to a distinct, sepa-
rate activity, and again and possibly not normally thought of as such; it may be subsumed in some other
activity or group of activities, and may possibly be implicit.

Hence, for example, in a transaction between two parties, each one may be providing a service for the
other: each is a client, and each a server. In another context, the provider is providing the service to itself;
the provider is also the user. Though it may be possible to subdivide the provider/user into a provider part
and a user part when considering provision of the service, this may be inconvenient in other respects.

In summary, "client" and "server", are roles that are carried out, rather than elements that necessarily
must be implemented separately. Though the term "client-server" is sometimes used in the information
technology field in ways that are more specific than it is used here, it is important not to carry over as-
sumptions from particular client-server models when reading this Technical Report. Still more important is
not to assume that implementation of any service, in the sense used here, has to be done using a client-
server model.

4.2 Information technology services

The history of information technology has many instances of the technology, or a product, being used for
very different purposes and in very different ways from those originally envisaged. The kinds of service
that information technology and products provide have continually expanded and diversified, and this is
still continuing.

It is as common in information technology as in the outside world for the term "service" in particular con-
texts to be used in a rather specific way. The history of the technology suggests that, for the purposes of
formulating guidelines about services, the term should instead be used as generally as possible.

This Technical Report has adopted this very general approach to the concept of "service". It is therefore
important that, when using this Technical Report and the guidelines it contains, no presuppositions should

ISO/IEC PDTR 14369:1998(E)

6

be made about what a service is, or about how and by what it is provided or how and by what it is used.
The guidelines should be interpreted and applied in that light.

This Technical Report does, however, carefully distinguish between the service itself, and the interface
used to communicate with it. In some usages the term "service" includes the interface, and the interface
may be embedded in the service and its specification (as in the phrase "all parts of the service"). How-
ever, logically they are distinct, and this logical distinction is maintained throughout this Technical Report.

Services in the most general sense often simply evolve naturally, but information technology services are
usually consciously designed. They are also often built from explicit specifications, though some are de-
veloped ad hoc. Whichever the case, it is useful to make a clear logical distinction between service pro-
viders, service users, and the interface between them, even if, when implemented, one or both of these
distinctions will be purely notional, and will not be embodied in identifiable and separable artefacts like
particular hardware components or particular blocks of code. Indeed, thinking about service provision in
such a way, in an environment that is normally regarded as a more integrated whole, can help to improve
a specification, or at least to test it and verify its validity.

This is especially so in the increasing number of cases where information technology environments and
services, though originally conceived as self-contained, have to interact with external environments and
services, many of which will need the distinction between providers and users to be made explicit. An
instance of direct relevance to this Technical Report is where interacting entities are based upon different
languages and hence different sets of underlying assumptions.

4.3 Services and language independence

The term "language-independent service (or interface) specification" means, in this Technical Report,
"language-independent specification of a service (or interface)", not "specification of a language-
independent service (or interface)". Hence a language-independent specification of a service does not
imply that the service itself is "language independent" in the sense intended here. The service specified
may be relevant only to environments of particular languages.

Note - The implementation of a service which meets the specification will use some language or other, if only machine lan-
guage, and so will in a sense be "dependent" on that language, but that is not the sense intended here.

Also, a language-independent specification of an interface does not imply that the service interfaced to is
either itself "language independent", or specified in a language-independent way (though it may be).

A trivial instance is that of a language processor for a particular language providing a service by executing
a program in that language. For one of the long-established languages (like Cobol or Fortran) the inter-
face is the provision of input data and the output of results. The language was designed for particular
forms of input and output media, presumed under the control of a human user. However, a language-
independent interface specification could define the input and output in such a way that the data can
come from, and the results be returned to, some other system, in general using a different language.

In a simple case like that, the user system and the interface are distinct and not closely coupled. The in-
terface can be implemented as a "black box" which acts in the same way that a human interpreter would
for two people with different languages conversing: it takes input from the client and translates it into the
equivalent input for the service, and takes the output from the service and translates it into the equivalent
output for the client.

In the more general case the interface might need to be embedded in the client system so that it appears
to be integrated in that host environment. That environment may need invoking the service to be ex-
pressed in more meaningful terms than just sending data and getting results.

Note - One example is in the functional standards for graphics. In some languages the most suitable invocation method is a
procedure call to an external library, while in others the most suitable method is use of additional commands (key-
words).

ISO/IEC PDTR 14369:1998(E)

7

Both the simple and the general case are referred to as "binding" to the interface, though the binding is
much tighter in the general case. A "language binding" to the interface binds a particular programming
language (not, of course, in general the same one as that used by the server), so that programs written in
that language can have access to the service. A good language binding allows language users to use a
style of accessing the service which is familiar to them, and will also, of course, accord with official stan-
dard for the language.

ISO/IEC TR 10182 Guidelines for language bindings provides guidance to those performing language
bindings and writing standards for them. This Technical Report provides complementary guidance to
those specifying service interfaces in a language-independent way, and writing standards for them.

A way of looking at language independence that can be useful is that of levels of abstraction. The various
elements of programming languages can be regarded as existing at three possible levels of abstraction:
abstract, computational, or representational, where the middle, computational level can be divided into
two sublevels, linguistic and operational. The linguistic elements are regarded as instantiations at the
computational level of the abstract concepts, while the operational level deals with manipulation of the
elements, which inevitably looks "downwards" to the realization of the elements in actual, processible en-
tities at the representational level.

Note - The representational level does not necessarily mean the physical hardware level, or the logical level of bits and
bytes; see the discussion under 4.6 below.

4.4 Language-independent specifications

As the preceding discussion has shown, a language-independent specification may be a service specifi-
cation, specifying the service itself, or be an interface specification, specifying the how the service is ac-
cessed by clients. It may of course cover both.

This Technical Report is concerned primarily with specification of the interface to the service, rather than
of the service itself. The service may be predefined in a language-dependent way. How a service is
specified is likely to depend to some extent on the nature of the service and its application area, so guide-
lines on specification of the service are definitely outside the scope of this Technical Report. However,
where it is wished to produce a language-independent specification of a service, so that it can be imple-
mented in a variety of different languages, then the guidelines presented may be useful, directly or indi-
rectly. For example, they may draw attention to factors that should be borne in mind, and it may then be
possible to adapt them to the particular circumstances.

This Technical Report therefore provides guidelines applicable in the following cases:

- specification of a service interface;
- specification both of a service interface and of the corresponding service itself, together;
- specifying from scratch (i.e. without anything pre-existing to base it on);
- specifying on the basis of an existing (probably language-dependent) service;
- specifying on the basis of an existing (language-dependent) binding.

Guidelines are grouped under various headings, dealing with different aspects. As far as possible each
group is independent, in the sense that they can be referred to without necessarily working through pre-
ceding groups. Any necessary cross-references are provided.

4.5 Problems of language dependence and inbuilt assumptions

Producing a language-independent specification can present many problems, especially if starting from an
existing service which was not originally designed to be language independent - typically, a service de-
signed in and for a particular language environment. If a service is specified in the "wrong" way - it may of
course not have been "wrong" in its original context - it can make producing a language-independent in-
terface very difficult. In particular, it may making explicit or (more likely) implicit assumptions about the
language that applications using the service will be written in. Languages that are similar in character to
the original one may not have many problems, but a language-independent interface specification needs

ISO/IEC PDTR 14369:1998(E)

8

to cater for different styles. This is one of the greatest challenges in developing language-independent
specifications, whether for services or for interfaces.

Note - Examples of styles of language are: procedural, declarative, functional, interpretive, object-oriented,, and these
are not necessarily mutually exclusive.

Such problems can still occur even if the service concerned is not an existing service. Since most service
developers tend to come from a particular language environment, it is all too easy, even when consciously
attempting to produce a language-independent specification, to carry over implicit assumptions from that
environment, simply because they are implicit and hence rarely questioned or even noticed.

4.5.1 Representational assumptions

An important class of language-dependent assumptions is that of representational assumptions. Some
languages have explicit or implicit models of how language elements are represented at the hardware
level, either physically or logically. Simple instances are storage of numerical values or of aggregate
datatypes such as indexed arrays or character strings, or numbers of datatype Complex (assumed to be
represented by two numbers of datatype Real, for the cartesian real and imaginary parts).

Such models tend to become implicit for those used to that language environment, even when the lan-
guage definition makes the model explicit. Users of the language get so used to that model that they take
it for granted. It is all too easy for such assumptions to get carried over into what is intended to be a lan-
guage-independent specification.

Representational assumptions are not confined to the hardware level, they can occur at more abstract
levels too: for example, a supposedly "language-independent" specification may use an integer datatype
for a value which logically is not, or need not be, an integer. The fact that virtually all languages have an
integer datatype or its equivalent is not relevant: the original language may have used the integer
datatype, because it was the best or only choice, but other languages may have alternatives which the
original language did not. A language-independent specification should avoid requirements that constrain
how things should be represented, and concentrate upon what should be represented.

Note - It is of course possible for a language-independent specification to be developed which is explicitly concerned with
the representation of language elements. For such a specification the principles outlined above may not all apply -
though some may still be relevant.

4.5.2 Implementation assumptions

Representational assumptions are a specific form of implementation assumption, though not all imple-
mentation assumptions are language-dependent. Service designers make implementation assumptions
when they take it for granted that a particular implementation approach will be adopted. Here a simple
example is assuming that the service will be invoked by a procedure call or, even more specifically, will
use procedure calls using a parameter passing mechanism of a particular kind.

Implementors of language-independent service specifications should not be required to adopt a particular
implementation approach. Instead, the specification should require only what is needed for the service, or
is needed to ensure that different implementations will be mutually consistent or (if interoperability is re-
quired) interact with one another correctly.

ISO/IEC PDTR 14369:1998(E)

9

5. Guidelines on strategy

The discussion in Clause 4 above shows that a large number of factors need to be taken into account
when producing a language-independent service specification. This Clause provides guidance on how to
go about the task.

The guidelines that follow are divided into general guidelines (Clause 5.1) and more specific ones (the
later Clauses). Some of the more specific guidelines are in fact similar to one another, appearing in vari-
ous modified and specific forms under various headings, and could have been made "general" guidelines.
The apparent duplication increases the length of the document, but is intended to reduce the amount of
interpretation and adaptation that will be needed in particular circumstances, and to emphasize the rele-
vance in particular contexts. It also allows different Notes, specific to the context, to be appended.

5.1 General guidelines

5.1.1 Guideline: Dependence of the interface on the service

A service specification should be designed with the requirements for the language-independent interface
in mind.

Note - If a service is specified in the wrong way, it can make the production of a language-independent interface very diffi-
cult, in particular when explicit or implicit assumptions are made about the languages that applications that will use
the service will be written in.

An example is assuming a particular method for invoking the service, e.g. the use of object classes, or the
use of low-level procedure calls (i.e. using only simple datatypes for parameters).

5.1.2 Guideline: What to do when there are interoperability, concurrency, or time constraint
issues

Issues relating to interoperability with other services, or concurrency, or time constraints of other kinds
may affect language-independent service and interface specifications. If this is the case, the nature of
such issues makes it vital that they be addressed first, with the remainder of the service being designed
later, around the aspects handling those issues.

Notes
1. Interoperability, concurrency, and time constraint issues can often cause difficulties, compared with which other is-

sues are comparatively straightforward to deal with. They can also place requirements or constraints on other as-
pects of the service. It will therefore aid the design process to address those issues first. For example, if a service is
to have multiple clients, this needs to be taken into account very early on.

2. Guidelines on interoperability appear in Clause 9, and guidelines on concurrency appear in Clause 10.

5.1.3 Guideline: Use of marshalling/unmarshalling

When specifying the way that values are communicated across the interface between the application us-
ing the language binding and the service, the marshalling/unmarshalling approach used in LIPC in relation
to passing of parameters may prove useful.

Note - The marshalling/unmarshalling concept for communicating values is sufficiently general to be of use even when the
service and its interface do not involve explicit procedure calling.

ISO/IEC PDTR 14369:1998(E)

10

5.1.4 Guideline: Recruiting expertise from a variety of backgrounds

When developing a language-independent specification, every attempt should be made to recruit the in-
volvement of, or to obtain input from, language experts from a variety of backgrounds, and also experts in
language-independence issues. In any event, before the language-independent specification is finalized,
arrangements should be made to get a complete draft reviewed by experts of that kind from outside the
group designing the specification.

Note - Because of the particular nature of the problems involved it achieving language independence, it is preferable to
choose language experts who have some experience of binding to language-independent specifications, and/or who
are familiar with other languages than their own main language.

5.2 What to do if starting from scratch

It is rare for the designer of a language-independent service or interface specification to be able to "start
from scratch", i.e. to be able to design without having to take into account an existing (and usually lan-
guage-dependent) service or interface which is already in use (and with which compatibility is required, or
expected even if not required). However, for completeness this Technical Report does need to cover the
possibility. Furthermore, guidelines on what ideally might be done can serve as a benchmark against
which to measure what has actually been possible, given the constraints that a pre-existing service or in-
terface may have placed upon the design. In principle, they might even establish that it would be prefer-
able to treat the pre-existing version simply as a prototype to be discarded.

5.2.1 General guidelines

5.2.1.1 Guideline: Avoidance of implementation assumptions

When designing a language-independent service specification, representational or other implementation
assumptions should be avoided.

Notes
1. Languages differ greatly in character so a form of implementation suitable for one may be quite unsuitable for an-

other. Furthermore some languages themselves make explicit or implicit representational or other implementation
assumptions, not always consistent with those in other languages. Language-independence is therefore best as-
sisted by avoiding all such assumptions, however attractive they may be in other respects.

2. This guideline reappears in various more specific forms throughout this Technical Report and the general question
has already been introduced in Clause 4.5. This has been done deliberately, both to stress its importance and to aid
in interpreting the guideline in various contexts.

5.2.2 Specifying the service in language-independent form

5.2.2.1 Guideline: Allowing for different approaches

When specifying the service in language-independent form, it should not be assumed that implementa-
tions in every language will use the same approach, and implementations should not be required to adopt
a particular approach. Instead, the specification should require only what is needed for the service, or is
needed to ensure that different implementations will be mutually consistent or (if interoperability is re-
quired) interact with one another correctly.

Notes
1. It is not necessary to use an implementation model to specify requirements, whether these are needed to provide the

service itself, to ensure mutual consistency, or to ensure interoperability. Such requirements can and should be ex-
pressed in an abstract, language-independent way.

2. Guidelines on interoperability appear in Clause 9.

ISO/IEC PDTR 14369:1998(E)

11

5.2.2.2 Guideline: Documenting external constraints and minimising their impact

If there are external constraints which the service is required to satisfy, these should be carefully exam-
ined to assess their impact, whether on implementation strategies for the service, or on the interface. The
relevant aspects of the service should then be specified in a way which minimizes the impact of the con-
straints. The external constraints (including the rationale for their presence), and the steps taken in the
specification to cope with them, should be documented.

Notes
1. Particular attention will be needed in the case of constraints which seem to require things to be done in accordance

with some implementation model. In many cases it should be possible to avoid passing on these implementational
requirements by absorbing them into the service, for example by internal conversions.

2. In general, it is preferable to leave as much as possible to implementations to handle as best they can, provided this
can be done without compromising either the integrity of the service or of language independence.

3. Sometimes, the cost of an extra conversion interface will be justified by gains elsewhere, for example in resource
terms or in safety or reliability terms.

5.2.2.3 Guideline: Allowing for different binding methods

When specifying the service in language-independent form, it should not be assumed that the interface
will use or specify a particular binding method; rather, the specification should be neutral with respect to
binding methods.

5.2.3 Specifying the interface to the service in language-independent form

When specifying the interface to the service in language-independent form, it should not be assumed that
a particular binding method will be used by every language, and use of a particular binding method should
not be required. The specification should require of bindings only what is to be passed across the inter-
face, not how it should be passed.

Notes
1. Language bindings should be able to make maximum use of the facilities of the language. Assuming or requiring a

particular binding method can lead to suboptimal bindings to the service and in extreme cases could make it impossi-
ble to specify an adequate binding.

2. Language bindings are also designed for many different purposes, and it can create many problems if a binding to
one service is required to be markedly different from other bindings.

5.3 What to do if starting from an existing language-dependent specification

The task of producing a language-independent service or interface specification from an existing lan-
guage-dependent specification is one of "reverse engineering". In general it can be expected that the
original language-dependent specification will have treated the service, the interface, and the language
binding as one, and will not, deliberately, have kept the different aspects separate. For a language-
independent specification, whether for a service or for an interface, it is necessary to ensure that these
different aspects are kept separate. Clause 5.3.1 provides guidelines on identifying significant language-
dependent aspects. Clause 5.3.2 addresses conversion of language-dependent features to language-
independent form. Clause 5.3.3 addresses the consequences for language bindings. Clause 5.3.4 ad-
dresses the situation where the interface specification but not the service specification is to be made lan-
guage independent.

Note - If more than one language-dependent specification exists, the following guidelines still apply, but the results for each
binding should be checked against each other. Inconsistencies can be very helpful in reaching an appropriate lan-
guage-independent formulation

ISO/IEC PDTR 14369:1998(E)

12

5.3.1 General guidelines

5.3.1.1 Guideline: Identifying implementation assumptions

Any representational or other implementation assumptions in the original language-dependent specifica-
tion should be carefully reviewed, and any which are derived from the particular language used, rather
than dictated by the semantics of the service, should be identified.

5.3.1.2 Guideline: Identifying language-dependent terminology

The terminology used in the original language-dependent specification should be carefully reviewed from
the language-independent point of view, to see if it is derived from the terminology of the particular lan-
guage rather than from the service.

5.3.1.3 Guideline: Identifying aspects specified at the wrong level of abstraction

The language-dependent specification should be carefully reviewed for features which are specified at a
level of abstraction inappropriate for the language-independent version. The review should in particular
search for those at too low a level which do not involve overt representational or implementation assump-
tions as under Clause 5.3.1.1, but arise from the way the service has been conceived in the original lan-
guage environment. Attention should, however, also be paid to any at too high a level, which may take
the form of features being left under-specified because the missing aspects are taken for granted in that
language environment, or because the language definition leaves such aspects implementation depend-
ent.

Notes
1. The concept of levels of abstraction is discussed in Clause 4.3.

2. An example of too low a level is specifying the service in terms of independent entities when in fact they naturally
form fields of a Record datatype.

3. An example of too high a level is specifying a datatype without defining permitted or required ranges of values of the
datatype.

4. When rectifying inappropriate levels of abstraction, care needs to be taken not to over-compensate.

5.3.1.4 Guideline: Identifying aspects derived from the language rather than inherent to the
service

The language-dependent specification should be carefully reviewed for features which are not inherent to
the service, but whose inclusion seems to have been prompted by the nature of the implementation lan-
guage and its facilities. Particular attention should be paid to any such inessential features which could
be difficult to provide in some other languages. Attempts should be made to discover how heavily users
of the original specification use these features.

Notes
1. Some such features may in fact be included because they are useful elsewhere in the language, for purposes unre-

lated to the service itself.

2. It may be appropriate to include features of this kind in the specific language binding for the language concerned;
though strictly inessential to the service, there may nevertheless be a continuing demand for them from that language
community, which cannot readily be satisfied in another way (e.g. by the provision of separate services). If that is the
case, the conformity rules should permit bindings to include these supplementary features, though they should not
require them for all languages.

3. However, it is possible that such features are rarely used by users of the original specification, in which case the op-
portunity could be taken to remove them, or to designate them as "obsolete", to be removed at the next revision.

5.3.1.5 Guideline: Identifying desirable but absent features

ISO/IEC PDTR 14369:1998(E)

13

The language-dependent specification should be carefully reviewed to see if there are any features which
would be desirable, but which are in fact absent from the original (e.g. because they could not conven-
iently or efficiently be provided in the original language, or where they are implicit in that language and did
not need to be spelled out). Any such features should be studied, to see if they should now be added,
either as options or as mandatory requirements.

Notes
1. Such "absentee features" can occur because the original language may have been chosen for reasons other than

being ideal for the purpose of providing the service.

2. The original language may be subject to revisions which will remove the previous difficulties in providing a feature.

3. It will be necessary to pay special attention to the binding to the original language.

5.3.2 Converting an existing language-dependent specification of the service into language-
independent form

5.3.2.1 Guideline: Avoiding undue dependence on the original language-dependent version

While it is desirable and even necessary to use the original language-dependent specification as a guide
when developing a language-independent specification from it, the detailed form and content should not
necessarily be dictated by the detailed form and content of the original. In particular, changes that correct
weaknesses in the original, and especially changes that enhance language independence, should be se-
riously considered, and if possible included in the specification, with due regard for the impact on existing
implementations using the original specification. However, change should be avoided if what is in the
original is adequate for the purpose, and does not adversely impact language independence, even if a
change would appear to be an improvement.

Notes
1. The guidelines in Clause 5.3.1 show how to identify aspects of the original specification that should be considered for

changes.

2. When assessing the impact of changes on existing implementations using the original specification, the guidelines on
revisions in Clause 17 may be helpful - see Guideline 5.3.2.5.

3. A change that does not correct a weakness but "would appear to be an improvement" can of course be contemplated
if the development of the language-independent specification is being accompanied by a parallel revision of the origi-
nal specification.

5.3.2.2 Guideline: Recasting scope of specification

In the light of the results of following previous relevant guidelines, the scope of the specification should, if
necessary, be recast at as high a level of abstraction as is possible while remaining consistent with the
nature of the service.

Notes
1. It may not be necessary to recast the scope of the specification: it may be sufficient to keep it at the same level of

abstraction but to remove anything not at that level.

2. Examples of too low a level of abstraction would be specifying a representational model of integers when a non-
representational one is sufficient, or specifying use of an integer datatype for a value which logically is not, or need
not be, an integer.

3. An example of a level of abstraction higher than is consistent with the nature of the service would be specifying an
integer datatype without stating a minimum range of values, when such a minimum range is needed by services for
interoperability purposes.

5.3.2.3 Guideline: Revising language-dependent terminology

ISO/IEC PDTR 14369:1998(E)

14

Language-dependent terms used in the original specification should be changed if necessary, e.g. if they
are likely to be misinterpreted in a different language environment. If not changed, they should be clearly
explained, for the benefit of those not familiar with the original language or specification.

Notes
1. For the benefit of those familiar with the original language-dependent specification, any such changes of terminology

should be listed, and the reasons for the change explained.

2. If a term is particular to the original language and not encountered elsewhere, confusion can still occur if language
environments use a different term for the same or a similar concept.

5.3.2.4 Guideline: Conversion of datatypes and procedure calling

A suggested strategy for converting a language-dependent specification into language-independent form
is to start by converting the datatypes of values used, together with all the required operations on the
data, including input-output. If any procedure calling appears in the original specification, conversion of
that should then follow. Conversions should be based on what the service needs, rather than what was
chosen in the original specification, since those choices are likely to be language-dependent.

Notes
1. Since all services will handle data values of some kind, and many use procedure calling as a mechanism, converting

these first may help the rest to fall into place more easily.

2. It is not sufficient merely to use a binding of the original language to LID and leave it at that; a particular choice of
datatype may have been dictated by what the language had available, and may not be the best language-
independent choice. (See Clause 11.)

3. For similar reasons it is also insufficient to use a binding of the original language toLIPC; particular choices of proce-
dure parameters and passing mechanisms will have been limited to those the language had available.

5.3.2.5 Guideline: Documenting language-dependent aspects

The relationship between the original and the language-independent specifications should be fully ex-
plained (e.g. in an annex) and all language-dependent assumptions or features that have been recast or
removed should be documented. A migration path to allow existing language-dependent implementations
to be revised in line with the language-independent version should be provided.

Note - With suitable adaptation, the revision guidelines in Clause 17 can be used to help in specifying a migration path for
existing implementations.

5.3.3 Converting an existing implicit interface into an explicit language-independent interface

It is possible in some cases that the interface to an existing service (language-independent or not) has not
previously been defined explicitly, but exists only in the form of a "binding" to one language, this binding
itself probably being implicit rather than explicit. This Clause provides guidance on coping with that situa-
tion. Mostly, the guidelines below are simply reinterpretations of previous guidelines, adapted to suit
those particular circumstances.

5.3.3.1 Guideline: Aspects derived from the language

Any aspects of the language binding which are derived from the particular language, rather than dictated
by the need to interface to the service, should be identified, and replaced by language-independent
equivalents where appropriate.

Notes
1. It is likely that the revised binding, for the original language to the language-independent interface, will be able to

continue to include these aspects, if only as optional language-specific additions.

ISO/IEC PDTR 14369:1998(E)

15

2. Language-dependent aspects can include things like the structure of the binding document, as well as simply the
features of the language concerned. Language independence may involve complete restructuring, including the re-
vised binding for the original language. In that case extra guidance may be needed, e.g. in the form of an informative
annex.

5.3.3.2 Guideline: Absent features

The language binding should be carefully checked, or rechecked, to see if there are any aspects of the
service, relevant to the interface, which are in fact absent from it (e.g. because they could not conven-
iently or efficiently be accessed from the language concerned, or because they were irrelevant for the lan-
guage).

Note - A feature may be absent from the binding simply because the language already contains that particular feature as
part of its own service. The revised binding, for the original language to the language-independent interface, will of
course still be able to continue to omit that feature, for the same reason.

5.3.3.3 Guideline: Identifying aspects not required by the service

Any aspects of the language binding which are inessential to providing an interface to the service should
be identified, reviewed, and considered for removal from the language-independent interface specifica-
tion.

Note - Though there will in some cases be some overlap between this guideline and guideline 5.3.3.1, the presumption will
normally be that inessential features will be removed. The aspects referred to here are not so much "derived from
the particular language" but are service-related facilities seen to be of use to the language community concerned, or
arise from inbuilt assumptions about how or why the service is used within that community. However, the possibility
must also be held in mind that these "inessential" features, in some form, will nevertheless prove of value to users
from other language communities, and they should therefore not be discarded without due consideration.

5.3.3.4 Guideline: Avoiding assuming the binding method

The language-independent interface specification should not be based on the assumption that the (explicit
or implicit) binding method used for the original language will be used for all other languages.

Notes
1. The binding method used for the original language will inevitably be chosen to suit that particular language, and may

not be the most appropriate for all. In general the language-independent interface specification should permit the use
of any binding method.

2. ISO/IEC TR 10182 Guidelines for language bindings provides guidance on binding methods.

5.3.4 Specifying a language-independent interface to a service whose specification is language-
dependent

It is quite possible that the existing service for which a language-independent interface is needed is itself
specified in one particular language and is therefore, at least potentially and possibly necessarily, lan-
guage dependent. This Clause provides guidance on coping with that situation. The guidelines below are
primarily logical extensions or adaptations to others elsewhere in this Technical Report.

Note - A service may be necessarily language dependent when it depends on specialist facilities which are available only in
one specialist language (for example the database facilities in SQL) and which in practical terms cannot sensibly be
simulated in another available language. It may be language dependent in a less restrictive sense when only a small
minority of languages have suitable facilities (for example knowledge-based systems that can be implemented readily
in languages such as Prolog or Lisp but only with great difficulty in others).

5.3.4.1 Guideline: Protecting bindings from language dependence

The language-independent interface should be specified in a way that protects language bindings as
much as possible from the language dependence of the service, by absorbing the limitations and as-

ISO/IEC PDTR 14369:1998(E)

16

sumptions arising from the language of the service, and providing the necessary conversions within the
interface, rather than propagating them to the bindings.

ISO/IEC PDTR 14369:1998(E)

17

6. Guidelines on document organisation

A language-independent service specification can be a very complex document, depending on the com-
plexity of the service and the scope of the specification. This Clause provides guidance on how to organ-
ize the material needing to be covered.

Notes
1. If the document structure of bindings is intended to follow that of the language-independent service specification, it is

necessary to consider how to keep them in line during revision.

2. Guidelines on document organisation for language bindings are in Clauses 16.3 and 16.4.

6.1 Guideline: The general framework

The language-independent service specification should be designed to include the parts in the checklist
that follows in Clause 6.1.1 (though it should not necessarily be confined to only to the parts listed).
Where a particular part seems not to be necessary in a given case, allowance should still be made for its
possible future inclusion, e.g. as a result of a later change in the scope of the specification, or of a devel-
opment of the service concerned.

Note - Here the term "part" is used in the everyday general sense: it does not imply the need for a separate "Part" of a stan-
dard in the formal sense. See Clause 6.2 below.

6.1.1 Checklist of parts for inclusion

1) If the scope of the specification includes the semantics of the service, a definition of those semantics,
including rules for conformity of implementations.

2) If the scope of the specification does not include the semantics of the service, an explanation of how
the semantics relate to the content of the document.

Note - It will of course be necessary to include a reference to the definition of the semantics, and may be necessary to in-
clude a brief summary of the semantics, e.g. in an informative annex.

3) If the scope of the specification includes the interface to the service, a definition of that interface, in-
cluding rules for conformity of implementations.

4) If the scope of the specification does not include the interface to the service, an explanation of how
the interface relates to the content of the document.

5) In the case of implementations of the interface, a specification of requirements on name correspon-
dence between names used in the interface specification and names used in a calling program.

Notes
1. This part will entail requirements on language bindings to the interface.

2. Even when the application of LID and LIPC is sufficient to cover all functionality, name correspondence requirements
are still likely to be needed.

3. A normative annex may be appropriate for specifying name correspondence requirements.

6) The specification of all further requirements on standard-conforming implementations (such as fault
detection, reporting and handling; provision of implementation options to the user; documentation;
validation; etc.), and of rules for conformity.

ISO/IEC PDTR 14369:1998(E)

18

Note - It will probably be necessary to specify such further requirements separately for implementations of the service and
for implementations of the interface.

7) The conformity rules of the language bindings to the language-independent service specification.

8) A description, as well as a reference, and if necessary a complete specification, of any formal specifi-
cation language used in (1) or (3), and for each case an annex containing a summary of the formal
definitions.

9) One or more annexes containing an informal description of the service and of the interface, a glos-
sary, guidelines for service users (on implementation-dependent features, documentation available,
etc.), and a cross-referenced index to the document.

Notes
1. In general, each informal description should appear even if its full definition is within the scope of the specification

and is included in the document, though this may not be necessary for some simple services.

2. Where the full definition of either the service or the interface is not within the scope of the specification, and hence
does not appear in the document, an informative clause may be more appropriate than an annex, if only to empha-
sise its importance. This is particularly the case for the specification of the interface when the specification of the
service appears elsewhere, and in the case of language bindings.

3. A normative annex may be appropriate for specifying name correspondence requirements.

10) An annex containing one or more checklists of any implementation-defined features.

11) An annex containing guidelines for implementors, including short examples where appropriate.

12) An annex providing guidance to users of the language-independent service specification on questions
relating to the validation of conformity, and any specific requirements relating to validation contained
in (1), (3), (5) and (6) above.

13) In the case where the language-independent service specification is a revision of an earlier version,
an annex containing a detailed and precise description of the areas of incompatibility between the old
version and the new version.

14) Material that forms a tutorial commentary containing examples that illustrate the use of the service
can optionally be included as an annex or be published as a separate document.

6.2 Guideline: Production and publication

Though guideline 7.1 does not imply that the "parts" of the specification should be in a number of physi-
cally separate documents, for a very complex service this should be considered, especially if different as-
pects (the service, the external service, language bindings, etc) are likely to be implemented separately.

Notes
1. This would mean that a language-independent service specification published as an International Standard would be

published as a set of separate Parts.

2. Publication in a set of separate documents implies a need for careful cross-referencing, possibly by including in each
one informative summaries or extracts from others that are relevant, or needed for understanding. This implies some
duplication, the need to keep changes and revisions consistent across the set, and consequently an increase in
overall length and of effort involved. Such costs need to be carefully weighed against the advantages of dividing the
whole into more manageable pieces.

ISO/IEC PDTR 14369:1998(E)

19

6.3 Guideline: Document organisation when starting from a language-specific
specification

Where a language-independent service specification is being developed which is based on an existing
language-specific specification, and changes to the original document organization may seem desirable in
the language-independent case, the benefits of such changes should be weighed against the value of
maintaining a close correspondence between the two, to aid comparison and review.

Notes
1. Factors to be considered include the extent of use of the original language-specific specification and hence the vol-

ume of review expected from those familiar with the original version, and how soon it will be before the original speci-
fication is replaced by a binding of the language-independent specification to the language concerned.

2. It may help to apply similar criteria to those in Clause 17 on revisions, when deciding whether and by how much to
change the document organization from the original.

3. See also Clauses 5.3.3.1 (in particular Note 2) 16.3 and 16.4.

ISO/IEC PDTR 14369:1998(E)

20

7. Guidelines on terminology

The careful and precise use of terminology is important for any kind of specification, particularly a stan-
dard specification, but it is especially important for language-independent service specifications.

7.1 Guideline: The need for rigour

The terminology used in a language-independent service specification should be defined rigorously, even
where it is believed that a term is generally well understood. Different usages of the same terminology
(and unspoken assumptions that may not hold) commonly encountered in language communities should
be pointed out.

Notes
1. Languages vary greatly in terminology, using same or similar words for very different things, or for slightly different

things, and different words for same or slightly different things, which make it critically important to be very precise in
their use.

2. Slight variations of meaning can cause more trouble than large ones, simply because they are easy to overlook, so
rigour, in the sense of completeness as well as accuracy, is especially important where these might occur.

3. The use of a formal specification language can help to eradicate insufficiently rigorous definition of terminology, even
if not used normatively, since the formal definitions can be used to check the interpretation of natural-language terms.

7.2 Guideline: The need for consistency

All normative terms and phrases, once defined rigorously in accordance with Clause 7.1 above, should
used consistently throughout the language-independent service specification, with the precise meaning as
defined.

Note - Note 3 of Clause 7.1 applies here also.

7.3 Guideline: Use of undefined terms

All uses of undefined terms in the language-independent service specification should be carefully checked
to ensure that they cannot lead to normative ambiguity.

Notes
1. In any specification, undefined terms, whose meaning is assumed to be understood, will at some point have to be

used, but providing definitions, either directly or by reference, should stop only when the resulting lack of rigour is not
relevant to the specification.

2. Again, the use of a formal specification language (Note 3 under 7.1) may be helpful.

7.4 Guideline: Use of ISO 2382

As far as possible, the language-independent service specification should use the terminology given in the
appropriate parts of ISO 2382, taking into account common practice in the community providing and using
the service, and in the various language communities concerned, and also the possible costs of transfer
to new terminology. ISO 2382 terminology should nevertheless be used in preference to terminology
specific to one particular implementation or binding language. Additional terms not covered by ISO 2382
should be defined in a specific section of the standard.

ISO/IEC PDTR 14369:1998(E)

21

7.5 Guideline: Use of definition by reference

Though definition of terms can be by normative reference rather than detailed exposition, the language-
independent service specification should in general include the text of the referenced definitions, at least
for information, and it should be made clear that, since usages vary, users of the language-independent
service specification should not assume (without having explicitly checked) that their habitual use of a
term is identical to that given.

Note - This applies to all reference terms including those in ISO 2382.

7.6 Guideline: Terminology used in bindings

Language bindings should be explicitly required to address and explain fully any differences of terminol-
ogy between the language and the language-independent service specification.

ISO/IEC PDTR 14369:1998(E)

22

8. Guidelines on use of formal specification languages

8.1 Guideline: Use of a formal specification language

Serious consideration should be given to the use of a formal specification language to define the service
semantics.

Notes
1. The use of a formal specification language will reduce the risk of divergence and incompatibility between bindings

and implementations in different languages, arising from differing connotations and underlying assumptions in the
use of natural-language terms.

2. A formal specification language will often make it possible to carry out automatic checks for errors, omissions and
inconsistencies in definitions, which with natural-language methods may be difficult to spot (e.g. an inconsistency
between two requirements that are widely-separated in the document text). It of course remains a human responsi-
bility to ensure that the resulting complete, consistent and precise definition is of the semantics intended.

3. It can be worthwhile producing complete or partial formal semantics even if the final specification is completely non-
formal, focusing discussion, helping to avoid misunderstandings among the specification team, improving the quality
of the final specification, and possibly saving time.

4. Great care is needed in using more than one formal language for specifying semantics, especially for parts of the
specification that are not well separated. This applies equally to the use of formal languages mentioned here and the
IDL as defined in LID and LIPC (see clauses 11 and 12).

8.2 Checklist of formal specification languages

Services vary so greatly that it would serve no useful purpose for this Technical Report to recommend the
use of one formal specification language or even one style of formal specification language. However, to
assist those using this Technical Report, there follows a list of formal specification languages which have
been made the subject of international standards, together with a brief indication of their style and of their
range of applicability.

8.2.1 Estelle

Estelle (ISO 9074:1997) is a standardized formal specification language. The Estelle language is based
on a stripped-down version of Pascal that has been extended with a notion of modules and communica-
tion between those modules. Estelle semantics are based on extended finite state automata. A system is
modelled by a set of module instances that communicate messages asynchronously over given channels.

Modules are defined by a body and a header. The body defines, in a Pascal-like way, the behaviour of the
module, and the header defines the external interface. Channels are defined by two roles (one for each
end of the channel), where each role definition defines the messages that may be sent.

Although Estelle was originally designed to specify communication services and protocols, it may be used
to specify other systems. The module definition appears to map well onto the notion of specifying internal
services and external interface separately. However, the Pascal-like nature of the module body language
is liable to exert strong bias on any implementations developed from the specification, because of the de-
tailed nature of those specifications.

8.2.2 Lotos

ISO/IEC PDTR 14369:1998(E)

23

Lotos (ISO 8807:1989) is a standardized formal specification language. The Lotos language is based on a
combination of the ACT-ONE specification language with a process algebra based on the concepts of
CCS and CSP. Lotos semantics are based either on abstract datatype specifications or on process alge-
bras, depending on which part of the language was employed. A system is modelled as a collection of
processes that communicate potentially complex data objects synchronously over given ports.

Data objects may be defined in the ACT-ONE part of Lotos. Their definition consists of an interface defin-
ing the syntax of the operations used to manipulate the data object, and a set of rules that define how the
operations interact with each other. Processes are defined by a header that names the ports through
which the process may communicate with other processes, and a behaviour expression that defines the
allowable behaviours (as seen through interactions on the ports) of the process.

Lotos was originally designed to specify communication services and protocols, but has been used to
specify other types of system. That Lotos comprises both an abstract datatype component and a process
algebra component means that it may be used in any circumstance where either would be appropriate.

8.2.3 VDM-SL

The Vienna Development Method Specification Language (VDM-SL, ISO/IEC 13817-1:1996) is based on
a rich set of basic and compound types with syntax that allows the definition of functions, global state, and
operations that may modify the state. VDM-SL semantics are based on denotational style lambda calcu-
lus. A system is modelled as a collection of global state variables and the operations used to modify the
state and other functions.

Global state variables model the state of the system and are defined by constructions of the basic or
compound types of VDM-SL. Invariants may be added to the types of the state variables providing appro-
priate constraints. Operations and functions are defined by a header that defines which state variables will
be accessed, and a pre-condition and a post-condition that define the behaviour of the operation.

In addition to specification by pre- and post- conditions, VDM-SL has programming-language-like con-
structs to describe iteration and assignment, and has a well-defined refinement process that may be used
to refine datatypes or function or operation definitions.

VDM-SL was first developed for the specification of compiler semantics, but has been used for many se-
quential (and some concurrent system) system specifications.

8.2.4 Z

Z is a specification language currently undergoing international standardization. Z is based on a typed set
theory where the types of the values are well defined and may be relations. Z semantics are provided in a
denotational style using a specially developed relational algebra. A system is modelled in Z as a collection
of schemas that define desirable properties that the system must exhibit.

Schema definitions have two parts, either of which may be optional. The first part is declarative and intro-
duces the variables for which a relationship is to be defined. The second part is the predicate part, and
defines the relationship that must hold between the variables defined in the scope of the schema. Sche-
mas may be used to define complex data objects, or types with or without invariants, or to define opera-
tions or functions. Z provides powerful mechanisms for composing schemas to construct larger specifica-
tions from smaller components.

Z has been used in a variety of software and system specifications such as transaction processing sys-
tems or heart pacemakers. Z has also been used to specify the semantics of some of the POSIX stan-
dards.

8.3 Guideline: Using formal specifications from the outset

ISO/IEC PDTR 14369:1998(E)

24

Once the decision has been made to use a formal specification language, and the particular language has
been selected, the chosen specification language should be used from the outset, all participants in the
project being required to submit proposals and drafts using formal rather than informal semantics.

Note - Formal methods, especially for defining semantics, are at present not widely known or used among IT practitioners, de-
spite their known advantages. Experience has shown that using the agreed formal specification language from the
start is much easier than trying to introduce one later on when participants have become used to discussing issues
relating to the project in informal terms. Early progress may be slower than it might have been, through initial unfa-
miliarity with the formal language, but any lost time is usually recovered in due course since ambiguities and errors
are less likely to occur and are easier to detect.

8.4 Guideline: Use of operational semantics

Care should be taken if using operational semantics for formal definition of a language-independent serv-
ice specification, to avoid appearing to provide an implementation specification.

Notes
1. In operational semantics, the definition of the semantics is made in terms of the operation of an "abstract machine"

which implements that semantics. There is a consequent danger of providing a detailed implementation model, es-
pecially with a formal specification language capable of operational semantics with translation into an executable
(even if inefficient) actual implementation. Other formulations, such as axiomatic or denotational semantics, do not
rely on such an implementation model.

2. If the specification is derived from an original implementation based on a particular programming language, there is
the added danger of the "abstract machine" reflecting the character and inbuilt assumptions of that language.

3. Depending on the nature of the service being defined, it may be possible to provide an operational semantics at a
sufficiently high level of abstraction to avoid these dangers.

4. There may be cases where external constraints or other considerations mean that the use of operational semantics,
at a level implying an implementation model, is nevertheless indicated. In such cases the assumptions of the model
should be spelled out, and guidance given on alternative forms of implementation where those assumptions are inva-
lid or inappropriate. It is especially important that such a specification be reviewed by experts familiar with a variety
of language environments and implementation strategies, to minimise the risk of inbuilt bias.

ISO/IEC PDTR 14369:1998(E)

25

9. Guidelines on interoperability

9.1 Introduction

The term interoperability is used in many contexts, sometimes in a very vague and general way, and is
sometimes confused with the related but distinct concept of portability. This introduction is intended to
clarify the concept of interoperability in the context of service specifications, as a preliminary to the asso-
ciated guidelines for language-independent service specifications.

9.1.1 Interoperability with what?

Interoperability issues arise when a service is required to interoperate with other services in the course of
providing its own services to an external user. The other services concerned may be other instantiations
of the same service, or may be different services, or of course both.

If interoperability is with other instantiations of the same service, that becomes one of the design require-
ments of the language-independent service specification, and while this may add to the difficulty of defin-
ing the specification, it is a relatively straightforward situation to deal with.

Note - Questions of interoperability can be very complicated for a distributed system, which might allow different implemen-
tations on the same or different types of computers (supporting interfaces in the same or different languages) in-
teroperating at various levels, e.g. exchanging data, sharing a database, or invoking each other. In such a case, it is
important to be clear and agreed on just what forms of interoperability are required.

If interoperability is with different services, then the extent of the difficulty of defining the specification will
depend upon whether these are being specified at the same time, or pre-existing services that are already
specified.

In general, the effect of interoperability requirements is to add constraints to the specification, which is
why the strategic guideline 5.1.2 recommends that they be deal with first, along with any concurrency re-
quirements (Clause 10), when developing a specification. When constraints arise in connection with other
instantiations of the same service, or different services being specified at the same time, though they will
exist they may not be especially troublesome. Constraints are likely to be much more severe when
interoperability is required with an existing, already specified service, since it is unlikely that it will be pos-
sible to alter the specification of that service to make interoperability easier. Even if the specification of
that service is being revised, the scope for adjustment to ease interoperability may be limited, or even
non-existent.

In the worst cases, the constraints may create pressure to compromise the aims of the language-
independent service specification, for example if another service makes representational assumptions
about exchange values, or makes other implementation assumptions which have an impact on interop-
eration. They may even create pressure to compromise the aim of language independence. This needs
handling with great care, and preservation of language independence may require some ingenuity. This
Clause provides some guidelines on dealing with such situations.

Severe constraints can also occur if there is a need for synchronicity, or at least some guaranteed re-
sponse time. If the service being specified has to meet such a requirement for an external user, the need
to interact with some other service can create complications. Alternatively, if the other service demands
synchronicity or other forms of time constraint, this can potentially affect the ability of the service to re-
spond to its own external users. In general, how services can handle time constraints is outside the
scope of this Technical Report. It should be noted however that languages vary very greatly in their ability
to handle synchronicity and time constraints, which may place severe difficulties in the way of defining the
service itself, or language bindings, in a truly language-independent way.

ISO/IEC PDTR 14369:1998(E)

26

Though the nature of the other services is the most important factor affecting interoperability, two other
factors may be important: the nature of the interoperation, and how it is invoked.

9.1.2 The nature of the interoperation

Interoperation may be master-slave, slave-master, or peer-peer. In a master-slave relationship, the lan-
guage-independent service invokes the other service, but has to do no more than state its requirements,
expecting the other service to deliver what is required. In a slave-master relationship, the language-
independent service is invoked by the other service, and has to deliver what that other service requires.
In a peer-peer relationship, the services cooperate to deliver what the external user requires.

The master-slave situation should cause relatively little difficulty, the first because it is a matter only of
invoking the other service and being able to handle its various responses. The slave-master situation can
be treated as if the other, "master", service is another external user, with its own interface, the main prob-
lems arising if the other service is pre-defined and imposes requirements involving severe constraints.
The peer-peer situation may also involve severe constraints if the other service is pre-defined, and may
pose tricky design problems.

9.1.3 How interoperation is invoked

Interoperation may be invoked by the external user (e.g. by exercising an option or selecting a parameter)
or may take place in the background, solely within the service, so that the external user is not directly
concerned with it (and may not even be aware of it).

Neither of these situations should present too many problems, provided that it is clearly understood which
form of interoperation is involved, and it is handled in the appropriate way. Where interoperation is in-
voked by the external user, this can be treated as part of the interface like any other feature of the service.
Where interoperation takes place solely in the background, depending on the nature of the interoperating
service it may be appropriate to define an explicit further interface, separate from the interface to the ex-
ternal user, to handle the interactions. Difficulties are likely to occur only when these two situations are
confused, or not kept clearly separate.

9.2 Guidelines on interoperability with other instantiations of the same service

Where interoperability is required with other instantiations of the same service, it is probable that the rela-
tionship will be peer-peer. The guidelines that follow are therefore devised on that assumption. Circum-
stances can be envisaged in which this is not the case, in which case the guidelines in Clause 9.3 for the
master-slave relationship will need to be appropriately adapted.

9.2.1 Guideline: Identifying features affecting interoperability

All aspects of the service that affect interoperability with other instantiations of the service should be iden-
tified, and the specification should ensure that these are clearly distinguished from other aspects.

9.2.2 Guideline: Precise definition and rigorous conformity requirements

All aspects of the service that affect interoperability with other instantiations of the service should be pre-
cisely defined, and conformity requirements should be made rigorous enough to ensure that the ability to
interoperate will always be maintained, whatever combination of options and implementation-defined
choices are used by this and the other instantiations.

Notes
1. Experience shows that interoperability between standard-conforming implementations is often prevented because

conformity rules are not strong enough to ensure it.

ISO/IEC PDTR 14369:1998(E)

27

2. The temptation to overspecify the requirements - e.g. making rigid representational requirements - simply to make
absolutely sure that interoperability will always be possible, should be avoided. It is sufficient to keep the scope of
the specification and its level of abstraction clearly in mind, and to ensure that implementors understand what is re-
quired and that strict adherence to the conformity rules is necessary.

3. The use of formal definitions to eliminate ambiguity is particularly useful in relation to interoperability requirements.

9.2.3 Guideline: Importance of exchange values

In specifying interoperability requirements, particular attention should be paid to the datatypes used for
exchange values, and to the exact ranges of validity of data values needed for interaction.

Notes
1. ISO/IEC 11404:1996 Language independent datatypes includes facilities for specifying precise ranges of values in a

language-independent way, so representational requirements should not be needed, unless the service itself is at a
representational level of abstraction.

2. It is possible, without breaching this guideline, to allow values outside the specified range of validity for interaction to
be used in situations where interaction is not invoked. This, however, is a risky practice, and is probably best
avoided unless a strong rationale exists to permit it.

9.3 Guidelines on interoperability with other services

Where interoperability is required with other services, it is possible that the relationship will be peer-peer,
but more likely that it will be master-slave or slave-master. A peer-peer relationship is most likely to occur
when specifications for the two (or more) services are being developed together. Master-slave or slave-
master relationships can occur with specifications being developed together, but it is more likely that the
"slave" service will be defined first and the "master" service is specified later to make use of it. However it
can happen that a "master" service is defined and then (for example at a revision which extends the serv-
ice) requires a "slave" service which it can invoke.

The guidelines that follow therefore cover the two main cases, of services (whatever the relationship) be-
ing developed together, and of a service being developed to interoperate (whatever the relationship) with
some pre-defined service.

Note - Where more than two services are involved it is of course possible that there is a "mixed" situation where two or more
services are being developed together to interoperate with one or more services already defined. Those faced with
that task will need to apply the guidelines below as best they can, to meet the needs of the particular case.

9.3.1 Guideline: Interoperability with other services being defined at the same time

Where interoperability is required with other services which are also being defined at the same time, the
services should be regarded as a single "super-service" in respect of the interoperability aspects, and the
guidelines in Clause 9.2 should then be applied to that "super-service".

Notes
1. Care will be needed, with duplication of definitions if necessary, to ensure consistency across the different compo-

nents of the "super-service", and allowance will need to made for the possibility that these different component serv-
ices may be implemented using different languages.

2. Treating two or more services as a single "super-service" for the purposes of specification is simpler to arrange if the
same group is responsible for all of them. A high level of liaison, co-operation, and mutual trust will be called for if
more than one group is involved.

ISO/IEC PDTR 14369:1998(E)

28

9.3.2 Guideline: Interoperability with a pre-defined service

Where interoperability is required with another service which is already defined, all aspects of the pre-
defined service that affect interoperability with the service now being defined should be identified, par-
ticular note being made of those which impose pre-defined requirements. If these requirements are
specified in a language-dependent way, they should be re-specified in language-independent form. An
interface should then be defined which allows the language-independent service to appear to the pre-
defined service as if it were a service in the same language. All definitions should be made precise, and
conformity rules should be made rigorous, especially for this interface, particular attention being paid to
exchange values.

Note - The interface to be defined above will not be the same as the user interface of the pre-defined service, other than
possibly in the special case where is the pre-defined service is a slave service which is only ever used through invo-
cation from other services.

ISO/IEC PDTR 14369:1998(E)

29

10. Guidelines on concurrency issues

Concurrency issues, i.e. issues concerning whether actions should take place serially or in parallel, can
arise within the specification of the service, in the way the interface with users of the service operates, or
in what the service, through its interface, requires from the user.

In general, the processes of a service can be divided into three groups: essentially serial, optionally con-
current, and essentially concurrent. A process that is essentially serial has to have its parts carried out in
a specified sequence if it is to function correctly. A process that is essentially concurrent has to have its
parts carried out in parallel if it is to function correctly (though the parallelism can often be simulated by a
serial process achieving the same end result, if there are no external constraints to make that impossible).
A process that is optionally concurrent will function correctly whether or not its parts are carried out in par-
allel (since the parts are not interdependent in any way that affects the process).

Notes
1. The logical fourth possibility, optionally serial, is identical to optionally concurrent.

2. The replacement of the values a,b,c of the sequence (a,b,c) by the values x,y,z, giving (x,y,z), is an example of an
optionally concurrent action. However, their replacement by the values c,a,b to give (c,a,b) is an example of an es-
sentially concurrent action, since changing the values one at a time will in general not produce the required result.
The essentially concurrent action can, however, be simulated serially by making copies of values that would other-
wise be lost, and using them when needed.

In this Clause, the term "concurrency requirement" is used to denote any requirement relating to any of
these three possibilities; in particular it may mean either or both of a requirement to perform tasks in a
given sequence or of a requirement to perform tasks in parallel.

In general, the effect of concurrency requirements is to add constraints to the specification, which is why
the strategic guideline 5.1.2 recommends that they be dealt with first, along with any interoperability re-
quirements (Clause 9), when developing a specification.

10.1 Guidelines on concurrency within the service specification

10.1.1 Guideline: Avoidance of unnecessary concurrency requirements

A language-independent service specification should avoid concurrency requirements other than any
which are absolutely necessary to provide the service; in particular it should not require serial processing
when parallel processing can achieve the required, nor should it require actual parallel processing (as op-
posed to simulated parallel processing) unless this is demanded by external constraints or the nature of
the service. Every apparently necessary concurrency requirement should be examined closely, to see if
there is a way of avoiding it, so that the number that eventually remains in the specification is kept to a
minimum.

Notes
1. Unnecessary concurrency requirements, whether for serial processing or parallel processing, is an example of over-

specification arising from the inclusion of implementation assumptions.

2. Requirements to handle a number of service users simultaneously (see Clause 10.2) may entail some degree of par-
allelism, but this guideline still applies.

10.2 Guidelines on concurrency of interaction with service users

Depending on the nature of a service, it may necessarily have to deal with one user at a time. In that
case it may be possible that the service will not be able to accept a request from another user until the

ISO/IEC PDTR 14369:1998(E)

30

current one has been dealt with, or it may be able to support a queuing system, where incoming calls on
the service are accepted as they arise, but are still dealt with one at a time. Alternatively, it may be able
to handle a number of service users simultaneously.

10.2.1 Guideline: Handling of concurrent service requests

A language-independent service specification should explicitly state whether an implementation must be
capable of handling concurrent service requests, and if so whether the services must be provided concur-
rently, or may be queued and the service provided to the users in the queue one at a time.

10.2.2 Guideline: Number of concurrent service requests handled

Where handling of concurrent service requests is required, either through simultaneous provision or by a
queuing system, the language-independent service specification should state the minimum number of
such requests that it must be possible to handle simultaneously, and require the maximum number that
can be handled to be documented.

Note - A service may of course be able to handle a certain number of users simultaneously, but also to maintain a queue of
those unable to be dealt with immediately. This guideline then applies, separately, both to the simultaneous provi-
sion and to the queue.

10.2.3 Guideline: Order of processing of service requests

A language-independent service specification should explicitly state whether an implementation must
handle service requests in order of arrival, or may prioritize requests, or must prioritize requests.

10.2.4 Guideline: Criteria for prioritizing service requests

Where a service must or may prioritize requests, the language-independent service specification should
explicitly define the criteria which must or may govern prioritizing decisions, or at a minimum specify con-
straints which must be met.

Note - An example of a constraint is: whatever other criteria may apply, no request should be made to wait for more than a
specified period of time.

10.3 Guidelines on concurrency requirements on bindings

In a language-independent service specification, requirements on users are expressed as requirements
on language bindings, through the service interface. This Clause provides guidelines for handling
concurrency issues that may arise in the specification of such requirements.

10.3.1 Guideline: Avoidance of concurrency requirements

A language-independent interface of a service specification should explicitly be neutral with respect to
concurrency, i.e. it should place no requirements on whether an implementation of a language binding
uses a serial or a parallel approach or any combination of the two.

Notes
1. Languages vary greatly in their capability for handling parallelism. Requiring concurrency of a binding may create

severe problems for implementing it efficiently, or even at all, or may force implementors to adopt solutions which do
not conform to the language standard.

ISO/IEC PDTR 14369:1998(E)

31

2. Some languages are very well equipped to handle parallelism. Requiring a serial form of implementation may place
unnecessary constraints on implementors using that language; a far more efficient and natural form of binding may
be possible using language features supporting parallelism, and should not be precluded.

3. This guideline does not imply that a particular language binding should not impose concurrency requirements on im-
plementations of that binding; the semantics of certain language features may mean that, for an implementation to be
correct, certain concurrency requirements have to be met.

10.3.2 Guideline: Specification of unavoidable concurrency requirements

Where a language-independent interface of a service specification cannot be neutral with respect to
concurrency, e.g. through external constraints, the unavoidable concurrency requirements should be
specified fully, but in as general a way as possible so as to place the fewest possible constraints on bind-
ings. In particular, no explicit or implicit assumptions should be made about how a language may support
parallelism.

ISO/IEC PDTR 14369:1998(E)

32

11. Guidelines on the selection and specification of datatypes

Probably without exception, all service specifications will make use of the concept of data, and any speci-
fication will need to define the data to which it applies. The commonest and clearest way of doing this is
by means of datatypes: a data value which belongs to the relevant defined datatype is covered by the
specification, while a data value which does not belong to the relevant defined datatype is not so covered
(and in general an attempt to use such an incorrect value will constitute an error).

This Clause provides guidelines for the selection and use of datatypes in language-independent service
specifications.

11.1 Guideline: Use of ISO/IEC 11404:1996 Language-independent datatypes

The datatypes used in the language-independent service specification should be selected from those de-
fined in ISO/IEC 11404:1996, Language-independent datatypes (LID), either by direct adoption, or using
the methods it defines for generating further datatypes from those directly provided in the standard.

Note - LID provides a wide variety of primitive datatypes suitable for direct adoption, and a variety of methods for generating
further datatypes from these. These methods include various forms of aggregation (including Set, List, Array, Rec-
ord, and Table datatypes) and of other forms of derivation (including "new" for clone datatypes which have the same
set of data values but are logically distinct from the original, Choice to merge separate datatypes into a single one,
Pointer for indirect referencing, and various forms of subsetting - see guideline 11.2).

11.2 Guideline: Specification of datatype parameter values

For each selected datatype for which LID defines parameters, the language-independent service specifi-
cation should specify all of the parameter values, either directly, or by placing a requirement to do so upon
a conforming implementation of the specification.

Notes
1. For most datatypes, the set of data values is either potentially infinite or, though finite, of arbitrary size. (For example

there are by definition an infinite set of values of datatype Integer, but a logically finite though arbitrarily large set of
values of an Enumerated datatype.) LID defines parameters for such types, to allow subtypes to be defined, including
subtypes of known finite size. The language-independent service specification needs either to select the parameter
values (e.g. specify what range of data values is to be supported) or require a conforming implementation to do so (in
which case it is desirable to specify constraints, e.g. "at least..." and/or "at most..." as appropriate).

2. LID allows arbitrary sets of data values to be constructed, as well as contiguous ranges (where that concept has
meaning), by explicit inclusion or exclusion of specified values. (An example might be Range -10:+10 of Integer ex-
cluding 0 but extended to include values -20 and +30.) While allowing for such "unusual" values is generally best
avoided, because of the implementation overhead, where they are critical to the application this may be a suitable
means for the language-independent specification to highlight their presence in a rigorous way.

3. Aggregate datatypes in LID have parameters governing the structure and size of the aggregate, e.g. number of di-
mensions and index ranges for Array datatypes, number and datatypes of fields for Record datatypes, length of
CharacterString datatypes, etc.

11.3 Guideline: Treatment of values outside the set defined for the datatype

The language-independent service specification should specify how a conforming implementation is re-
quired to handle data values encountered which are outside the defined set of values for the relevant
datatype.

Notes

ISO/IEC PDTR 14369:1998(E)

33

1. The way disallowed values are handled needs careful thought, and must be precisely and unambiguously defined in
the language-independent service specification, since much may depend on the consequences. In some contexts it
may be sufficient simply to ignore such values, as if they were not there. More usually, at least a warning will be
needed, and commonly some exception handling mechanism will need to be invoked. In critical cases the presence
of such a value will indicate a breakdown, and a need to abort the service.

2. Where the language-independent service specification takes a "permissive" attitude to ranges of supported values of
given datatypes, and allows the implementation to decide, there is a danger that users who are familiar with an im-
plementation allowing a wide range of values may encounter this problem when moving to a more limited one. (This
can become critical when interworking between implementations is likely.) Hence this consequence of a "permissive"
approach when defining the specification needs always to be borne in mind, and the exception handling designed
accordingly.

11.4 Guideline: Specification of operations on data values

For each datatype, the language-independent service specification should specify the operations on its
data values required to be supported, and, where relevant, whether and under what conditions further op-
erations are permitted in a conforming implementation of the specification.

Notes
1. LID defines "characterizing operations" for its datatypes, which are not normative and also not necessarily exhaustive

(they are included to aid identification of the most suitable match for language binding purposes). Hence the lan-
guage-independent service specification needs to specify which operations, whether "characterizing" in LID or not,
are required for the application.

2. In general, a complete definition for the operation will be needed, since details can vary from language to language.
For example, it is not enough to say that addition is needed for a Range of Integer datatype; it is also necessary to
specify things such as what happens if the result of an addition is "out-of-range". (Note that LID does include a
Modulo datatype, if that is the result required.)

11.5 Guideline: Recommended basic set of datatypes

The datatypes used in the language-independent service specification should, as far as practicable, be
selected from the following basic set, which are generally supported directly, or able to be simulated with-
out major binding problems, by a wide variety of languages: the primitive datatypes Boolean, Bit, Integer,
Character, and the aggregates Array, Record and CharacterString.

11.6 Guideline: Specification of arithmetic datatypes

With respect to arithmetic datatypes, the language-independent service specification should take into ac-
count the provisions of ISO/IEC 10967, Language independent arithmetic, in particular Part 1, Integer and
floating point arithmetic.

Notes
1. Problems can occur with arithmetic datatypes, especially because of the approximate nature of values and opera-

tions on values of datatype Real (in LID) and its counterpart in actual programming languages. ISO/IEC 10967-
1:1994 gives precise specifications for these arithmetic operations, to predictable accuracy, and should be studied to
help determine how important the accuracy of arithmetic will be to the application.

2. For many applications the correct functioning of the service will not be dependent on, or will be insensitive to, the
detailed behaviour of Real values and operations. In such cases it will suffice to rely upon the native arithmetic of the
host language and implementation environment. However, even in this case it is recommended that a statement of
the arithmetic requirements, however modest, be included, since a future revision of the specification may become
more demanding, and mention of the arithmetic requirements is a safeguard against these being overlooked or un-
wisely taken for granted.

ISO/IEC PDTR 14369:1998(E)

34

3. For other applications the correct functioning of the service will be dependent on arithmetic being carried out to given
accuracy requirements. Though it may be believed that all likely host languages and implementation environments
will meet those requirements, they should be included, so that there can be no doubt over what the requirements are.

4. For some applications the correct functioning of the service will be critically dependent on arithmetic being carried out
to high accuracy. In such cases it is strongly recommended that the requirements be rigorously specified, preferably
using ISO/IEC 10967 by direct citation or failing that by using the same techniques, and that meeting those require-
ments be made formally mandatory for conformity to the specification.

11.7 Guideline: Approach to language bindings of datatypes

The language-independent service specification should provide clear guidance on the approach that a
language-independent service language binding should take to binding the various datatypes required.
Particular care should be taken in the case of complicated abstract datatypes which many languages will
have to represent through simpler and less abstract datatypes, and in some cases mandatory require-
ments may need to be included to ensure that the integrity of the language-independent service is pro-
tected.

Notes
1. It is of course desirable to allow maximum flexibility for the language-independent service to be implemented effi-

ciently and in a way which fits in well with the host language or environment. Hence requirements on language
bindings should be the minimum needed to protect the integrity of the language-independent service. On the other
hand, implementors are helped if requirements are explicit and the limitations on flexibility are made clear, rather than
a matter for interpretation.

2. In many cases, it may be that the use of abstract datatypes will actually be helpful to implementors and those defin-
ing language bindings, in that it increases flexibility to bind to the most appropriate datatype available.

11.8 Guideline: Avoidance of representational definitions

When defining the datatypes used in the language-independent service specification and the operations
to be supported, any explicit or implicit dependence on or assumptions about the form of representation of
the datatype values should be avoided as far as possible, the definitions being in terms of abstract prop-
erties only. When dependence on some form of representation is unavoidable (e.g. because the lan-
guage-independent service entails interworking with some other service which does require a particular
representation) then the representation requirements should be made explicit, and kept to the minimum
necessary for the language-independent service to be performed correctly. The language-independent
service specification should also address the issues relating to conversions from and to other forms of
representation.

Notes
1. In this Clause, the term "representational" includes indirect forms as well as direct forms. An example of an indirect

form is assuming that a value of datatype Complex, approximating to a value in the mathematical complex domain, is
represented as a pair of values of datatype Real, approximating to values in the mathematical real domain, which are
approximations to the (mathematical) real and imaginary parts of the corresponding (mathematical) complex number.

2. In the case of datatype Real, for most applications it is usually safe to make the assumption that values will be repre-
sented in floating point form. Use of ISO/IEC 10967-1 entails that assumption, without any further assumptions e.g.
about the radix used, or machine representation for storage or transmission of values. For some applications, how-
ever, it may be desirable for the language-independent service specification to address issues relating to the use in-
stead of some other form, such as fixed point (datatype Scaled in LID).

ISO/IEC PDTR 14369:1998(E)

35

12. Guidelines on specification of procedure calls

This Clause provides guidelines on how to specify procedure calls in language-independent service
specifications. Many (perhaps most) service specifications will find it convenient to define certain actions
or functions of the service in terms of procedure calls; indeed, some services may conveniently be defined
entirely in terms of procedure calls and the data on which they act. In particular, any required operations
on data values (see Clause 11.4) which not all actual languages necessarily provide may well be best de-
fined in that way.

12.1 Guideline: Avoidance of unnecessary operational assumptions or detail

The language-independent service specification should define each procedure call in terms of the overall
effect achieved by the call in relation to the service, not in terms of how that overall effect is to be
achieved.

Notes
1. The concept of "procedure call", though a very general one and by no means confined to so-called "procedural lan-

guages", is often interpreted in terms of specifying things procedurally, i.e. how an effect is to be achieved. To make
the service specification truly language independent, it is necessary to bear in mind that many languages are "non-
procedural" (i.e. the underlying procedural aspects do not appear at the level of the source code, and hence are not
directly under the control of the programmer). It should be noted also that even the procedural languages can vary in
the way that they achieve certain effects, and if the specification defines the "how" as well as the "what" of a proce-
dure call, the binding for languages who achieve the same effect differently will not be the most effective or efficient
one.

2. This guideline implies that the language-independent service specification should not require or expect that a lan-
guage binding will necessarily implement a procedure call in the language-independent service specification as a
procedure call in the language.

3. This guideline implies that the language-independent service specification should not specify higher-level procedures
in terms of calls of lower-level procedures, unless this is unavoidable because of external constraints (i.e. require-
ments imposed by the environment in which the service operates).

4. This guideline encapsulates the concept sometimes referred to as "the right level of abstraction": i.e. that the right
level of abstraction is not the operational level, but a higher and more abstract level which leaves out the operational
detail.

5. This guideline implies that it is undesirable to specify an language-independent service in terms of operational se-
mantics, since this can easily imply an implementation model for the service, including its constituent procedures
(see Clause 8).

12.2 Guideline: Use of ISO/IEC 13886:1996 (LIPC) procedure calling model

The language-independent service specification should, for its procedure calling model, use ISO/IEC
13886:1996 Language-Independent Procedure Calling (LIPC).

Note - The advantage of using LIPC as the model is that any LID datatype may be used as a parameter (or for the returned
value) of any LIPC procedure, which greatly simplifies the language-independent service specification and reduces
the chance of clashes with other related language-independent service specifications. Use of LIPC and the very
wide range of datatypes available for parameters also maximises freedom to implement the service in the way that
best suits the language used, using the relevant language bindings to LIPC and LID.

12.3 Guidelines on the use of ISO/IEC 13886:1996 (LIPC)

ISO/IEC PDTR 14369:1998(E)

36

The ISO/IEC 13886:1996 Language-Independent Procedure Calling (LIPC) standard defines a language-
independent model of procedure calling of sufficient abstraction to allow the procedure calling facilities of
many languages to communicate by mapping them to and from the LIPC facilities, the mapping being de-
fined by the bindings of the languages concerned to LIPC. The model allows for various modes of pa-
rameter passing.

An LIPC parameter may be of any datatype definable via ISO/IEC 11404:1996 Language-independent
datatypes (LID). No distinction is made between "function" procedures that return a value through the
procedure name (and hence can be called to provide values to expressions directly), and "subroutine"
procedures that do not return a value in such a way (though they may return results through setting values
of suitable parameters). The language syntax used to invoke a procedure is a matter for the language
concerned, and of no relevance to LIPC. If the language allows for "function" procedures, the language
binding maps the return through the procedure name of the evaluated value of the function into an addi-
tional parameter of the corresponding LIPC invocation.

Note - Hence the LIPC equivalent of the square root function sqrt(x), provided in many languages, would be of the form
sqrt(x,y), y being set to the square root of x.

LIPC acts as a bridge between the procedure calling facilities of different languages. A language proces-
sor offering LIPC server facilities for a procedure (i.e. on the service provider side, in the present context),
maps the LIPC procedure call definition, including the number and datatypes of formal parameters, into
the form of the corresponding procedure call in the language on its side, using the LIPC binding for that
language.

Note - The semantics of the procedure once called (sometimes termed the procedure body as distinct from the procedure
head) can be defined in various ways, e.g. in language-independent form, or by program source code in the lan-
guage on the service provider side.

A language processor offering LIPC client facilities (i.e. on the service user side) can then invoke that pro-
cedure, in terms of the language on that side. The actual parameters are converted by the LIPC client
facilities from the local datatypes to the LID datatypes required for the formal parameters, using the LID
binding for the language; this process is termed marshalling.

Transmission of the procedure invocation and parameters to the service provider side is a system imple-
mentation matter outside the scope of LIPC. Once received by the service provider side, the LIPC server
facilities unmarshal the marshalled actual parameters from the LID datatypes into the local datatypes
used by service provider mapping of the LIPC procedure call definition. Return of results is performed by
a reverse process of marshalling on the service provider side and unmarshalling on the service client side.

LIPC specifies four abstract modes of parameter passing (see Clause 12.3.2), and explains how the
common forms of parameter passing found in languages can be expressed with them. As a guide for
those defining and implementing LIPC services, an abstract model of the execution of a procedure call is
provided. There is no requirement to implement this execution model itself, which is provided solely to aid
understanding and reduce the risk of incompatibilities through differences in assumptions being made by
people with different language backgrounds.

12.3.1 Guideline: Selection of datatypes of parameters

Care should be taken in the selection of datatypes of parameters, to avoid breaking down complicated
datatypes used for definitional purposes into simpler ones for specifying operations, simply because it is
known that most languages will not be able to pass as a parameter a value of a complicated datatype.
The definition of the procedure should be made at the highest level of abstraction possible (see Clause
12.1) to enable bindings of the language-independent service specification to exploit language features to
their best effect.

Note - This does not preclude the language-independent service specification from including, e.g. as an informative annex,
advice to implementors and those defining language bindings of the language-independent service specification on
possible methods of breaking down complicated datatypes for parameter passing purposes.

ISO/IEC PDTR 14369:1998(E)

37

12.3.2 Guideline: Selection of parameter passing modes

As far as possible, the language-independent service specification should use the LIPC parameter pass-
ing mode "call by value sent on initiation" for each parameter.

Notes
1. The LIPC parameter passing mode "call by value sent on initiation" is what is commonly called simply "call by value",

or "in".

2. Experience shows that "call by value" is the parameter passing mode which causes least confusion to users, and is
least prone to unwanted side effects.

3. Special rules, or at least guidance, will probably need to be included for bindings of the language-independent serv-
ice specification to languages which do not specify "call by value", or "in", as a required parameter passing mode,
unless these are already covered adequately for the language-independent service specification in an LIPC binding
standard.

4. LIPC permits the use of "call by reference" in this mode, by passing the value of a "pointer" datatype. The advantage
of this is that it makes precise the concept of "call by reference", by making it clear what is allowed to change and
what is not. This is the recommended method for returning values to the calling environment. Special rules, or at
least guidance, will probably need to be included for bindings of the language-independent service specification to
languages which are less precise in this respect, unless these are already covered adequately for the language-
independent service specification in an LIPC binding standard.

5. An alternative, for the return of results, to the use of a pointer datatype called "by value", is use of another LIPC pa-
rameter passing mode, "call by value return on termination", i.e. ("out"). This might be preferred in some cases. In
fact, if the specification is at a high enough level of abstraction, use of either method might be possible, depending on
available language features.

12.3.3 Guideline: Use of bindings to LIPC

The language-independent service specification should require that any implementation of the service or
language binding to the language-independent service specification standard conforms in respect of pro-
cedure calling to the relevant requirements of the relevant binding to LIPC, where one exists.

Note - Special rules for implementors will be needed to cover cases where a binding to LIPC to the language used does not
exist.

12.4 Interfacing via remote procedure calling (RPC)

A service for which a language-independent specification is required may be intended for use wholly or
primarily across a network. In consequence, any procedure call from the service user will be transmitted
to the service provider through a communication channel. Thus the values corresponding to the actual
parameters supplied by the service user, and results returned by the service provider, will need to be en-
coded in the appropriate transmission protocol. The need for encoding of values for transmission im-
poses constraints on the datatypes of the encoded values, and the parameter passing mode used.

However, the service will still need to be capable of interoperating with other (non-remote) services,
meaning that it is still appropriate for the language-independent specification of the service to be ex-
pressed in the most general terms possible, using LIPC for procedures as recommended earlier. The
constraints imposed by the need for service users to call procedures remotely, across a network, will
therefore be reflected wholly in the language-independent specification of the interface. There is no logi-
cal problem in this, because the remote procedure call constraints apply only to the interface.

A specific standard deals with procedure calls operating under such constraints: ISO/IEC 11578 Remote
procedure call (RPC). The constraints referred to above are reflected in the facilities this standard pro-
vides.

ISO/IEC PDTR 14369:1998(E)

38

This Clause provides some general guidelines for specifying an interface under remote procedure call
constraints, including use of the RPC standard.

12.4.1 Guideline: Avoid limiting the service specification because of constraints on the interface
specification

Remote procedure call constraints on the interface should not be carried over into the language-
independent service specification.

Notes
1. The language-independent service specification will give the formal definition of the procedures, and the datatypes

and passing modes for parameters need to be those most appropriate for the service. This allows implementors of
the service maximum freedom to exploit the facilities of the language used for implementation.

2. For some services the LIPC datatypes and passing modes for parameters equivalent to those in RPC will in fact be
the most appropriate. In such cases this problem will not arise.

3. ISO/IEC 13886:1996 (LIPC) contains an annex summarizing its relationship with RPC, which can be consulted if
necessary.

12.4.2 Guideline: Specification of RPC interface

A language-independent interface specification with remote procedure call constraints should define the
usual LIPC marshalling and unmarshalling appropriate to the case and then a further stage of marshalling,
from LIPC into RPC form, and an additional stage of unmarshalling from RPC into LIPC form before the
usual unmarshalling from LIPC to the service provider language form is carried out.

Notes
1. Where calling might take place non-remotely as well as remotely, the usual LIPC-based interface will be needed.

Even when calling will only take place remotely, specification of marshalling and unmarshalling in two stages is desir-
able for documentation purposes: for example, it makes clear which transformations are caused by moving between
language-dependent and language-independent forms, and which are the result of remote procedure call constraints.

2. This does not imply that implementations of the interface will be required to use a two-stage process. On the con-
trary, implementations should be free to optimise the marshalling and unmarshalling transformations within the limita-
tions of the languages concerned and the remote procedure call constraints.

3. Language bindings to LIPC can of course also provide for the case when remote procedure call constraints are pres-
ent.

12.4.3 Guideline: Use of subsets

In some cases, a language-independent service specification may be best defined in terms of an LIPC-
based full service, with a more restricted RPC-based service as a subset. If this is done, it should be en-
sured that the restricted service is a fully conforming subset of the full service.

Notes
1. The temptation should be resisted of using the subset approach for speed or simplicity, because of the well-known

attendant disadvantages of including levels and options in standards.

2. A formal specification method should be used to demonstrate the full conformity of the subset, if at all possible.

12.4.4 Guideline: Use of ISO/IEC 11578 (RPC)

ISO/IEC PDTR 14369:1998(E)

39

For some services where remote procedure call constraints may apply, it may be necessary or desirable
to make use of features in ISO/IEC 11578 Remote procedure call in addition to those with corresponding
features of ISO/IEC 13886:1996 Language-Independent Procedure Calling. In general any such lan-
guage-independent interface specification should be reviewed in the light of ISO/IEC 11578 RPC, so that
the maximum benefit may be obtained from use of that standard.

Note - RPC is defined at a more concrete level of abstraction than LIPC, and hence addresses issues outside the scope of
the LIPC standard which may still be relevant to the service being specified.

12.5 Guideline: Guidance concerning procedure calling to those defining language
bindings to the language-independent service specification

Procedure calling is a well-known concept, and exists in some form in all programming languages, or at
least all those likely to wish to bind to a language-independent service specification. It is also a simple
concept, at least at the level of provision of functionality. However, because procedure calling interacts
with other parts of the language concerned, there are many detailed variations between one language and
another, not just at the syntactic level, which is relatively easy to deal with, but in terms of the underlying
operational model used. Languages vary, sometimes greatly, in their underlying structure and design as-
sumptions, and this can often be reflected in the procedure calling model.

The difficulty for those defining a language binding to an external service is that the service probably will
not have exactly the same procedure calling model. There is obvious danger of mismatches, faults, and
unexpected behaviour arising because those defining the service made unspoken assumptions about
procedure calling while those defining the binding made different unspoken assumptions. This is espe-
cially true when those concerned are particularly expert in one language but not very familiar with others.

Hence the first necessity for those defining a language binding is to examine carefully the underlying as-
sumptions of the procedure calling model of the "target" language, and compare these to the underlying
assumptions of that used for the service. It is recommended that this be done in each case by first sepa-
rating the three concepts of defining the procedure; invoking it; and the delivery of its results back to the
point of call, and then doing detailed comparison of each of the three.

However, this Technical Report recommends throughout that relating the procedure calling models of the
service and the target language by using the common reference point provided by ISO/IEC 13886:1996,
Language-Independent Procedure Calling (LIPC), which was designed for that purpose. If the language-
independent service specification was produced in accordance with the guidelines in this Technical Re-
port, it, and the interface to which the binding will relate, will use the LIPC model, at least as a reference if
not for the detail of the specification (see Clause 12.2). Even if the service specification is language de-
pendent, a language-independent interface produced in accordance with the guidelines will present the
service using the LIPC model - in other words it will act as a buffer between the service's internal assump-
tions, and the outside world in which those assumptions may not hold.

If the target language already has a defined LIPC binding, in a standard or, failing that, an authoritative
document, then those defining the language binding can use that. If not, they will need to define one of
their own, covering at least enough to meet the needs of binding to the service concerned. LIPC has an
annex, titled How to do an LIPC binding for a language, which provides guidance for that. Of course, be-
fore embarking on this, a search should be made to determine if others in a similar situation have pro-
duced partial bindings.

Note - The danger that different partial LIPC bindings will be incompatible shows the importance for a language community
of agreeing on a definitive standard binding to LIPC.

For some services, however, an existing LIPC binding may not be enough, since it will primarily cover in-
vocation and return of results. While this will in many cases be adequate, there may be a need for a
common understanding of what happens during execution - for example, when questions of
interoperability arise (see Clause 9). In such cases, Clause 6 of LIPC should be studied, because that
provides an abstract formal model of procedure execution for use in such situations.

ISO/IEC PDTR 14369:1998(E)

40

13. Guidelines on specification of fault handling

During the invocation or execution of a service, faults may occur. The term "fault" is used here in a broad
sense, to mean any occurrence which prevents, delays or changes the way in which the service would
normally operate. For a service to be reliable, it is important to foresee the kinds of fault that may arise,
and to determine how they will be handled when they do.

Some faults will be internal to the service itself (i.e. will occur on the service side of the interface). If a
fault can be completely handled on the service side so that, with appropriate fault recovery procedures,
the service is unaffected, it will not be visible outside, so an language-independent service specification
covering only the service interface need not address it. However, if the service is affected, e.g. is
stopped, or delayed, or acts in a way other than expected, then the fault, or a manifestation of it, is propa-
gated through the interface, and the language-independent service specification may need to address it.

Some faults will occur at the interface, e.g. arising from a mismatch between what the service user in-
vokes and what the service provider expects. The language-independent service specification will need
to address such faults.

Some faults will be specific to the binding. The language-independent service specification may need to
address such faults, for example, by identifying them, and saying that they are a matter for the binding.

This Clause provides guidelines on how to approach all these aspects of a language-independent service
specification.

13.1 Guideline: Fault detection requirements

Requirements should be included covering fault detection, reporting and handling, with appropriate con-
formity clauses. The language-independent service specification should specify a minimum set of faults
which a conforming implementation must detect (in the absence of any masking faults); minimum level of
accuracy and readability of fault reports; whether a fault is fatal or non-fatal; and, for non-fatal faults, the
minimum recovery action to be taken.

When considering requirements in this area, drafters of language-independent service specifications may
well need to take execution overhead into account, which could be considerable for some services, some
implementations, or some languages to which the language-independent service specification will be
bound. A possible way of dealing with conflicting priorities (e.g. between speed and safety) for differing
uses of the service could be to specify that implementation options should be available to allow the level
and extent of fault checking to be controlled.

13.2 Checklist of potential faults

The following is a list of typical faults which can arise in the invocation and execution of a service. Draft-
ers of language-independent service specifications should check all of the following for relevance to their
service, and the specification produced should address all that are appropriate, plus others specific to the
service concerned. This list is not to be considered either as exhaustive or as prescriptive.

In all cases the language-independent service specification should specify whether the fault concerned is
fatal or non-fatal. Depending on the nature of the service, it may occur that a particular fault does not
constitute a problem (whereas it would in another service) but that users of the service would neverthe-
less benefit from the availability of a warning message from the implementation.

13.2.1 Invocation faults

[a] unknown or misspelt command.

ISO/IEC PDTR 14369:1998(E)

41

[b] duplicate user-defined name
[c] invalid syntax of numerical value (e.g. two decimal points)
[d] call for unknown service function or other named facility.
[e] wrong number of parameters supplied in call.
[f] wrong datatype of parameter supplied in call.
[g] symbol supplied not in supported character repertoire.

13.2.2 Execution faults

[a] attempt to divide by zero.
[b] numeric overflow on arithmetic operation (any numeric datatype, Real, Scaled or Integer).
[c] numeric underflow on operation yielding datatype Real value. Note: it is possible to specify an

implementation option, to permit the service user to treat such an exception as non-fatal, replac-
ing the underflow value by zero and continuing, or as fatal, which would be the default.

[d] invalid string or list operation, e.g. overflow upon concatenation, attempt to perform an operation
undefined for an empty string or list.

[e] operation undefined for value.
[f] attempt to perform operation on an undefined value.
[g] attempt to delete a non-existent item.
[h] unable to execute call (e.g. named service function unavailable).
[i] attempt to open file that cannot be found.
[j] attempt to open file that is already open. Note: perhaps non-fatal though it may indicate incorrect

file naming by the service user.
[k] illegal file name. Note: file names may be generated dynamically.
[l] attempt to access (for input or output) file to which access is unauthorized. Note: it is advisable

not to require in the language-independent service specification the provision of an unnecessary
amount of information or lower levels of security than provided by the host environment. Any
message should be aimed at a legitimate user who has merely omitted to unlock a protected file
for read or write access, and who will be able to obtain the needed information and take the nec-
essary action without direct assistance from the implementation.

[m] attempt to input from an output-only file (e.g. printer stream) or to output to an input-only file (e.g.
keyboard).

[n] attempt to create an item that already exists.
[o] attempt to replace a non-existing item.
[p] attempt to close file already closed.
[q] insufficient system resource (e.g. memory) available for specified operation.
[r] time limit exceeded.
[s] limit on complexity (e.g. depth of recursion) exceeded.
[t] use of non-standard dynamic implementation-defined extension.

13.3 Guideline: Recovery from non-fatal faults

Where the specification permits recovery mechanisms from fault conditions, the required results of the
actions to be taken by the implementation (when such a recovery mechanism is invoked) should be de-
fined as fully as are defined the normal features of the service.

ISO/IEC PDTR 14369:1998(E)

42

14. Guidelines on options and implementation dependence

Options present a special problem for service specifications in general (as indeed for other things), and for
language-independent service specifications in particular. Optional aspects of the service, which some
implementations have but others do not, can harm interoperability, and can create difficulties for applica-
tions using the service, which may need the options and rely on them to be present, or at least need to
know (possibly in advance) whether they are there or not. Options in the service interface, or in bindings,
can create uncertainties and difficulties, and may damage interoperability of applications using different
implementations of the service.

From that point of view, the best course of action is to eliminate options altogether. All implementations,
interfaces and bindings will therefore provide the identical service. However, in some environments, pro-
viding everything may be technically difficult, prohibitively expensive or actually impossible. A partial
service could be offered but it would not conform to the specification and (if the specification is embodied
in a standard) users of it would hence not be able to rely on the assurance that conformity to the standard
(possibly backed up by testing and certification) would bring. In some environments or for some pur-
poses, providing everything may be indeed unnecessary; parts would never be used yet the costs of them
would remain.

As for implementation dependence, removing it altogether may make implementation impossible on some
systems. In contrast, some systems might be able to provide a better level of service (as measured by,
say, speed or capacity) than that specified, but would be prevented from doing so. Where characteristics
so measured have to be identical, to permit interoperability, this may be unavoidable, but a situation could
arise in which implementation, interface, binding and application could all operate at a higher level, with-
out affecting anything outside, but doing so would be precluded.

Services, the way they are used, and the circumstances in which they are used, vary so much that there
can be no general rule covering every case. Those responsible for developing the specification, such as
a standards committee, will need to weigh all the various factors and make a decision - probably a com-
promise - accordingly. The guidelines in this Clause are aimed at helping them to do that.

14.1 Guidelines on service options

14.1.1 Guideline: Optional service features

Inclusion within the language-independent service specification of optional features of the service, as of-
fered through the interface to users whether as optional additions or as optional alternatives, should be
minimized. Ideally, the aim should be to have no optional features at all.

Note - In general, optional features harm interoperability, and they can create difficulties for applications using the service,
especially those that deal with different implementations of the service.

14.1.2 Guideline: Avoidance of assumptions about the use of the service

When determining whether to allow a feature of a service to be optional, the fewest assumptions as pos-
sible should be made about how or for what purpose the service will be used.

Notes
1. Experience shows that options often arise because it is assumed that a certain feature will rarely be used, or will be

required only for certain expected uses of the service. Problems are thereby created during the transitional period
where many implementations omit the option until experience has shown that it is more widely used than anticipated
by the designers of the service.

ISO/IEC PDTR 14369:1998(E)

43

2. Experience can also show that features made mandatory are in fact used only rarely. In that case a possible course
of action is to make the feature optional in a future revision (see Clause 17).

14.1.3 Guideline: Management of optional service features

Where complete avoidance of service options is impracticable:
- they should be organized in a consistent manner, and the number of different levels should be mini-

mized;
- if an implementation provides a conforming optional service feature that is not required for the subset

for which conformity to the language-independent service specification is claimed, then the specifica-
tion should require that, nevertheless, the implementation must provide that feature in accordance
with the requirements of the specification;

- the language-independent service specification should require that every implementation omitting any
optional features must provide, either internally or through the interface, a defined response to any
service user request for a feature not provided by that implementation.

14.1.4 Guideline: Definition of optional features

If at all possible, any optional (or higher level) features of the service should be defined functionally in
terms of mandatory (or lower level) features.

14.2 Guidelines on interface options

14.2.1 Guideline: Completeness of interface

The service interface specification should allow bindings and user applications access to all the features
of the service that are offered externally.

Note - Even when the interface is conceived to be for a given, limited purpose not seeming to require certain features of the
service, some applications may have unforeseen uses of those features, and the interface should not prevent that
happening (see Clause 14.1.2).

14.2.2 Guideline: Interface to service with options

Where the interface is to a service that has optional features, the interface specification should reflect this
but still be able to handle invocations of those features by user applications, and provide an appropriate
response.

Note - Adopting this strategy will make it easier to update the interface should these unimplemented options later become
available.

14.3 Guidelines on binding options

14.3.1 Guideline: Completeness of binding

Unless unavoidable, a language binding to the service interface specification should allow user applica-
tions access to all the features of the service, whether mandatory or optional, that are available through
the interface. If omissions are unavoidable, they and the reasons for them should be fully documented.

Notes

ISO/IEC PDTR 14369:1998(E)

44

1. The language binding should not make assumptions about how or for what purpose applications written in the lan-
guage will use the service (see Clause 14.1.2).

2. Omitting features may be unavoidable through. For example, if the interface assumes the presence of a facility that is
not available in that language. (This is at least as likely to be the result of the service specification not being suffi-
ciently language independent as it is to be the result of a shortcoming in the language.)

14.3.2 Guideline: Binding to a service with options

Where the language binding is to a service that has optional features, the following possibilities should be
considered:
- reflecting the service options in options in the binding;
- requiring certain options to be available before binding is possible;
- using suitable language facilities to provide enquiry functions, allowing language users to determine,

in a given environment, whether a given option is available or not.

14.3.3 Guideline: Binding to a language with optional features

Where the language binding is to a language that has optional features, the binding should make use of
the full power of the language, provided
- it does not require syntax additional to that allowed by the standard for the full language;
- an alternative binding, where possible, is provided in cases where the preferred binding uses an op-

tional language facility which is absent from a standard-conforming language processor which omits
that option (e.g. a subset language implementation);

- such alternative binding is totally equivalent to preferred binding as far as providing access to the
service feature is concerned.

Notes
1. For some languages the "full power" will include the ability to add user-defined datatypes, operations, modules etc.

These should be exploited for the maximum benefit of those language users needing access to the service.

2. Strictly speaking this guideline does not belong in this Technical Report but in ISO/IEC TR 10182:1993. The guide-
line is however kept in the spirit of this document.

14.4 Guidelines on implementation dependence

14.4.1 Guideline: Completeness of definition

The number of aspects within its scope that the language-independent service specification leaves not
completely defined should be minimized (and preferably eliminated altogether). Where full definition is
impracticable, in general such aspects should be required to be implementation-defined, subject where
appropriate to specified minima or other limits, rather than left as implementation-dependent or undefined.
In this case, a complete checklist should be provided of all such implementation-defined features, guid-
ance should be provided for implementors, required limits, as appropriate, should be specified, and the
documentation accompanying the implementation should be required to provide for the user a full specifi-
cation of the implementation definitions used.

Note - The crucial phrase above is "within its scope". The temptation must be avoided of over-specifying requirements by
going beyond the scope of the specification by specifying how results must be achieved as well as what results must
be achieved. Such over-specification often means that, for languages with facilities other than those envisaged, ei-
ther instead or in addition, implementations are pointlessly constrained, and may be less efficient than they could be.

14.4.2 Guideline: Provision of implementation options

ISO/IEC PDTR 14369:1998(E)

45

The language-independent service specification should specify implementation options required to be
provided by a conforming implementation, including in each case a specification of standard default set-
tings of the option and the form or forms in which the implementation options are to be made available to
the service interface, bindings, and user applications.

Note - There is also the possibility of the language-independent service specification leaving some things undefined to be
defined by the binding, or for the binding to decide whether to define something or leave it to the implementation to
do so. All such things should be explicitly stated in the language-independent service specification.

14.4.2.1 Checklist of potential implementation options

Writers of language-independent service specifications should consider all of the following features as
potential areas for specifying implementation options, and the specification produced should address all
that are appropriate for the service and for the kinds of implementation and binding language covered:

- the handling of non-standard features;

- the use of system-dependent or implementation-dependent features;

- the type(s) of optimization;

- the handling of faults and warning messages;

- the handling of overflow and similar range checking;

- operating modes;

- the use of preconnected files and their status on termination;

- the rounding or truncation of arithmetic operations;

- the precision and accuracy of representation and of arithmetic, as appropriate;

- the default settings of service parameter values;

- in the case where the specification is a revision of an earlier specification, the detection and reporting,
of usage incompatible with the old specification.

14.4.3 Guideline: Implementation-defined limits

Minimum guaranteed service levels to be supplied by conforming implementations should be specified in
appropriate circumstances, namely where:

a) it is probable that user service demands may encounter implementation-defined limits during execu-
tion, and

b) such limits can be expressed in terms of the nature of the demand (rather than service implementa-
tion issues which may be unpredictable or variable, such as resource capacity);

and provide advice on choice of actual levels.

14.4.3.1 Checklist of potential implementation-defined limits

Examples of features for which it may be appropriate to specify minimal limits in specifications are:

- length of user-supplied or internally-generated character strings handled,
- range of integers,
- internal precision of values of datatype Real,
- magnitude of values of datatype Real,

ISO/IEC PDTR 14369:1998(E)

46

- number of user files which can be open simultaneously,
- complexity of service requests that can be handled.

14.4.3.2 Actual values of limits

When advising implementors on considerations involved in setting the actual values of implementation-
defined limits, note that such advice may do one or more of:

- recommending specific values;
- recommending minimum useful values;
- recommending maximum useful values;
- recommending that limits should depend on implementation thresholds where efficiency changes

sharply;
- recommending that limits should depend on resource availability, which may fluctuate during execu-

tion;
- setting forth other criteria appropriate to the specific service.

In each case the reasons for the recommendations should be explained. Different recommendations may
be appropriate for different limits.

It should be noted that appropriate implementation-defined limits need to be made accessible to users, in
particular for those performing conformity testing, as well as being documented. Where this is not avail-
able through service facilities (such as user "help" facilities), appropriate guidance to implementors should
be provided.

ISO/IEC PDTR 14369:1998(E)

47

15. Guidelines on conformity requirements

If the specification (of the service, the interface, or a binding) is to be included in a formal standard, then
formal conformity rules will be required. This Clause provides guidelines on how to do this.

Note - Much of this Clause is based on the guidelines in ISO/IEC TR 10034:1990, Guidelines for the preparation of confor-
mity rules in programming language standards.

Even if the specification is not being designed with formal standardization in mind, any document con-
taining it will need to make clear what is required to meet the specification, though it may be felt unneces-
sary to make the conformity requirements quite so strict as those in a formal standard should be.

The guidelines here are based on the assumption that strict and formal conformity rules are required. If
the circumstances are regarded as less demanding, then some relaxation may be possible. However, in
general both implementors and users of any service, standardized or not, will be helped by a rigorous
definition of what is required, since there cannot then be any doubt.

What kinds of entity will be expected to conform to the specification, and the rules to be laid down for such
conformity, will depend greatly upon the nature of the service being specified, and in that respect these
guidelines can do no more than indicate general principles. In respect of the language-independent na-
ture of the specifications, the consequent relationship with actual languages, and what this implies for
conformity rules, these guidelines can be more specific.

There are three kinds of possible relationship between a programming language and a language-
independent service specification, which can be summarized as implementation, invocation, and incorpo-
ration.

Implementation means that the language is used to implement the service. At its simplest, the service is
provided to the user as an executing program. The user, in general, does not know, and should not need
to know, what language the program is written in.

Note - This relationship is relevant for a specification of the service. Though the specification of services in general is out-
side the scope of this report, specification in respect of language independence is in scope, and is covered in Clause
15.1 below.

Invocation means that the user of the language is able to call upon the service from a program in that lan-
guage. The term reflects the familiar simple case of a user invoking a procedure from a procedure library.
The essence in this case is that the service is logically external to the language, but language users can
invoke it. The implementation language for the service is not necessarily the same as the language from
which it is called.

Incorporation means that the service is provided by the language. That is, the service is internal to the
language - it is included in the language definition. This does not mean that the language is also the im-
plementation language: languages designed for particular applications domains are often implemented in
other languages designed for systems implementation.

Both invocation and incorporation require language bindings to the service, which in general will be rather
different in style. Furthermore, for a particular service and language, invocation and incorporation will not
necessarily be totally mutually exclusive. Normally, a language will have only one binding to the service,
which will be an invocation-style binding, an incorporation-style binding, or a mixture (since, for a particu-
lar service and language, invocation and incorporation will not necessarily be totally mutually exclusive).

Conformity rules need to cover all these three cases, and in general will be different. Those covering im-
plementation conformity will be the ones which most depend on the nature of the service. The guidelines
for specifying conformity of implementations (see 16.1) will be confined to general principles and how to
avoid making undue assumptions about the nature of the implementation language. Conformity rules
covering invocation and incorporation will be rules for conformity of the language bindings. The guidelines
for specifying conformity of language bindings (see 16.2) will address how to avoid making undue as-
sumptions about the nature of the binding or the language being bound to, and how to make the language

ISO/IEC PDTR 14369:1998(E)

48

bindings as simple as possible. The general guidelines for specifying the service will of course address
those questions, but they also need to be addressed here, since it is possible for a good language-
independent specification to be subverted by undue assumptions in the conformity rules.

15.1 Guidelines for specifying conformity of implementations of the service

15.1.1 Guideline: Avoidance of assumptions about the implementation language

The conformity requirements on implementations should not make assumptions about the style or mode
of provision of facilities of the implementation language.

15.1.2 Guideline: Avoidance of representational assumptions

The conformity of implementations should not depend on representational requirements, or requirements
that make representational assumptions.

15.1.3 Guideline: Avoidance of implementation model

The conformity requirements on implementations should not assume or require an explicit implementation
model.

15.1.4 Guideline: Requiring end results rather than methods

The conformity clauses for implementations of the service should make very clear that is the end result
that matters, not how it is achieved.

Note - The normative text of the specification needs to be equally clear in this respect.

15.2 Guidelines for specifying conformity of implementations of the interface

15.2.1 Guideline: Requirements on implementation-defined aspects

Conformity requirements for implementations of the interface should address implementation-defined as-
pects of the service (e.g. maxima or minima of implementation-defined values), even if the specification of
the service does not.

Note - Such requirements will assist in defining language bindings to the interface, since they help to determine the mini-
mum level of service that a language user can expect from a binding.

15.3 Guidelines for specifying conformity of bindings

15.3.1 Guideline: Propagating requirements to conforming bindings

The conformity rules for the service should include requirements on the conformity rules that language
bindings apply to their implementations, in order to propagate requirements of the interface to conforming
bindings and ensure an adequate level of consistency between bindings for different languages.

ISO/IEC PDTR 14369:1998(E)

49

15.3.2 Guideline: Adherence to defined semantics

The conformity rules of a language-independent service specification should require that any conforming
language binding shall adhere strictly to the defined semantics of the service.

Notes
1. See Note 1 in Clause 16.2.

2. Other guidelines in this Technical Report make it clear, however, that conformity rules should avoid imposing on
bindings inflexible requirements that are inessential to the correct functioning of the service.

ISO/IEC PDTR 14369:1998(E)

50

16. Guidelines on specifying a language binding to a language-independent
interface specification

Guidelines on the development of language bindings may be found in ISO/IEC TR 10182:1993, Guide-
lines for language bindings. The following additional guidelines are recommended for use when binding
to a language-independent interface specification.

16.1 Guideline: Use of bindings to LID and LIPC

Language bindings to a language-independent service specification should make maximum use of exist-
ing bindings for the language to the language-independent standards ISO/IEC 11404:1996, Language-
independent datatypes (LID) and ISO/IEC 13886:1996, Language-Independent Procedure Calling (LIPC).

Notes
1. See Clauses 11 and 12.

2. For some services whose invocation can be expressed completely in terms of procedure calls and associated pa-
rameters and for languages whose bindings to LID and LIPC are complete, it may be possible to produce a very sim-
ple, near-automatic binding which simply lists the service's datatypes and procedures and the corresponding bind-
ings.

3. However, name correspondence requirements may still be necessary: see Clause 6.1.1 item (5).

16.2 Guideline: Adherence to defined semantics

A language binding to a language-independent service specification should adhere strictly to the defined
semantics of the service, even when the conformity rules for the service specification do not make such a
requirement.

Notes
1. If different semantics exist for different bindings, this causes confusion among users, possibly resulting in errors that

are difficult and expensive to put right. Strict adherence to the defined semantics is clearly important when
interoperability is required between applications using different languages and language bindings, but even when
interoperability between one language platform and another is not an issue, portability and consistency of the same
application between different language platforms is jeopardized if the defined semantics are departed from.

2. It may be appropriate to include in the language binding specification the specification of the service itself, either as a
separate section or annex, or interleaved with related binding definitions. However, such included material should be
clearly shown as informative, not normative.

3. A binding which redefines the semantics of a service, hence contrary to this guideline, has sometimes been termed a
"thick" binding, as opposed to a "thin" binding which adheres to the defined semantics as this guidelines recom-
mends. However, the terms "thick" and "thin" in relation to bindings have tended to cause much confusion and mis-
understanding, and are best avoided.

16.3 Guideline: Binding document organisation

A language binding to a language-independent interface specification should be designed to include the
following parts (though it should not necessarily be confined to only to the parts listed).

Note - In general a binding to a language-independent interface specification will be a simpler document than the specifica-
tion itself, though the relation of the intended structure of the bindings to that of the language-independent service

ISO/IEC PDTR 14369:1998(E)

51

specification should be carefully considered: there are advantages in keeping them as similar as possible. The list
below is therefore a shortened and adapted form of the checklist in Clause 6.1.1.

1) A definition of the binding of the language to the interface, including rules for conformity of implemen-
tations.

2) The specification of all further requirements on standard-conforming implementations of the binding
(such as fault detection, reporting and handling; provision of implementation options to the user;
documentation; validation; etc.), and of rules for conformity.

3) One or more annexes containing an informal description of the service and of the interface, a glossary
(including an explanation of any differences between the terminology used in the language-
independent interface specification and that used in the language standard), guidelines for service
users (on implementation-dependent features, documentation available, etc.), and a cross-referenced
index to the document.

4) An annex explaining the name correspondence between names used in the interface specification
and names used in a calling program.

5) An annex containing one or more checklists of any implementation-defined features.

6) An annex containing guidelines for implementors, including short examples where appropriate.

7) An annex providing guidance to users of the binding on questions relating to the validation of confor-
mity, and any specific requirements relating to validation contained in (1) and (2) above.

8) In the case where the binding is a revision of an earlier version, an annex containing a detailed and
precise description of the areas of incompatibility between the old version and the new version.

Note - Where the revision has been prompted by a revision of the language standard rather than of the service, it may be
sufficient to summarise the relevant equivalent information given in the revised language standard, together with
a summary of any new language features used in the binding.

9) An annex which forms a tutorial commentary containing examples that illustrate the use of the service
from within the language.

16.4 Guideline: "Reference card" binding documents

Consideration should be given to production of a "reference card" style of binding document, consisting
simply of a listing of the elements of the interface and the corresponding syntax in the language con-
cerned.

Notes
1. This could be provided variously as a separate document for purposed of quick reference, an informative annex to a

full binding, the normative binding with the detailed material in informative annexes, or even (e.g. in very simple
cases) as the entire binding document.

2. The reference card form of documentation has been shown to be popular and effective for commercial products, and
the semantics can always be found by reference to the language-independent specifications.

ISO/IEC PDTR 14369:1998(E)

52

17. Guidelines on revisions

The revision of any specification can create problems for users accustomed to the previous version, and
always needs to be carried out with care. In the case of a language-independent service specification, a
revision might occur of the service specification, of the interface specification, of a language binding, or of
the language of a language binding.

Only a revision of a language binding can be done without, in principle, potentially affecting the others.
Revision of a language may imply revision of the corresponding language binding. Revision of the inter-
face specification may imply revision of some if not all language bindings. Revision of the service specifi-
cation may imply revision of the interface specification and hence to language bindings.

The guidelines in this Clause are intended to assist in the planning of revisions in each of these catego-
ries.

Note - Since the principles that apply to the revision of standards and specifications are much the same whatever the de-
tailed subject matter, many of these guidelines are based on Clause 4.5.4 of ISO/IEC TR 10176:1991 Guidelines for
the preparation of programming language standards, with appropriate adaptation.

17.1 Kinds of change that a revision can introduce

In this Clause, "feature" is used neutrally, to denote any aspect of the specification, which is visible to the
service user, and/or service implementor.

17.1.1 Addition of a new feature

A new feature is added to the specification without affecting existing features.

Note - In the service specification, such a change may for example add a further facility to the service. In the interface
specification, it may offer to users a facility of the service not previously visible (e.g. additional fault information). In a
language binding, it may offer to users from that language community a facility of the service not previously made
available.

17.1.2 Change to the specification of a well-defined feature

A change is made to the specification of a feature that is defined reasonably precisely in the previous ver-
sion. The feature remains available, but has changed in some way.

Note - In the service specification, such a change to the semantics of a feature may mean that invoking the feature through
the interface may produce results different to before. In the interface specification, it may specify that a particular
service facility (which may not itself have changed) must now be invoked in a different way. In a language binding, it
may alter the way that the service is invoked, or the context in which such invocation is permitted.

17.1.3 Deletion of a well-defined feature

A feature which was well defined in the previous version is rendered invalid by the new specification.

Note - Deletion of such a feature may imply that attempts to invoke it will now produce a fault condition, in whichever speci-
fication (service, interface, binding) it appears.

ISO/IEC PDTR 14369:1998(E)

53

17.1.4 Deletion of ill-defined feature

A feature, which was not well defined in the previous version, is rendered invalid by the new specification.

17.1.5 Clarification of ill-defined feature

A feature, which was not well defined in the previous version, so that its interpretation was open to ques-
tion, is properly defined in the new specification.

Note - Though this can be regarded as correcting a defect in the previous version of the specification, some past interpreta-
tions may not be compatible with that in the revised version and so have a similar effect - in those cases - to chang-
ing the specification of a well-defined feature as in Clause 17.1.2

17.1.6 Change or deletion of obsolescent feature

A feature designated in the previous version as obsolescent is deleted or changed in the new specifica-
tion.

17.1.7 Change of level definition

A level of service previously defined in the specification (whether service, interface, or binding) is altered
in the new version.

17.1.8 Change of specified limit to implementation-defined value.

A specified limit (maximum or minimum) in the previous version, for a value left implementation-defined by
the specification, is changed in the new version.

17.1.9 Change of other implementation requirement

17.1.10 Change of conformity clause

17.2 General guidelines applicable to revisions

17.2.1 Guideline: Revision compatibility

For each proposed addition, deletion or modification that represents a potential incompatibility from an
earlier version of the specification:

- the rationale for the proposed change should be stated;

- the way in which the proposed change will affect the original feature should be determined, in accor-
dance with the classifications in Clause 17.1 above;

- the difficulty of converting any affected clients of the service should be assessed;

- an attempt should be made to determine how widely the affected feature is used;

- all the above should be documented, and conversion guidance should be provided in the relevant part
of the language-independent service specification.

ISO/IEC PDTR 14369:1998(E)

54

17.3 Guidelines on revision of the service specification

17.3.1 Guideline: Determining impact on interface and language bindings

Before any revision of the service specification is undertaken, potential changes should be reviewed and
the consequent effect on the interface and on the dependent language bindings should be determined.

17.3.2 Guideline: Minimising impact on interface and language bindings

Any changes resulting from a revision of the service specification should be specified in such a way as to
minimise the difficulty of revising the specifications of the interface and of the dependent language bind-
ings.

17.3.3 Guideline: Use of incremental approach to revision

Because of possible effects on interface and dependent bindings, the revision of a service specification
should if possible be carried out in small steps, correcting, incrementing or modifying a part of the specifi-
cation at a time, to allow similar correcting, incrementing or modifying of the dependent specifications.

17.4 Guidelines on revision of the service interface

17.4.1 Guideline: Buffering unrevised bindings from changes

If possible, a revision of the service should be specified in order to absorb the changes, to ensure that
unrevised language bindings will still work.

Notes
1. Techniques include the provision of conversion facilities or optional forms, which can be marked as "obsolete", to be

removed at the next revision. This allows time for the language binding specifications to catch up with the revised
service.

2. At the least, the interface should be revised to provide special help to calls from applications still using outdated
bindings.

17.4.2 Guideline: Use of incremental amendments

Where the revision of the service takes the form of additional features, an incremental amendment for
language bindings should be specified, to allow the new features to be accessible to applications.

Note - An incremental amendment to a binding will in general be quicker and simpler to provide than a complete revision.
The additional features can be integrated with the others at some future time when a full revision is warranted.

17.5 Guidelines on revision of language bindings following revision of the service
interface

17.5.1 Guideline: Buffering application programs from changes

When a language binding is revised in response to a revision of the service interface, it should as far as
possible shield application programs dependent on the service from any changes to the interface.

ISO/IEC PDTR 14369:1998(E)

55

Note - A change to an implementation of a language binding which allows application programs using it to remain unaltered
can avoid costly and time-consuming modifications to many such programs.

17.5.2 Guideline: Use of incremental amendments

Where revision of the service interface adds to the functionality available to application programs, an in-
cremental amendment to the language binding to accommodate invocation of the new features, without
invalidating invocation not using those features, will provide the benefits to new or revised application pro-
grams without requiring modification of all such programs.

17.6 Guidelines on revision of a language binding following revision of the language

17.6.1 Guideline: Use of new language features

When a language binding is revised in response to a revision of the language specification, relevant new
language features should be exploited to allow new or revised application programs full advantage of
those new features.

17.6.2 Guideline: Buffering "legacy" application programs from changes

Where application programs not yet revised are expected to continue in use, the revised language binding
should where necessary make use of the "backward compatibility" provisions of the language revision to
allow old "legacy" programs to continue to work.

Note - It is common practice when revising language definitions either to make them fully compatible with the previous defi-
nition, or to make special provision for legacy programs.

17.6.3 Guideline: Buffering application programs by use of options

If necessary, the revised language binding should specify a user option to allow application programs to
continue using the old form of invocation, even if the language revision itself makes no provision for leg-
acy programs.

Notes
1. This implies that implementation of the binding will contain the necessary conversions that are absent from the re-

vised language definition.

2. Since it is undesirable for language bindings to remain out of step with the language definition for any longer than
necessary, it is desirable to mark such a user option as obsolescent, to be removed at the next revision of the bind-
ing.

ISO/IEC PDTR 14369:1998(E)

56

Annex A Brief guide to language-independent standards (Informative)

A.1 Language-independent arithmetic

ISO/IEC 10967-1, Language independent arithmetic Part 1, Integer and floating point arithmetic, hereafter
"the LIA-1 standard", provides rigorous definitions of the basic arithmetic operations on integer and float-
ing point values. It is at a higher level of abstraction than IEC 559:1989 (IEEE 754:1985) Standard for
binary floating-point arithmetic, which specifies an abstract representational and implementation model;
though for mathematical reasons it adopts a floating-point notation for definitions relating to "real" (i.e. ap-
proximate) values, it does not require or assume that a floating-point representation will be used in imple-
mentations. The relationship with IEC 559 is clearly described, for convenience of use with systems that
make use of that implementation model. IEC 559 systems can conform to the LIA-1 standard, and many
do, but the IEC 559 requirements are less rigorous, primarily because of the presence of options, so IEC
559 conformity does not guarantee LIA-1 conformity.

Further Parts of ISO/IEC 10967 Language independent arithmetic will cover elementary numerical func-
tions (Part 2) and Complex arithmetic and procedures (Part 3).

A.2 Language-independent datatypes

The purpose of ISO/IEC 11404:1996, Language-independent datatypes (LID) is to define a set of
datatypes suitable for use as "common ground" between a wide variety of programming languages, and
other things which use the concept of "datatype" explicitly or implicitly. The set defined is very rich, far
wider than is usual in programming languages, to accommodate the needs of many very different lan-
guages and allow them to find LID datatypes corresponding to their own datatypes with the minimum dis-
tortion. For the similar reasons, operations on the values are "characterizing", i.e. typical of the datatype
concerned, but are not normative, since which operations are provided in a given context, and which are
not, are very much dependent on the envisaged field of applications. Again, in almost all cases the
datatypes are "purely computational", i.e. concerned with pure values, without any particular semantic or
applicational connotations, and capable of use in a wide variety of application fields. In this, LID follows
the mainstream tradition of general-purpose languages, as can be seen from the choice of primitive
datatypes, though provision is made for the construction of further datatypes which, if necessary, could be
application-oriented.

The LID standard follows the common practice of starting with a number of primitive datatypes and then
using these to construct others. There are three main kinds of constructed datatypes: subtypes, gener-
ated datatypes, and aggregates. (In fact aggregates are technically also generated datatypes, but im-
portant enough to deserve separate classification.)

Primitive datatypes are datatypes whose values are regarded fundamental - not subject to any reduction.
Many primitive LID datatypes are also generic, in the sense that they have an unlimited number of values,
and hence the datatypes often used in practice are confined to a finite subset of them. The reason that
they are used, rather than "actual" achievable datatypes, is threefold: it is a convenient way to identify a
class of datatypes which is infinite in extent; language definitions commonly use them, thus simplifying the
binding between the LID datatypes and the ones used by specific languages; and it allows for the possi-
bility of actually supporting them if a language is designed to do so.

The LID primitive datatypes are Boolean, State, Enumerated, Character, Ordinal, Date-and-time, Integer,
Rational, Scaled, Real, Complex and Void - a much longer list than most languages support, for the rea-
sons stated above. Note that Date-and-time is the only one with particular semantic connotations; the
exception was made partly because time is so universal a concept, and partly because some mainstream
general-purpose languages include it.

Subtypes are created by modifying the value-space of a "base" datatype in various ways - specifying a
range or size; selecting values; excluding values; extending the value-space; or defining explicitly how the
value-space is constructed from that of a "base" datatype. Any combination of these is possible too. This
carries the implication that a subtype may have a wider value space than its base datatype; however, any
datatype can be used as the base, not just the primitive ones, and in that context extension is a useful
subtype constructor, e.g. you can make a new subtype by extending an existing one.

ISO/IEC PDTR 14369:1998(E)

57

The (non-aggregate) generated datatypes in the LID standard are Pointer, Procedure, and Choice
datatypes, produced from other datatypes by the methods familiar from languages that include them.

The main kinds of aggregate in the LID standard are Bag, Set, Record, Sequence, Array, and Table. Bag
is the most general form of aggregate datatype, capable of containing anything; additional properties or
constraints are then used to identify various kinds of aggregate datatype that are encountered computa-
tionally. These properties and constraints are not all mutually orthogonal; they may interact with others, in
various ways. The particular mix of properties used for a given aggregate datatype will depend on the
envisaged computational uses of the datatype and its values. The LID standard provides a way of con-
structing aggregates as needed, by appropriate mixing and matching of a relatively small number of prop-
erties. These include homogeneity, size, and the ability for components to be extracted by tagging, key-
ing or indexing. Multidimensionality is of course allowed for.

Finally, the LID standard allows for new datatypes to be produced from existing ones (copies, or "clones")
and for further datatypes and datatype generators to be derived from the basic primitive and generated
ones - Tree, CharacterString and BitString are examples. Non-aggregate derived datatypes include Bit,
Modulo, and TimeInterval.

Note - Some of the above text has been adapted from the article A taxonomy of datatypes published in ACM Sigplan No-
tices (Vol 29 No. 9, September 1994, pp 159-167).

A.3 Language-independent procedure calling

ISO/IEC 13886:1996 Language-Independent Procedure Calling (LIPC) defines a language-independent
model of procedure calling of sufficient abstraction to allow the procedure calling facilities of many lan-
guages to communicate. An LIPC parameter may be of any datatype definable via ISO/IEC 11404:1996,
Language-Independent datatypes (LID). No distinction is made between "function" procedures that return
a value through the procedure name (and hence can be called to provide values to expressions directly),
and "subroutine" procedures that do not return a value in such a way. If the language allows for "func-
tion" procedures, the language binding maps the return through the procedure name of the evaluated
value of the function into an additional parameter of the corresponding LIPC invocation.

A language processor offering LIPC server facilities for a procedure maps the LIPC procedure call defini-
tion, including the number and datatypes of formal parameters, into the form of the corresponding proce-
dure call in the language on its side, using the LIPC binding for that language. A language processor of-
fering LIPC client facilities can then invoke that procedure, in terms of the language on that side. The ac-
tual parameters are converted by the LIPC client facilities from the local datatypes to the LID datatypes
required for the formal parameters, using the LID binding for the language; this process is termed mar-
shalling.

Transmission of the procedure invocation and parameters to the service provider side is outside the scope
of LIPC. Once received by the service provider side, the LIPC server facilities unmarshal the marshalled
actual parameters from the LID datatypes into the local datatypes used by service provider mapping of the
LIPC procedure call definition. Return of results is performed by a reverse process of marshalling on the
service provider side and unmarshalling on the service client side.

LIPC specifies four abstract modes of parameter passing: call by value sent on initiation; call by value
sent on request; call by value returned on termination; and call by value returned when available. In
combination with the datatyping facilities in LID, these four modes cover all of the logical possibilities that
binding standards or those implementing standards-conforming language services are likely to need. The
standard explains how the common forms of parameter passing found in languages can be expressed
with them.

The standard also provides an abstract model of the execution of a procedure call. There is no normative
requirement for this execution model to be implemented; it is included as a guide for those defining and
implementing LIPC services, to aid understanding and reduce the risk of incompatibilities between lan-
guage bindings and implementations of client-side and server-side facilities in language processors.

ISO/IEC PDTR 14369:1998(E)

58

Annex B Glossary of language-independent terms

This glossary is derived from the terminology used in the language-independent standards described in
Annex A, together with other standards of importance to language-independent specifications, for exam-
ple those relating to character sets and coding. The definitions are interleaved to assist comparison;
sources are indicated as described in Clause A.1. For convenience of comparison, the definitions from
Clause 3.1, already used elsewhere in this Technical Report, are repeated.

B.1 Source indications

GLB ISO/IEC TR 10182:1993, Guidelines for language bindings

LIA ISO/IEC 10967-1, Language independent arithmetic Part 1, Integer and floating point arithmetic

LID ISO/IEC 11404:1996, Language independent datatypes

LIPC ISO/IEC 13886:1996, Language-Independent Procedure Calling (LIPC)

LISS ISO/IEC TR14369 Guidelines for the preparation of language independent service specifications
(i.e. this Technical Report; for these entries the Notes from the full definitions in Clause 3.1 are omitted)

B.2 Index of terms

For consistency of presentation, minor editorial changes have been made to the original formats, but oth-
erwise the definitions appear as published. No omissions have been made, even when the definitions
appear to be remote from the concerns of this Technical Report; this is to avoid possible misunderstand-
ing, and to assist potential users who may be unsure whether the referenced document is relevant to a
project. The only omissions have been the explanations of abbreviations that are included with definitions
of terms in the same Clause of TR 10182:1993, Guidelines for language bindings.

Where Notes are appended, they are marked as either original, i.e. appearing in the document refer-
enced, or additional, i.e. added for the purposes of this Technical Report. The two kinds of Notes are kept
separate.

abstract service interface (GLB)
An interface having an abstract definition that defines the format and the semantics of the function
invoked independently of the concrete syntax (actual representation) of the values and the invo-
cation mechanism.

actual parameter (LIPC)
A value that is bound to a formal parameter during the execution of a procedure.

actual parametric datatype (LID)
A datatype appearing as a parametric datatype in a use of a datatype generator, as opposed to
the formal-parametric-types appearing in the definition of the datatype generator.

actual parametric value (LID)
A value appearing as a parametric value in a reference to a datatype family or datatype genera-
tor, as opposed to the formal-parametric-values appearing in the corresponding definitions.

aggregate datatype (LID)
A generated datatype each of whose values is made up of values of the component datatypes, in
the sense that operations on all component values are meaningful.

alien syntax (GLB)
Syntax of a language other than the host language.

annotation (LID)

ISO/IEC PDTR 14369:1998(E)

59

A descriptive information unit attached to a datatype, or a component of a datatype, or a proce-
dure (value), to characterize some aspect of the representations, variables, or operations associ-
ated with values of the datatype which goes beyond the scope of this International Standard.

approximate (LID)
A property of a datatype indicating that there is not a 1-to-1 relationship between values of the
conceptual datatype and the values of a valid computational model of the datatype.

arithmetic datatype (LIA)
A datatype whose values are members of Z, R, or C.

Note (original) - This standard specifies requirements for integer and floating point datatypes. Complex numbers are
not covered by this standard, but will be included in a subsequent part of this standard.

association (LIPC)
Any mapping from a set of symbols to values.

axiom (LIA)
A general rule satisfied by an operation and all values of the datatype to which the operation be-
longs. As used in the specifications of operations, axioms are requirements.

bounded (LID)
A property of a datatype, meaning both bounded above and bounded below.

bounded above (LID)
A property of a datatype indicating that there is a value U in the value space such that, for all val-
ues s in the value space, s<=U.

bounded below (LID)
A property of a datatype indicating that there is a value L in the value space such that, for all val-
ues s in the value space, L<=s.

box (LIPC)
A model of a variable or container that holds a value of a particular type.

characterizing operations (LID)
(of a datatype) A collection of operations on, or yielding, values of the datatype, which distinguish
this datatype from other datatypes with identical value spaces;
(of a datatype generator) A collection of operations on, or yielding, values of any datatype result-
ing from an application of the datatype generator, which distinguish this datatype generator from
other datatype generators which produce identical value spaces from identical parametric
datatypes.

client interface binding (LIPC)
The possession by the client procedure of an interface reference.

client procedure (LIPC)
A sequence of instructions which invokes another procedure.

complete procedure closure (LIPC)
A procedure closure, all of whose global symbols are mapped.

component datatype (LID)
A datatype which is a parametric datatype to a datatype generator, i.e. a datatype on which the
datatype generator operates.

configuration (LIPC)
Host and target computers, any operating system(s) and software used to operate a processor.

continuation value (LIA)

ISO/IEC PDTR 14369:1998(E)

60

A computational value used as the result of an arithmetic operation when an exception occurs.
Continuation values are intended to be used in subsequent arithmetic processing. (Contrast with
exceptional value).

Note (original) - The infinities and NaNs produced by an IEC 559 system are examples of continuation values.

Note (additional) - Here "IEC 559 system" means a system conforming to IEC 559:1989 (IEEE 754:1985) Standard for
binary floating-point arithmetic.

datatype (LIA)
A set of values and a set of operations that manipulate those values.

Notes (additional)
1. The purpose of the LIA-1 standard is to provide rigorous definitions of the basic arithmetic operations on

integer and floating point datatype values. Hence, in the context of usage in that standard, the term
"datatype" naturally includes the operations.

2. In the LIA standard, the first to be published, "datatype" is spelled with a space, i.e. "data type". (The same
is true for the GLB Technical Report.) For consistency in this (LISS) Technical Report, "datatype" is sub-
stituted throughout.

datatype (LID)
A set of distinct values, characterized by properties of those values and by operations on those
values.

Note (additional) - This definition is essentially identical to that in this Technical Report, though emphasizing the "char-
acterizing" role of operations in helping to identify corresponding LID datatypes to those in a particular lan-
guage.

datatype (LISS)
A set of values, usually accompanied by a set of operations on those values.

datatype declaration (LID)
(1) The means provided by this International Standard for the definition of a language-
independent datatype which is not itself defined by this International Standard;
(2) An instance of use of this means.

datatype family (LID)
A collection of datatypes which have equivalent characterizing operations and relationships, but
value spaces which differ in the number and identification of the individual values.

datatype generator (LID)
An operation on datatypes, as objects distinct from their values, which generates new datatypes.

defined datatype (LID)
A datatype defined by a type-declaration.

defined generator (LID)
A datatype generator defined by a type-declaration.

denormalization loss (LIA)
A larger than normal rounding error caused by the fact that denormalized values has less than full
precision. (See float-rounding for a full definition.)

denormalized (LIA)
Those values of a floating point type F that provide less than the full precision allowed by that
type.

embedded alien syntax (GLB)
Statements in a special language for access to a system facility, included in a source program
written in a standard programming language.

ISO/IEC PDTR 14369:1998(E)

61

error (LIA)
(1) The difference between a computed value and the correct value. (Used in phrases like
"rounding error" or "error bound".)
(2) A synonym for exception in phrases like "error message" or "error output". Error and excep-
tion are not synonyms in any other context.

exact (LID)
A property of a datatype indicating that every value of the conceptual datatype is distinct from all
others in any valid computational model of the datatype.

exception (LIA)
The inability of an operation to return a suitable numeric result. This might arise because no such
result exists mathematically, or because the mathematical result cannot be represented with suffi-
cient accuracy.

exceptional value (LIA)
A non-numeric value produced by an arithmetic operation to indicate the occurrence of an excep-
tion. Exceptional values are not used in subsequent arithmetic processing.

Notes (original)
1. Exceptional values are used as part of the defining formalism only. With respect to this international stan-

dard, they do not represent values of any of the datatypes described. There is no requirement that they be
represented or stored in the computing system.

2. Exceptional values are not to be confused with the NaNs and infinities defined in IEC 559. Contrast this
definition with that of continuation value above.

execution sequence (LIPC)
A succession of global states s1, s2, ... where each state beyond the first is derived from the pre-
ceding one by a single create operation or a single write operation.

exponent bias (LIA)
A number added to the exponent of a floating point number, usually to transform the exponent to
an unsigned integer.

external identifier (GLB)
An identifier that is visible outside of a program.

formal parameter (LIPC)
The name symbol of a parameter used in the definition of a procedure to which a value will be
bound during execution.

formal-parametric-type (LID)
An identifier, appearing in the definition of a datatype generator, for which a language-
independent datatype will be substituted in any reference to a (defined) datatype resulting from
the generator.

formal-parametric-value (LID)
An identifier, appearing in the definition of a datatype family or datatype generator, for which a
value will be substituted in any reference to a (defined) datatype in the family or resulting from the
generator.

functional interface (GLB)
The abstract definition of the interface to a system facility by which system functions are provided.

functional specification (GLB)
The specification of a system facility. In the context of this document, the functional specification
is normally a potential or actual standard. For each system function the specification defines the
parameters for invocation and their effects.

ISO/IEC PDTR 14369:1998(E)

62

generated datatype (LID)
A datatype defined by the application of a datatype generator to one or more previously-defined
datatypes.

generated internal datatype (LID)
A datatype defined by the application of a datatype generator defined in a particular programming
language to one or more previously-defined internal datatypes.

generator declaration (LID)
(1) The means provided by this International Standard for the definition of a datatype generator
which is not itself defined by this International Standard;
(2) An instance of use of this means.

global state (LIPC)
The set of all existing boxes and their currently assigned values.

global symbol (LIPC)
Symbol used to refer to values that are permanently associated with a procedure.

helper function (LIA)
A function used solely to aid in the expression of a requirement. Helper functions are not visible
to the programmer, and are not required to be part of an implementation. However, some imple-
mentation defined helper functions are required to be documented.

host language (GLB)
The programming language for which a standard language binding is produced; the language in
which a program is written.

identifier (GLB)
Name of an object in an application program that uses a system facility.

implementation (of this standard) (LIA)
The total arithmetic environment presented to a programmer, including hardware, language proc-
essors, exception handling facilities, subroutine libraries, other software, and all pertinent docu-
mentation.

implementation-defined (GLB)
Possibly differing between different processors for the same language, but required by the lan-
guage standard to be defined and documented by the implementor.

implementation defined (LIPC)
An implementation defined feature is a feature that is left implementation dependent by this Inter-
national Standard, but any implementation claiming conformity to this standard shall explicitly
specify how this feature is provided.

implementation-dependent (GLB)
Possibly differing between different processors for the same language, and not necessarily de-
fined for any particular processor.

implementation dependent (LIPC)
An implementation dependent feature is a feature that shall be provided by an implementation
claiming conformity to this standard, but the implementation need not to specify how the feature is
provided.

implementor (GLB)
The individual or organization that realizes a system facility through software, providing access to
the system functions by means of the standard language bindings.

input parameter (LIPC)

ISO/IEC PDTR 14369:1998(E)

63

A formal parameter with an attribute indicating that the corresponding actual parameter is to be
made available to the server procedure on entry from the client procedure.

input/output parameter (LIPC)
A formal parameter with an attribute indicating that the corresponding actual parameters are
made available to the server procedure on entry from the client procedure and to the client proce-
dure on return from the server procedure.

interface (LISS)
In this Technical Report, "interface" means the mechanism by which a service user invokes and
makes use of a service.

interface closure (LIPC)
A collection of names and a collection of procedure closures, with a mapping between them.

interface execution context (LIPC)
The union of the procedure execution contexts for a given interface closure.

interface reference (LIPC)
An identifier that denotes a particular interface instance.

interface type (LIPC)
A collection of names and a collection of procedure types, with a mapping between them.

interface type identifier (LIPC)
An identifier that denotes an interface type.

internal datatype (LID)
A datatype whose syntax and semantics are defined by some other standard, language, product,
service or other information processing entity.

inward mapping (LID)
A conceptual association between the internal datatypes of a language and the language-
independent datatypes which assigns to each in datatype either a single semantically equivalent
internal datatype or no equivalent internal datatype.

invocation association (LIPC)
The invocation association of a procedure closure <Image, Association> applied to a set of actual
parameter values is the association of the closure augmented by a mapping of all local symbols to
values and all formal parameter symbols to the corresponding actual parameter values. Thus it is
a binding to values of all symbols in the procedure image for the duration of the invocation.

invocation context (LIPC)
For a particular procedure call, the instance of the objects referenced by the procedure, where the
lifetime of the objects is bounded by the lifetime of the call.

language (LISS)
Unless otherwise qualified, in this Technical Report "language" means "programming language",
not "specification language" or "natural (human) language".

language binding (LISS)
A specification of the standard interface to a service, or set of services, for applications written in
a particular programming language.

language binding of F to L or
L language binding of F (GLB)

A specification of the standard interface to facility F for programs written in language L.

language committee (GLB)

ISO/IEC PDTR 14369:1998(E)

64

The ISO technical subcommittee or working group responsible for the definition of a programming
language standard.

language-dependent (LISS)
Making use of the concepts, features or assumptions of a particular programming language.

language-independent (LISS)
Not making use of the concepts, features or assumptions of any particular programming language
or style of language.

language-independent datatype (LID)
(1) A datatype defined by this International Standard, or
(2) A datatype defined by the means of datatype definition provided by this International Standard.

Note (additional) - The LID standard abbreviates this term to "LI datatype"

language processor (LISS)
The entire computing system which enables a programming language user to translate and exe-
cute programs written in the language, in general consisting both of hardware and of the relevant
associated software.

lower bound (LID)
In a datatype which is bounded below, the value L such that, for all values s in the value space,
L<=s.

mapping (LID)
(of datatypes) A formal specification of the relationship between the (internal) datatypes which are
notions of, and specifiable in, a particular programming language and the (language-independent)
datatypes specified in this International Standard;
(of values) A corresponding specification of the relationships between values of the internal
datatypes and values of the language-independent datatypes.

mapping
(noun) A defined association between elements (such as concepts, features or facilities) of one
entity (such as a programming language, or a specification, or a standard) with corresponding
elements of another entity. Mappings are usually defined as being from one entity into another.
A language binding of a language L into a standard S usually incorporates both a mapping from L
into S and a mapping from S into L.
(verb) The process of determining or utilizing a mapping.

Note (additional) - This is essentially the same definition as for the LID standard, though necessarily made more gen-
eral.

marshalling (LIPC)
A process of collecting actual parameters, possibly converting them, and assembling them for
transfer.

Note (additional) - The definition in this Technical Report is essentially identical, though spelled out more in the ab-
sence of the full context of the LIPC standard, and extended (in a Note) to preparing input values for a
service.

marshalling (LISS)
The process of collecting the actual parameters used in a procedure call, converting them if nec-
essary, and assembling them for transfer to the called procedure. This process is also carried out
by the called procedure when preparing to return the results of the call to the caller.

normalized (LIA)
Those values of a floating point type F that provide the full precision allowed by that type.

notification (LIA)

ISO/IEC PDTR 14369:1998(E)

65

The process by which a program (or that program's user) is informed that an arithmetic exception
has occurred. For example, dividing 2 by 0 results in a notification.

operation (LIA)
A function directly available to the user, as opposed to helper functions or theoretical mathemati-
cal functions.

order (LID)
A mathematical relationship among values.

Note (additional) - The LID standard also makes a cross-reference to its Clause 6.3.2.

ordered (LID)
A property of a datatype which is determined by the existence and specification of an order rela-
tionship on its value space.

output parameter (LIPC)
A formal parameter with an attribute indicating that the corresponding actual parameter is to be
made available to the client procedure on return from the server procedure.

outward mapping (LID)
A conceptual association between the internal datatypes of a language and the language-
independent datatypes which identifies each internal datatype with a single semantically equiva-
lent language-independent datatype.

parameter (LIPC)
A parameter is used to communicate a value from a client to a server procedure. The value sup-
plied by the client is the actual parameter, the formal parameter is used to identify the received
value in the server procedure.

parametric datatype (LID)
A datatype on which a datatype generator operates to produce a generated datatype.

parametric value (LID)
(1) A value which distinguishes one member of a datatype family from another, or
(2) A value which is a parameter of a datatype or datatype generator defined by a type-
declaration.

Note (additional) - In relation to type-declaration the LID standard also makes a cross-reference to its Clause 9.1.

partial procedure closure (LIPC)
A procedure closure, some of whose global symbols are not mapped. Procedure closures may
be complete, with all global symbols mapped, or partial with one or more global symbols not
mapped.

precision (LIA)
The number of digits in the fraction of a floating point number.

primitive datatype (LID)
An identifiable datatype that cannot be decomposed into other identifiable datatypes without loss
of all semantics associated with the datatype.

primitive internal datatype (LID)
A datatype in a particular programming language whose values are not viewed as being con-
structed in any way from values of other datatypes in the language.

procedural binding (GLB)
The definition of the interface to a system facility available to users of a standard programming
language through procedure calls.

ISO/IEC PDTR 14369:1998(E)

66

procedural interface definition language (GLB)
A language for defining specific procedures for interfacing to a system facility as used, for exam-
ple, in IS 8907 Database Language NDL.

procedure (GLB)
A general term used in this document to cover a programming language concept which has dif-
ferent names in different programming languages - subroutine and function in Fortran, procedure
and function in Pascal, etc. A procedure is a programming language dependent method for ac-
cessing one or more system functions from a program. A procedure has a name and a set of
formal parameters with defined datatypes. Invoking a procedure transfers control to that proce-
dure.

procedure (LIPC)
The procedure value.

procedure (LISS)
In this Technical Report, the term "procedure" is used in the generic sense to cover both those
(sometimes called subroutines) which do not return a value associated with the procedure name,
and those (sometimes called functions) which do, and hence can be called from within expres-
sions).

procedure call (LIPC)
The act of invoking a procedure.

procedure closure (LIPC)
A pair <procedure image, association> where the association defines the mapping for the image's
global symbols and no others.

Note (original) - Procedure closures are the values of procedure type referred to in ISO/IEC 11404 - Language Inde-
pendent Datatypes.

procedure execution context (LIPC)
For a particular procedure, an instance of the objects satisfying the external references necessary
to allow the procedure to operate, where these objects have a lifetime longer than a single call of
that procedure.

procedure image (LIPC)
A representation of a value of a particular procedure type, which embodies a particular sequence
of instructions to be performed when the procedure is called.

procedure invocation (LIPC)
The object which represents the triple: procedure image, execution context, and invocation con-
text.

procedure name (LIPC)
The name of a procedure within an interface type definition.

procedure return (LIPC)
The act of return from the server procedure with a specific termination.

procedure type (LIPC)
The family of datatypes each of whose members is a collection of operations on values of other
datatypes. Note, this is a different definition from procedure value.

procedure value (LIPC)
A closed sequence of instructions that is entered from, and returns control to, an external source.

processor (GLB)
A system or mechanism that accepts a program as input, prepares it for execution, and executes
the process so defined with data to produce results.

ISO/IEC PDTR 14369:1998(E)

67

processor (LIPC)
A compiler or interpreter working in combination with a configuration.

programming language extensions with native syntax or native syntax binding (GLB)
The functionality of the system facilities is incorporated into the host programming language so
that the system functions appear as natural parts of the language. The compiler processes the
language extensions and generates the appropriate calls to the system facility functions.

representation (LID)
(of a language-independent datatype) The mapping from the value space of the language-
independent datatype to the value space of some internal datatype of a computer system, file
system or communications environment;
(of a value) The image of that value in the representation of the datatype.

rounding (LIA)
The act of computing a representable final result for an operation that is close to the exact (but
unrepresentable) result for that operation. Note that a suitable representable result may not exist.

rounding function (LIA)
Any function rnd: R -> X (where X is a discrete subset of R) that maps each element of X to itself,
and is monotonic non-decreasing. Formally, if x and y are in R,

x in X => rnd(x) = x
x < y => rnd(x) <= rnd(y)

Note that if u in R is between two adjacent values in X, rnd(u) selects one of those adjacent val-
ues.

round to nearest (LIA)
The property of a rounding function rnd that when u in R is between two adjacent values in X,
rnd(u) selects the one nearest u. If the adjacent values are equidistant from u, either may be
chosen.

round toward minus infinity (LIA)
The property of a rounding function rnd that when u in R is between two adjacent values in X,
rnd(u) selects the one less than u.

round toward zero (LIA)
The property of a rounding function rnd that when u in R is between two adjacent values in X,
rnd(u) selects the one nearest 0.

server procedure (LIPC)
The procedure which is invoked by a procedure call.

service (LISS)
In this Technical Report, "service" means a facility or set of facilities made available to service us-
ers through an interface.

service provider (LISS)
In this Technical Report, "service provider" means a computer system or set of computer systems
that implements a service and makes it available to service users.

service user (LISS)
In this Technical Report, "service user" means an application (typically a program in some lan-
guage) which makes use of a service.

shall (LIA)
A verbal form used to indicate requirements strictly to be followed in order to conform to the stan-
dard and from which no deviation is permitted.

should (LIA)

ISO/IEC PDTR 14369:1998(E)

68

A verbal form used to indicate that among several possibilities one is recommended as particu-
larly suitable, without mentioning or excluding others; or that (in the negative form) a certain pos-
sibility is deprecated but not prohibited.

signature (of a function or operation) (LIA)
A summary of information about an operation or function. A signature includes the operation
name, the minimum set of inputs to the operation, and the maximum set of outputs from the op-
eration (including exceptional values if any). The signature

add_I: I x I -> I U {integer_overflow}
states that the operation named add_I shall accept any pair of I values as input, and (when given
such input) shall return either a single I value as its output or the exceptional value integer_-
overflow. A signature for an operation or function does not forbid the operation from accepting a
wider range of inputs, nor does it guarantee that every value in the output range will actually be
returned for some input. An operation given inputs outside the stipulated input range may pro-
duce results outside the stipulated output range.

specification language (LISS)
A formal language for defining the semantics of a service or an interface precisely and without
ambiguity.

subtype (LID)
A datatype derived from another datatype by restricting the value space to a subset whilst main-
taining all characterizing operations.

symbol (LIPC)
A program entity used to refer to a value.

system facility (GLB)
A coherent collection of services to be made available in some way to an application program.
The system facility may be defined as a set of discrete system functions with an abstract service
interface.

system facility committee (GLB)
The ISO technical subcommittee or working group responsible for the development of the func-
tional specification of a system facility.

system function (GLB)
An individual component of a system facility, which normally has an identifying title and possibly
some parameters. A system function's actions are defined by its relationships to other system
functions in the same system facility.

termination (LIPC)
A predefined status related to the completion of a procedure call.

unmarshalling (LIPC)
The process of disassembling the transferred parameters, possibly converting them, for use by
the server procedure on invocation or by the client procedure upon procedure return.

Note (additional) - The definition in this Technical Report is essentially identical, though spelled out more in the ab-
sence of the full context of the LIPC standard, and extended (in a Note) to receipt of input values by a
service.

unmarshalling (LISS)
The process of receiving and disassembling transferred parameters, and converting them if nec-
essary, to prepare the values for further use. This process is carried out by the called procedure
on receipt of the actual parameters for the call, and by the caller on receipt of the returned results
of the call.

upper bound (LID)

ISO/IEC PDTR 14369:1998(E)

69

In a datatype which is bounded above, the value U such that, for all values s in the value space,
s<=U.

value (LIPC)
The set Value contains all the values that might arise in a program execution.

value space (LID)
The set of values for a given datatype.

variable
A computational object to which a value of a particular datatype is associated at any given time;
and to which different values of the same datatype may be associated at different times.

