
- 1 -

SC22/WG11/N302
Dear WG11 Participants,

The results of the straw ballot on the proposed changes to Language Independent Arithmetic, Part 1 (LIA-1,
formerly known as LCAS) suggest that a second draft for the changes is needed before proceeding to the
next version of the LIA-1.

The second draft follows this introduction. The miscellaneous changes at the end of the first draft are
omitted here, because no questions or objections were raised on them.

All changes from the first draft are indicated by "change bars" in the left-hand margin.

The changes to clause 2 are based on comments from Jean Bourgain, Brian Wichmann, Brian Meek, Paul
Rabin, and M. Sparks:

1. Jean suggested that the language bindings in Annex B should be normative -- partly to motivate
language committees to provide input.

2. Brian Wichmann feared that Jean’s suggestion might offend language groups, and Paul Rabin
thought the LIA-1 should not preempt debate in this way.

3. Brian Meek thought that language committees would welcome the provision of language bindings
by someone else, provided they were included in the balloting process. This view was seconded by
Sparks who had encountered the same problem for graphics standards.

We hav e included minor changes to clauses 3.2 and 4 in order to clarify the meaning of the term
"exceptional value," which occurs in the signatures of arithmetic operations.

The changes to clause 5 are as follows:

1. New clause 5.1.1 is a merge of old clauses 5.1.4 and 5.1.5.

2. New clause 5.1.2 is old clause 5.1.1, in which we have made no substantive changes.

The material on continuation values has been included in new clause 5.1.2, because this is now the
only alternative for which it is relevant.

3. New clause 5.1.3 is a slightly changed version of old clause 5.1.3 (message followed by
termination).

4. Old clause 5.1.2 is omitted. We hav e, howev er, mentioned it as a possible aid to debugging in annex
A.5.

Mary Payne, Craig Schaffert, Jeff Dawson

Page 1



- 2 -

To: Willem Wakker, Convenor, WG11 From: Mary Payne, MLO1-3/B68
Ace Associated Computer Experts Digital Equipment Corp.
Van Eeghenstraat 100 146 Main St.
1071 GL Amsterdam Maynard, MA 01754
The Netherlands USA

PROPOSAL FOR CHANGES TO THE FIRST COMMITTEE DRAFT OF
LANGUAGE INDEPENDENT ARITHMETIC, PART 1

ISO/IEC cd10967-1
Version 2 of Proposed Changes

Introduction

The editors of ISO/IEC cd10967-1 propose the changes below to the first CD. Many of these changes will
dictate changes to clauses 6 and 7, as well as changes in the relevant annexes.

page 3: Revised clause 2

page 3: Clarify "exceptional value" in clauses 3.2 and 4.

pages 4 to 7: Revised clause 5

pages 8 to 11: Revised annex A.5

Page 2



- 3 -

Revised Text for Clause 2:

It is expected that the provisions of this International Standard
will be incorporated by reference and further defined in other
International Standards; specifically in language standards and in
language-binding standards, hereafter referred to as "binding
standards". Binding standards specify the correspondence between
the abstract data types and operations of this International
Standard and the concrete language syntax of the language

| standard.
|
| When a binding standard for a language exists, an implementation
| shall be said to conform to this International Standard if and
| only if it conforms to the binding standard. In particular, in
| the case of conflict between a binding standard and this
| International Standard, the specifications of the binding standard
| shall take precedence.
|
| When no binding standard for a language exists, but a binding for
| that language is provided in annex B, an implementation shall be
| said to conform to this International Standard if and only if it
| conforms to the binding in annex B.
|
| When no binding standard for a language exists, and no binding for
| that language is provided in annex B, an implementation conforms

to this International Standard if and only if it provides at least
one signed integer type, and at least one floating point type,
that together satisfy all the requirements of clauses 4 through 7.

An implementation is free to provide arithmetic types that do not
conform to this standard or that are beyond the scope of this standard.
The implementation shall not claim conformity for such types.

An implementation is permitted to have modes of operation that do
not conform to this standard. However, a conforming
implementation shall specify how to select the modes of operation
that ensure conformity.

NOTE - See annex C for an example of a conformity statement.

| Changes to Clause 3.2 and Clause 4:
|
| Add the following note to the definition of "exceptional value" in
| clause 3.2:
|
| NOTE - Exceptional values are used as part of the defining
| formalism only. With respect to this International Standard,
| they do not represent values of any of the data types
| described. There is no requirement that they be represented
| or stored in the computing system. They are not used in
| subsequent arithmetic operations.
|
| Add the same note after the last paragraph of clause 4.

Page 3



- 4 -

Revised text for Clause 5:

5 NOTIFICATION

Notification is the process by which a user or program is informed
that an arithmetic operation cannot be performed. Specifically, a
notification shall occur when any arithmetic operation returns an

| exceptional value as defined in clause 4.

5.1 Notification Alternatives

| This International Standard provides three alternatives for
| notification. The requirements are
|
| a) The alternative in clause 5.1.1 shall be supplied in
| conjunction with any language which provides support for
| exception handling.
|
| b) The alternative in clause 5.1.2 shall be supplied in the
| absence of language support for exception handling.
|
| c) The alternative in clause 5.1.3 shall be supplied by all
| implementations.
|
| The alternatives in clause 5.1.1 and in clause 5.1.2 both require
| action on the part of the application programmer in order for the
| notification to occur. In the event that the application
| programmer has not taken such action, the mechanism described in
| clause 5.1.3 shall be used.
|
|
|
| 5.1.1 Alteration Of Control Flow
|
| An implementation shall provide this alternative for any language
| that provides a mechanism for the handling of exceptions. It is
| allowed (with system support) even in the absence of such a
| mechanism.

| Notification consists of prompt alteration of the control flow of
| the program to execute user provided exception handling code. The
| manner in which the exception handling code is specified and the
| capabilities of such exception handling code (including whether it
| is possible to resume the operation which caused the notification)
| is the province of the language standard, not this arithmetic
| standard.
|
| If no exception handling code is provided for a particular
| occurrence of the return of an exceptional value as defined in
| clause 4, that fact shall be reported to the user of that program
| in an unambiguous and "hard to ignore" manner. See clause 5.1.3.

Page 4



- 5 -

| 5.1.2 Recording Of Indicators
|
| An implementation shall provide this alternative for any language
| that does not provide a mechanism for the handling of exceptions.
| It is allowed (with system support) even in the presence of such a
| mechanism.
|
| Notification consists of two elements: a prompt recording of the
| fact that an arithmetic operation returned an exceptional value,
| and interrogation of the recording at a subsequent time by the

program or system.

| The recording shall consist of four indicators, one for each of
| the exceptional values that may be returned by an arithmetic
| operation as defined in clause 4: integer_overflow,

floating_overflow, floating_underflow, and undefined.

| These indicators shall be clear at the start of the program. They
| are set when any arithmetic operation returns an exceptional value
| as defined in clause 4. Once set, an indicator shall be cleared

only by explicit action of the program. The implementation shall
not allow a program to complete successfully with an indicator
that is set. Unsuccessful completion of a program shall be
reported to the user of that program in an unambiguous and "hard

| to ignore" manner. See clause 5.1.3.

NOTE - The status flags required by IEEE 754 [1] are an
example of this form of notification, PROVIDED that the
program is not allowed to terminate successfully with any
status flags still set.

| Consider two conceptual data types E and R with the following
| properties:

1. The data type E is composed of the following values:
integer_overflow, floating_overflow, floating_underflow, and
undefined, naming the indicators in the recording,

|
| 2. A value of the data type R stores a complete recording, i.e.
| the aggregate state of all indicators.
|
| The implementation shall provide an embedding of these two
| conceptual data types into existing programming language types.
| In addition the implementation shall provide the following
| operations to interrogate and manipulate the recordings and
| indicators. Let e be a value in E, and r be a value in R:

test_indicator(e) = true if indicator e is set
= false if indicator e is clear

set_indicator(e) set indicator e

clear_indicator(e) clear indicator e

Page 5



- 6 -

save_recording() = r where r is the current
recording

restore_recording(r) replace the current
recording with r

| When any arithmetic operation returns an exceptional value as
| defined in clause 4, after recording the event, an implementation
| shall provide a "continuation" value for the result of the failed
| arithmetic operation, and continue execution from that point:
|
| o In the case of floating_underflow, the continuation value
| shall be rndF(exact_result) when denorm is true, or 0 when
| denorm is false.
|
| o In the case of integer_overflow, floating_overflow, and
| undefined, the continuation value shall be implementation
| dependent. There are no restrictions on this continuation
| value. It is not required to be a valid value of the type I
| or F.
|
| NOTE - The infinities and NaNs produced by an IEEE 754 system
| are examples of values not in F which might be used as
| continuation values.
|
| NOTE - This International Standard does not specify what
| happens when an operation is applied to a value that is not in
| its input domain (as defined by the operation signature).
| Thus, for example, the behavior of addF on a NaN is not in the
| scope of this International Standard.
|
| NOTE - No changes to the specifications of a language standard
| are required to implement this alternative for notification.
| The recordings can be implemented in system software. The
| operations for interrogating and manipulating the recording
| can be contained in a system library, and invoked as library
| routine calls.
|
|
|
| 5.1.3 Termination With Message
|
| An implementation shall provide this alternative, which serves as
| a back-up if the programmer has not provided the necessary code
| for either of the other alternatives.

Notification consists of prompt delivery of a "hard-to-ignore"
message, followed by termination of execution. Any such message
should identify the cause of the notification and the operation
responsible.

Page 6



- 7 -

5.2 Delays In Notification

Notification may be momentarily delayed for performance reasons,
but should take place as close as practical to the attempt to
perform the responsible operation. When notification is delayed,

| it is permitted to merge notifications of different occurrences of
| the return of the same exceptional value into a single

notification. However, it is not permissible to generate
duplicate or spurious notifications.

| In connection with notification, "prompt" means before the
| occurrence of a significant program event. For the recording of
| indicators in 5.1.2, a significant program event is an attempt by
| the program (or system) to access the indicators, or the
| termination of the program. For alteration of control flow
| described in 5.1.1, the definition of a significant event is
| language dependent, is likely to depend upon the scope or extent
| of the exception handling mechanisms, and must therefore be
| provided by language standards or by language binding standards.
|
| NOTE - Roughly speaking, "prompt" should at least imply "in
| time to prevent an erroneous response to the exception."
|
|
|
| 5.3 User Selection Of Alternative For Notification
|

A conforming implementation shall provide a means for a user or
program to select among the alternate notification mechanisms
provided. The choice of an appropriate means, such as compiler
options, is left to the implementation.

| The language or binding standard should specify the notification
| alternative to be used in the absence of a user choice.

Page 7



- 8 -

Revised Text for Annex A.5

A.5 Notification

The essential goal of the notification process is that it should
| not be possible for a program to terminate with an unresolved
| arithmetic violation unless the user has been informed of that
| fact, since the results of such a program may be unreliable.

The simplest way of achieving this is to abort the program.
Unfortunately, this approach conflicts with the goal of supporting
a robust computing environment where the execution of a program
can continue satisfactorily in all situations.

A.5.1 Notification alternatives

This standard provides a range of alternative mechanisms for
notification to fit the range of implementation alternatives and
requirements of both the programming language and the underlying

| hardware. Since this standard is concerned only with quality in
| numeric processing, the minimum set of notification mechanisms
| needed for reliable numeric results is described. This set of
| alternatives allows programmers to make the choice of whether to
| handle exceptions themselves or not, and to do so in portable,
| language based fashion. Programmers are also assured that when
| they choose not to handle their own exceptions, they will know if
| an exception does indeed occur across the range of conformant
| implementations.
|
| Implementations are encouraged to provide additional mechanisms
| which would be useful for debugging. For example, pausing and
| dropping into a debugger, or continuing execution while writing a
| log file.
|
| In order to provide the full advantage of these notification
| capabilities, information describing the nature of the violation
| should be complete and available as close in time to the
| occurrence of the violation as possible.

| A.5.1.1 Alteration of control flow

This alternative requires the programmer to provide application
specific code which decides whether the computation should
continue, and if so how it should continue. This alternative
places the responsibility for the decision to continue with the
programmer who is presumed to have the best understanding of the
needs of the application.

| ADA and PL1 are examples of standard languages which include
| syntax which allows the user to describe this type of alteration
| of control flow.

Page 8



- 9 -

Note, however, that a programmer may not have provided code for
all trouble-spots in the program. In this case, recourse to
program termination is probably the only viable option.

A.5.1.2 Recording of indicators

This alternative giv es a programmer the primitives needed to
obtain exception handling capabilities in cases where the
programming language does not provide such a mechanism directly.

| An implementation of this alternative for notification requires no
| extensions to any language. The status of the indicators is
| maintained by the system. The operations for testing and
| manipulating the indicators can be implemented as a library of
| callable routines.
|
| This alternative can be implemented on any system with an
| "interrupt" capability, and on some without such a capability.
|
| By making use of the required status flags, this alternative can
| be implemented on an IEEE system. The mapping between the IEEE
| status flags and the LIA-1 indicators is as follows:

IEEE flag LIA-1 indicator

overflow floating_overflow

underflow floating_underflow

invalid undefined

division by zero undefined

inexact no LIA-1 counterpart

| The LIA-1 does not include notification for inexact because
| non-IEEE implementations are unlikely to support inexact
| exceptions.

| For a zero divisor, IEEE specifies an "invalid" exception if the
| dividend is zero, and a "division by zero" otherwise. Other
| architectures are not necessarily capable of making this
| distinction. In order to provide a reasonable mapping for an
| exception associated with a zero divisor, the LIA-1 specifies
| undefined, regardless of the value of the dividend.
|
| An implementation must check the exception recording before
| successfully terminating the program. Merely setting a status
| flag is not regarded as adequate notification, since this action
| is too easily ignored by the user and could thus damage the
| integrity of a program by leaving the user unaware that an
| unresolved arithmetic violation occurred. Hence this

Page 9



- 10 -

| International Standard prohibits successful completion of a
| program if any status flag is set. Implementations can provide
| system software to test all status flags just prior to completion,
| and if any flag is set, provide a message before termination.

The mechanism of recording indicators proposed here is general
enough to be applied to a broad range of phenomena by simply
extending the value set E to include indicators for other types of
conditions. However, in order to maintain portability across
implementations, such extensions should be made in compliance with
other standards, such as language standards.

| A.5.1.3 Termination with message

This alternative supports the conservative view that the only
reasonable action following a notification is termination of the
program since (in this view) all violations are the result of
programming errors. This response certainly fits the criterion of
making the notification "hard to ignore". It can be supported
with relatively little effort by all implementations.

This "lowest common denominator" response is regarded by many as
unnecessarily harsh and it certainly conflicts with the goal of

| robust execution. However, it serves as the only viable action if
| the programmer has not provided the necessary code for the other
| alternatives.

A.5.2 Delay of notification

Many modern floating point implementations are pipelined, or
otherwise execute instructions in parallel. This can lead to an
apparent delay in reporting violations, since an overflow in a
multiply operation might be detected after a subsequent, but
faster, add operation completes. The provisions for delayed
notification are designed to accommodate these implementations.

Parallel implementations may also not be able to distinguish a
single overflow from two "almost simultaneous" overflows. Hence,
some merging of notifications is permitted.

Imprecise interrupts (where the offending instruction cannot be
identified) can be accommodated as notification delays. Such
interrupts may also result in not being able to report the kind of
violation that occurred, or to report the order in which two or
more violations occurred.

In general the longer the notification is delayed the greater the
risk to the continued execution of the program.

Page 10



- 11 -

| A.5.3 User selection of alternative for notification

| On some machine architectures, the notification alternative
| selected may influence code generation. In particular, the
| optimal code that can be generated for alternative 5.1.1 may
| differ substantially from the optimal code for alternative 5.1.2.
| Because of this, it is unwise for a language or binding standard
| to require the ability to switch between notification alternatives
| during execution. Compile time selection should be sufficient.

If a system had a mode of operation in which errors were totally
ignored, then for this mode, the system would not conform to this
International Standard. However, modes of operation that ignore
errors may have some uses, particularly if they are otherwise
LIA-1 conformant. For example, a user may find it desirable to
verify and debug a program’s behavior in a fully LIA-1 conformant
mode (error checking on), and then run the resulting "trusted"

| program with error checking off. Another non-conformant mode
| could be one in which the final check on the notification
| indicators was suppressed.

In any case, it is essential for an implementation to provide
documentation on how to select the various LIA-1 conforming
notification alternatives provided.

Page 11


