
ISO/IEC JTC1/SC22/WG11 N79

Accredited Standards Committee doc. no .: X3T2/87-112
X3 , Information Processing Systems Date: 87-10-27
operating under the procedures of the project:
American National Standards Institute reply to.: Ned Anderson

or Mary Payne
Digital, I-ILO2—3/M08
7? Reed Road Hudson, MA
01749 617-568-5823

Subject: Draft Proposal for a Language—Based Arithmetic Standard

Acknowledgements: Much of the material in the Foreword has been developed
in a series of conversations with Brian Wichmann of the National Physical
Laboratory in England.

The format and organization of the specifications have been adapted from that
of the IEEE Standard 854 for floating point arithmetic.

Foreword

This foreword and the footnotes are not part of the draft standard.

The purpose of this standard is to help the scientific community, using
many different languages and systems from many different vendors, to share
their existing and future software. Some of the current difficulties in such
exchanges involve

 1. The absence of arithmetic specifications in many language standards*,
e.g.

(a) Accuracy of the basic arithmetic operations.

(b) Handling of arithmetic exceptions.

 2. The large number of de facto arithmetic standards implied by the
arithmetic specifications of a large number of vendors. For the most
part, the differences among vendors are relatively minor. Hence, this
standard will build on the common elements of these de facto standards.

 3. Problems in the interchange of binary data , which should be resolved
by

current efforts to standardize such data transfers.

* Thus, this standard will provide a common supplement to language standards,
which could be incorporated by reference.

The following objectives, in order of priority, are designed to meet. the
purpose of this standard.

 1. The standard shall not conflict with the requirements of the standards
for the main programming languages {e.g, Fortran, Ada, Pascal, PL/I,
etc.).

 2. The standard shall not include features which cannot be exploited
within the main programming language standards.

 3. The standard shall be formulated in such as way as to permit the
majority of existing computer systems to claim conformance to the
standard.

 4. The standard shall be formulated in such a way as to allow efficient
conformance by future high—performance systems using pipelining and
concurrency.

 5. To an extent consistent with the above constraints, the standard shall
require the arithmetic properties needed by numerical analysts to
deduce the correctness of conventional algorithms.

 6. The standard shall consist of the minimum unambiguous specifications
needed

(a) By implementors to conform to the above requirements.

(b) To allow rigorous conformance testing of processors.

 7. The standard shall not conflict with data interchange standards.

There is no expectation that the standard will imply bit—for—bit
compatibility among results obtained for the same program executed on systems
from different vendors.

In addition to the de facto arithmetic standards, mentioned above, there
are currently two IEEE Floating Point Standards, 754 and 854. There is
also an international IEC standard, based on an early draft of IEEE 754.
These standards deal primarily with specifications of arithmetic properties
useful to numerical analysts [objective 5 above}. Little attention was
given to the first four objectives. In particular, the rounding modes, the
exception handling features and the concept of "unordered" are not supported
by existing language standards, nor are they implemented by most current
hardware.

Thus, the proposed standard can be regarded as a generalization of the
IEEE standards to facilitate the interchange of scientific software. It is
expected that the proposed standard will include both IEBE standards as
conforming implementations, by virtue of Objective 3.

Contents

SECTION

 1. Definitions and Notation 4
1.1 Definitions 4
1.2 Notation 5

 2. Scope 5
2.1. Implementation Objectives 5
2.2 Inclusions 5
2.3 Exclusions 6

 3. Precisions 6
3.1 Floating Point Parameters 6
3.2 Short and Long Precisions 7

 4. Operations 8
4.1 Basic Arithmetic Operations 8
4.2 Floating—point Precision Conversions 9
4.3 Floating Point, Integer Conversions 9
4.4 Comparison 9

 5. Rounding 9

 6. Standard Exceptions 10
6.1 Floating Point Exceptions 10
6.2 Integer Exceptions 10
6.3 Traps 11

 7. Implementation Specific Characteristics 11

Draft Proposal for a Language—Based Arithmetic Standard Page 4
Version 1 27 October 1987

1. Definitions and Notation

1.1 Definitions.

Destination. The location for the result of a binary or unary operation. A
destination may be either explicitly designated by the user or implicitly
supplied by the system (e.g., intermediate results in subexpressions or
arguments for procedures). Some languages place the results of intermediate
calculations in destinations beyond the user's control. Nonetheless, this
standard defines the result of the operation in terms of that destination’s
precision as well as the operands’ values.

Exact. An operation is exact if its full true result is exactly representable
in the range—precision of the destination.

Exponent. The component of a floating—point number that signifies the
integer power to which the radix is raised in determining the value of the
represented number.

Field. A digit string provided for a component of a floating point number.

Floating—point exception. This standard recognizes three types of floating-
point exceptions which may occur as the result of an operation on floating—
point operands: they are floating overflow, floating underflow, and divide by
zero.

Fraction. The component of a floating point number that signifies the
fractional factor in its mathematical representation.

Integer exception. The only integer exception relevant to this standard is
integer overflow.

Non—Zero Floating-Point Number. A number which has a mathematical
representation of the form

(S)(r**E)*F

where S, r, E and F are the sign, radix, exponent and significand (or
fraction] components, respectively.

Normalized number. A non—zero floating point number with its fraction
component in the half-open interval [1/r,1).

Operands. The source operands and destination of an arithmetic operation.

Radix. The base for the representation of floating—point numbers.

Shall. The use of the word "shall" signifies that which is obligatory in any
conforming implementation.

Should. The use of the word "should" signifies that which is strongly
recommended as being in keeping with the intent of the standard, although
architectural or other constraints beyond the scope of this standard may on
occasion render the recommendations impractical.

Proposal for a Language—Based Arithmetic Standard Page
5 Version 1 27 October 1987

Significant. Synonym for the fractional component of a floating—point number.

Source Operand(s). The operand to which a unary operator is applied to
produce a result, or the operands to which a binary operator is applied to
produce a result.

Trap. A hardware transfer of control to system software.

ULP. Unit in the last place, that is in the least significant digit of the
fraction or significand component.

User. Any person, hardware, or program not itself specified by this standard,
having access to and controlling those operations of the programming
environment specified in this standard.

Zero. An implementation specific digit string, used to identify zero as the
value of a floating point number.

1.2 Notation

 1. Arithmetic Operators. The arithmetic operator notation +, -, *, /, and
** is used to denote, respectively, addition;_subtraction,
multiplication, division, and exponentiation.

 2. Relational Operators. The relational operator notation <, <=, =, <>, >,
and >= is used to indicate, respectively, less than, less than or
equal, equal, not equal, greater than, and greater than or equal.

2. Scope

2.1 Implementation Objectives.

This standard is a functional specification. It does not specify
implementation: In particular it does not specify whether the Standard
is implemented in hardware, software, or a combination of the two.
However, the intent of the Standard is that it be readily implementable
in hardware. Also the intent is that the Standard be independent of any
particular computer architecture, and that it apply to both scalar and vector
processing.

2.2 Inclusions.

This standard specifies:

 1. Constraints on the parameters defining the values of floating
point numbers at two levels of re1nge—precision: "short"and "long".

Draft Proposal for a Language—Based Arithmetic Standard Page 5
Version 1 27 October 1987

 2. The accuracy of the four basic floating point operations*,
addition, subtraction, multiplication and division whose source
operands and destination are all at the same level of range—precision.

 3. Conversions between integer and floating point formats.

 4. Conversions between short and long floating point range~precisions.

 5. Floating point exceptions and integer overflow, and the actions
accompanying their occurrence.

 6. The provision of implementation—specific data to users.

2.3 Exclusions.

This Standard does not specify

 1. Formats for internal storage of floating—point numbers.

 2. The bias, if any, to be applied to the exponent field of a
floating point number.

 3. Representation and storage format of integers.

 4. Results of all operations on integers, except conversions between
floating point numbers and integers.

 5. Operations whose operands are specified at different levels of
range—precision or with different radices.

3. Precisions

This standard defines two floating—point ranqe~precisions: short and long.

The standard does not specify how to encode numbers for internal storage.

3.1 Floating Point Parameters.

3.1.1 An implementor shall provide a representation of floating point zero
at each implemented level of range—precision. The representation(s) shall be
implementation dependent.

**

* Other functions, such as SORT, and the REM and INT of the IEEE Standards
are intrinsic functions for some, but not all, languages. All are readily
implementable in software, but this standard does not include specifications
for their accuracy.

Draft Proposal for a Language-Based Arithmetic Standard Page 7
Version 1 27 October 1987

3.1.2 For non—zero p—digit floating point numbers, four integer parameters
specify each level of range-precision:

r —— the radix;

p —— the number of radix—r digits in the fraction;

EMAX —— the maximum exponent, and

EMIN —— the minimum exponent.

The parameters are subject to the following constraints:

 1. Any integer between EMAX and EHIN, inclusive, is an in—range
exponent for a floating point number.

 2. r shall be the same for each level of rang-e—precision.

 3. EMAX > r**(N — 1), where N is the number of radix—r digits
accomodated in the longest supported integer format.

 4. r >= 2 and p >= 2

 5. EMIN <= 2 — 2*p and EMAX >= 2*p-1 to guarantee a minimal range
for a given precision.

 6. 2*EMIN + EMAX <= 3 - p

 7. EMIN + 2*EMAX >= p + 1

The last four constraints follow the work of W. S. Brown*.

3.2 Short and Long Precisions

3.2.1 Short Precision: If an implementation provides only one level of range-
precision, that level shall be identified as "short precision."

Otherwise, the lowest range—precision supported shall be called short
precision. When necessary to distinguish from other parameters, those
defining short precision are denoted by

EMAXS, EMINS, pS

3.2.2 Long Precision: When a second higher level of range—precision is
supported, it shall be called "long precision." When necessary to distinguish
from other parameters, those defining long precision are denoted by

**

* W. S. Brown, "A Simple but Realistic Model of Floating Point Computation,"
ACE Transactions on Mathematical Software Vol. 7, No. 4, December 1981. This
paper contains a detailed justification of constraints 6 and 7. All computers
in common use today satisfy these constraints by a comfortable margin.

Draft Proposal for a Language—Based Arithmetic Standard Page 8
Version 1 27 October 1987

EMRXL, EMINL, pL.

In addition to the requirements specified in Sec. 3.1, parameters for long
precision shall be further constrained as follows:

pL >= 2*pS

EMAXL >= EMAXS

EIMINL <= EMINS

and EMAXL and EIMINL should satisfy the stronger inequalities:

EMAXL >= 2*EIMAXS

EMINL <= 2*EMINS

4. Operations

All conforming implemnentations of this standard shall provide a scalar
processor for which the operations listed in Sections 4.1 through 4.4
shall be implemented with the source and destination operands all at the same
level of precision*.

A system, which provides a vector processor shall provide vector operations
satisfying the same specifications in such a way that its scalar and vector
operations yield digit—for—digit compatible results.

4.1 Basic: Arithmetic Operations.

An implementation of this standard shall provide addition, subtraction,
multiplication and division at each supported level of range-precision.
All results shall be rounded as specified in Sec. 5.

These operations shall preserve the following arithmetic identities:

A*B = B*A

A + B = B + A

A - B + -(B - A)

4.2 F1oating—point precision conversions.

**

* Operations involving operands at more than one level of range—precision are
readily implemented in software by making use of the conversion operations in
Sec 4.2. Such operations are not specified in this standard, although they
may be implicit in the rules for expression evaluation associated with a
language standard.

Draft Proposal for a Language—Based Arithmetic Standard Page 9
Version 1 27 October 1987

It shall be possible to convert floating—point numbers between all supported
levels of range—precision. If the conversion is to a lower range—precision
the result shall be rounded as specified in Sec. 5. If the conversion is to a
higher range—precision, the result shall be exact.

4.3 Floating Point, Integer Conversions.

It shall be possible to convert between all supported floating—point range-
precisions and all supported integer precisions. The rounding algorithm for
conversion to integer shall be language and implementation dependent.

4.4 Comparison.

It shall be possible to compare two floating—point numbers, without
occurrence of floating overflow or underflow. Moreover, the result of a
comparison shall be exact* ,

5. Rounding

Rounding takes a number regarded as infinitely precise** and, if necessary,
approximates it to fit the destination's fraction field.

The following rounding requirements guarantee that non—zero results are
strictly accurate to within one ULP. Zero results are either exact, or are a
consequence of underflow [see Sec. 6.1).

Let R be the infinite range—precision result of an operation. If R = O, the
destination shall be zero.

If R is not zero, then ignoring the constraints on the exponent field, let
R1 and R2 be the two normalized p—digit numbers most closely bracketing R.
R1 will be the same as R2, if the infinite precision fraction of R is exactly
representable at the desired level of precision of the result. In any case,
either R1 or R2 is now selected as a tentative result, the choice being
implementation dependent.

Having tentatively selected R1 or R2, its exponent field is examined:

 o If the exponent of the tentative result is in—range, the tentative
result is stored in the destination.

* Thus, if a comparison is made via a subtraction, the constraints on the
exponent field must be ignored, and the subtraction must be so implemented
that an alignment shift does not discard the effects of any of the low order
digits.

** It is never necessary to calculate an infinite range—precision result.
However, a few guard digits are usually necessary to meet the requirements of
this section.

Draft Proposal for a Language—Based Arithmetic Standard Page 10
Version 1 27 October 1987

 o Underflow occurs if the exponent of the tentative result is less than
EMIN. The default action to be taken for this case is to store-zero in
the destination. See, however, Section 6.1.

 o Overflow occurs if the exponent of the tentative result exceeds EMAX.
See Section 6.1.

The algorithm for the choice between R1 and R2 shall be such that the same
operation on the same source operands always yields the same result. Hence,
if an implementation chooses to implement more than one rounding algorithm, a
default must be identified as associated with this standard.

6. Standard Exceptions

6.1 Floating Point Exceptions

A implementation shall recognize three floating point exceptions: division by
zero, floating overflow, and floating underflow. Of these:

 1. Division by zero occurs only for the floating divide operation.

 2. Floating overflow and floating underflow can occur on any of the four
basic arithmetic operations, and also on conversion from long to short
precision.

 3. Conversion from short to long precision and comparisons shall never
produce exceptions and shall always be exact.

 4. Conversions from integer to a floating point format shall never produce
an exception by virtue of constraint 2 in Sec. 3.1.2.

An enable/disable capability for underflow shall be provided. Disabled shall
be the default, in which case zero shall be returned to the destination, and
execution continued.

A trap shall be taken to system Software on division by zero, overflow and
enabled underflow. The response of system software to these traps shall be
language and implementation dependent. If the system provides access to user
exception handlers, such access is governed by the specifications of Section
6.3.

6.2 Integer Exceptions

This standard is concerned only with integer overflow, which can occur on
conversions from floating point to integer format.

An enable/disable capability for integer overflow shall be provided.
Disabled shall be the default, in which case those low digits, which can be
accomodated in the destination shall be returned, and execution continued.

Draft Proposal for a Language—Based Arithmetic Standard Page 11
Version 1 27 October 1987

A trap shall be taken for enabled integer overflow. The response of system
software to this trap shall be language and implementation dependent. If the
system provides access to user exception handlers, such access is governed by
the specifications of Section 6.3.

6.3 Traps

All trapping shall be to system software, whose actions are language and
implementation dependent.

A further transfer of control to user exception handlers shall be supported
in accordance with the requirements of language standards, e.g. Ada and PL/I.

7. Implementation Specific Characteristics

An implementation shall provide means for a user to determine the following
implementation specific information. Moreover, it shall make known to the
user how this information may be obtained.

 1. Whether the system implements vector operations.

 2. The levels of range-precision supported.

 3. Information on the internal representation of floating point numbers at
each supported level of range-precision:

(a) Internal representation of zero.

(b) For non—zero floating point numbers, the values of the parameters
of Sec. 3.1.2: r, p, EMAX, and EMIN.

(c) The algorithm used for the selection of R1 and R2 (in Section 5)
as the rounded result.

(d) Lengths of the sign, exponent and fraction fields.

(e) Storage length of the representation.

 4. Details on the exception handling support provided by the system.

 5. Information on other (implementation specific) exceptions, which
could affect users’ programs*.

* For example, the reserved operand exception on a VAX.

