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Foreword 
IS0 (the International Organization for Standardization) and IEC (the International Electrotech- 
nical Commission) form the specialized system for worldwide standardization. National bodies 
that are members of IS0 or IEC participate in the development of International Standards through 
technical committees established by the respective organizations to deal with particular fields of 
technical activity. IS0 and IEC technical committees collaborate in fields of mutual interest. Other 
international organizations, governmental and non-governmental, in liaison with IS0 and IEC, also 
take part in the work. 

In the field of information technology, IS0 and IEC have established a joint technical committee, 
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical cotittee are 
circulated to national bodies for voting. Publication as an International Standard requires approval 
by at least 75 % of the national bodies casting a vote. 

International Standard ISO/IEC 13886 was prepared by Joint Technical Committee ISO/IEC 
JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments 
and system software interfaces. 

Annexes A to D of this International Standard are for information only. 
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Introduction 
The purpose of this International Standard is to provide a common model for language standards for 
the concept of procedure calling. It is an enabling standard to aid in the development of language- 
independent tools and services, common procedure libraries and mixed language programming. In 
mixed language applications, server procedures would execute on language processors operating 
in server mode, and the procedures would be called from language processors operating in client 
mode. Note that the languages need not be different, and if the processors are the same the model 
collapses into conventional single processor programming. 

Most programming languages include the concepts of procedures and their invocation. The main 
variance between the methods used in various programming languages lies in the ways parameters 
are passed between the client and server procedures. Procedure calling is a simple concept at the 
functional level, but the interaction of procedure calling with datatyping and program structure 
along with the many variations on procedure calling and restrictions on calling that are applied by 
various programmin g languages transforms the seemingly simple concept of procedure calling into 
a more complex feature of programming languages. 

The need for a standard model for procedure calling is evident from the multitude of variants of 
procedure calling in the standardized languages. The existence of this International Standard for 
Language-Independent Procedure Calling (LIPC) d oes not require that all programming languages 
should adopt this model as their sole means of procedure calling. The nominal requirement is 
for programming languages to provide a mapping to LIPC from their native procedure calling 
mechanism, and to be able to accept calls from other programmin g languages who have defined a 
mapping to this International Standard. 

This International Standard is a specification of a common model for procedure calling. It is not 
intended to be a specification of how an implementation of the LIPC is to be provided. Also, it 
is important to note that it does not address the question of how the procedure call initiated by 
the client mode processor is communicated to the server mode processor, or how the results are 
returned. The model defined in this International Standard is intended for use by languages so 
that they may provide standard mappings from their native procedure model. This International 
Standard depends on the International Standard for Language-Independent Datatypes, ISO/IEC 
11404, for the definition of the datatypes that are to be supported in the model for LIPC that it 
provides. 

vii 
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Information technology - 
Language-Independent Procedure Calling (LIPC) 

1 Scope 

This 
Pi% 

‘I 

International Standard specifies a model for procedure calls, and a reference syntax for map- 
to and from the model. This syntax is referred to as the Interface Definition Notation. The 

model defined in this International Standard includes such features as procedure invocation, pa- 
rameter passing, completion status, and environmental issues relating to non-local references and 
state. 

This International Standard does not specify: 

l the method by which the procedure call initiated by the client mode processor is communi- 
cated to the server mode language processor; 

l the minimum requirements of a data processing system that is capable of supporting an 
implementation of a language processor to support LIPC; 

l the mechanism by which programs written to support LIPC are transformed for use by a 
data processing system; 

l the representation of a parameter. 

NOTE - Originally it was the intention to align the definitions and concepts of this International 
Standard with those of the RPC standard (ISO/IEC 11578). Unfortunately, in a late stage of the 
development process of the RPC standard it was decided to use for that standard a completely 
different approach. Hence the intended alignment did not materialize. 

Annex D gives an overview of the differences between the concepts as defined by this Interna- 
tional Standard and the RPC standard. 

2 Normative References 

The following standards contain provisions which, through reference in this text, constitute pro- 
visions of this International Standard. At the time of publication, the editions indicated were 
valid. All standards are subject to revision, and parties to agreements based on this International 
Standard are encouraged to investigate the possibility of applying the most recent editions of the 
standards indicated below. Members of IEC and IS0 maintain registers of current valid Interna- 
tional Standards. 

1 
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IS0 23751985, Data processing - Procedure for registration of escape sequences. 

ISO/IEC! 10646-l: 1993, Information technology - Universal Multiple-Octet Coded Character 
Set (KS) - Part 1: Architecture and Basic Multilingual Plane. 

ISO/IEC 11404:1996, Information technology - Programming languages, their environments 
and system software interfaces - Language-independent datatypes. 

ISO/IEC 8824-l: 1995, Information technology - Abstract Syntax Notation One (ASN. 1): 
Specification of basic notation. 

ISOIIEC 8825~1:1995, Information technology - ASN.1 encoding rules: Specification of Basic 
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules 
(DER). 

3 Definitions and Abbreviations 

3.1 Definitions 

For the purposes of this International Standard, the following definitions apply. 

3.1.1 actual parameter: A value that is bound to a formal parameter during the execution of 
a procedure. 

3.1.2 association: Any mapping from a set of symbols to values. 

3.1.3 box: A model of a variable or container that holds a value of a particular type. 

3.1.4 client interface binding: The possession by the client procedure of an interface reference. 

3.1.5 client procedure: A sequence of instructions which invokes another procedure. 

3.1.6 
mapped. 

complete procedure closure: 

3.1.7 configuration: 
to operate a processor. 

Host and target computers, any operating system(s) and software used 

A procedure closure, all of whose global symbols are 

3.1.8 execution sequence: A succession of global states ~1, ~2, . . . where each state beyond 
the first is derived from the preceding one by a single create operation or a single write operation. 

3.1.9 formal parameter: The name symbol of a parameter used in the definition of a procedure 
to which a value will be bound during execution. 

3.1.10 global state: The set of all existing boxes and their currently assigned values. 

3.1.11 global symbol: Symbol used to refer to values that are permanently associated with a 
procedure. 

3.1.12 implementation defined: An implementation defined feature is a feature that is 
left implementation dependent by this International Standard, but any implement ation claiming 
conformity to this International Standard shall explicitly specify how this feature is provided. 

2 
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3.1.13 implementation dependent: An implementation dependent feature is a feature which 
shall be provided by an implementation claiming conformity to this International Standard, but 
the implementation need not to specify how the feature is provided. 

3.1.14 
sponding 

input 
actual 

parameter: A formal parameter 
parameter is to be made available to 

with an attribute indicating that the corre- 
the server procedure on entry from the client 

procedure. 

3.1.15 input/output parameter: A formal parameter with an attribute indicating that the 
corresponding actual parameters are made available to the server procedure on entry from the client 
procedure and to the client procedure on return from the server procedure. 

3.1.16 
mapping 

interface closure: 
between them. 

A collection of names and a collection of procedure closures, with a 

3.1.17 interface execution context: The union of the procedure execution contexts for a 
given interface closure. 

3.1.18 interface reference: An identifier that denotes a particular interface instance. 

3.1.19 interface type: A collection of names and a collection of procedure types, with a 
mapping between them. 

3.1.20 interface type identifier: An identifier that denotes an interface type. 

3.1.21 invocation association: The invocation association of a procedure closure <Image, 
Association> applied to a set of actual parameter values is the association of the closure augmented 
by a mapping of all local symbols to values and all formal parameter symbols to the corresponding 
actual parameter values. Thus it is a binding to values of all symbols in the procedure image for 
the duration of the’ invocation. 

3.1.22 invocation context: For a particular procedure call, the instance of the objects 
referenced by the procedure, where the lifetime of the objects is bounded by the lifetime of the call. 

3.1.23 marshalling: A process of collecting actual parameters, possibly converting them, and 
assembling them for transfer. 

3.1.24 output parameter: A formal parameter with an attribute indicating that the corre- 
sponding actual parameter is to be made available to the client procedure on return from the server 
procedure. 

3.1.25 parameter: A parameter is used to communicate a value from a client to a server 
procedure. The value supplied by the client is the actual parameter, the formal parameter is used 
to identify the received value in the server procedure. 

3.1.26 partial procedure closure: A procedure closure, some of whose global symbols are 
not mapped. Procedure closures may be complete, with all global symbols mapped, or partial with 
one or more global symbols not mapped. 

3.1.27 procedure: The procedure value. 

3.1.28 procedure call: The act of invoking a procedure. 

3.1.29 procedure closure: A pair <procedure image, association> where the association 
defines the mapping for the image’s global symbols and no others. 

3 
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NOTE - Procedure closures are the values of procedure type referred to in ISO/IEC 11404 - 
Language-Independent Datatypes. 

3.1.30 procedure execution context: For a particular procedure, an instance of the objects 
satisfying the external references necessary to allow the procedure to operate, where these objects 
have a lifetime longer than a single call of that procedure. 

3.1.31 procedure image: A representation of a value of a particular procedure type, which 
embodies a particular sequence of instructions to be performed when the procedure is called. 

3.1.32 procedure invocation: The object which represents the triple: procedure image, 
execution context, and invocation context. 

3.1.33 procedure name: The name of a procedure within an interface type definition. 

3.1.34 procedure return: The act of return from the server procedure with a specific termi- 
nation. 

3.1.35 procedure type: 
operations on values of other datatypes. Note, this is a different definition from 

The family of datatypes each of whose members is a collection of 
procedure value. 

from, and returns 3.1.36 procedure value: A closed sequence of instructions that is entered 
control to, an external source. 

3.1.37 processor: A compiler or interpreter working in combination with a configuration. 

3.1.38 server procedure: The procedure which is invoked by a procedure call. 

3.1.39 symbol: A program entity used to refer to a value. 

3.1.40 termination: A predefined status related to the completion of a procedure call. 

3.1.41 unmarshalling: The process of disassembling the transferred parameters, possibly 
converting them, for use by the server procedure on invocation or by the client procedure upon 
procedure return. 

3.1.42 value: The set Value contains all the values that might arise in a program execution. 

3.2 Abbreviations 

3.2.1 ASN.l: Abstract Syntax Notation - One 

3.2.2 IDN: Interface Definition Notation 

3.2.3 LID: Language-Independent Datatypes, as defined in ISO/IEC 11404:1995. 

3.2.4 LIPC: Language-Independent Procedure Calling 
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4 Conformance 

A language processor may conform to this International Standard by mapping its native procedure 
calling mechanism to the LIPC model that this International Standard defines. 

NOTE - The term “language processor” used in this clause may be extended to include 
anything which processes information and contains a procedure dling mechanism. 

4.1 Modes of conformance 

A language processor claiming conformance to this International Standard shall conform in either 
or both of the following ways. 

4.1.1 Client mode conformance 

In order to conform in client mode, a language processor shall allow programs written in its lan- 
guage to call procedures written in another language and supported by another processor, using 
the language-independent procedure calling (LIP C) as p rovided by clauses 5, 6 and 7 of this Inter- 
national Standard. In this case it is said to conform in (and be able of operating in) client mode. 
As part of this, the language processor shall define a mapping from its own procedure calling model 
to the LIPC model. 

NOTE - If a program using the LIPC facility is to be portable between processors which 
conform in client mode, the program and processors will also need to conform to the relevant 
language standard and the relevant standards binding for that language to the LIPC and LID 
standards. 

4.1.2 Server mode conformance 

In order to conform in server mode, a language processor shall allow programs written in another 
language to call procedures written in its language (i.e. it will accept and execute procedure calls 
generated by another processor which is executing in a program that is written in that other 
language and which is operating in client mode, and return control to that client processor upon 
completion), using the language-independent procedure calling (LIPC) as provided by clauses 5, 6 
and 7 of this International Standard. In this case it is said to conform in (and be able of operating 
in) server mode. As part of this, the language processor shall define a mapping from the LIPC 
model to its own procedure calling model. 

NOTES 

1 It’ is also possible in principle for a client processor to use the model for procedure calls 
defined in this International Standard to call procedures in the same language; executing on 
a server processor in the same language, and if the processor conforms in both client and 
server mode, it is even possible for it to serve itself using this model. 

2 If a procedure is to be portable between processors which conform in server mode and the 
procedure is still to be called by client processors and programs, the procedure, and the 
processors, will also need to conform to the relevant language standard and the relevant 
standards binding for that language to the LIPC and LID standards. 

5 



ISO/IEC 13886:1996(E) @ ISO/IEC 

5 A model of procedure calling: informal description 

5.1 Model overview 

A procedure is defined to be a closed sequence of instructions that is entered from, and returns 
control to, an external source. 

The general structure of a procedure call can be described as a single thread of execution in 
a particular program where the flow of control is passed from one procedure to another. The 
originator of the call is known as the client procedure and the procedure being called is referred to 
as the server procedure. 

NOTE 1 - It is possible for a server procedure to also be a client procedure if it makes a call 
to another procedure in order to complete its desired function. 

Procedures have the ability to exchange data between the client and server via the use of parameters 
(see 5.2). In addition, client and server procedures may also share data through the use of global 
data (see 5.2.2). In order for the parameters specified by the client procedure to be interpreted 
correctly, the parameters are required to be marshalled (see 5.2.3) to a base form for transmission 
that is shared by both the client and the server procedure. After the data has been transmitted, 
the server procedure must then unmarshall (see 5.2.3) the data from the base form into datatypes 
that are defined in the server language or in the language binding to ISO/IEC 11404 - Language- 
Independent Datatypes for that particular language. 

NOTE 2 - An example of the process of marshalling and unmarshalling of parameters would be 
if a Pascal client procedure made a call to a Fortran server procedure passing a single character 
parameter by value. The Pascal “char” datatype would map to a LID character. In order to 
have the LID character be transmitted to the server procedure, the LID character is marshalled 
to an appropriate ASN.l value, for example, which is a form that would be understood by both 
the client and server procedures. The ASN.1 value would then be transmitted to the server and 
upon receipt it is unmarshalled into a LID character, which in turn maps to a “character*l” in 
Fortran. 

The following diagram outlines the basic components of the language-independent call model: 

6 
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Contract 

Client Procedure - e--e 

MarshaIIing 
Interface 

Y 
I I 

Server Procedure 

Actual 
Contract 

u nmarshalling 
Interface 

I . 

A r-l 
1 Client Provider 1-u c Server Provider 

c 

Language-Independent Procedure CaII Model 

This model illustrates how the client and server procedures communicate when their implementa- 
tions conform to this International Standard. The virtual contract between the client procedure and 
server procedure is defined by the Interface Definition Notation contained within this International 
Standard. Upon the instantiation of a call, the marshalling interface marshalls the parameters and 
passes this information on to the client LIPC provider. The client LIPC provider is connected to 
the server LIPC provider via the actual contract which is the transmissible form (e.g., ASN.l). 
The server LIPC provider then unmarshalls the data, via the unmarshalling interface, into a form 
that is compatible with the server procedure. Upon return, the process is reversed with the un- 
marshalling interface now being the marshalling interface and the marshalling interface now being 
the unmarshalling interface. 

5.2 Parameter passing 

Any datatype defined in ISO/IEC 11404 - Language-Independent Datatypes can be the datatype of 
a formal parameter of a language-independent procedure call. This International Standard defines 
parameter passing solely on the passing of values. Therefore an actual parameter is any value of the 
datatype required by the call. The parameter passing model defined in this International Standard 
is a strongly typed model. 

NOTE 1 - Weak typing can be accomplished by relaxing association rules and adding implicit 
datatype conversions in the language bindings to this International Standard. 

The following notes relate the common parameter passing mechanisms that are found in existing 
languages to the four denned parameter passing schemes that are defined in this International 
Standard. 

7 
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NOTES 

2 Call by Value (In parameters): This is the simplest of all common parameter passing mech- 
anisms and appears directly in LIPC as Call by Value Sent on Initiation (see 5.2.1.1). The 
virtual contract is fulfilled by the client evaluating the actual parameter and sending the 
value to the server procedure, and the server procedure accepting it. No further action is 
required of the client procedure. The server procedure does what it likes with the received 
value, but can make no further demands on the client with respect to the actual parameter 
that generated the value. 

3 Call by Value Return (Out parameters): This common parameter passing mechanism is also 
directly supported in LIPC by Call by Value Returned as Specified. The virtual contract for 
this mechanism involves the concept of passing a parameter only as a means of receiving a 
value. If in a specific language binding, a parameter is passed at the language processor level, 
what is passed is an implicit pointer to a value of the datatype concerned, which the server 
procedure contracts to set. The server procedure cannot access the value of the datatype 
prior to the call. Some languages, in their datatyping model, explicitly distinguish between 
the datatypes of values held by variables and those of the variables themselves. For example, 
some languages have an explicit dereference (i.e., obtain the value of). For languages without 
such a model, the LIPC model allows that distinction to be made at the language binding 
service contract level without disturbing the virtual contract model. 

4 Call by Value Sent and Return (In-out parameters): This common parameter passing mech- 
anism is an in/out mechanism where the actual parameter can be evaluated to a destination 
for Call by Value Returned on Termination (see.5.2.1.3). However, in the LIPC model it is 
regarded as a parameter with both that property and that of Call by Value Sent on Initiation 
(see 5.2.1.1). Equivalently, it can be expanded into two implicit parameters, one of each kind. 
The actual parameter corresponding to a formal parameter of a given datatype “t” must be 
capable, on evaluation, of yielding a destination for such a value (i.e., an implicit or explicit 
pointer to a value of datatype “t”). For the “in” part of the in/out specification, the current 
value held in that destination on initiation of the call is retrieved by the client and relayed 
to the server procedure. The destination itself is also recorded. In the virtual contract the 
client receives the returned value, the “out” part of the in/out specification, from the server 
procedure and sends it to that destination. 
Where the language binding or service contract passes the destination itself to the server 
procedure as part of the copy-in/copy-out, the server procedure must contract to retrieve 
the “in” value immediately on transfer and then to send the returned “out” value to the 
destination on completion of the call. While the call is in progress, the client explicitly or 
implicitly marks the destination as ‘read once only, write once only’ as far as the server 
procedure is concerned and any attempt by the server procedure to violate that condition is 
an error. 

5 Call by Reference: In this case a formal parameter of datatype “t” is interpreted as an implicit 
‘pointer to “t”’ and the actual parameter must evaluate to such a pointer accordingly. This 
pointer to “t” is then passed by value as an “in” parameter. 
The pointer is not passed 
indirect addressing. 

as an in/out parameter since this cause an extra level of 

The virtual contract is that the client provides an access path to the destination. The 
destination is fixed, but the access path can be used by the server procedure both reading 
and writing of values of datatype “t”. In the close-coupled case the service contract may well 
involve passing the actual destination with the client needing to take no further action until 
the call is complete. In a loosely-coupled service environment the service contract wiIl involve 
client action during the call, responding to requests by the server for a value of datatype 
“t” to be read or written. In effect this would be reciprocal calls with the “in” and “out” 
directions reversed. 
These reciprocal calls implied by Call by Reference in a loosely-coupled environment represent 
a potentially significant overhead, which may result in Call by Reference not being supported 
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5.2.1 Methods of parameter passing 

There are four basic kinds of parameter passing defined in this International Standard: 

1. Call by Value Sent on Initiation 

2. Call by Value Sent on Request 

3. Call by Value Returned on Termination 

4. Call by Value Returned when Available 

5.2.1.1 Call by Value Sent on Initiation 

This is the simplest form of parameter passing. The formal parameter of the server procedure 
receives a value of the datatype concerned. The virtual contract is that the client evaluates the 
actual parameter and supplies the resulting value at the time of transfer of control. The server 
procedure accepts this value and no further interaction takes place with respect to this parameter. 

NOTE - This type of parameter passing is 

5.2.1.2 Call by Value Sent on Request 

The virtual contract for this type of parameter 

commonly known as Call by Value. 

passing is that the client undertakes to evaluate the 
actual parameter and supply the resulting value, but only upon receipt of a request to do so from 
the server procedure. The evaluation and passing of the actual parameter takes place if and only 
if the server procedure requests it. This can be done at the beginning of the call, or while the call 
is in progress. 

The essential difference from Call by Value Sent on Initiation is that in some cases the value sent 
will be different. 

NOTES 

1 While this mechanism is not common to programming languages as an explicit standards 
requirement, it is an optimization mechanism for programming language implementations. 

2 An example of the use of Call by Value Sent on Request is when a client wishes the server 
procedure to record a time, and wishes that to be done at a specific point during the execution 
of the call, rather than at the initiation of the call. 

3 The use by the server of a parameter of the Call by Value Sent on Request type can be 
regarded as a call of an implicit procedure parameter where the server procedure does the 
evaluation one time. Any further reference in the server procedure to the formal parameter 
simply uses that same value. The server procedure does not issue a further request for a 
value. 
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5.2.1.3 Call by Value Returned on Termination 

In this type of parameter passing, the virtual contract is that at the completion of the call, the 
server procedure will supply a value of the datatype of the formal parameter and the client will 
accept it and send the returned value to the appropriate destination. 

NOTE 1 - This type of parameter passing is better known as Call by Value Return and is 
essentially the “out” equivalent of Call by Value Sent on Initiation. 

Conceptually the client and not the server procedure sends the returned value to the destination, 
because the client language or mapping determines the interpretation of the destination and the 
2’ process of return. 

NOTES 

2 In a closely coupled environment where providing the actual destination (perhaps even the 
hardware address) to the server procedure is a trivial task, there is no reason why the 
actual service contract at the implementation level should not include providing the actual 
destination to the server procedure, which then sends its returned value directly there. This 
is an additional service level function that the server procedure contracts to perform for the 
client procedure, which does not affect the logical division of responsibility at the virtual 
contract level. 

3 This kind of parameter passing also accommodates the return of a value for the procedure 
as a whole, in the case of function procedures. Parameter passing utilizing Call by Value 
Returned on Termination accommodates function procedures through the use of an additional 
anonymous parameter. 

5.2.1.4 Call by Value Returned when Available 

In this type of parameter passing, the server procedure returns the parameter value at any time 
after the returned value is available. It could be returned while the call is still in progress, at the 
completion of the call, or some time later. What time is chosen is determined by the binding of the 
LIPC based service and is not defined by this International Standard. All the LIPC model requires 
is that this possibility can be accommodated. The virtual contract is that whenever the server 
procedure returns the value, the client will accept it and send the returned value to the appropriate 
destination. 

NOTE - In this type of parameter passing, the possibility that the returned value will be 
returned more than once is not excluded. 

5.2.2 Global data 

The term global data is used for data defined in a shared execution context that can be referenced by 
another procedure executing in a different invocation context within the same execution context. 
Conceptually, global data requires the marshalling/unmarshalling of global data into individual 
information units. Implementations conforming to this International Standard may support an 
implementation-defined mechanism for the sharing of global data and may support partitioning 
of global data. Partitioning of data refers to the abilky to insulate data from a procedure. It is 
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recommended that implementations support global data via implicit parameters that are passed 
on the call, but this may not be the only valid mechanism where the marshalling/unmarshalling 
operations are known to be trivial. 

NOTES 

1 In the IDN, global data is represented as an explicit parameter to the procedure. In a 

2 

using 
ular 
such 

language mapping, these explicit 
mechanis ms as external variables 

parameters 
and as such 

Global data should be available to the server by the 
at invocation, before use is required, or at the time 

time it is needed (i.e., before 
access is required). 

can be provided to the proced ure 
are implicit parameters. 

invocation, 

3 The mechanism by which objects in the invocation context are associated to the global 
objects may be defined by the language, language mapping, or left to the implementation. 

5.2.3 Parameter Mars halling / Unmars balling 

Data which is communicated between the client and server procedure needs to be assembled in a 
transmissible form. This transmissible form will allow the client and server procedures to encode 
their LID mapped data into a form that is suitable for both language-independent calling on the 
same system and remote procedure calls. The specification of this transmissible form is outside the 
scope of this International Standard. 

NOTE - The Abstract Syntax Notation - One is a suitable specification of a transmissible 
form. 

The marshalling of data refers to what the client procedure must do in order to transform its data 
into a form for transmission to the server procedure. Unmarshalling of data refers to what the 
server procedure must do in order to take the data passed by the client procedure and transform 
this into data suitable for the language of the server procedure. Marshalling is not limited to calling 
a procedure. Upon return, the server procedure must marshall any returned data into the form 
shared by the two procedures. Unmarshalling of data is not limited to the server procedure, since 
the client procedure must be able to unmarshall any data that is returned by the server procedure. 

Since marshalling and unmarshalling of data for procedure calls is often complex and degrades per- 
formance, an implementation may want to perform optimization of this process wherever possible. 
Optimizations will likely be available when the client and server systems are homogeneous and the 
languages involved in the procedure call have the same data representation. 

5.2.4 Pointer Parameters 

A Call by Value Sent on Initiation of a pointer allows access to the entity pointed to. The pointer 
value itself cannot be changed by the server procedure in order for the pointer to refer to something 
else after the call. 

NOTE - For example, if the value sent is a pointer to a record, after the calI the pointer still 
points to the same record even though the values in the fields of the record may have changed. 
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If changing what the pointer refers to is needed, then another level of indirect referencing has to 
be invoked, either directly (as with call by reference) or indirectly (as with call by value-return). 
An access path via pointer parameters implies access to all lower levels, including the primitive 
datatype values referenced by the lowest level pointers. 

5.2.5 Private types 

A private type is a datatype that is protected from modification within the server procedure re- 
gardless of the attributes on a parameter being passed as a private type. No operations shall be 
permitted on a parameter of a private type. A private type is declared by including the restricted 
keyword prior to the LID datatype in the IDN. 

NOTE - A private type can be considered as an octet stream that can have no operations 
performed on it. 

5.3 Execution-time Control 

5.3.1 Terminations 

An implementation conforming to this International Standard shall provide a method for raising 
and handling terminations that occur during the initialization, execution, or completion of a pro- 
cedure call. Raising a termination does not necessarily imply that the server procedure should be 
terminated immediately, however terminations that are raised must not be ignored by the imple- 
mentation. Some examples of possible terminations include: 

normal termination of a procedure invocation returning the output parameters, input/output 
parameters, and result (if any) 

abnormal termination, in which the procedure itself detects an error or other unusual condition 

external cancellation, in which some other entity determines that the procedure should ter- 
minate 

hardware or software 
of the application 

detected events which may or may not be critical to the proper execution 

asynchronous events or notification 

type or value mismatches in parameter passing or return 

failure of the underlying invocation service itself. 

5.3.1.1 Normal termination 

A procedure completing normally raises a termination signifying a normal return. A procedure 
may report additional terminations; e.g., at return from a synchronous procedure call, the proce- 
dure may return two or more terminations; however, the f&t of these terminations must specify 
whether termination is normal, abnormal, or via a cancel. If the procedure call is asynchronous, 
the procedure may return an additional termination code before, during, or after termination. 
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5.3.1.2 Abnormal Termination 

A procedure completing abnormally raises a termination as a result of some condition other than 
an external cancel command. The usual reason a procedure abnormally terminates is that the 
procedure encounters some condition that makes it impossible to continue or impossible to complete 
successfully the function(s) requested by the client procedure. The client procedure is notified by 
the implementation defined termination raising mechanism. Abnormal terminations can be divided 
into two cases: 

l a procedure det 
abort procedure 

ects an abnormal termination as part of its logic and executes an explicit 
as a result 

l an abnormal termination occurs during execution of the procedure, causing a fault at some 
level lower than that of the procedure logic; the fault causes control to go to some generic 
fault-handling routine within the procedure that terminates the procedure as in the previous 
case. 

A special case of abnormal termination of a procedure is the case where one or more of the actual 
parameter values in the procedure call are incorrect, e.g., a value is of the wrong datatype for a 
given parameter or of the right datatype but outside the required range. It is possible to distinguish 
here between parameter values that violate the advertised requirements of the procedure interface 
as specified in the IDN and values (or combination of values) that violate application specific 
constraints that cannot be specified in the IDN formalism and hence must be checked explicitly by 
the procedure itself. However, from the point of view of the client procedure, the only difference 
between the two cases is that in the fist case, the error specified is one of a predefined set specified 
in this International Standard (see 5.3.1.4). In the second case, it is an application-specific condition 
code specified in some other, perhaps application-specific, standard. * 

5.3.1.3 External Cancellation 

A procedure terminates by external cancellation if a command is issued from outside the procedure 
which causes the procedure to terminate, or be terminated, in an orderly way. In the case of 
an asynchronous call, the cancellation may come from the client procedure. Whether the call 
is synchronous or asynchronous, the command to cancel a procedure may come from an outside 
source, i.e., outside the LIPC model. The two cases are indistinguishable to the server procedure. 
In both cases, the client procedure receives a notification via an implementation defined termination 
raising mechanism. 

X3.1.4 Predefined conditions 

As a minimum, implementations conforming to this International Standard should report the fol- 
lowing terminations during a procedure call: 

l server procedure unavailable, call not executed 

l client or server procedure does not have defined mapping to IDN 
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l value out of range for parameter datatype 

l cancellation of call 

l insufficient resources available to complete call 

0 normal completion of Call 

5.4 Execution Control 

5.4.1 Synchronous and Asynchronous Calling 

The issue of whether of not a call executes synchronously or asynchronously is outside the scope of 
this International Standard. The LIPC model does not prohibit either synchronous or asynchronous 
calls. An implementation can choose whether or not to limit the number of threads of execution 
in any particular call environment. 

5.4.2 Recursion 

The LIPC model does not prohibit recursion. How an implementation implements recursive pro- 
cedure calling is outside the scope of this International Standard. 

NOTE - Implementors should be aware that optimization considerations for LIPC calIs need 
to take recursion into account. 

6 A model of procedure calling: formal description 

This clause provides a model of procedures, variables, name bindings, execution environments, 
and invocation. A series of new datatypes are introduced. Some of these directly correspond to 
progra mming concepts (like variables), and some are used merely to support further definitions. 

6.1 Value 

The set Value contains all the values that might arise in a program execution. Value contains all 
the values definable using the datatypes, type generators, and definitional mechanisms of ISO/IEC 
11404 - Language-Independent Datatypes. Value will also contain boxes and procedure closures 
(see 6.6). 

6.2 Boxes and global state 

A box is a generic term for a container that holds a value of a particular datatype, for example 
what, in some contexts, would be called a ‘variable’. Boxes exist and are manipulated at execution- 
time. They may be named by identifiers in some program text, but they are distinct from any such 
synt attic notion. Boxes do not imply any particular implementation mechanism such as storage. 
There are three operations defined on boxes: 
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create: -+ Value 

write: Box * Value -+ 

read: Box -+ Value 

The above three lines are called signatures. Each signature lists the name of an operation, the types 
of the inputs (if any) of that operation, and the types of its outputs (if any). An * (the Cartesian 
product operator) separates input (or output) types. 

The operation Create brings a new box into existence. The operation Write associates a new value 
with a given box. The operation Read returns the last value written to a given box. If read is 
applied to a box that has never been written, the value returned is unspecified. 

The global state is the set of all existing boxes and their currently assigned values. It is the unique 
characteristic of boxes that their operations involve global state: the operation Read accesses the 
global state; the operation Create and the operation Write produce a new global state. 

NOTE 1 - The global state exists as a modelling concept only. No individual program, 
executing on a particular machine, can access all parts of the global state. It is a characteristic 
of distributed systems that each part of the system can only access a few ‘local’ boxes, and must 
ask other ‘remote’ parts of the system to read or write ‘remote’ boxes. 

Boxes also imply a notion of time, modelled as a point in an execution sequence. An execution 
sequence is a series of global states sr , ~2, . . . where each state beyond the first is derived from the 
preceding one by a single create operation or a single write operation. 

NOTE 2 - In cases of concurrent processing, the series of global states making up the execution 
sequence cannot necessarily be determined by examining the program text and may vary from 
execution to execution. 

6.3 Symbol 

A symbol is a reference in a program text to a value of a particular datatype (including boxes and 
procedure closures). These referenced values are the values that the procedure can access directly 
during execution. The symbols of a particular procedure fall into three disjoint categories: 

l Global symbols are used to refer to values that are permanently associated with the procedure 
(e.g., other procedures, non-local variables, or ‘own’ variables). 

. Local symbols are used to refer to values that exist only for the duration 

( g e. ., the local ‘stack frame’ variables). 
of a single invocation 

l Parameter symbols are the formal parameters used to refer to values that are the actual 
parameters for a particular invocation. 

NOTES 

1 Local symbols and parameter symbols of one procedure may be global symbols of another 
procedure (e.g., nested procedures). 
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2 How references to values in a program text in a particular language are expressed is defined 
by the rules of the language, including its scoping rules. For example, the means of reference 
may be an identifier and the same identifier may relate to two different references in different 
program contexts (because of scoping rules). The identifier would thus correspond to two 
different “symbols” in the sense of this subclause. 

3 By binding global symbols to boxes, these global symbols can (indirectly) refer to values 
created at arbitrary times, and be associated with the given procedure for arbitrary periods. 
Thus the phrase “permanently associated ” above is not a substantive restriction to what can 
be modelled. 

6.4 Procedure image 

A procedure image is the abstraction of a procedure text. Implicit in a procedure image is the 
procedure-type, the global, local, and parameter symbols used within the procedure text, and the 
algorithm to be executed by the language processor. There are four operations defined on procedure 
images: 

gsyms : Image + Sequence(Symbo1) 

lsyms: Image + Sequence(Symbo1) 

psyms: 

spec: 

Image + Sequence (Symbol) 

Image + Procedure-Type 

NOTE1 - The ordering within the sequence produced by gsynzs and lsyms is seldom relevant, 
however the ordering within the sequence produced by psynzs is important (see 6.11). 

Gsyms returns the global symbols of the image. Lsyms, psyms, and spec return (respectively) the 
local symbols, parameter symbols, and the procedure type. 

NOTE2 
is created is 

Procedure images are created by the language processor. 
outside the scope of this International Standard. 

How a procedure image 

6.5 Association 

An association is any mapping from a set of symbols to values. 

A: Symbol -+ Value . 

Associations are typically partial, being defined only on the symbols used by a particular procedure 
image. Let x be a symbol, y a value, and A and B be associations. 

cx -+ yl denotes the association that maps the symbol x 
to the value y and maps no other symbols 
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A+B denotes an association that satisfies 

(A+B) (x> = B(x) if B is defined on x 

= A(x) otherwise 

domain (A) denotes the set of symbols x for which A(x) is defined 

range (A) denotes the set of values { A(x) 1 x is in domain(A) } 

6.6 Procedure closures 

A procedure closure is a pair <I,A> where I is a procedure image and A is an association mapping 
the global symbols of I, and no others. In particular, the local and parameter symbols have no 
mappings. Procedure closures are the values of procedure type referred to in ISO/IEC 11404 - 
Language-Independent Datatypes. 

A complete procedure closure is a procedure closure for which all the global symbols of the image 
are mapped. 

A partial procedure closure is a procedure closure for which at least one of the global symbols is 
not mapped. 

NOTES 

An example of a partial procedure closure is the value of a procedure A nested within a 
procedure B before procedure B is invoked. This is partial because references from A to B’s 
local variables cannot be mapped until the invocation of B. 

Procedure closures are typically constructed as part of compilation, or during execution, 
according to the rules of the particular programming language involved. 

67 l Boxes, pointers, values, and datatypes 

A pointer datatype, as defined in ISO/IEC 11404 - Language-Independent Datatypes, is a datatype 
whose values are references to other values; in particular, a value of datatype pointer-to-D, where 
D is a datatype, is a reference to a value of datatype D. 

In the LIPC model, the datatype of a box is a pointer datatype as defined in ISO/IEC 11404 - 
Language-Independent Datatypes Every box has a value which is a reference to some other value. 
If a box is used (e.g., in a LIPC mapping) to model the concept of “a variable of datatype D”, 
which some languages have, then it “holds” a value of datatype D (see 6.2) and the box is a value 
of datatype pointer-to-D. 

NOTE 1 - An entity called “a variable of datatype D” cannot literally be a value of datatype 
D because such values cannot vary, any more than an “integer array” can literally be a value of 
datatype integer (since those are single values only). 
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In ISO/IEC 11404 - Language-Independent Datatypes, “derekrend is defined as a characteriz- 
ing operation of alI pointer datatypes. When this operation is applied to a value P of datatype 
pointer-to-D, the result is the value V of datatype D that P references. In the LIPC model, the 
corresponding operation on a box is Read. The Create and Write operations for boxes (see 6.2) are 
not characterizing operations defined in ISO/IEC 11404 - Language-Independent Datatypes, but 
.correspond respectively to situations where new objects of pointer datatype can be created, and 
when the value V of datatype D referenced by a particular pointer-to-D value P is replaced by a 
‘new value. Both of these operations are needed for boxes in the LIPC model though neither are 
necessarily required for all objects of pointer datatype in all circumstances. 

NOTES 

2 The operation Write on a box corresponds to the concept in many languages of “assigning 
a value”. Changing the value of datatype D referenced by a box does not change the box 
itself, only its contents, just as assigning a new value to a variable X in a language does not 
change X itself, which is still the same variable with the same name. 

3 The concept of “pointer variables”, sometimes referred to as “indirect addressing”, exists in 
some languages. ISO/IEC 11404 - Language-Independent Datatypes defines the datatype 
of such an object as pointer-to-pointer-to-D. It references a value of datatype pointer-to-D, 
(i.e., an object of another pointer datatype). That object references a value of datatype D. 
In the LIPC model this corresponds to a box which holds a reference to another box, which 
in turn holds a value of datatype D. 
In this way, the LIPC model supports parameter passing of pointer datatypes, which some 
languages support directly or indirectly, and both the LID and LIPC standards support 
indirect addressing of any required depth. 

4 In some discussions of programming languages the concept “instances of values” is used. In 
LIPC terms an instance of a value can be thought of as a value being held in a box, which 
allows modelling of situations where multiple instances of the same value exist simultaneously. 
It is possible in the LIPC model for more than one entity to have access to the same box (e.g., 
it has been passed as an actual parameter whose formal parameter is of a pointer datatype). 
The entities than have access to the same instance of the value; furthermore, if the box is 
modified (i.e., the value it holds is changed through use of a Write operation), then this 
modification is visible to both entities and hence may affect subsequent behavior in either or 
both. In environments in which such multiple accesses cannot be supported directly, some 
implementation defined mechanism must be provided to simulate it, for example by creating 
duplicate boxes, and providing means of ensuring that any change in one is automatically 
applied to the other, either immediately or at least before any event occurs which uses the 
value held in the box. 

A procedure datatype, as defined in ISO/IEC 11404 - Language-Independent Datatypes, is in 
general a composite (though not an aggregate) datatype which incorporates within its specification 
the datatype of all of its parameters (including any notional parameters used to return results to . 
“function” procedures). In the LIPC model, a procedure closure is an entity whose datatype is 
some LID procedure datatype, but also encompasses the concept of Global State. 

NOTE 5 - By this means, matching of procedure datatypes in the LIPC model automatically 
ensures matching of the number and datatypes of parameters. 

6e8 Interface closure 

An interface closure is a collection of names and a collection of procedure closures, with a mapping 
between them. This is modelled as an association that maps the set of names to procedure closures. 
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NOTE - For example, if Sue, Mary, and Sam are procedure names (symbols), and X, Y, and 
2 are procedure closures, then 

I = [ Sue + Xl + [Mary ---) Y] + [Sam + Z] 

is an interface closure. domain(I) = {Sue, Mary, Sam} (see 6.5). Thus, domain(I) is the set 
of procedure names in the interface closure I. The procedure closure in I named by Mary is 
denoted I( Mary). 

6e9 Interface type 

An 
bt e 

interface type is a collection of names and a collection of procedure types, with a 
ween them. This is modelled as an association that maps a set of procedure types to 

mapping . 
names. 

NOTES 
1 An interface type is not a datatype. 

2 For example, if Sue, Mary, and Sam are procedure names, if X, Y, and Z are procedure 
closures of the corresponding procedure types XT, YT, and ZT respectively, then 

IT = [Sue + XT] + [Mary --3 YT] + [Sam ---) ZT] 

is the interface type corresponding to the interface closure I introduced in the preceding 

sub-clause. 

6.10 Specifications 

The LIPC model defines the operation spec on procedure images to return the procedure type of 
the image. Thus, 

spec : 

spec is gener Naked to procedure closures bY 

and spec is further generalized 
and I is an interfaceclosure: 

Image -+ Procedure-Type 

spec: Procedure-Closure --) Procedure-Type 

spec (<image,assoc>) = spec (image) 

spec: 

to interface closures by the following where P is a procedure-type 

Interface-Closure + Interface-Type 

For I = [namer -+ PJ + . . . + [name, -+ &I S 

spec (I) = [name1 + spec(PJl + . . . + [name, -+ spec(P,)] 

The operation spec on interface-closures returns an association between names and procedure types. 
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6.11 Basic procedure invocation 

Basic procedure invocation is an operation on complete procedure closures described as follows: 

invoke: Procedure-Closure * Sequence(Value) --+ Status * Sequence(Value) 

where Status is the set of termination identifiers (see ISO/IEC 11404:1996, clause 9.3). The first 
sequence of values represents the input parameters to the invocation. The second sequence of 
values represents the values resulting from the invocation. The status represents the termination 
condition, including the “normal” termination. 

Applying invoke to the procedure closure <Image,Association> and input values <&,...V, > . 
results in the following actions: 

Let <Al,...A, > = psyms(Image) 
<Ll,...L,> = lsyms(Image) 

For i = I to m, do 

LB; = create0 

Define invocation association Q by: 

Q = Association + [Al --+ VJ + . . . + [A, --+ V,l 
+ [L1 + LB11 + . . . + CL, + LB,] 

Then 

"Execute Image in the context of association Q” 

Executing an image in a context is a primitive notion defined by the progr amming language proces- 
sor (or standard) for the language in which Image is written. When execution terminates, a value 
in Status * Sequence(Value) will result, and the association Q is lost. 

NOTE - The boxes created in forming Q are no longer accessible 
language permits them to be “returned” in some fashion (see 6.13) 

unless the programming 

6.12 Type correctness 

It is not meaningful to apply the invoke operation to any procedure closure C and any sequence of 
input values <VI ,... V, >. Invocation is meaningful only if its parameters are type correct. 

Let spec(C) be 

PROCEDURE ( al: AT1, . . . aan : ATan ) 

RETURNS ( rl: RT1, . . . r,: RT, ) 
SIGNALS ( El 3 . . . E,n ) 

where al through a* are the input parameters (in order), rl through r, are the output parameters 
(in order), and El through E,n are the non-normal terminations. 

Invocation of C on <V1,...V, > is type correct if 
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n=an (the number of parameters is correct) 

and 

For i = 1 to n, 
Vi is a value of type ATi (the types of the parameters are correct) 

When the invocation of C on <VI, . ..Vn > terminates,it produces a result of the form 

< status, <W1,...W,> > 

If the closure C is a member of the procedure type to which it has been mapped, then the following 
information is known about the above result. 

status = "normal" or status = Ei for some i in l..en 

If status = "normal" then 

m = rn, and 

Wj is a value of type RTj (for all j in l..m) 

ElseIf status = Ei, and Ei is declared to have structure 

fl: FT1, . . . ffn : FT fn 

then 

m = fn, and 

Wj is a value of type FTj (for all j in l..m) 

. 

6.13 Associates 

In order to be able to discuss the set of global variables shared by two procedures, or to define 
pointer (or parameter) aliasing, it is necessary to know when one value is “referenced by” or is 
“accessible from” another value. X is a simple associate of Y if X can be obtained from’Y by 
following pointers or extracting the elements of aggregate values. X is a generalized associate of Y 
if X can be obtained from Y by combinations of the above actions and by invocating procedures. 

The next two clauses formalize these two concepts. 

6.13.1 Simple Associates 

The concept of simple associates is embodied in two functions. 

The fist such function is Immediate Associates. IAssoc(x) is defined as follows: 

IAssoc: Value -+ Set(Value) 

l Ifx is a value of some non-aggregate type defined in ISO/IEC 11404 - Language-Independent 
Datatypes, then IAssoc(x)‘is the empty set. 
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l If x is a value of some aggregate type defined in ISO/IEC 11404 - Language-Independent 
Datatypes, then IAssoc(x) is the set of all elements of the aggregate. 

l If x is a box which currently holds a value v, 

IAssoc(x) = the set consisting of the single value v 

l If x is a procedure closure, 

IAssoc(x) = the empty set 

The second associates function is Transitive Associates: 

Assoc : Value -+ Value 

For any value X, 

X 

Assoc(x) is the smallest set satisfying 

is in Assoc(x) 

If y is in Assoc(x), then all elements of IAssoc(y) are in Assoc(x). 

NOTEl- Intuitively, Assoc(x) consists of all values that can be extracted from x by applying 
various extraction operations on aggregates and read operations on boxes. Since read depends 
on the current state, IAssoc and Assoc depend on the current state as well. 

When a procedure closure <I,A> is invoked on inputs <VI ,...V, >, it has immediate and direct 
access to all the values in 

r=ge(A) U {VI,. . .V,) 

and (with some computation) direct access to all the values in 

z= Assoc ( range(A) U {V,,...V,} ) 

The invocation of <&A> on <VI, . ..V. > can potentially read or write any box in Z and no others. 

NOTES 

2 It can also create new boxes. 

. 

3 The set Z does not include values that can only be accessed by invoking other procedure 
closures. 

6.l3.2 Generalized Associates 

The concept of generalized associates includes values that can be obtained with the help of other 

procedures. Again, two functions are needed. 

Generalized Immediate Associates is defined as follows: 

GIAssoc: Value + Value 

If x is a procedure closure <I,A>, 
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GIASSOC(X) = range(A). 

Ifx is any other value, 

GIAssoc(x) = IAssoc(x). 

Generalized Transitive Associates is defined as: 

GAssoc : Value + Value 

For any value x, GAssoc(x) is the smallest set satisfying 

is in GAssoc(x) 

If y is in GAssoc(x), then all elements of GIAssoc(y) are in GAssoc(x). 

NOTE - Intuitively, GAssoc(x) consists of all values that can be extracted from x by applying 
various extraction operations on aggregates, read on boxes, and procedure invocation. 

When a procedure closure <I,A> is invoked on inputs <VI,...&, >, let 

GZ = GAssoc ( range(A) U {V,,...V,} ) 

With the help of other procedure.closures, this invocation can access any value in GZ. The only 
elements of the global state that the invocation of <I,A> on <Vi,...V, > can access or modify 
are those which are boxes in GZ. 

It is assumed that for a procedure closure <I,A> to invoke another procedure closure <J,B>, 
< J,B> must be one of the following alternatives: 

1. in range(A) (th e most common case) 

2. accessible from an input parameter, 

3. J is in the range of the invocation association of <I,A> and B can be constructed from 
accessible values. 

6.14 Execution and Invocation contexts 

The execution context of the procedure closure <Image,Association> is the set of all boxes in 
the Assoc(range(Association)). The invocation context of a particular invocation of the procedure 
closure <Image,Association> is the set of all boxes in the Assoc(range( Q)) where Q is the invocation 
association of this invocation of <Image,Association>. 

NOTE - Both the execution context and the invocation context can vary over time during the 
execution of Image. 
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6.15 Parameter translations 

When a procedure invocation is required to cross between execution contexts, it may not be possible 
to pass the parameter and return values directly between these contexts. Consider the following 
two examples. 

In the fist example, a program written in programming language Ll calls a procedure written in 
language L2. If Ll and L2 have different datatypes, this call may require translating Ll input 
values into their L2 equivalents. On return a reverse translation may be needed. 

In the second example, a program calls a procedure written in the same language (thus needing no 
datatype translation), but in a separate address space. Assume that pointers are implemented in a 
way that ties them to a specific address space (the usual case). So any pointers in the input values 
will be tied to the client procedure’s address space. These pointers must be uniformly replaced by 
“equivalent” pointers tied to the procedure’s address space. Again, on return a reverse translation 
may be needed. 

Parameter translations can lose information (e.g., when translating between different floating point 
formats), and can disrupt sharing relationships (e.g., when moving pointers between address spaces). 
Since these effects are visible to programmers, the LIPC model defines a way of handling them. 

Parameter translations are modelled in the following way. Let C be an arbitrary procedure closure, 
and let TF and TB be procedure closures that do parameter translations for C. Then we will define 

wrap (TF, C, TB) 

to be a procedure closure that (when invoked) does the following: 

1 . invokes TF to translate the input parameters 

2. invokes C with the translated parameters, and 

3. invokes TB to translate the returned values back again. 

The following describes how the wrap function aids in modelling cross execution context calls. Let 
Xl and X2 be execution contexts. 

NOTE 1 - 
is necessary 

It 
to 

does not matter 
call from one to 

what an execution context is, just that 
the other. 

some sort of translation 

Let Cl be the procedure closure representing the target procedure in its native context Xl. Then, 

c2 = wrap (TF, Cl, TB) 

is the procedure closure which is actually called in context X2. In many cases, cahg C2 will have 
visibly different effects from calling Cl. 

A more precise definition of wrap would be: 
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wrap: Procedure-Closure * Procedure-Closure * Procedure-Closure 
-+ Procedure-Closure 

wrap (TF, C, TB) = <IM, [pre-+TF] + [main-&] + [post+TB]> 

For convenience, assume that TF and TB take a single Sequence(Value) input and produce a single 
Sequence(Value) output. This allows TB in particular to be invoked on output sequences of differing 
length. 

When procedure closure wrap(TF,C,TB) is invoked on input sequence V the image IM causes the 
following steps to occur: 

1. TF is invoked on <V>, producing <E, W> 

(1.1) If E l= "normal)', IM terminates with <E, W> 
(1.2) If E = "normal", W is a singleton <WI > 

2. C is invoked on WI, producing <F, X> 

3. TB is invoked on <X>, producing <G, Y> 

(3.1) If G 1= "normal", IM terminates with <G, Y> 
(3.2) If G = "normal)', Y is a singleton <Yl > 

4. IM terminates with <F, Y1 > 

Using procedure closures to do the parameter and result translations allows the full computational 
power of the model to be used in expressing these translations. TF and TB can communicate 
with each other via shared boxes, and can access arbitrary other parts of the global state if their 
association maps are defined accordingly. However in typical usage, TF and TB are expected to 
be quite simple. 

N6TE2 - TF and TB are the only places where Value (the union of all datatypes) is used in 
a conceptual context. 

Example: model of a remote procedure call from a client address space 
(CAS) to a server address space (SAS). Let P be a procedure in SAS. 
Let MC be the client side marshalling code, and UC be the client side 
unmarshalling code. MS and US are the corresponding codes on the server 
side. The proc closure 

PW = wrap (US, P, MS) 

represents procedure P as exported to the outside world. PW takes 
“wire format') data as input and returns “wire format" data as output. 
The procedure closure 

PC = wrap (MC, PW, UC) 

represents procedure P as imported into CAS. PC's inputs and outputs are 
appropriate for CBS. 
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6.16 Defining Translation Procedures 

Translation procedures typically need to take a composite value V and replace only certain portions 
of V, leaving the rest of V as in the original. An example is replacing all boxes in V with new ones 
while preserving the sharing structure within V. Expressing this as an algorithm can be somewhat 
complex. However there are a number of concepts that can help describe the intended result (leaving 
the algorithmic details to the implementors). 

The following definitions are not used in this International Standard, but will help shorten defini- 
tions in binding standards. 

Let T be some mapping from values to values: 

T: Value --+ Value 

T is an identity on datatype Q if for all values v of datatype Q, 

T(v) = v 

Let F be a characterizing operation of datatype Q, and F’ be a characterizing operation on datatype 
Q’ with the same number of parameters as F. T maps F to F’ if for all values vr,...v, in the input 
domain of F, 

T( F(vI.. .v,) ) = F’( T(vI), . . . T(v,) .) 

If T maps all the characterizing operations of Q to corresponding ones in Q’, we say that “T maps 
Q into Q’ “. 

T preserves datatype Q if T maps each characterizing operation of Q to itself. 

NOTE - As an example of how the above concepts can be used, assume that we need to define 
a translation procedure TF that replaces all boxes in a value V with new ones while preserving 
the sharing structure within V TF invoked on input sequence V operates as follows: 

1. Compute the set 
{B1,...B,} = Assoc (V) n Boxes 

2. For i = 1 to n, 

ci = create0 
3. Let 2 be a function’ 2: Value -+ Value satisfying 

For any box Bi, Z(Bi) = Ci 
Z preserves all aggregate datatypes except Box 
2 is an identity on all non-aggregate datatypes 

4. Finally, set TF(V) = Z(V). 
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7 Interface Definition Notation 

The Interface Definition Notation is the means defined in this International Standard for specify- 
ing declarations for procedures, procedure parameters, datatypes, and attributes. This concrete 
notation supports the datatypes defined in ISO/IEC 11494 - Language-~&pen&nt Datatypes. 

NOTE - For a language processor conform to this clause of this International Standard (see 4), 
it is necessary that a binding be specified between the procedure calling mechanism for that 
language processor and the IDN defined in this clause. This binding will need to incorporate 
inward and/or outward mappings for the datatypes of that language to the datatypes defined 
in ISO/IEC 11404 - Language-Independent Datatypes, depending on the mode of conformity 
(client, server, or both) that is required. 

‘7.1 Definitional Conventions 

7.1.1 Character Set 

letter abcdefghijklmnopqrstuvwxyz 
digit 0123456789 
special 0 0 <> . 9 

(parentheses) (braces) (angle-brackets) (full stop) (comma) 
; 

icolon) ( 
= / * 

semicolon) (equals) (solidus) (asterisks) (minus) 
hyphen - 
apostrophe ' 
quote 1? 

escape ! 

The character space is required to be bound to the “space” member of ISO/‘IEC 10646-1:1993, but 
it only has meaning within character-literals and string-literals. 

A bound-character is defined to be a letter, digit, hyphen, special, apostrophe, space, or quote. A 
bound-character is required to be associated with the member having the corresponding symbol in 
any character-set derived from ISO/IEC 10646-1:1993, except that no significance is attached to 
the “case” of the letters. 

A bound-character and the escape character are required in any implementation to be associated 
with particular members of the implementation character set 

An added-character is a character not defined in this International Standard. An added-character 
is any other member of the implementation character-set which is bound to the member having the 
corresponding symbol in an ISO/IEC 10646-1:1993 character set. 

7.1.2 Formal Syntax 

This International Standard defines a formal representation for datatype declaration and identi- 
fication. The following notation, derived from Backus-Naur form, is used in defining that formal 
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representation. In this clause, the word marks is used to refer to the characters used to define 
the formal mechanism, while the word character is used to refer to the characters used in forming 
procedure and datatype declarations and identifications. 

A terminal symbol is a sequence of characters delimited by two occurrences of the quotation-mark 
(“), the fist of which precedes the fist character in the terminal symbol, and the second of which 
follows the last character in the terminal symbol. A terminal symbol represents the occurrence of 
a sequence of characters. 

A non-terminal symbol is a sequence of marks, each of which is either a letter or the hyphen mark 
(a), terminated by the fist mark which is neither a letter nor a hyphen. A non-terminal symbol 
represents any sequence of terminal symbols which satisfies the production for that non-terminal 
symbol. For each non-terminal symbol there is exactly one IDN production. Non-terminal symbols 
are highlighted within the text of this International Standard by italics. 

A repeated sequence is a sequence of terminal and/or non-terminal symbols enclosed between an 
open-brace mark (0 and a close-brace mark 0). Th e se q uence of symbols so enclosed is permitted 
to occur any number of times at the place where the repeated sequence occurs, but is not required 
to occur at all. 

An optional sequence is a sequence of terminal and/or non-terminal symbols enclosed between and 
open-bracket ([) d an a close-bracket (I). The sequence of symbols so enclosed is permitted to occur 
once at the place where the optional sequence occurs, but is not required to occur at all. 

An alternative sequence is a sequence of terminal and/or non-terminal symbols preceded by the 
vertical stroke mark (I) and f o 11 owed by either a vertical stroke mark or a full-stop mark (.). The 
sequence of symbols so delimitedis permitted to occur instead of the sequence of symbols preceding 
the f&t vertical stroke. 

A production defines the validsequences of symbols which a non-terminal symbol represents. A 
simple production has the form: . 

non-terminal-symbol = valid-sequence. 

where valid-sequence is any sequence of terminal symbols, non-terminal symbols, optional se- 
quences, repeated sequences and alternative sequences. The equal-sign mark (=) separates the 
non-terminal symbol being defined from the valid-sequence which represents its definition. The 
full-stop mark terminates the valid-sequence. 

RI.3 Whitespace 

A sequence of one or more space characters, except within a character-literal or string-literal, shall 
be considered whitespace. Any use of this International Standard may define any other characters 
or sequences of characters to be whitespace, such as horizontal and vertical tabulators, end of line 
and page indicators, etc. 

A comment is any sequence of characters beginning with the sequence “/*” and terminating with the 
fist occurrence thereafter of the sequence “*/“. E ver y h c aracter of a comment shall be considered 
whitespace. 
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Any two objects which occur consecutively may be separated by whitespace, without affect on the 
interpret ation of the syntactic construction. Whitespace shall not appear within lexical obj ects. 

7.2 Interface Type Declarations 

interface-type = “interface” Cinterf ace-synonym (* : "1 
[interface-identifier] “begin” interface-body “end”. 

interface-synonym = identifier. 

interface-identifier = object-identifier. 

interface-body = {import} {declaration ” ; 0). 

declaration = value-decl 1 type-decl 1 procedure-decl 1 termination-decl. 

NOTE - An interface type definition contains the declaration of various interface entities, such 
as constants, datatypes, components of generated types (e.g., fields of a record), etc. These 
declarations associate an identifier with the interface entity given in the declaration. The usage 
of this identifier is called its defining occurrence. When this identifier is used elsewhere in 
the interface type definition, it refers to the entity associated with its defining occurrence. In 
order to avoid ambiguity as to which entity a reference identifier refers to, rules governing the 
uniqueness of defining identifiers and rules governing how to resolve reference identifiers are 
provided in the appropriate clauses. 

The interface-synonym in the interface-type declaration is an optional human readable name for 
an interface type. The interface-identifier of this production is an object-identifier that uniquely 
identifies the interface type definition. 

All interface-synonyms shall be unique within the immediately containing interface-type. 

7.2.1 Type references 

In an interface body, an identifier in an interface type definition used to refer to a type-specifier is 
called a type-reference (see 7.7). 

A type-reference matches a type-decl if the type-identifier of the type-decl is the same as the identifier 
component of the type-reference. The following rules govern the use of type-references within an 
interface-type. 

If’ the interface-synonym component of the type-reference is absent then the type-reference shall 
either match a type-decl in the immediately containing interface-type or match a type-decl which 
is imported into the immediately containing interface-type (either explicitly as an import-symbol 
or implicitly by importing an entire interface type definition). If’ the type-reference matches a 
type-decl in the immediately containing interface-type, then it refers to the immediately contained 
type-specifier of that type-de& Otherwise, the type-reference shall match at most one imported 
type-decl, and the type-reference refers to the immediately contained type-specifier of that type-decl. 

NOTE - If the type-identifier of an imported type-&ecZ is the same as a type-identifier defined 
in the immediately containing interface-type or is the same as a type-identifier of a type-decl 
imported from a different interface type definition, then it may only be referenced using its 
associated interface-synonym. 
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If the interface-synonym component of the type-reference is present then the type-reference shall 
match a type-decl in the interface type definition denoted by the interface-synonym. The type- 
reference refers to the immediately contained type-specifier of this type-decl. 

7.2.2 Value References 

In an interface body, an identifier in an interface type definition used to refer to a value is called a 
value-reference A value-reference shall refer to either: 

(a) value-expression used in an value-decl; or 

(b) an enumeration-identifier; or 

( > c a 

(4 a 

( ) e a 

(0 a 

field within a record-type; or 

formal parameter of a procedure-decl, procedure-type, or termination-decl; or 

return-arg within a procedure-decl or procedure-type; or 

formal-value-parm of a parameterized-type-decl. 

The value of a value-reference may be known statically, if it refers to a value-expression or 
enumeration-identifier. Otherwise, it is determined at the time of procedure invocation or ter- 
mination. 

7.3 Import Declarations 

rt = “imports” [*l (“import-symbol-list”) “1 *lf roml’ 
[interface-synonym ” : “1 object-identifier . 

import-symbol-list = import-symbol {11,11 import-symbol}. 

import-symbol = identifier. 

The import declaration shall be used to allow the current interface-body to reference identifiers 
defined in other interface type declarations. The object-identifier in the import statement is the 
interface-identifier of the interface type definition in which the symbols are defined. The interface- 
synonym in the import production, if present, may be used within the scope of the current interface- 
body as a prefix when referencing the imported symbol. 

Each import-symbol shall be an identifier that is defined by a value-decl, a type-decl, a procedure-decl, 
or a termination-decl in the interface-body of the interface type definition denoted by the object- 
identifier in the import statement. Only those import-symbols that appear in the import-symbol-list 
shall be used within the scope of the current interface-body. The meaning associated with the 
import-symbol is that which it has in its defining interface type definition. If no import-symbol-list 
is present, then the entire interface is imported. This is equivalent to explicitly importing (as an 
import-symbol) every identifier defined by a value-decl, type-decl, procedure-decl, and termination- 
decl in the referenced interface type definition. 
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7.4 Value Declarations 

value-decl = “‘value” value-identif 
constant-type 

value-identifier = identifier. 

constant-type-spec = integer-type 
boolean-type 
ordinal-type 
scaled-type 1 

value-expression = value-reference 
integer-literal 
boolean-literal 
ordinal-literal 
rational-literal 
void-literal. 

ISO/IEC 13886:1996(E) 

tt . tt .er 0 
spec “=” value-expression. 

real-type 1 character-type 1 . 
enumerated-type 1 state-type 1 
time-type I bit-type I rational-type I 

complex-type. 

I procedure-reference 1 
real-literal I character-literal I 
enumerated-literal I state-literal I 
time-literal I bit-literal I 
I scaled-literal I complex-literal I 

A value-decl declares an identifier to be equal to a constant value of a given datatype. This identifier 
may then be used wherever a vahe-expression of that datatype may be used in the interface type 
definition (e.g., in declaring the bounds of an array). 

All value-identifiers shall be unique within the immediately containing interface-type. A value 
expression is either a literal (immediate value) of the specified type or a value-reference. This 
value-reference shall refer to a valve-expression declared in another value-decl or to an enumeration 
literal (if the specified datatype is an enumeration). 

7.5 Datatype Declarations 

Paragraphs in this clause which refer for a formal interpretation to ISOAEC 11404 are 
included for completeness and assistance to the reader, and are considered to be informative 
parts of this International Standard. 

type-decl = “type”. type-identifier “=‘* type-specifier I 
parameterized-type-decl. 

type-identifier = identifier. 

A datatype declaration declares an identifier to be a specific type. This identifier may then be used 
wherever a type-specifier may be used in the interface (e.g., to define the datatype of a parameter 
in a procedure declaration). The syntax and semantics of the parameterized-type-decl is given in 
clause 7.6. 

All type-identifiers shall be unique within the immediately containing interface-type. 

The semantics of all datatypes given in this document are consistent with the semantics of the 
datatypes as defined in ISO/IEC 11404 - Language-Independent Datatypes. 
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type-specifier = primitive-datatype I generated-datatype 1 def ined-datatype. 

defined-datatype = type-reference [subtype-spec]. 

The type-reference in the defined-datatype production shall refer to a type-specifier. The type- 
identifier defined in the immediately containing type-decl is a synonym for the type-specifier referred 
to by the defined-datatype. If’ the type-referencerefers to an integer-type, real-type, or an enumemted- 
type then an optional subtype-spec may be included. If the type-reference refers to a real-type and 
a subtype-spec is included, that subtype-spec shall only include a single range of real values. 

7.5.1 Primitive Datatypes 

primitive-datatype = integer-type I real-type 1 character-type I 
boolean-type I enumerated-type I octet-type I 
procedure-type 1 state-type ] ordinal-type I 
time-type 1 bit-type 1 rational-type I 
scaled-type I complex-type ] void-type. 

7.5.1.1 Integer 

Integer is the mathematical datatype comprising the exact integral values. Syntax: 

integer-type = “integer”. 

integer-literal = [11-11] digit{digit} . 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.1.2 The real datatype 

Real is a family of datatypes which are computational approximations to the mathematical datatype 
comprising the “real numbers”. Specifically, each real datatype designates a collection of mathe- 
matical real values which are known to certain applications to some finite precision and must be 
distinguishable to at least that precision in those applications. Syntax: 

real-type = “real” [ ‘I (” radix “, ” factor I’) ** ] . 

radix = value-expression. 

factor = value-expression. 

real-literal = integer-literal [“. “digit{digit}] [[“J’] *‘Et’ digit{digit}] . 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 
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7.5.1.3 The character datatype 

Character is a family of datatypes whose value spaces are cha;racter-sets. Syntax: 

character-type = **character’* [‘* (‘* repertoire-list”) “1 . 

repertoire-list = repertoire-identifier {*1,0 repertoire-identifier}. 

repertoire-identifier = value-expression. 

character-literal = *’ ’ “character” ’ ‘* . 

character = 
The value of character shall be any character drawn 
from the character set identified by the repertoire 
identifier in the production character-type, or from the 
default character set if the repertoire identifier is 
absent. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.1.4 The boolean datatype 

Boolean is the mathematical datatype associated with two-valued logic. Syntax: 

boolean-type = *lboolean**. 

boolean-literal = ‘*true” I **false**. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.1.5 The enumerated datatype 

Enumerated is a family of datatypes, each of which comprises a finite number of distinguished 
values having an intrinsic ordering. Syntax: 

enumerated-type = “enumerated” ** 0’ enumerated-value-list **)‘*. 

enumerated-value-list = enumerated-literal { ** , ‘* enumerated-literal}. 

enumerated-literal = identifier. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.1.6 The octet datatype 

octet-type = **octet**. 

According to ISO/IEC 11404 - Language-Independent Datatypes, the octet datatype is the derived 
datatype: array (1..8) of (bit). 
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7.5.1.7 The procedure datatype 

Procedure generates a datatype, called a procedure datatype, each of whose values is an operation 
on values of other datatypes, designated the argument datatypes. That is, a procedure datatype 
comprises the set of all operations on values of a particular collection of datatypes. All values of a 
procedure datatype are conceptually atomic. Syntax: 

procedure-type = ‘*procedure’* ” (” [argument-list] *‘) ” 
[**returns** ‘* (” return-argument **) “1 
[Vaises” *1(1* termination-list **)11 ] . 

argument-list = argument-declaration {I* , ‘* argument-declaration}. 

argument-declaration = direction argument. 

direction = **in” I “out” 1 *5nout”. 

argument = argument-name *’ : ” [**restricted**] argument-type. 

argument-type = type-specifier. 

argument-name = identifier. 

return-argument = [argument-name ‘* : “1 argument-type. 

termination-list = termination-reference { ‘* , ‘* termination-reference} . 

termination-reference = [interface-synonym ‘* : : “1 identifier . 

A procedure-declaration associates one name with a procedure-type, as part of the interface-type 
association (see 6.9). 

All termination-references shall be unique within the immediately containing interface-type. 

7.5.1.7.1 Procedure parameters 

An argument-type may designate any datatype. The argument-names of arguments in the argument- 
list shall be distinct from each other and from the argument-name of the return-argument, if any. 
The termination-references in the termination-list, if any, shall be distinct. 

7.5.1.7.2 Procedure values 

The values of a procedure-type are procedure closures, as defined in clause 6.6. An argument in the 
argument-list is said to be an input argument if its argument-declaration contains the direction “in” 
or “inout” . The input space is the cross-product of the value spaces of the datatypes designated 
by the argument-types of all the input arguments. An argument is said to be a result argument 
if it is the return-argument or it appears in the argument-listand its argument-declaration contains 
the direction “out” or “inout”. The normal result space is the cross-product of the value spaces of 
the datatypes designated by the argument-types of all the result arguments, if any, and otherwise 
the value space of the void datatype. When there is no termination-list, the result space of the 
procedure datatype is the normal result space, and every value p of the procedure datatype is a 
function of the mathematical form: 
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P : 11*12*. . .*I, -+,*Rl*R2*. . .*R, 

where Ik is the vahre space of the argument datatype of the &h input argument, Rk is the value 
space of the argument datatype of the kth result argument, and I&, is the value space of the 
return-argument. 

When a termination-list is present, each termination-reference is associated, by some termination- 
declaration, with an alternative result space which is the cross-product of the value spaces of the 
datatypes designated by the argument-types of the arguments in the temtination-argument-list. Let 
Aj be the alternative result space of the jth termination. Then: 

Aj=E$*Ejz*. . . *titi 

where Ek is the value space of the argument datatype of the kth argument in the termination- 
argument-list of the jth termination. The normal result space then becomes the alternative result 
space associated with normal termination (A’), modelled as having termination-identifier “*nor- 
mal”. Consider the termination-references, and “*normal”, to represent values of an unspecified 
state datatype ST. Then the result space of the procedure datatype is: 

ST*(AOIA~ I A2 I...lsN>, 

where A0 is the normal result space and A k l 1s the alternative result space of the kth termination; 
and every value of the procedure datatype is a faction of the form: 

- P . . 11*12*. . . *I, +S$*(AO IAl I A2 I. . . IAN). 

Any of the input space, the normal result space and the alternative result space corresponding to 
a given termination-identifier may be empty. An empty space can be modelled mathematically by 
substituting for the empty space the value space of the datatype Void. 

The value space of a procedure datatype conceptually comprises all operations which conform to 
the above model, i.e. those which operate on a collection of values whose datatypes correspond to 
the input argument datatypes and yield a collection of values whose datatypes correspond to the 
argument datatypes of the normal result space or the appropriate alternative result space. The term 
“corresponding” in this regard means that to each argument datatype in the respective product 
space the “collection of values” shall associate exactly one value of that datatype. When the input 
space is empty, the value space of the procedure datatype comprises all niladic operations yielding 
values in the result space. When the result space is empty, the mathematical value space contains 
only one value, but the value space of the computational procedure datatype may contain many 
distinct values which differ in their effects on the “real world”, i.e. physical operations outside of 
the information space. Value syntax: 

procedure-declaration = 
llprocedurell procedure-identifier ** (‘* [argument-list] “)‘* 

[*keturns’* ‘* (‘*return-argument **) “1 
[**raises** ** (**termination-list**) **I . 

procedure-identifier = identifier. 

procedure-reference =‘procedure-identifier. 
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A procedure-declaration declares the procedure-identifier to refer to a (specific) value of the procedure 
datatype whose type-specifier is identical to the procedure-declaration after deletion of the procedure- 
identifier. 

7.5.1.7.3 Procedure subtypes 

For two procedure datatypes P and Q: 

l P is said to be formally compatible with Q if their argument-lists are of the same length, 
the direction of each argument in the argument-list of P is the same as the corresponding 
argument in the argument-list of Q, both have a return-argument or neither does, and the 
termination-lists of P and Q, if present, contain the safne termination-references. 

l If P is formally compatible with Q, and for every result argument of Q, the argument datatype 
of the corresponding argument of P is a (not necessarily proper) subtype of the argument 
datatype of the argument of Q, then P is said to be a result-subtype of Q. If the return 
argument datatype and all of the argument datatypes in the argument-list of P and Q are 
identical (none are proper subtypes), then each is a result-subtype of the other. 

l If Pis formally compatible with Q, and for every input argument of Q, the argument datatype 
of the corresponding argument of P is a (not necessarily proper) subtype of the argument 
datatype of the argument of Qj then Q is said to be an input-subtype of P. If all of the input 
argument datatypes in the argument-lists of P and Q are identical (none are proper subtypes), 
then each is an input-subtype of the other. 

7.5.1.8 The state datatype 

State is a family of datatypes, each of which comprises a finite number of &tingukhxl but un- 
ordered values with no characterizing operations, except Equal. Syntax: 

state-type = “state ” ‘* (‘* state-value-list **) ** . 

state-value-list = state-literal {** ,‘* state-literal}. 

state-literal = identifier. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.1.9 The ordinal datatype 

Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype 
Integer). Ordinal is the infkite enumerated datatype. Syntax: 

ordinal-type = ‘*ordinaltf . 

ordinal-literal = digit {digit}. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 
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7.5.1.10 The time datatype 

Time is a family of datatypes whose values are points in time to various common resolutions: year, 
month, day, hour, minute, second, and fractions thereof. Syntax: 

time-type = "time" “(” time-unit [*‘,‘* radix '0" factor]")". 

time-unit = "year" 1 "month" 1 "day" 1 "hour" 1 "minute" I "second" I 
parametric-value. 

time-literal = digit{digit} [“. “digit{digit}] . 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.I.Il The bit datatype 

Bit is the datatype representing the finite field of two symbols designated “O”, the additive identity, 
and “l”, the multiplicative identity. Syntax: 

bit-type = "bit*'. 

bit-literal = "0" I "1". . 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.1.12 The rational datatype 

Rational is the mathematical datatype comprising the “rational numbers”. Syntax: 

rational-type = "rational". 

rational-literal = [*t-"] digit{digit} ["/" digit{digit}] . 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.1.13 The scaled datatype 

Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each 
individual datatype having a fked denominator, but the scaled datatypes possess the concept of 
approximate value. Syntax: 

scaled-type = “scaled” *’ (” radix *’ , ” factor “) U. 

scaled-literal = ["-"I digit{digit} [fraction]. 

fraction = ” .” digit{digit}. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 
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7.5.1.14 The complex datatype 

Complex is a family of datatypes, each of which is a computational approximation to the mathemat- 
ical datatype comprising the “complex numbers”. Specifically, each complex datatype designates a 
collection of mathematical complex values which are known to certain applications to some finite 
precision and must be distinguishable to at least that precision in those applications. Syntax: 

complex-type = *komplex** [** (** radix ** ,** factor **) **I . 

complex-literal = *‘(*’ real-part ** , ** imaginary-part **) ** . 

real-part = real-literal. 

imaginary-part = real-literal. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.1.15 The void datatype 

Void is the datatype representing an object whose presence is syntactically or semantically required, 
but carries no information in a given instance. Syntax: 

void-type = **void**. 

void-literal = **niY*. 

. The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.2 Generated datatypes 

generated-datatype = record-type 
I choice-type 
I array-type 
I pointer-type. 

7.5.2.1 The record datatype 

Record generates a datatype, called a record datatype, whose values are heterogeneous aggregations 
of values of component datatypes, each aggregation having one value for each component datatype, 
keyed by a fixed “field-identifier”. Syntax: 

record-type = **record** “of ** *’ (**field-list**) ‘* . 

field-list = field (,,,*’ field}. 

field = field-identifier It : It field-type. 

field-identifier = identifier. 

field-type = type-specifier. 

All field-names shall be unique within their immediately containing record-type or choice-type. 

The interpretation of the syntax is formally defined in ISO/IEC ‘11404. 
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7.5.2.2 The choice datatype 

Choice generates a datatype called a choice datatype, each of whose values is a single value from 
any of a set of alternative datatypes. The alternative datatypes of a choice datatype are logically 
distinguished by their correspondence to values of another datatype, called the tag datatype. 

choice-type = **choice*’ “(fttag-typeff) ** “of *’ ft(ff~lternative-listtt) ‘*. 

tag-type = type-specifier. 

alternative-list = alternative { *‘, ** alternative} [default-alternative] . 

alternative = tag-value-list ** : *’ alternative-type. 

default-alternative = “default ‘* ” : ** alternative-type. 

alternative-type = type-specifier. 

tag-value-list = select-list. 

select-list = select-item {**, *' select-item}. 

select-item = value-expression I select-range. 

select-range = lowerbound ff..ft upperbound. 

lowerbound = value-expression ] *'***. 

upperbound = value-expression I *‘**‘. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 

7.5.2.3 The array datatype 

Array generates a datatype, called an array datatype, whose values are associated between the 
product space of one or more finite datatypes, designated the index datatypes, and the value space 
of the element datatype, such that every value in the product space of the index datatypes associates 
to exactly one value of the element datatype. Syntax: 

array-type = "array ** ff(ftindex-type-listff)ft **of" ff(ftelement-typeff)ft. 

index-type-list = index-type {**," index-type}. 

index-type = type-specifier I index-lowerbound ff..ft index-upperbound. 

index-lowerbound = value-expression. 

index-upperbound = value-expression. 

element-type = type-specifier. 

The interpretation of the syntax is formally defined in ISO/IEC 11404. 
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7.5.2.4 The pointer datatype 

Pointer generates a datatype, called a pointer datatype, each of whose values constitutes a means of 
reference to values of another datatype, designated the element datatype. The values of a pointer 
datatype are atomic. Syntax: 

pointer-type = **pointerft “to” *’ (**element-type**) ** . 

Pointer is a type-generator which generates a primitive datatype each of whose values constitutes 
a means of reference to values of another datatype, designated the element-type. The values of a 
pointer datatype are boxes, as defined in clause 6.7. 

A pointer with the “restricted” attribute is a pointer that never has the null label and is neither 
statically nor dynamically aliased with any other pointer. Restricted pointers can be supported 
efficiently; however, due to the optimized protocol it is impossible to determine whether the label 
of an inout restricted pointer was changed as a result of executing the server procedure. 

A pointer value is said to be statically aliased at a procedure invocation if there is more that one 
Box which contains it among the generalized associates of the invocation association at initiation. 

NOTE - Static aliasing is a property of the closure, while dynamic aliasing is a property of the 
invocation. The above definitions make the assumption that a formal parameter becomes a Box 
in the invocation association containing the actual parameter value. Since this is not actually 
required, the notion Box must be extended to include the instantiation of the formal/actual 
parameter bindings for the purposes of the above definition only. 

7.5.3 Subtypes 

subtype-spec = **select” **(**select-element {**, ** select-element}**) ** . 

select-element = value-expression I range. 

range = lower-bound **. . ** upper-bound I **. . *’ upper-bound I lower-bound **. . **. 

lower-bound = value-expression. 

upper-bound = value-expression. 

A subtype-spec consists of a list of elements, where each element is either a value-expression of 
the specified datatype or a range of values of the specified type. The value-expressions that occur 
in a subtype-spec must refer to either a literal (immediate value), an enumeration literal, or to a 
formal-value-parm. 

7.6 Parameterized Types 

parameterized-type-decl = 
**type** type-identifier ** (**f ormal-value-parms**) *’ ft=O type-specifier . 

formal-value-parms = f ormal-value-parm { ** , ** f ormal-value-parm} . 

formal-value-parm = identifier Vt value-param-type-spec. 

value-parm-type-spec = type-specifier. 
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A parameterized-type-decl introduces a partial specification of a datatype. It associates a type- 
identifier and a set of formal parameters, called formal-value-pawns, with a type-specifier. Each 
formal-value-parm is itself an identifier that can be referenced from within the type-specifier. Ref- 
erences to these formal-value-parms can only be used in place of value-expressions within the 
type-specifier (e.g., in place of an array bound). 

Each formal-value-param has a value-param-type-spec associated with it, specifying the datatype 
of the formal-value-param. This type shall be a datatype that a value-expression may have in an 
interface type definition. 

The type-identifier introduced by a parameterired-type-decl can be used anywhere a type-specifier 
can be used in the interface, as long as actual values are provided for the fomzal-value-parms of the 
parameterized-type-spec. Hence, whenever this type-identifier is referenced, it shall be referenced as 
a parameterized-type-reference. 

A parameterized-type-decl shall not directly reference itself (via a parametetized-type-reference) nor 
shall it reference itself indirectly (via a parameterized-type-reference to a different parameterized 
type the directly or indirectly references this parameterized type). 

All formal-value-pawns shall be unique within the immediately containing parameterized-type-decl. 

7.7 Identifiers 

object-identifier = **{**ObjectIdC om onent p {0bject1dComponent}*')". 

ObjectIdComponent = identifier I digit I identifier **(**digit {digit}**)**. 

The syntax for object-identifier is that of an ASN,l ObjectIdentifierValue, as defined in IS0 8824. . 

type-reference = [interface-synonym **::** 1 identifier I 
parameterized-type-reference. 

parameterized-type-reference = [interface-synonym ff::ft] 
identifier **(**actual-value-parm 
{ *',*' actual-value-parm}ff)ft. 

actual-value-parm = value-reference. 

Wherever a parameteriaed-type-reference is used in the interface-type, it shall reference the type- 
specifier of a parameterized-type-decl. An actual-value-parm must be supplied for each formal-value- 
pawn of the parameterized-type-decl. The datatype of an actual-value-parm must be the same as 
the datatype of the corresponding fomtal-value-parm. The semantics of the resulting type-specifier 
is that obtained by replacing each formal-value-parm reference within the type-specifier by the 
corresponding actual-value-parm. 

value-reference = [interface-synonym **::**] identifier {V* identifier}. 

identifier = letter {pseudo-letter}. 
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letter = **A** 1 **B** 
“P”I”Q” 
“a’t I “b” 

@ ISO/IEC 

“~“I”~“I”E()I”~“~“~“I”~“~‘tI1)Io J”~“K”I”~‘t~“M”~“N”~“()“l 
“R” I”s”( “T”I”U”I’t~“l”~“I’t~“1((yt’~ ,,,,‘I 
((C”lffdftl ttettloftt Ittgtt lfthtf IttittJ(tj ()llfkff ~ff1ff lttmtt j”ntt lttottl 

**pt*~**q**~**r I s I t I u I 0 0 ‘f 0 ‘f tt 0 “v”I”w”~‘tx”I”y”I”z” . 

pseudo-letter = letter I digit I underline. 

digit = ‘t~“~‘t~“1o2((1”3”~“4”~“5”~“~“~“~”~”~”~’t~”~ 

underline = **-** . 

7.7.1 Value references to fields 

A value-reference matches a field if: 

(a) the field is immediately contained within a record-type R; and 

(b) the value-reference is contained within R; and 

(c) the fist identifier component of the value-reference is the same as the field-name of the 
field; and 

(d) the value-reference is not contained within a procedure-type that is contained within R,; 
and 

(e) there is no record-type R2 such that R2 is contained within R, and a), b), c) and d) are 
true when substituting R2 for R. 

If a value-reference matches a field, then the first identifier of the value-reference refers to that 
field. If the ith identifier of a value-reference refers to a fzeld and the value-reference consists of 
more than i identifiers, then the field that the ith identifier refers to shall be a record-type, and 
the (i+l)th identifier of the value-reference shall be the sitrne as a field-name of this record-type. 
The (i+l)th identifier of the value-reference refers to the field associated with the field-name. If’ 
the ith identifier of a value-reference refers to a field and the value-reference consists of exactly i 
identifiers, then the value-reference refers to this field. 

7.7.2 Value references to parameters, return-args, or to fields contained within them 

A value-reference matches a parameter (return-arg) if: 

(a) the value-reference does not match a field; and 

(b) the parameter (return-arg) is immediately contained within a procedure-decl or procedure- 
type P; and 

(c) the value-reference is contained within P; and 

(d) the fist identifier component of the value-reference is the safne as the parameter-name 
(identifier) of the parameter (return-arg); and 

(e) the value-Teference is not contained within a procedure-type (distinct from P) that is 
contained within P. 
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If’ a value-reference matches a parameter (return-arg) and the value-reference consists of a single 
identifier, then the value-reference refers to that parameter (return-arg). Otherwise, the parameter 
(return-arg) must be a record-type and value-reference shall refer to a field, following the rules given 
in clause 7.7.1. 

7.7.3 Value references to formal-value-parms 

A value-reference matches a formal-value-parm if: 

(a) the value-reference does not match a field, a parameter, nor a return-arg; and 

(b) the fomtal-value-parm is immediately contained within a parameterized-type-deck and 

(c) the value-reference is contained within the type-specifier of this parameterized-type-decl 
and is the safne as the formal-value-parm. 

If a value-reference matches a formal-value-pawn then it refers to that formal-value-parm. 

7.7.4 Value references to value-expressions 

A value-reference matches a value-decl if the value-identifier of the value-decl is the same as the 
identifier component of the value-reference. 

If the interface-synonym component of the value-reference is absent, and the value-reference matches 
a value-decl in the immediately containing interface-type, and the value-reference does not match 
a field, a parameter, a return-arg, nor a formal-value-arg, then the value-Teference refers to the 
immediately contained value-expression of that value-deck Otherwise, if the interface-synonym 
component of the value-reference is absent, and the value-reference matches exactly one imported 
value-decl, and the value-reference does not match a field, a parameter, a return-arg, nor a fonnal- 
value-parm, then the value-reference refers to the immediately contained value-expression of that 
value-decl. 

NOTE - If the v&e-identifier of an imported value-decl is the same as a value-identifier 
defined in the immediately containing interface-type or is the same as a value-identifier of a 
v&e-decl imported from a different interface type definition, then it may only be referenced 
using its associated interface-synonym. 

If the interface-synonym component of the value-reference is present and value-reference matches a 
value-decl in the interface type definition denoted by the interface-synonym, then the value-reference 
refers to the immediately contained value-expression of this value-decZ. 

7.7.5 Value references to enumeration-identifiers 

When the type-identifier component of the value-reference is present, a value-reference matches an 
enumeration-identifier of a,n enumerated-type if the type-identifier of the value-reference is the same 
as an enumeration-identifier of the enumerated-type. If the type-identifier is not present, a value- 
reference matches an enumeration-identifier of an enumerated-type if the identifier component of 
the value-reference is the same as an enumeration-identifier of the enumerated-type. 
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If the interface-synonym component of the value-reference is absent, and the value-reference matches 
exactly one enumeration-identifier in the immediately containing interface-type, and the value- 
reference does not match a field, a parameter, a return-arg, a formal-value-pann, nor a value- 
expression, then the value-reference refers to the matching enumeration-identifier. Otherwise, if 
the interface-synonym component of the value-reference is absent, and the value-reference matches 
exactly one imported enumeration-identifier, and the value-reference does not match a field, a 
parameter, a return-arg, a formal-value-pawn, nor a value-expression, then the value-reference refers 
to the imported matching enumeration-identifier. 

If’ the interface-synonym component of the value-reference is present, and the value-reference 
matches exactly one enumeration-identifiifier in the interface type definition denoted by the interface- 
synonym, and the value-reference does not match a value-expression in the definition denoted by 
the interface-synonym, then the value-reference refers to the matching enumeration-identifier. 

7.7.6 Termination references 

The rules governing the resolution of temtination-references are identical to the rules governing the 
resolution of type-references. 
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Procedure Parameters 

The syntax for the language-independent calling mechanism allows for a procedure to be a parame- 
ter of another procedure. There are three different cases that result from the procedure parameters 
feature. 

A.1 LIPC Reference / Local Access 

In this case, procedure A in language X calls procedure B in language Y and passes to procedure 
B a pointer to procedure C which is also in language Y. There shall exist a way for language X to 
reference procedure C in order to generate a pointer to pass to procedure B. This reference to C 
shall be referred to as the lipc-reference. After B has begun execution, it will eventually call C, but 
this is simply a local call therefore no lipc-access is necessary. 

NOTE - Procedure B must understand how to call procedure C “locally” based on the lipc- 
reference information it was passed. 

Language X Language Y 

A: begin 
B(C); 

end 

B: begin 
C; 

end 

C: begin 
end 

A.2 LIPC Reference / LIPC Access 

In this case, procedure A in language X calls procedure B in language Y and passes to procedure 
B a pointer to procedure C which which is in language X. Eventually, B will call C and in this 
case the call to C must use lipc-access since the call crosses the boundary. In addition to this for 
B to call C, it must have the lipc-reference of C. This information is obtained from that which was 
passed from procedure A. 
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Language X 

A: begin 
B(C); 

end 

C: begin 
end 

@ ISO/IEC 

Language Y 

B: begin 
C; 

end 

A.3 Local Reference / Local Access 

In this case, procedure A in language X calls procedure B in language Y and passes to procedure B 
a pointer to routine D in language X. Eventually, B will call procedure C in language X and pass 
to procedure C the pointer to routine D. C will then call D, but in this case both the reference and 
access of D by C are local. Therefore it is not necessary for the pointer information describing D 
to be a lipc-reference, but it must be in a form that allows the transformation to B’s environment 
and back to its original state. 

Language X Language Y 

A: begin 
B(D); 

end 

C: begin 
D; 

end 

D: begin 
end 

B: begin 
C(D); 

end 
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Annex B 
(informative) 

Interface Definition Notation Syntax 

This annex contains the complete IDN syntax, for reference only. 

Productions ofthe IDN Normative text page 

actual-value-parm = value-reference. 

alternative = tag-value-list ":*' alternative-type. 

alternative-list = alternative { (0" alternative} [default-alternative]. 

alternative-type = type-specifier. 

argument = argument-name ":" ["restricted"] argument-type. 

argument-declaration = direction argument. 

argument-list = argument-declaration {"," argument-declaration}. 

argument-name = identifier. 

argument-type = type-specifier. 

array-type = "array" "("index-type-list")" "of" "("element-type")" . 

bit-literal = "0" 1 "1". 

bit-type = "bit". 

boolean-literal = "true" 1 "false". 

boolean-type = "boolean". 

character = 
The value of character shall be any character drawn 
from the character set identified by the repertoire 
identifier in the production character-type, or from the 
default character set if the repertoire identifier is absent 

character-literal = '*"'character'*"'. 
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character-type = ffcharacterff [ff(ff repertoire-listff)ff]. 

choice-type = ffchoiceff "(fftag-typeff)ff "off' ff(ffalternative-listff)ff. 

complex-literal = ff(ff real-part "," imaginary-part ff)ff. 

complex-type = ffcomplexff ["(" radix "," factor ff)ff]. 

constant-type-spec = integer-type 1 real-type 1 character-type I 
boolean-type I enumerated-type I state-type I 
ordinal-type I time-type 1 bit-type I 
rational-type 1 scaled-type I complex-type. 

declaration = value-decl I type-decl I procedure-decl 1 termination-decl 

default-alternative = "default" V' alternative-type. 

defined-datatype = type-reference [subtype-spec]. 

"7"~"8"~"9" . digit = "()"~"1'(1('2"~"3"~"4'(1"5"~()6" 

direction = ffinff I "out" I "inout' 

element-type = type-specifier. 

enumerated-literal = identifier. 

enumerated-type = ffenumeratedff "(" enumerated-value-list ")". 

enumerated-value-list = enumerated-literal {ff,ff enumerated-literal}. 

factor = value-expression. 

field = field-identifier Vr field-type. 

field-identifier = identifier. 

field-list = field {ff,ff field}. 

field-type = type-specifier. 

formal-value-parm = identifier ":" value-param-type-spec. 

formal-value-parms = formal-value-pax-m {ff,ff formal-value-parm}. 

fraction = V' digit{digit}. 

generated-datatype = record-type I choice-type 1 array-type I pointer-type. 
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identifier = letter {pseudo-letter}. 

imaginary-part = real-literal. 

import = ffimportsff C"("import-symbol-1ist")"l "fromff 
[interface-synonym Vf] object-identifier. 

import-symbol = identifier. 

index-lowerbound = value-expression. 39 

index-type = type-specifier 1 index-lowerbound 'Lff index-upperbound. 

index-type-list = index-type {ff,ff index-type}. 

index-upperbound = value-expression. 

integer-literal = [ff-ff]digit{digit}. 

integer-type = "integer". 

interface-body = {import} {declaration ff;ff}. 

interface-identifier = object-identifier. 

import-symbol-list = import-symbol {ff,ff import-symbol}. 

interface-synonym = identifier. 

interface-type = "interface" [interface-synonym Vf] 
[interface-identifier] "begin" interface-body ffendff. 

letter = “B()I1’B”~“C”~“~“I((E”~“~“(“G()~”~”~”~”~” J”~“K”~“L”~“M”~“N”~“0”~ 

"P" 
ffaff 
'f 0 P 

‘f Q ‘f 1 “R” 1 ‘f S 0 1 “T” 1 “U” 

ffbff 1 o c tt 1 ffdff 1 tte tt 1 ttf O 

’ ’ qff 1 ffrff 1 ff sff 1 tftff 1 ffuff 

ttgtt lffhff 1 ttitt 1 ttj tt 1 ffkff ltflft lttmtt 1 ttntt 1 ttott 1 
"v" I"w" 1 "x" 1 "y" 1 "z" . 

lowerbound = value-expression 

41 

38 

30 

30 

39 

39 

39 

32 

32 

29 

29 

30 

29 

29 

42 

0 * tt . 39 

lower-bound = value-expression. 

ObjectIdComponent = identifier I digit I identifier ff(ffdigit {digit}ff)ff. 

object-identifier = "(ffObjectIdComponent {ObjectIdComponent}ff}ff. 

octet-type = ffoctetff. 
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41 

41 

33 
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ordinal-literal = digit {digit}. 

ordinal-type = ffordinalff. 

parameterized-type-decl = 
"typeff type-identifier ff(ffformal-value-parmsff)ff "=" type-specifier. 

parameterized-type-reference = [interface-synonym O::ff] 
identifier "("actual-value-parm 

pointer-type = ffpointerff fftoff "("element-type' 

primitive-datatype = integer-type I real-type ] 

{ 'f/t actual-value-parm}")". 

> 
’ ’ 

. 

character-type I 
boolean-type I enumerated-type 1 octet-type I 
procedure-type I state-type I ordinal-type I time-type I 
bit-type I rational-type I scaled-type I complex-type 1 
void-type. 

procedure-declaration = 
ffprocedureff procedure-identifier "(" [argument-list] ff)ff 

[ffreturnsff ff(ffreturn-argumentff)ff] 
["raises " ff(fftermination-listff)ff] . 

procedure-identifier = identifier. 

procedure-reference = procedure-identifier. 

procedure-type = "procedure" "(" [argument-list] ff)ff 
[ffreturnsff ff(ff return-argument ff)ff] 
[ffraisesff " (" 

pseudo-letter = letter I digit 

radix = value-expression. 

termination-list ff)ff 1. 

underline. 

range = lower-bound ff..0 upper-bound I O..ff upper-bound I lower-bound ff..ff. 

rational-literal = [ff-ff] digit{digit} [ff/ff digit{digit}] . 

rational-type = ffrationalff. 

real-literal = integer-literal ["."digit{digit}] [[ff-ff] Wf digit{digit}] . 

real-part = real-literal. 

real-type = ffrealff [ "(" radix ff,ff factor ")" 1. 

record,-type = "recordff "off' ff(fffield-listff)ff. 
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repertoire-identifier = value-expression. 

repertoire-list = repertoire-identifier {ff,ff repertoire-identifier}. 

return-argument = [argument-name ":"I argument-type. 

scaled-literal = [ff-ff] digit{digit} [fraction]. 

scaled-type = ffscaledff "(" radix "," factor ">". 

select-element = value-expression I range. 

select-item = value-expression I select-range. 

select-list = select-item {ff,ff select-item}. 

select-range = lowerbound ".." upperbound. 

state-literal = identifier. 

state-type = %tateff "(" state-value-list ")". 

state-value-list = state-literal (ff,ff state-literal}. 

subtype-spec = ffselectff ff(ffselect-element {"/ select-element}ff)ff. 

tag-type = type-specifier. 

tag-value-list = select-list. 

termination-list = termination-reference {ff,ff termination-reference} 

termination-reference = [interface-synonym "::"] identifier . 

time-literal = digit{digit} [Vfdigit{digit}]. 

time-type = "time" "(" time-unit ["," radix "," factor]ff)ff . 

time-unit = ffyearff 1 ffmonthff ] "day" I "hour" I "minuteff I "second" I 
parametric-value. 

type-decl = "type0 type-identifier O=ff type-specifier ) 
parameterized-type-decl. 

type-identifier = identifier. 

type-reference = [interface-synonym ff::O ] identifier I 
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parameterized-type-reference. 

type-specifier = primitive-datatype 1 generated-datatype 1 defined-datatype. 32 

underline = "2'. 42 

upperbound = value-expression 1 "*O. 

upper-bound = value-expression. 

value-decl = Value" value-identifier Vr 
constant-type-spec ((=)) value-expression. 

value-expression = value-reference 1 procedure-reference 1 
integer-literal I real-literal 1 character-literal I 
boolean-literal I enumerated-literal I state-literal I 
ordinal-literal I time-literal I bit-literal I 
rational-literal I scaled-literal I complex-literal I 
void-literal. 

value-identifier = identifier. 31 

value -parm-type -spec = type-specifier. 

value-reference = [interface-synonym "::"] identifier {V' identifier}. 41 

void-literal = WY. 38 

void-type = ttvoid*t. 38 
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31 
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Annex C 
(informative) 

How to do an LIPC binding for a language 

The LIPC model is based upon the familiar “client-server” concept: a client program calling a 
server procedure. There is a “virtual contract” between the two partners, in which the procedure 
(server) side agrees to provide the service (of executing the procedure), and the program (client) 
side agrees to provide the necessary calling information (i.e. the actual parameters) in accordance 
with the parameter passing methods required. 

The binding of a programmin g language to LIPC must therefore consists of two parts, one specifying 
the binding when a program in the language is acting in client mode, calling an LIPC procedure, 
the other specifying the binding when a procedure written in the language is the subject of an 
LIPC call. These bindings will be expressed as requirements, respectively, on the client’s LIPC 
service and the client side of the virtual contract, and on the server’s LIPC service and the server 
side of the virtual contract. They must be separate and self-contained, since a particular language 
processor may have available only one or other LIPC service or both; i.e. it may be able to act as a 
client but not as a server, as a server but not as a client, or as either. However, the bindings must be 
consistent; an LIPC call to a procedure written in the same language must be indistinguishable from 
a direct call, subject only to processor-dependent variations permitted by the language standard, 
and any implementation constraints imposed by the particular LIPC service. 

One thing to bear in mind when specifying the bindings is that languages may be conceived, 
designed and used with a much more integrated view of a procedure and its call than is feasible (or 
perhaps even desirable) in an LIPC‘environment. This can be reflected in the language standard, 
which will need to be examined in case it contains any inbuilt assumptions, that are not stated 
explicitly, about what it means to call a procedure. The decoupling of the client and server sides 
of a procedure call may need to be more complete than in the language standard, which may take 
a more close-coupled view. Hence aspects may be uncovered which will need to be made more 
explicit in the binding standard than has hitherto been customary in the language community. 

The decoupling therefore needs to be accompanied by a conscious search for such implicit assump- 
tions. Care will need to be taken, when making these explicit in the binding standard, that this 
process remains faithful to the view of procedure calling familiar to language users. 

C.l Linking the client and the server 

Languages vary greatly in the way that the language processor is expected to recognise and locate 
any procedures called by a program. Strictly block-structured languages may require “declaration 
before use”, or at least that the procedure be declared in the same block, or some surrounding 
block, from where the call originates. Languages with a more disjoint structure, designed for 
separate compilation of procedures, may assume the existence of a “link editor” - left undefined 
or implementation-dependent in the language standard - to make the connections. Some require 
explicit invocation of required libraries or modules, either within the program text, or through use 
of processor directives or options outside the program itself. Some make the procedure heading 
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separable from the procedure body, so the specification of the formal parameters etc. can appear 
explicitly in the text of the calling (client) program. 

In the block-structured case, external procedures can be provided by assuming the existence of a 
“super-block”, surrounding the outermost block of the program itself, in which all needed proce- 
dures are “declared”. In the disjoint case, it is up to the (implementation-dependent) link editor 
to find the missing blocks, e.g. by pre-processor commands or compiler directives. 

Such matters are often regarded by the responsible committee as outside the scope of the language 
standard. This is one situation where the language standard needs to be examined in case it 
contains any inbuilt assumptions, but subject to that, they can be left out of the language binding 
standard as well - though it should be stated explicitly that they are left out, and why. Only 
when the language standard explicitly addresses access to modules or procedure libraries may it be 
necessary to say something in the binding standard about accessing LIPC procedures. 

Throughout, the essential principle to maintain is that the call of an LIPC procedure from within 
a client program must be indistinguishable in the program text from the call of a native language 
(external) procedure. The user of the client program will need to know how to access the required 
procedure, but that is the case for any external procedure. Nothing extra should be needed for an 
LIPC procedure. 

If the language standard address exception handling, then regardless of how the language deals with 
external procedures, the binding standard should cover any exception conditions particular to LIPC 
calls (e.g. unable to locate external procedure, no binding available for . . . . . datatype parameter). 
Inclusion of such exception reporting may be worth considering even when the language standard 
itself does not address exceptions. 

C.2 Client mode binding 

For a language processor acting in client mode, the client LIPC service fist needs to marshal 
the actual parameters (including the returned result, considered as an extra “out” parameter) 
into LIPC form. Marshalling includes, for each actual parameter, both identifying the parameter 
passing method, and mapping the local datatype into the corresponding LID datatype. The binding 
standard does not need to provide the datatype mappings, which can be established by reference 
to the language’s LID binding. However, it does need to cite explicitly any constraints that the 
language imposes on the allowed datatypes for parameters (including the returned result). 

NOTE - It may be felt desirable to include ‘Wowed extensions” of the datatypes permitted for 
parameters, to widen the range of LIPC procedures that can be called, e.g. to allow aggregates 
to be passed as parameters. However, in that case it would be logical to permit the extensions 
for server mode too, in which case it would seem better to include the parameter extensions in 
an separate addendum - optional or mandatory - to the language standard, rather than confine 
it to the LIPC context. 

As well as datatypes of actual parameters, the binding standard should cite the parameter passing 
mechanisms supported by the language standard and relate them to the parameter passing modes 
of the LIPC standard, together with the rules for marshalling parameters of each kind. In every 
case it must be made explicit whether the mechanism is allowed, recommended, or required. For 
the purpose of LIPC binding it may be thought desirable to be stricter than in the purely local 
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case, to promote efficiency: for example, a language standard may in the general case allow either 
“call by reference” or “copy in copy out” for an “out” parameter, but for an LIPC call the binding 
could recommend, or even require, use of “copy in copy out”, assuming that the server procedure 
itself can accept that mechanism in the virtual contract. 

The client mode binding will of course also need to allow for the reverse unmarshalling of returned 
results (out parameters) as a result of the call. 

C.3 Server mode binding 

Superficially it might appear that the server mode binding would be symmetrical to the client mode 
binding, a kind of mirror image. However, this is not quite the case; the apparent symmetry is 
deceptive. It is the server side which primarily determines the virtual contract; the definition of 
the server procedure specifies the number and datatypes of the parameters, including the returned 
value if any. The server side also determines the allowable methods of parameter passing: if the 
client cannot pass a parameter by the required method, then the call cannot take place. 

NOTE 1 - LIPC does not and cannot ensure that any valid 
called by a valid procedure invocation in any other language. 

procedure in any language can be 

For a language processor acting in server mode, the server LIPC service needs to unmarshal from 
the incoming LIPC form into the form which would be required for the call if it were from the 
server’s own language. This will require a datatype mapping, provided by the LID standard, and 
possibly also a datatype conversion. 

The standard for the server language may already allow some automatic datatype conversions. For 
example, if a formal parameter called by value (on initiation) is of datatype real; then the standard 
may permit also an actual parameter of datatype integer, the integer value being converted into 
(say) floating point form. Therefore, if the server’s LIPC server receives such an actual parameter, 
it can map it from LID Integer to server integer and pass in the value. The binding standard need 
say nothing about the consequent datatype conversion, since that will be handled inside the server 
processor just as it is were it part of an ordinary, non-LIPC call. 

However, suppose that the incoming actual parameter is of LID datatype Scaled - e.g. because 
the client language does not support floating point or other approximate real datatype, or provides 
fixed-point as well as floating point ? The binding standard does now need to specify whether the 
conversion of LID Scaled to server real is permitted, and if so how it is to take place. 

NOTE 2 - Hence datatype conversions in an LIPC call are in general of two kinds - within 
the LIPC service during unmarshalling, which are specified in the binding standard, and within 
the server processor during procedure initialising, which are not. Some actual parameters may 
indeed go through conversions of both kinds. The calling client sees no difference. 

The binding standard for server mode therefore needs to specify not just the LID mappings for 
parameter datatypes, but also, explicitly, allowed conversions from LID datatypes without direct 
equivalents in the server language. 
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NOTE 3 - The LID binding standard may specify, or aUow, or suggest such conversions, but 
the LIPC binding must revisit the subject in the light of the particular context of parameter 
passing, which may (and in many languages does) impose additional restrictions on allowed 
datatypes. 

Mention was made, in respect of client mode binding, of the allowed parameter passing modes 
within the language. This holds also on the server side, of course. The binding standard should 
ensure that there is no inconsistency between the two. 

The server mode binding will of course also need to allow for the reverse marshalling of returned 
results (out parameters) as a result of the call. 

There are two further matters to be considered for server mode: procedure parameters, and “global 
variables”. 

CA Procedure parameters 

If the server procedure has a formal parameter of a procedure datatype, this means that the 
server procedure, during execution, will call the actual procedure supplied as the actual parameter. 
The server procedure may, depending on the language, specify (directly or indirectly) the number 
and datatypes of parameters for the supplied actual procedure, or be able to treat the (formal) 
procedure parameter generically. Since LID procedure datatypes carry information about the 
number and datatypes of the procedure’s parameters, the two LIPC services, on the client and 
server sides, will be able to communicate the necessary information through the LID mappings 
of the procedure parameter, to decide whether the actual procedure parameter supplied can be 
called by the server. If the server specifies the number and datatypes of parameters for the actual 
procedure, the unmarshalling can check that the incoming procedure parameter is acceptable. . 

In general, the call itself will be one of three kinds: 

1. It may be of a procedure local to the server side 

2. It may be of a procedure local to the client side 

3. It may be a procedure local to neither the client nor the server, but residing on another server. 

The binding standard will need to cover all three cases. 

In case 1, the server can simply call the procedure normally, and continue. 

In case 2, where the procedure referenced by the procedure parameter is local to the client side, 
the call amounts to a “reverse call” from the server side (acting in client mode for this procedure 
datatype parameter) to the client side (acting in server mode for the same procedure parameter). 
Thus procedure parameters cannot be supported unless the processors in both sides can act in both 
modes, and the conformity rules for the LIPC binding standard will need to reflect this. 

NOTE - Note that, since both sides conform in both modes, the two LIPC services can agree 
parameter passing modes for calls of actual parameters of procedure datatype, as well as for the 
original calI. 

Note that the passing mode ‘WI by value sent on request”, and references in the server pro- 
cedure body to pointer parameters, can aII be treated as if they were reverse calls of “mini 
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procedures”, but this does not need to be addressed by the LIPC binding standard. This is 
because supporting those features does not need full mutual procedure c&ng capacity, and can 

be left implementation-dependent - though possibly subject to constraints or conditions. 

In case 3, where the procedure referenced by the procedure parameter reside on a third system, the 
call entails the server side to act in client mode in respect of the third system. Hence, in this case 
too the server side (but not the client side of the original call) must be able to act in both modes, 
and the conformity rules for the LIPC binding standard will need to reflect this. 

C .5 Global variables 

Some languages permit, in the procedure body, reference to “global variables”, i.e. entities declared 
and specified not within the procedure body, but in some surrounding environment such as an 
enclosing block. In the LIPC environment, if these global variables are always provided on the 
server side, then they cause no problem. Problems arise only if the missing entities are assumed to 
be provided on the client side. 

The LIPC binding standard needs to address this question. A simple solution is to say that a 
server procedure referencing global variables on the client side does not conform to the LIPC 
binding standard. However, this would preclude close-coupled cases where both the client and 
the server languages can reference common storage areas and the LIPC environment can support 
them. Another solution is to deem all such global variables to be notional additional parameters, 
to be passed in addition to ordinary parameters in the LIPC. These notional parameters would be 
passed (in virtual contract terms) in the same way as others, but the service contract between the 
two LIPC services would handle them via common storage, subject only to the condition that the 
net effect is identical to what would occur were the global variables to be replaced, in the server 
procedure specification, by formal parameters. 

Circumstances will vary greatly, both between languages and between LIPC services and envi- 
ronments, and no general guidance can be given on how to address this question in the binding 
standard. However, if the language does allow undeclared global variables within procedure bodies, 
the LIPC binding standard must address it. 

NOTE - The detailed LIPC model in clause 6 of what it means to call a procedure may help 
in deciding how to handle the question of global variables in the binding standard. 
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Annex D 
(informative) 

@ ISO/IEC 

LIPC IDN - RPC IDL Alignment overview 

This annex compares the concepts implicit in the LIPC Interface Definition Notation (LIPC IDN) 
as defined in this International Standard, with the concepts implicit in the RPC Interface Definition 
Language (RPC IDL), as defined in Clause 4 of the RPC standard (ISO/IEC 11578). 

No comparison is made of the detailed syntactic forms of the two notations. 

In general, LIPC IDN provides a richer set of semantic distinctions than RPC IDL. Every RPC 
IDL type has an abstractly equivalent form in LIPC IDN. That is, the LIPC type describes the 
same set of values as the RPC type. However, RPC IDL can describe representation issues that 
are beyond the scope of LIPC, and RPC IDL can provide additional non-type information relevant 
to a particular RPC service specification. 

The top level declaration in both LIPC IDN and RPC IDL is the interface declaration. All other 
declarations occur as part of interface declarations. Where the omission of the interface identifier 
in the specification does not cause any ambiguities, the interface declaration may be omitted, and 
the ‘normal’ declaration may be used as top level declaration. 

D.l Interface Declarations 

The “interface” concept in LIPC and RPC are similar. 

D.l.l Attributes 

LIPC IDN allows an OS1 object-identifier to be supplied which uniquely identifies the interface. 
RPC IDL has a uuid(X) attribute that performs the same function, although the X is not an OS1 
object-identifier. 

RPC IDL has three attributes (version, endpoint, and local) which pertain to the use of RPC 
IDL in providing an RPC service. These have no LIPC analog. 

RPC IDL has a pointer-default attribute which allows certain pointer attributes to be omitted 
in the body of the interface. This is purely a notational convenience. 

D.1.2 Imports Clause 

Both LIPC IDN and RPC IDL permit names to be “imported” into the current interface declaration 
from another (preexisting) interface. This allows the names to be used in the body of the current 
interface. 

LIPC IDN can limit the names imported from a preexisting interface (by explicitly listing the 
desired names). RPC IDL cannot. 
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LIPC IDN permits imported names to be “qualified” with the name of the source interface. RPC 
IDL does not. 

D.2 Other Declarations 

Both LIPC IDN and RPC IDL allow interfaces to declare named types, named values, and named 
procedures (operations). In addition, LIPC IDN requires that termination conditions be named. 

D.2.1 Type Declarations 

Both LIPC IDN and RPC IDL can associate a name with any type definable in the respective 
notations. 

LIPC IDN makes a distinction between assigning a synonym to an existing type, and defining 
a name for a new type. RPC IDL does not make this distinction in general, but does allow the 
distinction for structure types and union types. (See the “tagged-declarator” concept in RPC IDL.) 

LIPC IDN allows type generators (parameterized types) to be defined (both as synonyms and new 
types). RPC IDL does not. 

See below for a discussion of the datatypes definable in LIPC IDN and RPC IDL. 

D.2.2 Value Declarations 

Both LIPC IDN and RPC IDL can associate a name with a value. 

LIPC IDN allows names to be given to any type of value, and provides literal notations for all types 
of values. 

RPC IDL allows names to be given to values of a limited set of types. The permitted types are 
integer, boolean, character, pointer-to-character (string), and pointer-to-void. 

RPC IDL permits computation of the values involved. LIPC IDN does not. 

D.2.3 Procedure Declarations 

Both LIPC IDN and RPC IDL can declare named procedures (operations). 

In both IDNs, procedures can have zero or more parameters and an optional return type. Each 
parameter has a “direction” and a type. In RPC IDL the allowed directions are in and out. In 
LIPC IDN the allowed directions are in, out, and inout. The inout direction is equivalent to a 
specification of two parameters, one in and one out, both of the same type. 

RPC IDL limits out parameters to be arrays or pointers. This is because RPC IDL views those 
as being suitable types for assignment. LIPC IDN is not concerned about what is done with a 
returned (out) value. Thus LIPC IDN does not restrict the type of an out parameter. In practice, 
the following correspondence holds between parameter types: 
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RPC parameter type LIPC parameter type 

T* 
T [...I 

T 
array (integer range (...)) of (T) 

This correspondence is not one-to-one, a knowledge of the application semantics will be needed to 
select the best match. 

LIPC IDN requires that a procedure declaration list all the termination conditions (exceptions, 
errors) that might occur as part of the semantics of the procedure. RPC IDL does not. See 
Termination Declarations (D.2.4). 

RPC IDL has three RPC specific attributes applicable to procedures: idernpotent, broadcast, 
and maybe. 

D.2.4 Termination Declarations 

In LIPC, a procedure can return normally or in one of a set of named terminations. On normal 
return, new out and inout parameter values are provided by the procedure as well as any explicit 
return value. On a named termination, a different set of values is provided: those declared in the 
termination declaration. 

An LIPC IDN termination declaration consists of a name for the termination, and a list of zero or 
more types for the returned values. 

RPC IDL does not provide any means for declaring non-normal return conditions. 

D.3 Primitive Datatypes 

D.3.1 Boolean 

The LIPC IDN boolean type and the RPC IDL boolean type are identical. 

D.3.2 State 

The LIPC IDN state type generator is similar to the RPC IDL enum type generator, except that 
the values of a state datatype are unordered. 

In translating a RPC enum datatype into LIPC IDN, a knowledge of the application semantics will 
be needed to select the best match (state versus enumerated). 

D.3.3 Enumerated 

The LIPC IDN enumerated type generator and the RPC IDL enum type generator are identical. 

In translating a RPC enurn datatype into LIPC IDN, a knowledge of the application semantics will 
be needed to select the best match (state versus enumerated). 
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D.3.4 Character 

The LIPC IDN character(R) datatype consists of all characters in standard character repertoire R. 

There are four RPC IDL character datatypes: char, ISOLATIN,1, ISOJCS, and ISOMJLTI-LINGUAL. 

The RPC IDL char datatype appears to be implementation defined, but is guaranteed to contain 
at least the IS0 646 character repertoire. Thus, if char is used only in a portable manner, we have 

RPC type LIP C equivalent 

char character (iso standard 646) 
ISO,LATIN-1 character (iso( 1) st andard( 0) 8859 part (1)) 
ISOUCS character (iso( 1) standard( 0) 10646) 
ISO-MULTI-LINGUAL character (iso( 1) standard( 0) 10646 multi-lingual-plane) 

The three RPC IDL “ISO” character types imply a representation as well as repertoire. 

DA5 Ordinal 

The LIPC IDN ordinal type is similar to integer range (0. .). The closest RPC IDL analog 
would be unsigned hyper. 

D.3.6 Time 

RPC IDL has no analog to the LIPC IDN time type generator. 

A possible encoding of the LIPC IDN time(unit ,radix,factor) type into a RPC IDL type would 
be hyper with the interpretation that a hyper value of h has the interpretation 

h * (radixBfactm) * unit 

when viewed as a value of type time(unit ,radix,factor). 

D.3.7 Integer 

LIPC IDN provides a single integer type of unbounded range, while RPC IDL provides 8 integer 
types as follows: 
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RPC type LIP C equivalent 

hYP= integer range ( -263 . . 263-l) 
long integer range (-231 . . 231-l) 
short integer range (-215 . . 215-1) 
small integer range (-27 . . 27-1) 
unsigned hyper integer range (0 . . 264-l) 
unsigned long integer range (0 . . 232-l) 
unsigned short integer range (0 . . 216-1) 
unsigned small integer range (0 . . 28-1) 

In translating an LIPC integer into RPC IDL, a knowledge of the application semantics will be 
needed to select the best match. A perfect translation is not possible. 

D.3.8 Rational 

RPC IDL has no analog to the LIPC IDN rational type. 

A possible encoding of the LIPC IDN rational type into a RPC IDL type would be 

struct { hyper numerator, denominator; } 

where the denominator is greater than 0 and the numerator and denominator are coprime. 

D.3.9 Scaled 

RPC IDL has no analog to the LIPC IDN scaled type generator. 

A possible encoding of the LIPC IDN scaled(radix,factor) type into a RPC IDL type would 
be hyper with the interpretation that a hyper value of h has the interpretation 

h * (radixmfactm) 

when viewed as a value of type scaled(radix ,f actor). 

DA10 Real 

LIPC IDN provides a real type generator, with the granularity of the approximation given as 

( d Ta ixBfactm). 

RPC IDL provides two approximations to real numbers: float and double. The precision and 
range of these two types are unspecified, although they may be intended to be similar to the IEC 
559 single and double precision types. If this is so, the LIPC analogs of these types are 

RPC type LIPC analog 

float 
double 

real (2,24) 
real (2,53) 
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DA11 Complex 

RPC IDL has no analog to the LIPC IDN complex type generator. 

A possible encoding of the LIPC IDN complex(radix ,factor) type into a RPC IDL type would 
be one of 

struct { float real-part, imaginary-part; } 
struct { double real-part, imaginary-part; } 

where the choice of float or double would be based on which type was a better approximation to 
real (radix, f actor). 

D.3.12 Void 

LIPC IDN and RPC IDL provide an identical void type. However, the use of void in RPC IDL is 
restricted to (1) the target of a pointer, or (2) the return type of a procedure. 

A pointer to void would seem to have little use. However, in RPC IDL there seems to be an 
implicit assumption (perhaps inherited from C) that any T* can be coerced to and from a void* 
without loss of information. Thus, void* can be used to pass pointer data opaquely through an 
interface. The LIPC IDN analog of this is private. 

D.4 Type Qualifiers 

RPC IDL has no facilities corresponding to the six type qualifiers defined by LIPC IDN: Range, 

Selecting, Excluding, Extended, Size and Subtype. 

D.5 Generated Datatypes 

D.5.l Choice 

The LIPC IDN choice type generator provides a pairing of a tag value and a value of one of a 
number of alternative element types. The tag value determines which of the alternative elements 
types is used. 

The RPC IDL union type generator has the same semantics as the LIPC IDN choice type gen- 
erator, except that (in RPC IDL) the type of the tag is restricted to be an integer type, boolean, 
char, or an enumeration type. In LIPC IDN the tag type may be any exact datatype. An exact 
datatype is one that is not real, not complex, and not generated from real or complex. 

Both LIPC IDN and RPC IDL allow the tag portion of a choice or union to be omitted from 
the value. This can be done only when the choice or union is embedded in a larger datatype (or 
parameter list) one of whose fields provides the tag value. 

RPC IDL prohibits the use of a conformant or conformant-varying array as a union alternative. 
LIPC IDN has no such restrictions. 

Note that the RPC IDL syntax’allows for new named union types. 
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D.5.2 Pointer 

The LIPC IDN pointer to (T) type generator and RPC IDL T* type generator have basically the 
same semantics. However, RPC IDL provides two attributes to modify the meaning of its pointers, 
and significantly restricts the use of pointers. 

RPC type LIPC equivalent 

[Ptrl T * pointer to (T) 
[refl T * pointer to (T) excluding (null) 

The RPC IDL [ref] attribute also provides information to an RPC service, including an assertion 
that there is no aliasing involving the data referenced by the pointer during RPC invocations. 

RPC IDL considers certain pointers to be equivalent to arrays or as substitutes for arrays. Thus in 
translating RPC IDL pointer types into LIPC IDN, a knowledge of the application semantics and 
the detailed rules of RPC IDL will be needed toselect the best match (pointer versus array). 

See the Type Declaration (D.2.1) and Procedure clauses for further comments on pointers. 

DA.3 Procedure 

The RPC IDL does not support procedure types. Procedures in LIPC are defined as operations in 
RPC (see D.2.3). 

D.6 Aggregate Datatypes 

D.6.1 Record , 

The LIPC IDN record type generator and the RPC IDL struct type generator are identical. 

Note that the RPC IDL syntax allows for new named struct types. 

D.6.2 Set 

RPC IDL does not provide a set type generator. The LIPC IDN concept of set would presumably 
be modelled as a RPC IDL array. For example, 

LIPC type RPC analog 

set of (T) struct { long size; T element [size]; } 

Thus, in translating a RPC IDL array type into LIPC IDN, a knowledge of the application seman- 
tics is necessary to determine if what is really needed is a set. 
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D.6.3 Bag 

RPC IDL does not provide a bag type generator. The LIPC IDN concept of bag would presumably 
be modelled as a RPC IDL array. For example, 

LIPC type RPC analog 

bag of (T) struct { long size; T element [size]; } 

Thus, in translating a RPC IDL array type into LIPC IDN, a knowledge of the application seman- 
tics is necessary to determine if what is really needed is a bag. 

D.6.4 Sequence 

RPC IDL does not provide a sequence type generator. The LIPC IDN concept of sequence would 
presumably be modelled as a RPC IDL array. For example, 

LIPC type RPC analog 

sequence of (T) struct { long size; T element [size]; } 

Thus, in translating a RPC IDL array type into LIPC IDN, a knowledge of the application seman- 
tics is necessary to determine if what is really needed is a sequence. 

D.6.5 Array 

The LIPC IDN array (I) of (T) type generator defines indexed collections of values. A particular 
LIPC array value associates an element value in T to each index value in I. Thus, all values of a 
particular LIPC array type have the same “length,” which is determined by the size of the index 
type I. The index type can be any finite type. 

The RPC IDL array type generator defines indexed collections of values as well. However, the only 
permitted index type is a range of integers. 

RPC type LIPC equivalent 

T [a..b] array (integer range (a..b)) of (T) 

Both LIPC IDN and RPC IDL permit arrays to have multiple dimensions (index types). 

Both LIPC IDN and RPC IDL provides a means of allowing array bounds to be determined by 
dependent values. See the clause on Dependent Values (D.9) below. 

RPC IDL makes a distinction between the storage bounds of an array and the valid-data bounds of 
the same array. LIPC IDN specifications are independent of this sort of representation information. 
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in specifying the storage bounds of 
values in specifying the valid-data 

A RPC IDL conformant array is one that uses dependent values 
an array. A RPC IDL varying array is one that uses dependent 
bounds of an array. 

Since RPC IDL’does not distinguish sequences, bags, and tables from arrays, some uses of RPC 
arrays may be more properly viewed as sequences. See the clauses on Sequences (D.6.4), Bags 
(D.6.3), and Tables (D.6.6). 

D.6.6 Table 

RPC IDL does not provide a table type generator. The LIPC IDN concept of table would 
presumably be modelled as a RPC IDL array of structs. For example, 

LIPC type RPC analog 

table (FL) struct { long size; struct {FL’} row [size]; } 

where FL’ is the RPC equivalent of the LIPC field list FL. 

Thus, in translating a RPC IDL array type into LIPC IDN, a knowledge of the application seman- 
tics is necessary to determine if what is really needed is a table. 

D.7 Derived Datatypes and Generators 

D.7.1 Naturalnumber 

The RPC IDL analog to the naturalnumber type would be unsigned hyper. 

D.7.2 Modulo 

The RPC IDL analog to the module(n) type would be aa unsigned integer type large enough to 
represent the values 0 through n-l. 

D.7.3 Bit 

The RPC IDL analog to the bit type would be boolean. 

D.7.4 Bitstring 

The RPC IDL analog to the bitstring type would be 

struct { long size; T element [size]; } 

If the bitstring were of fixed size, the best RPC IDL analog would be a boolean array. 
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D.7.5 Characterstring 

The LIPC IDN characterstring datatype contains strings (sequences) of characters of type 
character(R). Thus strings over any character set can be defined. 

RPC IDL can defined strings of chars, bytes, or structures containing only bytes. These latter 
forms are used to handle character repertoires other than IS0 646 at a representation level rather 
than a logical level. 

RPC type LIP C equivalent 

[string] char * characterstring (X50-646) 

In translating string types from LIPC IDN to RPC IDL the logical concept of a character repertoire 
must be replaced by a specific representation in terms of bytes. This requires selecting a particular 
representation. 

In the reverse translation, knowledge of the application semantics will be needed to determine the 
character repertoire intended. 

D. 7.6 Timeint erval 

RPC IDL has no analog to the LIPC IDN timeinterval type generator. 

A possible encoding of the LIPC IDN timeinterval(unit ,radix,factor) type into a RPC IDL 
type would be hyper with the interpretation that a hyper value of h has the interpretation 

h * (radix-factor) * unit 

when viewed as a value of type timeinterval(unit ,radix,factor). 

D.7.7 Octet 

The LIPC IDN octet type is identical to the RPC IDL unsigned small type. 

D.7.8 Octetstring 

The RPC IDL analog to the octetstring type would be 

struct { long size; unsigned small element [size]; } 

If the octetstring were of fixed size, the best RPC IDL analog would be an unsigned small 
array. 
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D.7.9- Private 

The LIPC IDN private(n) datatype contains opaque data n bits long. 

The RPC IDL byte datatype contains opaque data, presumably 8 bits long. Thus, 

RPC type LIPC equivalent 

byte private (8) 

Some uses of byte may correspond better to the LIPC octet type (which is not opaque). 

D.8 Other RPC Datatypes 

The RPC datatypes handle-t, pipe T, and contexthandle are specific to the RPC service, and 
are opaque. They have no direct LIPC equivalent. 

Opaque service specific types are best handled abstractly as new private types. 

The RPC datatypes error-status-t is specific to the RPC service, however it is not opaque. 

RPC type LIPC equivalent 

errorstatus-t integer range (0 . . 232-l) 

D.9 “Dependent Values” . 

A “dependent value” is an identifier, used in the specification of the type of a field (of a record) 
or a parameter (of a procedure), which is not defined to be a constant. Rather it is the name of a 
field in an enclosing record, or the name of a parameter in the same procedure parameter list. 

D.10 Cross References 

The above discussion has been organized around the LIPC datatypes. The following table lists 
each RPC datatype and the clause above that discusses it. 
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RPC datatype Discussed in 

boolean 
byte 
char 
ISO,LATIN-1 
IsoUcs 
ISO-MULTI-LINGUAL 
small 
short 
long 
hYP= 
unsigned small 
unsigned short 
unsigned long 
unsigned hyper 
float 
double 
pointer 
array 

string 
enum 
struct 
union 
procedure 
void 
cant ext handle 
handle 
Pipe 
error status 

Boolean (D.3.1) 
Private, (D.7.9), Octet (D.7.7) 
Character (D.3.4) 
Character (D.3.4) 
Character (D.3.4) 
Character (D.3.4) 
Integer (D.3.7) 
Integer (D.3.7) 
Integer (D.3.7) 
Integer (D.3.7) 
Integer (D.3.7) 
Integer (D.3.7) 
Integer (D.3.7) 
Integer (D.3.7) 
Real (D.3.10) 
Real (D.3.10) 
Pointer (D.5.2) 
Array, (D.6.5), Sequence (D.6.4), Set (D.6.2), 
Bag (D.6.3), Table (D.6.6) 
Characterstring (D.7.5) 
Enumerated, (D.3.3), State (D.3.2) 
Record (D.6.1) 
Choice (D.5.1) 
Procedure (D.5.3) 
Void (D.3.12) ’ l 

Other RPC Datatypes (D.8) 
Other RPC Datatypes (D.8) 
Other RPC Datatypes (D.8) 
Other RPC Datatypes (D.8), T ermination Declarations (D .2.4) 
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