
INTERNATIONAL
STANDARD

lSO/IEC

First edition
1996-03-l 5

Information technology - Language-
Independent Procedure Calling (LIPC)

Technologies de I ‘information - Appel de procbdure indbpendant du
langage (L/PC)

Reference number
ISO/lEC 13886:1996(E)

ISO/IEC 13886:1996(E)

Contents

1 Scope

2 References

3 Definitions and Abbreviations
3.1 Definitions. ...
3.2 Abbreviations ..

4 Conformance
4.1 Modes of conformance

4.1.1 Client mode conformance
4.1.2 Server mode conformance

5 A model of procedure calling: informal description
5.1 Model overview
5.2 Parameter passing

5.2.1 Methods of parameter passing
5.2.1.1 Call by Value Sent on Initiation
5.2.1.2 Call by Value Sent on Request
5.2.1.3 Call by Value Returned on Termination
5.2.1.4 Call by Value Returned when Available

5.2.2 Global data
5.2.3 Parameter Marshalling / Unmarshalling
5.2.4 Pointer Parameters
5.2.5 Private types

5.3 Execution-time Control
5.3.1 Terminations

5.3.1.1 Normal termination
5.3.1.2 Abnormal Termination
5.3.1.3 External Cancellation
5.3.1.4 Predefined conditions

5.4 Execution Control
5.4.1 Synchronous and Asynchronous Calling
5.4.2 Recursion

6 A model of procedure calling: formal description
6.1 Value . “.........

0 ISO/IEC 1996
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l CH-1211 Geneve 20 l Switzerland

Printed in Switzerland

1

2
2
4

6
6
7
9
9
9

10
10
10
11
11
12
12
12
12
13
13
13
14
14
14

14
14

11

@ ISO/IEC ISO/IEC 13886: 1996(E)

6.2 Boxes and global state 14

6.3 Symbol ... 15

6.4 Procedure image 16
6.5 Association ... 16

6.6 Procedure closures 17

6.7 Boxes, pointers, values, and datatypes 17

6.8 Interface closure 18

6.9 Interfacetype .. 19

6.10 Specifications .. 19
6.11 Basic procedure invocation 20

6.12 Type correctness 20

6.13 Associates .. 21

6.13.1 Simple Associates 21

6.13.2 Generalized Associates 22

6.14 Execution and Invocation contexts 23

6.15 Parameter translations 24

6.16 Defining Translation Procedures 26

7 Interface Definition Notation 27
7.1 Definitional Conventions 27

71.1 Character Set 27
7.1.2 Formal Syntax 27
7.1.3 Whitespace 28

7.2 Interface Type Declarations 29
7.2.1 Type references 29
7.2.2 Value References 30

7.3 Import Declarations 30
7.4 Value Declarations 31
7.5 Datatype Declarations 31

7.5.1 Primitive Datatypes 32
7.5.1.1 Integer 32
7.5.1.2 The real datatype 32
7.5.1.3 The character datatype 33
7.5.1.4 The boolean datatype 33
7.5.1.5 The enumerated datatype 33
7.5.1.6 The octet datatype 33
7.5.1.7 The procedure datatype 34
7.5.1.8 The state datatype 36
7.5.1.9 The ordinal datatype 36

7.5.1.10 The time datatype 37
7.5.1.11 The bit datatype. 37
7.5.1.12 The rational datatype 37
7.5.1.13 The scaled datatype 37
7.5.1.14 The complex datatype 38
7.5.1.15 The void datatype 38

7.5.2 Generated datatypes 38
7.5.2.1 The record datatype 38
7.5.2.2 The choice datatype 39

. . .
111

ISO/IEC 13886:1996(E) @ ISO/IEC

7.5.2.3 The array datatype 39

7.5.2.4 The pointer datatype 40

7.5.3 Subtypes 40

7.6 Parameterized Types 40

7.7 Identifiers .. 41

7.7.1 Value references to fields 42

7.7.2 Value references to parameters, return-args, or to fields contained within them 42
7.7.3 Value references to formal-value-parms 43

7.7.4 Value references to value-expressions 43

7.7.5 Value references to enumeration-identifiers 43

7.7.6 Termination references 44

Annexes

A Procedure Parameters 45

A.1 LIPC Reference / Local Access 45

A.2 LIPC! Reference / LIPC Access 45

A.3 Local Reference / Local Access 46

B Interface Definition Notation Syntax 47

C How to do an LIPC binding for a language 53

C.1 Linking the client and the server 53

C.2 Client mode binding 54

C.3 Server mode binding 55

C.4 Procedure parameters 56

C.5 Global variables 57

D LIPC IDN - RPC IDL Alignment overview 58

D.l Interface Declarations 58

D.l.l Attributes 58

D.l.2 Imports Clause 58

D.2 Other Declarations 59

D.2.1 Type Declarations 59

D.2.2 Value Declarations 59

D.2.3 Procedure Declarations 59

D.2.4 Termination Declarations 60

D.3 Primitive Datatypes 60

D.3.1 Boolean 60

D.3.2 State ... 60

D.3.3 Enumerated. 60

D.3.4 Character 61

D.3.5 Ordinal 61

D.3.6 Time.. 61

D.3.7 Integer .. 61

D.3.8 Rational 62

D.3.9 Scaled .. 62

D.3.10 Real ... 62

iv

@ ISO/IEC ISO/IEC 13886: 1996(E)

D.3.11Complex.. 63
D.3.12Void ... 63

D.4 Type Qualifiers 63
D.5 Generated Datatypes 63

D.5.1 Choice .. 63
D.5.2 Pointer 64
D.5.3 Procedure 64

D.6 Aggregate Datatypes 64
D.6.1 Record.. 64
D.6.2 Set. ... 64
D.6.3 Bag ... 65
D.6.4 Sequence 65
D.6.5 Array .. 65
D.6.6 Table .. 66

D.7 Derived Datatypes and Generators 66
D.7.1 Naturalnumber 66
D.7.2 Modulo 66
D.7.3 Bit .. 66
D.7.4 Bitstring. 66
D.7.5 Characterstring 67
D.7.6 Timeinterval 67
D.7.7 Octet .. 67
D.7.8 Octetstring 67
D.7.9 Private 68

D.8 Other RPC Datatypes 68
D.9 . “Dependent Values” 68
D.10 Cross References 68

V

ISO/IEC 13886:1996(E) @ ISO/IEC

Foreword
IS0 (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialized system for worldwide standardization. National bodies
that are members of IS0 or IEC participate in the development of International Standards through
technical committees established by the respective organizations to deal with particular fields of
technical activity. IS0 and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with IS0 and IEC, also
take part in the work.

In the field of information technology, IS0 and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical cotittee are
circulated to national bodies for voting. Publication as an International Standard requires approval
by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 13886 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments
and system software interfaces.

Annexes A to D of this International Standard are for information only.

vi

@ ISO/IEC ISO/IEC 13886: 1996(E)

Introduction
The purpose of this International Standard is to provide a common model for language standards for
the concept of procedure calling. It is an enabling standard to aid in the development of language-
independent tools and services, common procedure libraries and mixed language programming. In
mixed language applications, server procedures would execute on language processors operating
in server mode, and the procedures would be called from language processors operating in client
mode. Note that the languages need not be different, and if the processors are the same the model
collapses into conventional single processor programming.

Most programming languages include the concepts of procedures and their invocation. The main
variance between the methods used in various programming languages lies in the ways parameters
are passed between the client and server procedures. Procedure calling is a simple concept at the
functional level, but the interaction of procedure calling with datatyping and program structure
along with the many variations on procedure calling and restrictions on calling that are applied by
various programmin g languages transforms the seemingly simple concept of procedure calling into
a more complex feature of programming languages.

The need for a standard model for procedure calling is evident from the multitude of variants of
procedure calling in the standardized languages. The existence of this International Standard for
Language-Independent Procedure Calling (LIPC) d oes not require that all programming languages
should adopt this model as their sole means of procedure calling. The nominal requirement is
for programming languages to provide a mapping to LIPC from their native procedure calling
mechanism, and to be able to accept calls from other programmin g languages who have defined a
mapping to this International Standard.

This International Standard is a specification of a common model for procedure calling. It is not
intended to be a specification of how an implementation of the LIPC is to be provided. Also, it
is important to note that it does not address the question of how the procedure call initiated by
the client mode processor is communicated to the server mode processor, or how the results are
returned. The model defined in this International Standard is intended for use by languages so
that they may provide standard mappings from their native procedure model. This International
Standard depends on the International Standard for Language-Independent Datatypes, ISO/IEC
11404, for the definition of the datatypes that are to be supported in the model for LIPC that it
provides.

vii

This page intentionally left blank

INTERNATIONAL STANDARD @ ISO/IEC ISO/IEC 13886:1996(E)

Information technology -
Language-Independent Procedure Calling (LIPC)

1 Scope

This
Pi%

‘I

International Standard specifies a model for procedure calls, and a reference syntax for map-
to and from the model. This syntax is referred to as the Interface Definition Notation. The

model defined in this International Standard includes such features as procedure invocation, pa-
rameter passing, completion status, and environmental issues relating to non-local references and
state.

This International Standard does not specify:

l the method by which the procedure call initiated by the client mode processor is communi-
cated to the server mode language processor;

l the minimum requirements of a data processing system that is capable of supporting an
implementation of a language processor to support LIPC;

l the mechanism by which programs written to support LIPC are transformed for use by a
data processing system;

l the representation of a parameter.

NOTE - Originally it was the intention to align the definitions and concepts of this International
Standard with those of the RPC standard (ISO/IEC 11578). Unfortunately, in a late stage of the
development process of the RPC standard it was decided to use for that standard a completely
different approach. Hence the intended alignment did not materialize.

Annex D gives an overview of the differences between the concepts as defined by this Interna-
tional Standard and the RPC standard.

2 Normative References

The following standards contain provisions which, through reference in this text, constitute pro-
visions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated below. Members of IEC and IS0 maintain registers of current valid Interna-
tional Standards.

1

ISO/IEC 13886:1996(E) @ ISO/IEC

IS0 23751985, Data processing - Procedure for registration of escape sequences.

ISO/IEC! 10646-l: 1993, Information technology - Universal Multiple-Octet Coded Character
Set (KS) - Part 1: Architecture and Basic Multilingual Plane.

ISO/IEC 11404:1996, Information technology - Programming languages, their environments
and system software interfaces - Language-independent datatypes.

ISO/IEC 8824-l: 1995, Information technology - Abstract Syntax Notation One (ASN. 1):
Specification of basic notation.

ISOIIEC 8825~1:1995, Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER).

3 Definitions and Abbreviations

3.1 Definitions

For the purposes of this International Standard, the following definitions apply.

3.1.1 actual parameter: A value that is bound to a formal parameter during the execution of
a procedure.

3.1.2 association: Any mapping from a set of symbols to values.

3.1.3 box: A model of a variable or container that holds a value of a particular type.

3.1.4 client interface binding: The possession by the client procedure of an interface reference.

3.1.5 client procedure: A sequence of instructions which invokes another procedure.

3.1.6
mapped.

complete procedure closure:

3.1.7 configuration:
to operate a processor.

Host and target computers, any operating system(s) and software used

A procedure closure, all of whose global symbols are

3.1.8 execution sequence: A succession of global states ~1, ~2, . . . where each state beyond
the first is derived from the preceding one by a single create operation or a single write operation.

3.1.9 formal parameter: The name symbol of a parameter used in the definition of a procedure
to which a value will be bound during execution.

3.1.10 global state: The set of all existing boxes and their currently assigned values.

3.1.11 global symbol: Symbol used to refer to values that are permanently associated with a
procedure.

3.1.12 implementation defined: An implementation defined feature is a feature that is
left implementation dependent by this International Standard, but any implement ation claiming
conformity to this International Standard shall explicitly specify how this feature is provided.

2

@ ISO/IEC ISO/IEC 13886:1996(E)

3.1.13 implementation dependent: An implementation dependent feature is a feature which
shall be provided by an implementation claiming conformity to this International Standard, but
the implementation need not to specify how the feature is provided.

3.1.14
sponding

input
actual

parameter: A formal parameter
parameter is to be made available to

with an attribute indicating that the corre-
the server procedure on entry from the client

procedure.

3.1.15 input/output parameter: A formal parameter with an attribute indicating that the
corresponding actual parameters are made available to the server procedure on entry from the client
procedure and to the client procedure on return from the server procedure.

3.1.16
mapping

interface closure:
between them.

A collection of names and a collection of procedure closures, with a

3.1.17 interface execution context: The union of the procedure execution contexts for a
given interface closure.

3.1.18 interface reference: An identifier that denotes a particular interface instance.

3.1.19 interface type: A collection of names and a collection of procedure types, with a
mapping between them.

3.1.20 interface type identifier: An identifier that denotes an interface type.

3.1.21 invocation association: The invocation association of a procedure closure <Image,
Association> applied to a set of actual parameter values is the association of the closure augmented
by a mapping of all local symbols to values and all formal parameter symbols to the corresponding
actual parameter values. Thus it is a binding to values of all symbols in the procedure image for
the duration of the’ invocation.

3.1.22 invocation context: For a particular procedure call, the instance of the objects
referenced by the procedure, where the lifetime of the objects is bounded by the lifetime of the call.

3.1.23 marshalling: A process of collecting actual parameters, possibly converting them, and
assembling them for transfer.

3.1.24 output parameter: A formal parameter with an attribute indicating that the corre-
sponding actual parameter is to be made available to the client procedure on return from the server
procedure.

3.1.25 parameter: A parameter is used to communicate a value from a client to a server
procedure. The value supplied by the client is the actual parameter, the formal parameter is used
to identify the received value in the server procedure.

3.1.26 partial procedure closure: A procedure closure, some of whose global symbols are
not mapped. Procedure closures may be complete, with all global symbols mapped, or partial with
one or more global symbols not mapped.

3.1.27 procedure: The procedure value.

3.1.28 procedure call: The act of invoking a procedure.

3.1.29 procedure closure: A pair <procedure image, association> where the association
defines the mapping for the image’s global symbols and no others.

3

ISO/IEC 13886:1996(E) @ ISO/IEC

NOTE - Procedure closures are the values of procedure type referred to in ISO/IEC 11404 -
Language-Independent Datatypes.

3.1.30 procedure execution context: For a particular procedure, an instance of the objects
satisfying the external references necessary to allow the procedure to operate, where these objects
have a lifetime longer than a single call of that procedure.

3.1.31 procedure image: A representation of a value of a particular procedure type, which
embodies a particular sequence of instructions to be performed when the procedure is called.

3.1.32 procedure invocation: The object which represents the triple: procedure image,
execution context, and invocation context.

3.1.33 procedure name: The name of a procedure within an interface type definition.

3.1.34 procedure return: The act of return from the server procedure with a specific termi-
nation.

3.1.35 procedure type:
operations on values of other datatypes. Note, this is a different definition from

The family of datatypes each of whose members is a collection of
procedure value.

from, and returns 3.1.36 procedure value: A closed sequence of instructions that is entered
control to, an external source.

3.1.37 processor: A compiler or interpreter working in combination with a configuration.

3.1.38 server procedure: The procedure which is invoked by a procedure call.

3.1.39 symbol: A program entity used to refer to a value.

3.1.40 termination: A predefined status related to the completion of a procedure call.

3.1.41 unmarshalling: The process of disassembling the transferred parameters, possibly
converting them, for use by the server procedure on invocation or by the client procedure upon
procedure return.

3.1.42 value: The set Value contains all the values that might arise in a program execution.

3.2 Abbreviations

3.2.1 ASN.l: Abstract Syntax Notation - One

3.2.2 IDN: Interface Definition Notation

3.2.3 LID: Language-Independent Datatypes, as defined in ISO/IEC 11404:1995.

3.2.4 LIPC: Language-Independent Procedure Calling

@ ISO/IEC ISO/IEC 13886: 1996(E)

4 Conformance

A language processor may conform to this International Standard by mapping its native procedure
calling mechanism to the LIPC model that this International Standard defines.

NOTE - The term “language processor” used in this clause may be extended to include
anything which processes information and contains a procedure dling mechanism.

4.1 Modes of conformance

A language processor claiming conformance to this International Standard shall conform in either
or both of the following ways.

4.1.1 Client mode conformance

In order to conform in client mode, a language processor shall allow programs written in its lan-
guage to call procedures written in another language and supported by another processor, using
the language-independent procedure calling (LIP C) as p rovided by clauses 5, 6 and 7 of this Inter-
national Standard. In this case it is said to conform in (and be able of operating in) client mode.
As part of this, the language processor shall define a mapping from its own procedure calling model
to the LIPC model.

NOTE - If a program using the LIPC facility is to be portable between processors which
conform in client mode, the program and processors will also need to conform to the relevant
language standard and the relevant standards binding for that language to the LIPC and LID
standards.

4.1.2 Server mode conformance

In order to conform in server mode, a language processor shall allow programs written in another
language to call procedures written in its language (i.e. it will accept and execute procedure calls
generated by another processor which is executing in a program that is written in that other
language and which is operating in client mode, and return control to that client processor upon
completion), using the language-independent procedure calling (LIPC) as provided by clauses 5, 6
and 7 of this International Standard. In this case it is said to conform in (and be able of operating
in) server mode. As part of this, the language processor shall define a mapping from the LIPC
model to its own procedure calling model.

NOTES

1 It’ is also possible in principle for a client processor to use the model for procedure calls
defined in this International Standard to call procedures in the same language; executing on
a server processor in the same language, and if the processor conforms in both client and
server mode, it is even possible for it to serve itself using this model.

2 If a procedure is to be portable between processors which conform in server mode and the
procedure is still to be called by client processors and programs, the procedure, and the
processors, will also need to conform to the relevant language standard and the relevant
standards binding for that language to the LIPC and LID standards.

5

ISO/IEC 13886:1996(E) @ ISO/IEC

5 A model of procedure calling: informal description

5.1 Model overview

A procedure is defined to be a closed sequence of instructions that is entered from, and returns
control to, an external source.

The general structure of a procedure call can be described as a single thread of execution in
a particular program where the flow of control is passed from one procedure to another. The
originator of the call is known as the client procedure and the procedure being called is referred to
as the server procedure.

NOTE 1 - It is possible for a server procedure to also be a client procedure if it makes a call
to another procedure in order to complete its desired function.

Procedures have the ability to exchange data between the client and server via the use of parameters
(see 5.2). In addition, client and server procedures may also share data through the use of global
data (see 5.2.2). In order for the parameters specified by the client procedure to be interpreted
correctly, the parameters are required to be marshalled (see 5.2.3) to a base form for transmission
that is shared by both the client and the server procedure. After the data has been transmitted,
the server procedure must then unmarshall (see 5.2.3) the data from the base form into datatypes
that are defined in the server language or in the language binding to ISO/IEC 11404 - Language-
Independent Datatypes for that particular language.

NOTE 2 - An example of the process of marshalling and unmarshalling of parameters would be
if a Pascal client procedure made a call to a Fortran server procedure passing a single character
parameter by value. The Pascal “char” datatype would map to a LID character. In order to
have the LID character be transmitted to the server procedure, the LID character is marshalled
to an appropriate ASN.l value, for example, which is a form that would be understood by both
the client and server procedures. The ASN.1 value would then be transmitted to the server and
upon receipt it is unmarshalled into a LID character, which in turn maps to a “character*l” in
Fortran.

The following diagram outlines the basic components of the language-independent call model:

6

@ ISO/IEC ISO/IEC 13886:1996(E)

Contract

Client Procedure - e--e

MarshaIIing
Interface

Y
I I

Server Procedure

Actual
Contract

u nmarshalling
Interface

I .

A r-l
1 Client Provider 1-u c Server Provider

c

Language-Independent Procedure CaII Model

This model illustrates how the client and server procedures communicate when their implementa-
tions conform to this International Standard. The virtual contract between the client procedure and
server procedure is defined by the Interface Definition Notation contained within this International
Standard. Upon the instantiation of a call, the marshalling interface marshalls the parameters and
passes this information on to the client LIPC provider. The client LIPC provider is connected to
the server LIPC provider via the actual contract which is the transmissible form (e.g., ASN.l).
The server LIPC provider then unmarshalls the data, via the unmarshalling interface, into a form
that is compatible with the server procedure. Upon return, the process is reversed with the un-
marshalling interface now being the marshalling interface and the marshalling interface now being
the unmarshalling interface.

5.2 Parameter passing

Any datatype defined in ISO/IEC 11404 - Language-Independent Datatypes can be the datatype of
a formal parameter of a language-independent procedure call. This International Standard defines
parameter passing solely on the passing of values. Therefore an actual parameter is any value of the
datatype required by the call. The parameter passing model defined in this International Standard
is a strongly typed model.

NOTE 1 - Weak typing can be accomplished by relaxing association rules and adding implicit
datatype conversions in the language bindings to this International Standard.

The following notes relate the common parameter passing mechanisms that are found in existing
languages to the four denned parameter passing schemes that are defined in this International
Standard.

7

ISO/IEC 13886:1996(E) @ ISO/IEC

NOTES

2 Call by Value (In parameters): This is the simplest of all common parameter passing mech-
anisms and appears directly in LIPC as Call by Value Sent on Initiation (see 5.2.1.1). The
virtual contract is fulfilled by the client evaluating the actual parameter and sending the
value to the server procedure, and the server procedure accepting it. No further action is
required of the client procedure. The server procedure does what it likes with the received
value, but can make no further demands on the client with respect to the actual parameter
that generated the value.

3 Call by Value Return (Out parameters): This common parameter passing mechanism is also
directly supported in LIPC by Call by Value Returned as Specified. The virtual contract for
this mechanism involves the concept of passing a parameter only as a means of receiving a
value. If in a specific language binding, a parameter is passed at the language processor level,
what is passed is an implicit pointer to a value of the datatype concerned, which the server
procedure contracts to set. The server procedure cannot access the value of the datatype
prior to the call. Some languages, in their datatyping model, explicitly distinguish between
the datatypes of values held by variables and those of the variables themselves. For example,
some languages have an explicit dereference (i.e., obtain the value of). For languages without
such a model, the LIPC model allows that distinction to be made at the language binding
service contract level without disturbing the virtual contract model.

4 Call by Value Sent and Return (In-out parameters): This common parameter passing mech-
anism is an in/out mechanism where the actual parameter can be evaluated to a destination
for Call by Value Returned on Termination (see.5.2.1.3). However, in the LIPC model it is
regarded as a parameter with both that property and that of Call by Value Sent on Initiation
(see 5.2.1.1). Equivalently, it can be expanded into two implicit parameters, one of each kind.
The actual parameter corresponding to a formal parameter of a given datatype “t” must be
capable, on evaluation, of yielding a destination for such a value (i.e., an implicit or explicit
pointer to a value of datatype “t”). For the “in” part of the in/out specification, the current
value held in that destination on initiation of the call is retrieved by the client and relayed
to the server procedure. The destination itself is also recorded. In the virtual contract the
client receives the returned value, the “out” part of the in/out specification, from the server
procedure and sends it to that destination.
Where the language binding or service contract passes the destination itself to the server
procedure as part of the copy-in/copy-out, the server procedure must contract to retrieve
the “in” value immediately on transfer and then to send the returned “out” value to the
destination on completion of the call. While the call is in progress, the client explicitly or
implicitly marks the destination as ‘read once only, write once only’ as far as the server
procedure is concerned and any attempt by the server procedure to violate that condition is
an error.

5 Call by Reference: In this case a formal parameter of datatype “t” is interpreted as an implicit
‘pointer to “t”’ and the actual parameter must evaluate to such a pointer accordingly. This
pointer to “t” is then passed by value as an “in” parameter.
The pointer is not passed
indirect addressing.

as an in/out parameter since this cause an extra level of

The virtual contract is that the client provides an access path to the destination. The
destination is fixed, but the access path can be used by the server procedure both reading
and writing of values of datatype “t”. In the close-coupled case the service contract may well
involve passing the actual destination with the client needing to take no further action until
the call is complete. In a loosely-coupled service environment the service contract wiIl involve
client action during the call, responding to requests by the server for a value of datatype
“t” to be read or written. In effect this would be reciprocal calls with the “in” and “out”
directions reversed.
These reciprocal calls implied by Call by Reference in a loosely-coupled environment represent
a potentially significant overhead, which may result in Call by Reference not being supported

8

@ ISO/IEC

in such services.

ISO/IEC 13886: 1996(E)

5.2.1 Methods of parameter passing

There are four basic kinds of parameter passing defined in this International Standard:

1. Call by Value Sent on Initiation

2. Call by Value Sent on Request

3. Call by Value Returned on Termination

4. Call by Value Returned when Available

5.2.1.1 Call by Value Sent on Initiation

This is the simplest form of parameter passing. The formal parameter of the server procedure
receives a value of the datatype concerned. The virtual contract is that the client evaluates the
actual parameter and supplies the resulting value at the time of transfer of control. The server
procedure accepts this value and no further interaction takes place with respect to this parameter.

NOTE - This type of parameter passing is

5.2.1.2 Call by Value Sent on Request

The virtual contract for this type of parameter

commonly known as Call by Value.

passing is that the client undertakes to evaluate the
actual parameter and supply the resulting value, but only upon receipt of a request to do so from
the server procedure. The evaluation and passing of the actual parameter takes place if and only
if the server procedure requests it. This can be done at the beginning of the call, or while the call
is in progress.

The essential difference from Call by Value Sent on Initiation is that in some cases the value sent
will be different.

NOTES

1 While this mechanism is not common to programming languages as an explicit standards
requirement, it is an optimization mechanism for programming language implementations.

2 An example of the use of Call by Value Sent on Request is when a client wishes the server
procedure to record a time, and wishes that to be done at a specific point during the execution
of the call, rather than at the initiation of the call.

3 The use by the server of a parameter of the Call by Value Sent on Request type can be
regarded as a call of an implicit procedure parameter where the server procedure does the
evaluation one time. Any further reference in the server procedure to the formal parameter
simply uses that same value. The server procedure does not issue a further request for a
value.

ISO/IEC 13886:1996(E) @ ISO/IEC

5.2.1.3 Call by Value Returned on Termination

In this type of parameter passing, the virtual contract is that at the completion of the call, the
server procedure will supply a value of the datatype of the formal parameter and the client will
accept it and send the returned value to the appropriate destination.

NOTE 1 - This type of parameter passing is better known as Call by Value Return and is
essentially the “out” equivalent of Call by Value Sent on Initiation.

Conceptually the client and not the server procedure sends the returned value to the destination,
because the client language or mapping determines the interpretation of the destination and the
2’ process of return.

NOTES

2 In a closely coupled environment where providing the actual destination (perhaps even the
hardware address) to the server procedure is a trivial task, there is no reason why the
actual service contract at the implementation level should not include providing the actual
destination to the server procedure, which then sends its returned value directly there. This
is an additional service level function that the server procedure contracts to perform for the
client procedure, which does not affect the logical division of responsibility at the virtual
contract level.

3 This kind of parameter passing also accommodates the return of a value for the procedure
as a whole, in the case of function procedures. Parameter passing utilizing Call by Value
Returned on Termination accommodates function procedures through the use of an additional
anonymous parameter.

5.2.1.4 Call by Value Returned when Available

In this type of parameter passing, the server procedure returns the parameter value at any time
after the returned value is available. It could be returned while the call is still in progress, at the
completion of the call, or some time later. What time is chosen is determined by the binding of the
LIPC based service and is not defined by this International Standard. All the LIPC model requires
is that this possibility can be accommodated. The virtual contract is that whenever the server
procedure returns the value, the client will accept it and send the returned value to the appropriate
destination.

NOTE - In this type of parameter passing, the possibility that the returned value will be
returned more than once is not excluded.

5.2.2 Global data

The term global data is used for data defined in a shared execution context that can be referenced by
another procedure executing in a different invocation context within the same execution context.
Conceptually, global data requires the marshalling/unmarshalling of global data into individual
information units. Implementations conforming to this International Standard may support an
implementation-defined mechanism for the sharing of global data and may support partitioning
of global data. Partitioning of data refers to the abilky to insulate data from a procedure. It is

10

@ ISO/IEC ISO/IEC 13886:1996(E)

recommended that implementations support global data via implicit parameters that are passed
on the call, but this may not be the only valid mechanism where the marshalling/unmarshalling
operations are known to be trivial.

NOTES

1 In the IDN, global data is represented as an explicit parameter to the procedure. In a

2

using
ular
such

language mapping, these explicit
mechanis ms as external variables

parameters
and as such

Global data should be available to the server by the
at invocation, before use is required, or at the time

time it is needed (i.e., before
access is required).

can be provided to the proced ure
are implicit parameters.

invocation,

3 The mechanism by which objects in the invocation context are associated to the global
objects may be defined by the language, language mapping, or left to the implementation.

5.2.3 Parameter Mars halling / Unmars balling

Data which is communicated between the client and server procedure needs to be assembled in a
transmissible form. This transmissible form will allow the client and server procedures to encode
their LID mapped data into a form that is suitable for both language-independent calling on the
same system and remote procedure calls. The specification of this transmissible form is outside the
scope of this International Standard.

NOTE - The Abstract Syntax Notation - One is a suitable specification of a transmissible
form.

The marshalling of data refers to what the client procedure must do in order to transform its data
into a form for transmission to the server procedure. Unmarshalling of data refers to what the
server procedure must do in order to take the data passed by the client procedure and transform
this into data suitable for the language of the server procedure. Marshalling is not limited to calling
a procedure. Upon return, the server procedure must marshall any returned data into the form
shared by the two procedures. Unmarshalling of data is not limited to the server procedure, since
the client procedure must be able to unmarshall any data that is returned by the server procedure.

Since marshalling and unmarshalling of data for procedure calls is often complex and degrades per-
formance, an implementation may want to perform optimization of this process wherever possible.
Optimizations will likely be available when the client and server systems are homogeneous and the
languages involved in the procedure call have the same data representation.

5.2.4 Pointer Parameters

A Call by Value Sent on Initiation of a pointer allows access to the entity pointed to. The pointer
value itself cannot be changed by the server procedure in order for the pointer to refer to something
else after the call.

NOTE - For example, if the value sent is a pointer to a record, after the calI the pointer still
points to the same record even though the values in the fields of the record may have changed.

11

ISO/IEC 13886:1996(E) @ ISO/IEC

If changing what the pointer refers to is needed, then another level of indirect referencing has to
be invoked, either directly (as with call by reference) or indirectly (as with call by value-return).
An access path via pointer parameters implies access to all lower levels, including the primitive
datatype values referenced by the lowest level pointers.

5.2.5 Private types

A private type is a datatype that is protected from modification within the server procedure re-
gardless of the attributes on a parameter being passed as a private type. No operations shall be
permitted on a parameter of a private type. A private type is declared by including the restricted
keyword prior to the LID datatype in the IDN.

NOTE - A private type can be considered as an octet stream that can have no operations
performed on it.

5.3 Execution-time Control

5.3.1 Terminations

An implementation conforming to this International Standard shall provide a method for raising
and handling terminations that occur during the initialization, execution, or completion of a pro-
cedure call. Raising a termination does not necessarily imply that the server procedure should be
terminated immediately, however terminations that are raised must not be ignored by the imple-
mentation. Some examples of possible terminations include:

normal termination of a procedure invocation returning the output parameters, input/output
parameters, and result (if any)

abnormal termination, in which the procedure itself detects an error or other unusual condition

external cancellation, in which some other entity determines that the procedure should ter-
minate

hardware or software
of the application

detected events which may or may not be critical to the proper execution

asynchronous events or notification

type or value mismatches in parameter passing or return

failure of the underlying invocation service itself.

5.3.1.1 Normal termination

A procedure completing normally raises a termination signifying a normal return. A procedure
may report additional terminations; e.g., at return from a synchronous procedure call, the proce-
dure may return two or more terminations; however, the f&t of these terminations must specify
whether termination is normal, abnormal, or via a cancel. If the procedure call is asynchronous,
the procedure may return an additional termination code before, during, or after termination.

12

@ ISO/IEC ISO/IEC 13886: 1996(E)

5.3.1.2 Abnormal Termination

A procedure completing abnormally raises a termination as a result of some condition other than
an external cancel command. The usual reason a procedure abnormally terminates is that the
procedure encounters some condition that makes it impossible to continue or impossible to complete
successfully the function(s) requested by the client procedure. The client procedure is notified by
the implementation defined termination raising mechanism. Abnormal terminations can be divided
into two cases:

l a procedure det
abort procedure

ects an abnormal termination as part of its logic and executes an explicit
as a result

l an abnormal termination occurs during execution of the procedure, causing a fault at some
level lower than that of the procedure logic; the fault causes control to go to some generic
fault-handling routine within the procedure that terminates the procedure as in the previous
case.

A special case of abnormal termination of a procedure is the case where one or more of the actual
parameter values in the procedure call are incorrect, e.g., a value is of the wrong datatype for a
given parameter or of the right datatype but outside the required range. It is possible to distinguish
here between parameter values that violate the advertised requirements of the procedure interface
as specified in the IDN and values (or combination of values) that violate application specific
constraints that cannot be specified in the IDN formalism and hence must be checked explicitly by
the procedure itself. However, from the point of view of the client procedure, the only difference
between the two cases is that in the fist case, the error specified is one of a predefined set specified
in this International Standard (see 5.3.1.4). In the second case, it is an application-specific condition
code specified in some other, perhaps application-specific, standard. *

5.3.1.3 External Cancellation

A procedure terminates by external cancellation if a command is issued from outside the procedure
which causes the procedure to terminate, or be terminated, in an orderly way. In the case of
an asynchronous call, the cancellation may come from the client procedure. Whether the call
is synchronous or asynchronous, the command to cancel a procedure may come from an outside
source, i.e., outside the LIPC model. The two cases are indistinguishable to the server procedure.
In both cases, the client procedure receives a notification via an implementation defined termination
raising mechanism.

X3.1.4 Predefined conditions

As a minimum, implementations conforming to this International Standard should report the fol-
lowing terminations during a procedure call:

l server procedure unavailable, call not executed

l client or server procedure does not have defined mapping to IDN

13

ISO/IEC 13886:1996(E) @ ISO/IEC

l value out of range for parameter datatype

l cancellation of call

l insufficient resources available to complete call

0 normal completion of Call

5.4 Execution Control

5.4.1 Synchronous and Asynchronous Calling

The issue of whether of not a call executes synchronously or asynchronously is outside the scope of
this International Standard. The LIPC model does not prohibit either synchronous or asynchronous
calls. An implementation can choose whether or not to limit the number of threads of execution
in any particular call environment.

5.4.2 Recursion

The LIPC model does not prohibit recursion. How an implementation implements recursive pro-
cedure calling is outside the scope of this International Standard.

NOTE - Implementors should be aware that optimization considerations for LIPC calIs need
to take recursion into account.

6 A model of procedure calling: formal description

This clause provides a model of procedures, variables, name bindings, execution environments,
and invocation. A series of new datatypes are introduced. Some of these directly correspond to
progra mming concepts (like variables), and some are used merely to support further definitions.

6.1 Value

The set Value contains all the values that might arise in a program execution. Value contains all
the values definable using the datatypes, type generators, and definitional mechanisms of ISO/IEC
11404 - Language-Independent Datatypes. Value will also contain boxes and procedure closures
(see 6.6).

6.2 Boxes and global state

A box is a generic term for a container that holds a value of a particular datatype, for example
what, in some contexts, would be called a ‘variable’. Boxes exist and are manipulated at execution-
time. They may be named by identifiers in some program text, but they are distinct from any such
synt attic notion. Boxes do not imply any particular implementation mechanism such as storage.
There are three operations defined on boxes:

14

@ ISO/IEC ISO/IEC 13886:1996(E)

create: -+ Value

write: Box * Value -+

read: Box -+ Value

The above three lines are called signatures. Each signature lists the name of an operation, the types
of the inputs (if any) of that operation, and the types of its outputs (if any). An * (the Cartesian
product operator) separates input (or output) types.

The operation Create brings a new box into existence. The operation Write associates a new value
with a given box. The operation Read returns the last value written to a given box. If read is
applied to a box that has never been written, the value returned is unspecified.

The global state is the set of all existing boxes and their currently assigned values. It is the unique
characteristic of boxes that their operations involve global state: the operation Read accesses the
global state; the operation Create and the operation Write produce a new global state.

NOTE 1 - The global state exists as a modelling concept only. No individual program,
executing on a particular machine, can access all parts of the global state. It is a characteristic
of distributed systems that each part of the system can only access a few ‘local’ boxes, and must
ask other ‘remote’ parts of the system to read or write ‘remote’ boxes.

Boxes also imply a notion of time, modelled as a point in an execution sequence. An execution
sequence is a series of global states sr , ~2, . . . where each state beyond the first is derived from the
preceding one by a single create operation or a single write operation.

NOTE 2 - In cases of concurrent processing, the series of global states making up the execution
sequence cannot necessarily be determined by examining the program text and may vary from
execution to execution.

6.3 Symbol

A symbol is a reference in a program text to a value of a particular datatype (including boxes and
procedure closures). These referenced values are the values that the procedure can access directly
during execution. The symbols of a particular procedure fall into three disjoint categories:

l Global symbols are used to refer to values that are permanently associated with the procedure
(e.g., other procedures, non-local variables, or ‘own’ variables).

. Local symbols are used to refer to values that exist only for the duration

(g e. ., the local ‘stack frame’ variables).
of a single invocation

l Parameter symbols are the formal parameters used to refer to values that are the actual
parameters for a particular invocation.

NOTES

1 Local symbols and parameter symbols of one procedure may be global symbols of another
procedure (e.g., nested procedures).

15

ISO/IEC 13886:1996(E) @ ISO/IEC

2 How references to values in a program text in a particular language are expressed is defined
by the rules of the language, including its scoping rules. For example, the means of reference
may be an identifier and the same identifier may relate to two different references in different
program contexts (because of scoping rules). The identifier would thus correspond to two
different “symbols” in the sense of this subclause.

3 By binding global symbols to boxes, these global symbols can (indirectly) refer to values
created at arbitrary times, and be associated with the given procedure for arbitrary periods.
Thus the phrase “permanently associated ” above is not a substantive restriction to what can
be modelled.

6.4 Procedure image

A procedure image is the abstraction of a procedure text. Implicit in a procedure image is the
procedure-type, the global, local, and parameter symbols used within the procedure text, and the
algorithm to be executed by the language processor. There are four operations defined on procedure
images:

gsyms : Image + Sequence(Symbo1)

lsyms: Image + Sequence(Symbo1)

psyms:

spec:

Image + Sequence (Symbol)

Image + Procedure-Type

NOTE1 - The ordering within the sequence produced by gsynzs and lsyms is seldom relevant,
however the ordering within the sequence produced by psynzs is important (see 6.11).

Gsyms returns the global symbols of the image. Lsyms, psyms, and spec return (respectively) the
local symbols, parameter symbols, and the procedure type.

NOTE2
is created is

Procedure images are created by the language processor.
outside the scope of this International Standard.

How a procedure image

6.5 Association

An association is any mapping from a set of symbols to values.

A: Symbol -+ Value .

Associations are typically partial, being defined only on the symbols used by a particular procedure
image. Let x be a symbol, y a value, and A and B be associations.

cx -+ yl denotes the association that maps the symbol x
to the value y and maps no other symbols

16

@ ISO/IEC ISO/IEC 13886: 1996(E)

A+B denotes an association that satisfies

(A+B) (x> = B(x) if B is defined on x

= A(x) otherwise

domain (A) denotes the set of symbols x for which A(x) is defined

range (A) denotes the set of values { A(x) 1 x is in domain(A) }

6.6 Procedure closures

A procedure closure is a pair <I,A> where I is a procedure image and A is an association mapping
the global symbols of I, and no others. In particular, the local and parameter symbols have no
mappings. Procedure closures are the values of procedure type referred to in ISO/IEC 11404 -
Language-Independent Datatypes.

A complete procedure closure is a procedure closure for which all the global symbols of the image
are mapped.

A partial procedure closure is a procedure closure for which at least one of the global symbols is
not mapped.

NOTES

An example of a partial procedure closure is the value of a procedure A nested within a
procedure B before procedure B is invoked. This is partial because references from A to B’s
local variables cannot be mapped until the invocation of B.

Procedure closures are typically constructed as part of compilation, or during execution,
according to the rules of the particular programming language involved.

67 l Boxes, pointers, values, and datatypes

A pointer datatype, as defined in ISO/IEC 11404 - Language-Independent Datatypes, is a datatype
whose values are references to other values; in particular, a value of datatype pointer-to-D, where
D is a datatype, is a reference to a value of datatype D.

In the LIPC model, the datatype of a box is a pointer datatype as defined in ISO/IEC 11404 -
Language-Independent Datatypes Every box has a value which is a reference to some other value.
If a box is used (e.g., in a LIPC mapping) to model the concept of “a variable of datatype D”,
which some languages have, then it “holds” a value of datatype D (see 6.2) and the box is a value
of datatype pointer-to-D.

NOTE 1 - An entity called “a variable of datatype D” cannot literally be a value of datatype
D because such values cannot vary, any more than an “integer array” can literally be a value of
datatype integer (since those are single values only).

17

ISO/IEC 13886:1996(E) @ ISO/IEC

In ISO/IEC 11404 - Language-Independent Datatypes, “derekrend is defined as a characteriz-
ing operation of alI pointer datatypes. When this operation is applied to a value P of datatype
pointer-to-D, the result is the value V of datatype D that P references. In the LIPC model, the
corresponding operation on a box is Read. The Create and Write operations for boxes (see 6.2) are
not characterizing operations defined in ISO/IEC 11404 - Language-Independent Datatypes, but
.correspond respectively to situations where new objects of pointer datatype can be created, and
when the value V of datatype D referenced by a particular pointer-to-D value P is replaced by a
‘new value. Both of these operations are needed for boxes in the LIPC model though neither are
necessarily required for all objects of pointer datatype in all circumstances.

NOTES

2 The operation Write on a box corresponds to the concept in many languages of “assigning
a value”. Changing the value of datatype D referenced by a box does not change the box
itself, only its contents, just as assigning a new value to a variable X in a language does not
change X itself, which is still the same variable with the same name.

3 The concept of “pointer variables”, sometimes referred to as “indirect addressing”, exists in
some languages. ISO/IEC 11404 - Language-Independent Datatypes defines the datatype
of such an object as pointer-to-pointer-to-D. It references a value of datatype pointer-to-D,
(i.e., an object of another pointer datatype). That object references a value of datatype D.
In the LIPC model this corresponds to a box which holds a reference to another box, which
in turn holds a value of datatype D.
In this way, the LIPC model supports parameter passing of pointer datatypes, which some
languages support directly or indirectly, and both the LID and LIPC standards support
indirect addressing of any required depth.

4 In some discussions of programming languages the concept “instances of values” is used. In
LIPC terms an instance of a value can be thought of as a value being held in a box, which
allows modelling of situations where multiple instances of the same value exist simultaneously.
It is possible in the LIPC model for more than one entity to have access to the same box (e.g.,
it has been passed as an actual parameter whose formal parameter is of a pointer datatype).
The entities than have access to the same instance of the value; furthermore, if the box is
modified (i.e., the value it holds is changed through use of a Write operation), then this
modification is visible to both entities and hence may affect subsequent behavior in either or
both. In environments in which such multiple accesses cannot be supported directly, some
implementation defined mechanism must be provided to simulate it, for example by creating
duplicate boxes, and providing means of ensuring that any change in one is automatically
applied to the other, either immediately or at least before any event occurs which uses the
value held in the box.

A procedure datatype, as defined in ISO/IEC 11404 - Language-Independent Datatypes, is in
general a composite (though not an aggregate) datatype which incorporates within its specification
the datatype of all of its parameters (including any notional parameters used to return results to .
“function” procedures). In the LIPC model, a procedure closure is an entity whose datatype is
some LID procedure datatype, but also encompasses the concept of Global State.

NOTE 5 - By this means, matching of procedure datatypes in the LIPC model automatically
ensures matching of the number and datatypes of parameters.

6e8 Interface closure

An interface closure is a collection of names and a collection of procedure closures, with a mapping
between them. This is modelled as an association that maps the set of names to procedure closures.

‘18

@ ISO/IEC ISO/IEC 13886:1996(E)

NOTE - For example, if Sue, Mary, and Sam are procedure names (symbols), and X, Y, and
2 are procedure closures, then

I = [Sue + Xl + [Mary ---) Y] + [Sam + Z]

is an interface closure. domain(I) = {Sue, Mary, Sam} (see 6.5). Thus, domain(I) is the set
of procedure names in the interface closure I. The procedure closure in I named by Mary is
denoted I(Mary).

6e9 Interface type

An
bt e

interface type is a collection of names and a collection of procedure types, with a
ween them. This is modelled as an association that maps a set of procedure types to

mapping .
names.

NOTES
1 An interface type is not a datatype.

2 For example, if Sue, Mary, and Sam are procedure names, if X, Y, and Z are procedure
closures of the corresponding procedure types XT, YT, and ZT respectively, then

IT = [Sue + XT] + [Mary --3 YT] + [Sam ---) ZT]

is the interface type corresponding to the interface closure I introduced in the preceding

sub-clause.

6.10 Specifications

The LIPC model defines the operation spec on procedure images to return the procedure type of
the image. Thus,

spec :

spec is gener Naked to procedure closures bY

and spec is further generalized
and I is an interfaceclosure:

Image -+ Procedure-Type

spec: Procedure-Closure --) Procedure-Type

spec (<image,assoc>) = spec (image)

spec:

to interface closures by the following where P is a procedure-type

Interface-Closure + Interface-Type

For I = [namer -+ PJ + . . . + [name, -+ &I S

spec (I) = [name1 + spec(PJl + . . . + [name, -+ spec(P,)]

The operation spec on interface-closures returns an association between names and procedure types.

19

ISO/IEC 13886:1996(E) @ ISO/IEC

6.11 Basic procedure invocation

Basic procedure invocation is an operation on complete procedure closures described as follows:

invoke: Procedure-Closure * Sequence(Value) --+ Status * Sequence(Value)

where Status is the set of termination identifiers (see ISO/IEC 11404:1996, clause 9.3). The first
sequence of values represents the input parameters to the invocation. The second sequence of
values represents the values resulting from the invocation. The status represents the termination
condition, including the “normal” termination.

Applying invoke to the procedure closure <Image,Association> and input values <&,...V, > .
results in the following actions:

Let <Al,...A, > = psyms(Image)
<Ll,...L,> = lsyms(Image)

For i = I to m, do

LB; = create0

Define invocation association Q by:

Q = Association + [Al --+ VJ + . . . + [A, --+ V,l
+ [L1 + LB11 + . . . + CL, + LB,]

Then

"Execute Image in the context of association Q”

Executing an image in a context is a primitive notion defined by the progr amming language proces-
sor (or standard) for the language in which Image is written. When execution terminates, a value
in Status * Sequence(Value) will result, and the association Q is lost.

NOTE - The boxes created in forming Q are no longer accessible
language permits them to be “returned” in some fashion (see 6.13)

unless the programming

6.12 Type correctness

It is not meaningful to apply the invoke operation to any procedure closure C and any sequence of
input values <VI ,... V, >. Invocation is meaningful only if its parameters are type correct.

Let spec(C) be

PROCEDURE (al: AT1, . . . aan : ATan)

RETURNS (rl: RT1, . . . r,: RT,)
SIGNALS (El 3 . . . E,n)

where al through a* are the input parameters (in order), rl through r, are the output parameters
(in order), and El through E,n are the non-normal terminations.

Invocation of C on <V1,...V, > is type correct if

20

@ ISO/IEC ISO/IEC 13886:1996(E)

n=an (the number of parameters is correct)

and

For i = 1 to n,
Vi is a value of type ATi (the types of the parameters are correct)

When the invocation of C on <VI, . ..Vn > terminates,it produces a result of the form

< status, <W1,...W,> >

If the closure C is a member of the procedure type to which it has been mapped, then the following
information is known about the above result.

status = "normal" or status = Ei for some i in l..en

If status = "normal" then

m = rn, and

Wj is a value of type RTj (for all j in l..m)

ElseIf status = Ei, and Ei is declared to have structure

fl: FT1, . . . ffn : FT fn

then

m = fn, and

Wj is a value of type FTj (for all j in l..m)

.

6.13 Associates

In order to be able to discuss the set of global variables shared by two procedures, or to define
pointer (or parameter) aliasing, it is necessary to know when one value is “referenced by” or is
“accessible from” another value. X is a simple associate of Y if X can be obtained from’Y by
following pointers or extracting the elements of aggregate values. X is a generalized associate of Y
if X can be obtained from Y by combinations of the above actions and by invocating procedures.

The next two clauses formalize these two concepts.

6.13.1 Simple Associates

The concept of simple associates is embodied in two functions.

The fist such function is Immediate Associates. IAssoc(x) is defined as follows:

IAssoc: Value -+ Set(Value)

l Ifx is a value of some non-aggregate type defined in ISO/IEC 11404 - Language-Independent
Datatypes, then IAssoc(x)‘is the empty set.

21

ISO/IEC 13886:1996(E) @ ISO/IEC

l If x is a value of some aggregate type defined in ISO/IEC 11404 - Language-Independent
Datatypes, then IAssoc(x) is the set of all elements of the aggregate.

l If x is a box which currently holds a value v,

IAssoc(x) = the set consisting of the single value v

l If x is a procedure closure,

IAssoc(x) = the empty set

The second associates function is Transitive Associates:

Assoc : Value -+ Value

For any value X,

X

Assoc(x) is the smallest set satisfying

is in Assoc(x)

If y is in Assoc(x), then all elements of IAssoc(y) are in Assoc(x).

NOTEl- Intuitively, Assoc(x) consists of all values that can be extracted from x by applying
various extraction operations on aggregates and read operations on boxes. Since read depends
on the current state, IAssoc and Assoc depend on the current state as well.

When a procedure closure <I,A> is invoked on inputs <VI ,...V, >, it has immediate and direct
access to all the values in

r=ge(A) U {VI,. . .V,)

and (with some computation) direct access to all the values in

z= Assoc (range(A) U {V,,...V,})

The invocation of <&A> on <VI, . ..V. > can potentially read or write any box in Z and no others.

NOTES

2 It can also create new boxes.

.

3 The set Z does not include values that can only be accessed by invoking other procedure
closures.

6.l3.2 Generalized Associates

The concept of generalized associates includes values that can be obtained with the help of other

procedures. Again, two functions are needed.

Generalized Immediate Associates is defined as follows:

GIAssoc: Value + Value

If x is a procedure closure <I,A>,

22

@ ISO/IEC ISO/IEC 13886: 1996(E)

GIASSOC(X) = range(A).

Ifx is any other value,

GIAssoc(x) = IAssoc(x).

Generalized Transitive Associates is defined as:

GAssoc : Value + Value

For any value x, GAssoc(x) is the smallest set satisfying

is in GAssoc(x)

If y is in GAssoc(x), then all elements of GIAssoc(y) are in GAssoc(x).

NOTE - Intuitively, GAssoc(x) consists of all values that can be extracted from x by applying
various extraction operations on aggregates, read on boxes, and procedure invocation.

When a procedure closure <I,A> is invoked on inputs <VI,...&, >, let

GZ = GAssoc (range(A) U {V,,...V,})

With the help of other procedure.closures, this invocation can access any value in GZ. The only
elements of the global state that the invocation of <I,A> on <Vi,...V, > can access or modify
are those which are boxes in GZ.

It is assumed that for a procedure closure <I,A> to invoke another procedure closure <J,B>,
< J,B> must be one of the following alternatives:

1. in range(A) (th e most common case)

2. accessible from an input parameter,

3. J is in the range of the invocation association of <I,A> and B can be constructed from
accessible values.

6.14 Execution and Invocation contexts

The execution context of the procedure closure <Image,Association> is the set of all boxes in
the Assoc(range(Association)). The invocation context of a particular invocation of the procedure
closure <Image,Association> is the set of all boxes in the Assoc(range(Q)) where Q is the invocation
association of this invocation of <Image,Association>.

NOTE - Both the execution context and the invocation context can vary over time during the
execution of Image.

23

ISO/IEC 13886: 1996(E) @ ISO/IEC

6.15 Parameter translations

When a procedure invocation is required to cross between execution contexts, it may not be possible
to pass the parameter and return values directly between these contexts. Consider the following
two examples.

In the fist example, a program written in programming language Ll calls a procedure written in
language L2. If Ll and L2 have different datatypes, this call may require translating Ll input
values into their L2 equivalents. On return a reverse translation may be needed.

In the second example, a program calls a procedure written in the same language (thus needing no
datatype translation), but in a separate address space. Assume that pointers are implemented in a
way that ties them to a specific address space (the usual case). So any pointers in the input values
will be tied to the client procedure’s address space. These pointers must be uniformly replaced by
“equivalent” pointers tied to the procedure’s address space. Again, on return a reverse translation
may be needed.

Parameter translations can lose information (e.g., when translating between different floating point
formats), and can disrupt sharing relationships (e.g., when moving pointers between address spaces).
Since these effects are visible to programmers, the LIPC model defines a way of handling them.

Parameter translations are modelled in the following way. Let C be an arbitrary procedure closure,
and let TF and TB be procedure closures that do parameter translations for C. Then we will define

wrap (TF, C, TB)

to be a procedure closure that (when invoked) does the following:

1 . invokes TF to translate the input parameters

2. invokes C with the translated parameters, and

3. invokes TB to translate the returned values back again.

The following describes how the wrap function aids in modelling cross execution context calls. Let
Xl and X2 be execution contexts.

NOTE 1 -
is necessary

It
to

does not matter
call from one to

what an execution context is, just that
the other.

some sort of translation

Let Cl be the procedure closure representing the target procedure in its native context Xl. Then,

c2 = wrap (TF, Cl, TB)

is the procedure closure which is actually called in context X2. In many cases, cahg C2 will have
visibly different effects from calling Cl.

A more precise definition of wrap would be:

24

@ ISO/IEC ISO/IEC 13886:1996(E)

wrap: Procedure-Closure * Procedure-Closure * Procedure-Closure
-+ Procedure-Closure

wrap (TF, C, TB) = <IM, [pre-+TF] + [main-&] + [post+TB]>

For convenience, assume that TF and TB take a single Sequence(Value) input and produce a single
Sequence(Value) output. This allows TB in particular to be invoked on output sequences of differing
length.

When procedure closure wrap(TF,C,TB) is invoked on input sequence V the image IM causes the
following steps to occur:

1. TF is invoked on <V>, producing <E, W>

(1.1) If E l= "normal)', IM terminates with <E, W>
(1.2) If E = "normal", W is a singleton <WI >

2. C is invoked on WI, producing <F, X>

3. TB is invoked on <X>, producing <G, Y>

(3.1) If G 1= "normal", IM terminates with <G, Y>
(3.2) If G = "normal)', Y is a singleton <Yl >

4. IM terminates with <F, Y1 >

Using procedure closures to do the parameter and result translations allows the full computational
power of the model to be used in expressing these translations. TF and TB can communicate
with each other via shared boxes, and can access arbitrary other parts of the global state if their
association maps are defined accordingly. However in typical usage, TF and TB are expected to
be quite simple.

N6TE2 - TF and TB are the only places where Value (the union of all datatypes) is used in
a conceptual context.

Example: model of a remote procedure call from a client address space
(CAS) to a server address space (SAS). Let P be a procedure in SAS.
Let MC be the client side marshalling code, and UC be the client side
unmarshalling code. MS and US are the corresponding codes on the server
side. The proc closure

PW = wrap (US, P, MS)

represents procedure P as exported to the outside world. PW takes
“wire format') data as input and returns “wire format" data as output.
The procedure closure

PC = wrap (MC, PW, UC)

represents procedure P as imported into CAS. PC's inputs and outputs are
appropriate for CBS.

25

ISO/IEC 13886:1996(E) @ ISO/IEC

6.16 Defining Translation Procedures

Translation procedures typically need to take a composite value V and replace only certain portions
of V, leaving the rest of V as in the original. An example is replacing all boxes in V with new ones
while preserving the sharing structure within V. Expressing this as an algorithm can be somewhat
complex. However there are a number of concepts that can help describe the intended result (leaving
the algorithmic details to the implementors).

The following definitions are not used in this International Standard, but will help shorten defini-
tions in binding standards.

Let T be some mapping from values to values:

T: Value --+ Value

T is an identity on datatype Q if for all values v of datatype Q,

T(v) = v

Let F be a characterizing operation of datatype Q, and F’ be a characterizing operation on datatype
Q’ with the same number of parameters as F. T maps F to F’ if for all values vr,...v, in the input
domain of F,

T(F(vI.. .v,)) = F’(T(vI), . . . T(v,) .)

If T maps all the characterizing operations of Q to corresponding ones in Q’, we say that “T maps
Q into Q’ “.

T preserves datatype Q if T maps each characterizing operation of Q to itself.

NOTE - As an example of how the above concepts can be used, assume that we need to define
a translation procedure TF that replaces all boxes in a value V with new ones while preserving
the sharing structure within V TF invoked on input sequence V operates as follows:

1. Compute the set
{B1,...B,} = Assoc (V) n Boxes

2. For i = 1 to n,

ci = create0
3. Let 2 be a function’ 2: Value -+ Value satisfying

For any box Bi, Z(Bi) = Ci
Z preserves all aggregate datatypes except Box
2 is an identity on all non-aggregate datatypes

4. Finally, set TF(V) = Z(V).

26

@ ISO/IEC ISO/IEC 13886: 1996(E)

7 Interface Definition Notation

The Interface Definition Notation is the means defined in this International Standard for specify-
ing declarations for procedures, procedure parameters, datatypes, and attributes. This concrete
notation supports the datatypes defined in ISO/IEC 11494 - Language-~&pen&nt Datatypes.

NOTE - For a language processor conform to this clause of this International Standard (see 4),
it is necessary that a binding be specified between the procedure calling mechanism for that
language processor and the IDN defined in this clause. This binding will need to incorporate
inward and/or outward mappings for the datatypes of that language to the datatypes defined
in ISO/IEC 11404 - Language-Independent Datatypes, depending on the mode of conformity
(client, server, or both) that is required.

‘7.1 Definitional Conventions

7.1.1 Character Set

letter abcdefghijklmnopqrstuvwxyz
digit 0123456789
special 0 0 <> . 9

(parentheses) (braces) (angle-brackets) (full stop) (comma)
;

icolon) (
= / *

semicolon) (equals) (solidus) (asterisks) (minus)
hyphen -
apostrophe '
quote 1?

escape !

The character space is required to be bound to the “space” member of ISO/‘IEC 10646-1:1993, but
it only has meaning within character-literals and string-literals.

A bound-character is defined to be a letter, digit, hyphen, special, apostrophe, space, or quote. A
bound-character is required to be associated with the member having the corresponding symbol in
any character-set derived from ISO/IEC 10646-1:1993, except that no significance is attached to
the “case” of the letters.

A bound-character and the escape character are required in any implementation to be associated
with particular members of the implementation character set

An added-character is a character not defined in this International Standard. An added-character
is any other member of the implementation character-set which is bound to the member having the
corresponding symbol in an ISO/IEC 10646-1:1993 character set.

7.1.2 Formal Syntax

This International Standard defines a formal representation for datatype declaration and identi-
fication. The following notation, derived from Backus-Naur form, is used in defining that formal

27

ISOAEC 13886:1996(E) @ ISO/IEC

representation. In this clause, the word marks is used to refer to the characters used to define
the formal mechanism, while the word character is used to refer to the characters used in forming
procedure and datatype declarations and identifications.

A terminal symbol is a sequence of characters delimited by two occurrences of the quotation-mark
(“), the fist of which precedes the fist character in the terminal symbol, and the second of which
follows the last character in the terminal symbol. A terminal symbol represents the occurrence of
a sequence of characters.

A non-terminal symbol is a sequence of marks, each of which is either a letter or the hyphen mark
(a), terminated by the fist mark which is neither a letter nor a hyphen. A non-terminal symbol
represents any sequence of terminal symbols which satisfies the production for that non-terminal
symbol. For each non-terminal symbol there is exactly one IDN production. Non-terminal symbols
are highlighted within the text of this International Standard by italics.

A repeated sequence is a sequence of terminal and/or non-terminal symbols enclosed between an
open-brace mark (0 and a close-brace mark 0). Th e se q uence of symbols so enclosed is permitted
to occur any number of times at the place where the repeated sequence occurs, but is not required
to occur at all.

An optional sequence is a sequence of terminal and/or non-terminal symbols enclosed between and
open-bracket ([) d an a close-bracket (I). The sequence of symbols so enclosed is permitted to occur
once at the place where the optional sequence occurs, but is not required to occur at all.

An alternative sequence is a sequence of terminal and/or non-terminal symbols preceded by the
vertical stroke mark (I) and f o 11 owed by either a vertical stroke mark or a full-stop mark (.). The
sequence of symbols so delimitedis permitted to occur instead of the sequence of symbols preceding
the f&t vertical stroke.

A production defines the validsequences of symbols which a non-terminal symbol represents. A
simple production has the form: .

non-terminal-symbol = valid-sequence.

where valid-sequence is any sequence of terminal symbols, non-terminal symbols, optional se-
quences, repeated sequences and alternative sequences. The equal-sign mark (=) separates the
non-terminal symbol being defined from the valid-sequence which represents its definition. The
full-stop mark terminates the valid-sequence.

RI.3 Whitespace

A sequence of one or more space characters, except within a character-literal or string-literal, shall
be considered whitespace. Any use of this International Standard may define any other characters
or sequences of characters to be whitespace, such as horizontal and vertical tabulators, end of line
and page indicators, etc.

A comment is any sequence of characters beginning with the sequence “/*” and terminating with the
fist occurrence thereafter of the sequence “*/“. E ver y h c aracter of a comment shall be considered
whitespace.

28

@ ISO/IEC ISO/IEC 13886:1996(E)

Any two objects which occur consecutively may be separated by whitespace, without affect on the
interpret ation of the syntactic construction. Whitespace shall not appear within lexical obj ects.

7.2 Interface Type Declarations

interface-type = “interface” Cinterf ace-synonym (* : "1
[interface-identifier] “begin” interface-body “end”.

interface-synonym = identifier.

interface-identifier = object-identifier.

interface-body = {import} {declaration ” ; 0).

declaration = value-decl 1 type-decl 1 procedure-decl 1 termination-decl.

NOTE - An interface type definition contains the declaration of various interface entities, such
as constants, datatypes, components of generated types (e.g., fields of a record), etc. These
declarations associate an identifier with the interface entity given in the declaration. The usage
of this identifier is called its defining occurrence. When this identifier is used elsewhere in
the interface type definition, it refers to the entity associated with its defining occurrence. In
order to avoid ambiguity as to which entity a reference identifier refers to, rules governing the
uniqueness of defining identifiers and rules governing how to resolve reference identifiers are
provided in the appropriate clauses.

The interface-synonym in the interface-type declaration is an optional human readable name for
an interface type. The interface-identifier of this production is an object-identifier that uniquely
identifies the interface type definition.

All interface-synonyms shall be unique within the immediately containing interface-type.

7.2.1 Type references

In an interface body, an identifier in an interface type definition used to refer to a type-specifier is
called a type-reference (see 7.7).

A type-reference matches a type-decl if the type-identifier of the type-decl is the same as the identifier
component of the type-reference. The following rules govern the use of type-references within an
interface-type.

If’ the interface-synonym component of the type-reference is absent then the type-reference shall
either match a type-decl in the immediately containing interface-type or match a type-decl which
is imported into the immediately containing interface-type (either explicitly as an import-symbol
or implicitly by importing an entire interface type definition). If’ the type-reference matches a
type-decl in the immediately containing interface-type, then it refers to the immediately contained
type-specifier of that type-de& Otherwise, the type-reference shall match at most one imported
type-decl, and the type-reference refers to the immediately contained type-specifier of that type-decl.

NOTE - If the type-identifier of an imported type-&ecZ is the same as a type-identifier defined
in the immediately containing interface-type or is the same as a type-identifier of a type-decl
imported from a different interface type definition, then it may only be referenced using its
associated interface-synonym.

29

ISO/IEC 13886:1996(E) @ ISO/IEC

If the interface-synonym component of the type-reference is present then the type-reference shall
match a type-decl in the interface type definition denoted by the interface-synonym. The type-
reference refers to the immediately contained type-specifier of this type-decl.

7.2.2 Value References

In an interface body, an identifier in an interface type definition used to refer to a value is called a
value-reference A value-reference shall refer to either:

(a) value-expression used in an value-decl; or

(b) an enumeration-identifier; or

(> c a

(4 a

() e a

(0 a

field within a record-type; or

formal parameter of a procedure-decl, procedure-type, or termination-decl; or

return-arg within a procedure-decl or procedure-type; or

formal-value-parm of a parameterized-type-decl.

The value of a value-reference may be known statically, if it refers to a value-expression or
enumeration-identifier. Otherwise, it is determined at the time of procedure invocation or ter-
mination.

7.3 Import Declarations

rt = “imports” [*l (“import-symbol-list”) “1 *lf roml’
[interface-synonym ” : “1 object-identifier .

import-symbol-list = import-symbol {11,11 import-symbol}.

import-symbol = identifier.

The import declaration shall be used to allow the current interface-body to reference identifiers
defined in other interface type declarations. The object-identifier in the import statement is the
interface-identifier of the interface type definition in which the symbols are defined. The interface-
synonym in the import production, if present, may be used within the scope of the current interface-
body as a prefix when referencing the imported symbol.

Each import-symbol shall be an identifier that is defined by a value-decl, a type-decl, a procedure-decl,
or a termination-decl in the interface-body of the interface type definition denoted by the object-
identifier in the import statement. Only those import-symbols that appear in the import-symbol-list
shall be used within the scope of the current interface-body. The meaning associated with the
import-symbol is that which it has in its defining interface type definition. If no import-symbol-list
is present, then the entire interface is imported. This is equivalent to explicitly importing (as an
import-symbol) every identifier defined by a value-decl, type-decl, procedure-decl, and termination-
decl in the referenced interface type definition.

30

@ ISO/IEC

7.4 Value Declarations

value-decl = “‘value” value-identif
constant-type

value-identifier = identifier.

constant-type-spec = integer-type
boolean-type
ordinal-type
scaled-type 1

value-expression = value-reference
integer-literal
boolean-literal
ordinal-literal
rational-literal
void-literal.

ISO/IEC 13886:1996(E)

tt . tt .er 0
spec “=” value-expression.

real-type 1 character-type 1 .
enumerated-type 1 state-type 1
time-type I bit-type I rational-type I

complex-type.

I procedure-reference 1
real-literal I character-literal I
enumerated-literal I state-literal I
time-literal I bit-literal I
I scaled-literal I complex-literal I

A value-decl declares an identifier to be equal to a constant value of a given datatype. This identifier
may then be used wherever a vahe-expression of that datatype may be used in the interface type
definition (e.g., in declaring the bounds of an array).

All value-identifiers shall be unique within the immediately containing interface-type. A value
expression is either a literal (immediate value) of the specified type or a value-reference. This
value-reference shall refer to a valve-expression declared in another value-decl or to an enumeration
literal (if the specified datatype is an enumeration).

7.5 Datatype Declarations

Paragraphs in this clause which refer for a formal interpretation to ISOAEC 11404 are
included for completeness and assistance to the reader, and are considered to be informative
parts of this International Standard.

type-decl = “type”. type-identifier “=‘* type-specifier I
parameterized-type-decl.

type-identifier = identifier.

A datatype declaration declares an identifier to be a specific type. This identifier may then be used
wherever a type-specifier may be used in the interface (e.g., to define the datatype of a parameter
in a procedure declaration). The syntax and semantics of the parameterized-type-decl is given in
clause 7.6.

All type-identifiers shall be unique within the immediately containing interface-type.

The semantics of all datatypes given in this document are consistent with the semantics of the
datatypes as defined in ISO/IEC 11404 - Language-Independent Datatypes.

31

ISO/IEC 13886:1996(E) @ ISO/IEC

type-specifier = primitive-datatype I generated-datatype 1 def ined-datatype.

defined-datatype = type-reference [subtype-spec].

The type-reference in the defined-datatype production shall refer to a type-specifier. The type-
identifier defined in the immediately containing type-decl is a synonym for the type-specifier referred
to by the defined-datatype. If’ the type-referencerefers to an integer-type, real-type, or an enumemted-
type then an optional subtype-spec may be included. If the type-reference refers to a real-type and
a subtype-spec is included, that subtype-spec shall only include a single range of real values.

7.5.1 Primitive Datatypes

primitive-datatype = integer-type I real-type 1 character-type I
boolean-type I enumerated-type I octet-type I
procedure-type 1 state-type] ordinal-type I
time-type 1 bit-type 1 rational-type I
scaled-type I complex-type] void-type.

7.5.1.1 Integer

Integer is the mathematical datatype comprising the exact integral values. Syntax:

integer-type = “integer”.

integer-literal = [11-11] digit{digit} .

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.1.2 The real datatype

Real is a family of datatypes which are computational approximations to the mathematical datatype
comprising the “real numbers”. Specifically, each real datatype designates a collection of mathe-
matical real values which are known to certain applications to some finite precision and must be
distinguishable to at least that precision in those applications. Syntax:

real-type = “real” [‘I (” radix “, ” factor I’) **] .

radix = value-expression.

factor = value-expression.

real-literal = integer-literal [“. “digit{digit}] [[“J’] *‘Et’ digit{digit}] .

The interpretation of the syntax is formally defined in ISO/IEC 11404.

32

@ ISO/IEC ISO/IEC 13886:1996(E)

7.5.1.3 The character datatype

Character is a family of datatypes whose value spaces are cha;racter-sets. Syntax:

character-type = **character’* [‘* (‘* repertoire-list”) “1 .

repertoire-list = repertoire-identifier {*1,0 repertoire-identifier}.

repertoire-identifier = value-expression.

character-literal = *’ ’ “character” ’ ‘* .

character =
The value of character shall be any character drawn
from the character set identified by the repertoire
identifier in the production character-type, or from the
default character set if the repertoire identifier is
absent.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.1.4 The boolean datatype

Boolean is the mathematical datatype associated with two-valued logic. Syntax:

boolean-type = *lboolean**.

boolean-literal = ‘*true” I **false**.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.1.5 The enumerated datatype

Enumerated is a family of datatypes, each of which comprises a finite number of distinguished
values having an intrinsic ordering. Syntax:

enumerated-type = “enumerated” ** 0’ enumerated-value-list **)‘*.

enumerated-value-list = enumerated-literal { ** , ‘* enumerated-literal}.

enumerated-literal = identifier.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.1.6 The octet datatype

octet-type = **octet**.

According to ISO/IEC 11404 - Language-Independent Datatypes, the octet datatype is the derived
datatype: array (1..8) of (bit).

33

ISOAEC 13886:1996(E) @ ISO/IEC

7.5.1.7 The procedure datatype

Procedure generates a datatype, called a procedure datatype, each of whose values is an operation
on values of other datatypes, designated the argument datatypes. That is, a procedure datatype
comprises the set of all operations on values of a particular collection of datatypes. All values of a
procedure datatype are conceptually atomic. Syntax:

procedure-type = ‘*procedure’* ” (” [argument-list] *‘) ”
[**returns** ‘* (” return-argument **) “1
[Vaises” *1(1* termination-list **)11] .

argument-list = argument-declaration {I* , ‘* argument-declaration}.

argument-declaration = direction argument.

direction = **in” I “out” 1 *5nout”.

argument = argument-name *’ : ” [**restricted**] argument-type.

argument-type = type-specifier.

argument-name = identifier.

return-argument = [argument-name ‘* : “1 argument-type.

termination-list = termination-reference { ‘* , ‘* termination-reference} .

termination-reference = [interface-synonym ‘* : : “1 identifier .

A procedure-declaration associates one name with a procedure-type, as part of the interface-type
association (see 6.9).

All termination-references shall be unique within the immediately containing interface-type.

7.5.1.7.1 Procedure parameters

An argument-type may designate any datatype. The argument-names of arguments in the argument-
list shall be distinct from each other and from the argument-name of the return-argument, if any.
The termination-references in the termination-list, if any, shall be distinct.

7.5.1.7.2 Procedure values

The values of a procedure-type are procedure closures, as defined in clause 6.6. An argument in the
argument-list is said to be an input argument if its argument-declaration contains the direction “in”
or “inout” . The input space is the cross-product of the value spaces of the datatypes designated
by the argument-types of all the input arguments. An argument is said to be a result argument
if it is the return-argument or it appears in the argument-listand its argument-declaration contains
the direction “out” or “inout”. The normal result space is the cross-product of the value spaces of
the datatypes designated by the argument-types of all the result arguments, if any, and otherwise
the value space of the void datatype. When there is no termination-list, the result space of the
procedure datatype is the normal result space, and every value p of the procedure datatype is a
function of the mathematical form:

34

@ ISO/IEC ISOnEC 13886:1996(E)

P : 11*12*. . .*I, -+,*Rl*R2*. . .*R,

where Ik is the vahre space of the argument datatype of the &h input argument, Rk is the value
space of the argument datatype of the kth result argument, and I&, is the value space of the
return-argument.

When a termination-list is present, each termination-reference is associated, by some termination-
declaration, with an alternative result space which is the cross-product of the value spaces of the
datatypes designated by the argument-types of the arguments in the temtination-argument-list. Let
Aj be the alternative result space of the jth termination. Then:

Aj=E$*Ejz*. . . *titi

where Ek is the value space of the argument datatype of the kth argument in the termination-
argument-list of the jth termination. The normal result space then becomes the alternative result
space associated with normal termination (A’), modelled as having termination-identifier “*nor-
mal”. Consider the termination-references, and “*normal”, to represent values of an unspecified
state datatype ST. Then the result space of the procedure datatype is:

ST*(AOIA~ I A2 I...lsN>,

where A0 is the normal result space and A k l 1s the alternative result space of the kth termination;
and every value of the procedure datatype is a faction of the form:

- P . . 11*12*. . . *I, +S$*(AO IAl I A2 I. . . IAN).

Any of the input space, the normal result space and the alternative result space corresponding to
a given termination-identifier may be empty. An empty space can be modelled mathematically by
substituting for the empty space the value space of the datatype Void.

The value space of a procedure datatype conceptually comprises all operations which conform to
the above model, i.e. those which operate on a collection of values whose datatypes correspond to
the input argument datatypes and yield a collection of values whose datatypes correspond to the
argument datatypes of the normal result space or the appropriate alternative result space. The term
“corresponding” in this regard means that to each argument datatype in the respective product
space the “collection of values” shall associate exactly one value of that datatype. When the input
space is empty, the value space of the procedure datatype comprises all niladic operations yielding
values in the result space. When the result space is empty, the mathematical value space contains
only one value, but the value space of the computational procedure datatype may contain many
distinct values which differ in their effects on the “real world”, i.e. physical operations outside of
the information space. Value syntax:

procedure-declaration =
llprocedurell procedure-identifier ** (‘* [argument-list] “)‘*

[*keturns’* ‘* (‘*return-argument **) “1
[**raises** ** (**termination-list**) **I .

procedure-identifier = identifier.

procedure-reference =‘procedure-identifier.

35

ISO/IEC 13886:1996(E) @ ISO/IEC

A procedure-declaration declares the procedure-identifier to refer to a (specific) value of the procedure
datatype whose type-specifier is identical to the procedure-declaration after deletion of the procedure-
identifier.

7.5.1.7.3 Procedure subtypes

For two procedure datatypes P and Q:

l P is said to be formally compatible with Q if their argument-lists are of the same length,
the direction of each argument in the argument-list of P is the same as the corresponding
argument in the argument-list of Q, both have a return-argument or neither does, and the
termination-lists of P and Q, if present, contain the safne termination-references.

l If P is formally compatible with Q, and for every result argument of Q, the argument datatype
of the corresponding argument of P is a (not necessarily proper) subtype of the argument
datatype of the argument of Q, then P is said to be a result-subtype of Q. If the return
argument datatype and all of the argument datatypes in the argument-list of P and Q are
identical (none are proper subtypes), then each is a result-subtype of the other.

l If Pis formally compatible with Q, and for every input argument of Q, the argument datatype
of the corresponding argument of P is a (not necessarily proper) subtype of the argument
datatype of the argument of Qj then Q is said to be an input-subtype of P. If all of the input
argument datatypes in the argument-lists of P and Q are identical (none are proper subtypes),
then each is an input-subtype of the other.

7.5.1.8 The state datatype

State is a family of datatypes, each of which comprises a finite number of &tingukhxl but un-
ordered values with no characterizing operations, except Equal. Syntax:

state-type = “state ” ‘* (‘* state-value-list **) ** .

state-value-list = state-literal {** ,‘* state-literal}.

state-literal = identifier.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.1.9 The ordinal datatype

Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype
Integer). Ordinal is the infkite enumerated datatype. Syntax:

ordinal-type = ‘*ordinaltf .

ordinal-literal = digit {digit}.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

36

@ ISO/IEC ISO/IEC 13886:1996(E)

7.5.1.10 The time datatype

Time is a family of datatypes whose values are points in time to various common resolutions: year,
month, day, hour, minute, second, and fractions thereof. Syntax:

time-type = "time" “(” time-unit [*‘,‘* radix '0" factor]")".

time-unit = "year" 1 "month" 1 "day" 1 "hour" 1 "minute" I "second" I
parametric-value.

time-literal = digit{digit} [“. “digit{digit}] .

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.I.Il The bit datatype

Bit is the datatype representing the finite field of two symbols designated “O”, the additive identity,
and “l”, the multiplicative identity. Syntax:

bit-type = "bit*'.

bit-literal = "0" I "1". .

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.1.12 The rational datatype

Rational is the mathematical datatype comprising the “rational numbers”. Syntax:

rational-type = "rational".

rational-literal = [*t-"] digit{digit} ["/" digit{digit}] .

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.1.13 The scaled datatype

Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each
individual datatype having a fked denominator, but the scaled datatypes possess the concept of
approximate value. Syntax:

scaled-type = “scaled” *’ (” radix *’ , ” factor “) U.

scaled-literal = ["-"I digit{digit} [fraction].

fraction = ” .” digit{digit}.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

37

ISO/IEC 13886:1996(E) @ ISO/IEC

7.5.1.14 The complex datatype

Complex is a family of datatypes, each of which is a computational approximation to the mathemat-
ical datatype comprising the “complex numbers”. Specifically, each complex datatype designates a
collection of mathematical complex values which are known to certain applications to some finite
precision and must be distinguishable to at least that precision in those applications. Syntax:

complex-type = *komplex** [** (** radix ** ,** factor **) **I .

complex-literal = *‘(*’ real-part ** , ** imaginary-part **) ** .

real-part = real-literal.

imaginary-part = real-literal.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.1.15 The void datatype

Void is the datatype representing an object whose presence is syntactically or semantically required,
but carries no information in a given instance. Syntax:

void-type = **void**.

void-literal = **niY*.

. The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.2 Generated datatypes

generated-datatype = record-type
I choice-type
I array-type
I pointer-type.

7.5.2.1 The record datatype

Record generates a datatype, called a record datatype, whose values are heterogeneous aggregations
of values of component datatypes, each aggregation having one value for each component datatype,
keyed by a fixed “field-identifier”. Syntax:

record-type = **record** “of ** *’ (**field-list**) ‘* .

field-list = field (,,,*’ field}.

field = field-identifier It : It field-type.

field-identifier = identifier.

field-type = type-specifier.

All field-names shall be unique within their immediately containing record-type or choice-type.

The interpretation of the syntax is formally defined in ISO/IEC ‘11404.

38

@ ISO/IEC ISO/IEC 13886:1996(E)

7.5.2.2 The choice datatype

Choice generates a datatype called a choice datatype, each of whose values is a single value from
any of a set of alternative datatypes. The alternative datatypes of a choice datatype are logically
distinguished by their correspondence to values of another datatype, called the tag datatype.

choice-type = **choice*’ “(fttag-typeff) ** “of *’ ft(ff~lternative-listtt) ‘*.

tag-type = type-specifier.

alternative-list = alternative { *‘, ** alternative} [default-alternative] .

alternative = tag-value-list ** : *’ alternative-type.

default-alternative = “default ‘* ” : ** alternative-type.

alternative-type = type-specifier.

tag-value-list = select-list.

select-list = select-item {**, *' select-item}.

select-item = value-expression I select-range.

select-range = lowerbound ff..ft upperbound.

lowerbound = value-expression] *'***.

upperbound = value-expression I *‘**‘.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

7.5.2.3 The array datatype

Array generates a datatype, called an array datatype, whose values are associated between the
product space of one or more finite datatypes, designated the index datatypes, and the value space
of the element datatype, such that every value in the product space of the index datatypes associates
to exactly one value of the element datatype. Syntax:

array-type = "array ** ff(ftindex-type-listff)ft **of" ff(ftelement-typeff)ft.

index-type-list = index-type {**," index-type}.

index-type = type-specifier I index-lowerbound ff..ft index-upperbound.

index-lowerbound = value-expression.

index-upperbound = value-expression.

element-type = type-specifier.

The interpretation of the syntax is formally defined in ISO/IEC 11404.

39

ISO/IEC 13886:1996(E) @ ISO/IEC

7.5.2.4 The pointer datatype

Pointer generates a datatype, called a pointer datatype, each of whose values constitutes a means of
reference to values of another datatype, designated the element datatype. The values of a pointer
datatype are atomic. Syntax:

pointer-type = **pointerft “to” *’ (**element-type**) ** .

Pointer is a type-generator which generates a primitive datatype each of whose values constitutes
a means of reference to values of another datatype, designated the element-type. The values of a
pointer datatype are boxes, as defined in clause 6.7.

A pointer with the “restricted” attribute is a pointer that never has the null label and is neither
statically nor dynamically aliased with any other pointer. Restricted pointers can be supported
efficiently; however, due to the optimized protocol it is impossible to determine whether the label
of an inout restricted pointer was changed as a result of executing the server procedure.

A pointer value is said to be statically aliased at a procedure invocation if there is more that one
Box which contains it among the generalized associates of the invocation association at initiation.

NOTE - Static aliasing is a property of the closure, while dynamic aliasing is a property of the
invocation. The above definitions make the assumption that a formal parameter becomes a Box
in the invocation association containing the actual parameter value. Since this is not actually
required, the notion Box must be extended to include the instantiation of the formal/actual
parameter bindings for the purposes of the above definition only.

7.5.3 Subtypes

subtype-spec = **select” **(**select-element {**, ** select-element}**) ** .

select-element = value-expression I range.

range = lower-bound **. . ** upper-bound I **. . *’ upper-bound I lower-bound **. . **.

lower-bound = value-expression.

upper-bound = value-expression.

A subtype-spec consists of a list of elements, where each element is either a value-expression of
the specified datatype or a range of values of the specified type. The value-expressions that occur
in a subtype-spec must refer to either a literal (immediate value), an enumeration literal, or to a
formal-value-parm.

7.6 Parameterized Types

parameterized-type-decl =
type type-identifier ** (**f ormal-value-parms**) *’ ft=O type-specifier .

formal-value-parms = f ormal-value-parm { ** , ** f ormal-value-parm} .

formal-value-parm = identifier Vt value-param-type-spec.

value-parm-type-spec = type-specifier.

40

@ ISO/IEC ISO/IEC 13886:1996(E)

A parameterized-type-decl introduces a partial specification of a datatype. It associates a type-
identifier and a set of formal parameters, called formal-value-pawns, with a type-specifier. Each
formal-value-parm is itself an identifier that can be referenced from within the type-specifier. Ref-
erences to these formal-value-parms can only be used in place of value-expressions within the
type-specifier (e.g., in place of an array bound).

Each formal-value-param has a value-param-type-spec associated with it, specifying the datatype
of the formal-value-param. This type shall be a datatype that a value-expression may have in an
interface type definition.

The type-identifier introduced by a parameterired-type-decl can be used anywhere a type-specifier
can be used in the interface, as long as actual values are provided for the fomzal-value-parms of the
parameterized-type-spec. Hence, whenever this type-identifier is referenced, it shall be referenced as
a parameterized-type-reference.

A parameterized-type-decl shall not directly reference itself (via a parametetized-type-reference) nor
shall it reference itself indirectly (via a parameterized-type-reference to a different parameterized
type the directly or indirectly references this parameterized type).

All formal-value-pawns shall be unique within the immediately containing parameterized-type-decl.

7.7 Identifiers

object-identifier = **{**ObjectIdC om onent p {0bject1dComponent}*')".

ObjectIdComponent = identifier I digit I identifier **(**digit {digit}**)**.

The syntax for object-identifier is that of an ASN,l ObjectIdentifierValue, as defined in IS0 8824. .

type-reference = [interface-synonym **::** 1 identifier I
parameterized-type-reference.

parameterized-type-reference = [interface-synonym ff::ft]
identifier **(**actual-value-parm
{ *',*' actual-value-parm}ff)ft.

actual-value-parm = value-reference.

Wherever a parameteriaed-type-reference is used in the interface-type, it shall reference the type-
specifier of a parameterized-type-decl. An actual-value-parm must be supplied for each formal-value-
pawn of the parameterized-type-decl. The datatype of an actual-value-parm must be the same as
the datatype of the corresponding fomtal-value-parm. The semantics of the resulting type-specifier
is that obtained by replacing each formal-value-parm reference within the type-specifier by the
corresponding actual-value-parm.

value-reference = [interface-synonym **::**] identifier {V* identifier}.

identifier = letter {pseudo-letter}.

41

ISO/IEC 13886:1996(E)

letter = **A** 1 **B**
“P”I”Q”
“a’t I “b”

@ ISO/IEC

“~“I”~“I”E()I”~“~“~“I”~“~‘tI1)Io J”~“K”I”~‘t~“M”~“N”~“()“l
“R” I”s”(“T”I”U”I’t~“l”~“I’t~“1((yt’~ ,,,,‘I
((C”lffdftl ttettloftt Ittgtt lfthtf IttittJ(tj ()llfkff ~ff1ff lttmtt j”ntt lttottl

pt*~q**~**r I s I t I u I 0 0 ‘f 0 ‘f tt 0 “v”I”w”~‘tx”I”y”I”z” .

pseudo-letter = letter I digit I underline.

digit = ‘t~“~‘t~“1o2((1”3”~“4”~“5”~“~“~“~”~”~”~’t~”~

underline = **-** .

7.7.1 Value references to fields

A value-reference matches a field if:

(a) the field is immediately contained within a record-type R; and

(b) the value-reference is contained within R; and

(c) the fist identifier component of the value-reference is the same as the field-name of the
field; and

(d) the value-reference is not contained within a procedure-type that is contained within R,;
and

(e) there is no record-type R2 such that R2 is contained within R, and a), b), c) and d) are
true when substituting R2 for R.

If a value-reference matches a field, then the first identifier of the value-reference refers to that
field. If the ith identifier of a value-reference refers to a fzeld and the value-reference consists of
more than i identifiers, then the field that the ith identifier refers to shall be a record-type, and
the (i+l)th identifier of the value-reference shall be the sitrne as a field-name of this record-type.
The (i+l)th identifier of the value-reference refers to the field associated with the field-name. If’
the ith identifier of a value-reference refers to a field and the value-reference consists of exactly i
identifiers, then the value-reference refers to this field.

7.7.2 Value references to parameters, return-args, or to fields contained within them

A value-reference matches a parameter (return-arg) if:

(a) the value-reference does not match a field; and

(b) the parameter (return-arg) is immediately contained within a procedure-decl or procedure-
type P; and

(c) the value-reference is contained within P; and

(d) the fist identifier component of the value-reference is the safne as the parameter-name
(identifier) of the parameter (return-arg); and

(e) the value-Teference is not contained within a procedure-type (distinct from P) that is
contained within P.

42

@ ISOpEC ISOiIEC 13886:1996(E)

If’ a value-reference matches a parameter (return-arg) and the value-reference consists of a single
identifier, then the value-reference refers to that parameter (return-arg). Otherwise, the parameter
(return-arg) must be a record-type and value-reference shall refer to a field, following the rules given
in clause 7.7.1.

7.7.3 Value references to formal-value-parms

A value-reference matches a formal-value-parm if:

(a) the value-reference does not match a field, a parameter, nor a return-arg; and

(b) the fomtal-value-parm is immediately contained within a parameterized-type-deck and

(c) the value-reference is contained within the type-specifier of this parameterized-type-decl
and is the safne as the formal-value-parm.

If a value-reference matches a formal-value-pawn then it refers to that formal-value-parm.

7.7.4 Value references to value-expressions

A value-reference matches a value-decl if the value-identifier of the value-decl is the same as the
identifier component of the value-reference.

If the interface-synonym component of the value-reference is absent, and the value-reference matches
a value-decl in the immediately containing interface-type, and the value-reference does not match
a field, a parameter, a return-arg, nor a formal-value-arg, then the value-Teference refers to the
immediately contained value-expression of that value-deck Otherwise, if the interface-synonym
component of the value-reference is absent, and the value-reference matches exactly one imported
value-decl, and the value-reference does not match a field, a parameter, a return-arg, nor a fonnal-
value-parm, then the value-reference refers to the immediately contained value-expression of that
value-decl.

NOTE - If the v&e-identifier of an imported value-decl is the same as a value-identifier
defined in the immediately containing interface-type or is the same as a value-identifier of a
v&e-decl imported from a different interface type definition, then it may only be referenced
using its associated interface-synonym.

If the interface-synonym component of the value-reference is present and value-reference matches a
value-decl in the interface type definition denoted by the interface-synonym, then the value-reference
refers to the immediately contained value-expression of this value-decZ.

7.7.5 Value references to enumeration-identifiers

When the type-identifier component of the value-reference is present, a value-reference matches an
enumeration-identifier of a,n enumerated-type if the type-identifier of the value-reference is the same
as an enumeration-identifier of the enumerated-type. If the type-identifier is not present, a value-
reference matches an enumeration-identifier of an enumerated-type if the identifier component of
the value-reference is the same as an enumeration-identifier of the enumerated-type.

43

ISO/IEC 13886:1996(E) @ ISO/IEC

If the interface-synonym component of the value-reference is absent, and the value-reference matches
exactly one enumeration-identifier in the immediately containing interface-type, and the value-
reference does not match a field, a parameter, a return-arg, a formal-value-pann, nor a value-
expression, then the value-reference refers to the matching enumeration-identifier. Otherwise, if
the interface-synonym component of the value-reference is absent, and the value-reference matches
exactly one imported enumeration-identifier, and the value-reference does not match a field, a
parameter, a return-arg, a formal-value-pawn, nor a value-expression, then the value-reference refers
to the imported matching enumeration-identifier.

If’ the interface-synonym component of the value-reference is present, and the value-reference
matches exactly one enumeration-identifiifier in the interface type definition denoted by the interface-
synonym, and the value-reference does not match a value-expression in the definition denoted by
the interface-synonym, then the value-reference refers to the matching enumeration-identifier.

7.7.6 Termination references

The rules governing the resolution of temtination-references are identical to the rules governing the
resolution of type-references.

44

@ ISO/IEC

Annex A
(informative)

ISO/IEC 13886: 1996(E)

Procedure Parameters

The syntax for the language-independent calling mechanism allows for a procedure to be a parame-
ter of another procedure. There are three different cases that result from the procedure parameters
feature.

A.1 LIPC Reference / Local Access

In this case, procedure A in language X calls procedure B in language Y and passes to procedure
B a pointer to procedure C which is also in language Y. There shall exist a way for language X to
reference procedure C in order to generate a pointer to pass to procedure B. This reference to C
shall be referred to as the lipc-reference. After B has begun execution, it will eventually call C, but
this is simply a local call therefore no lipc-access is necessary.

NOTE - Procedure B must understand how to call procedure C “locally” based on the lipc-
reference information it was passed.

Language X Language Y

A: begin
B(C);

end

B: begin
C;

end

C: begin
end

A.2 LIPC Reference / LIPC Access

In this case, procedure A in language X calls procedure B in language Y and passes to procedure
B a pointer to procedure C which which is in language X. Eventually, B will call C and in this
case the call to C must use lipc-access since the call crosses the boundary. In addition to this for
B to call C, it must have the lipc-reference of C. This information is obtained from that which was
passed from procedure A.

45

ISO/IEC 13886:1996(E)

Language X

A: begin
B(C);

end

C: begin
end

@ ISO/IEC

Language Y

B: begin
C;

end

A.3 Local Reference / Local Access

In this case, procedure A in language X calls procedure B in language Y and passes to procedure B
a pointer to routine D in language X. Eventually, B will call procedure C in language X and pass
to procedure C the pointer to routine D. C will then call D, but in this case both the reference and
access of D by C are local. Therefore it is not necessary for the pointer information describing D
to be a lipc-reference, but it must be in a form that allows the transformation to B’s environment
and back to its original state.

Language X Language Y

A: begin
B(D);

end

C: begin
D;

end

D: begin
end

B: begin
C(D);

end

46

@ ISO/IEC ISO/IEC 13886:1996(E)

Annex B
(informative)

Interface Definition Notation Syntax

This annex contains the complete IDN syntax, for reference only.

Productions ofthe IDN Normative text page

actual-value-parm = value-reference.

alternative = tag-value-list ":*' alternative-type.

alternative-list = alternative { (0" alternative} [default-alternative].

alternative-type = type-specifier.

argument = argument-name ":" ["restricted"] argument-type.

argument-declaration = direction argument.

argument-list = argument-declaration {"," argument-declaration}.

argument-name = identifier.

argument-type = type-specifier.

array-type = "array" "("index-type-list")" "of" "("element-type")" .

bit-literal = "0" 1 "1".

bit-type = "bit".

boolean-literal = "true" 1 "false".

boolean-type = "boolean".

character =
The value of character shall be any character drawn
from the character set identified by the repertoire
identifier in the production character-type, or from the
default character set if the repertoire identifier is absent

character-literal = '*"'character'*"'.

41

39

39

39

34

34

34

34

34

39

37

37

33

33

33

33

47

ISO/IEC 13886:1996(E) @ ISO/IEC

character-type = ffcharacterff [ff(ff repertoire-listff)ff].

choice-type = ffchoiceff "(fftag-typeff)ff "off' ff(ffalternative-listff)ff.

complex-literal = ff(ff real-part "," imaginary-part ff)ff.

complex-type = ffcomplexff ["(" radix "," factor ff)ff].

constant-type-spec = integer-type 1 real-type 1 character-type I
boolean-type I enumerated-type I state-type I
ordinal-type I time-type 1 bit-type I
rational-type 1 scaled-type I complex-type.

declaration = value-decl I type-decl I procedure-decl 1 termination-decl

default-alternative = "default" V' alternative-type.

defined-datatype = type-reference [subtype-spec].

"7"~"8"~"9" . digit = "()"~"1'(1('2"~"3"~"4'(1"5"~()6"

direction = ffinff I "out" I "inout'

element-type = type-specifier.

enumerated-literal = identifier.

enumerated-type = ffenumeratedff "(" enumerated-value-list ")".

enumerated-value-list = enumerated-literal {ff,ff enumerated-literal}.

factor = value-expression.

field = field-identifier Vr field-type.

field-identifier = identifier.

field-list = field {ff,ff field}.

field-type = type-specifier.

formal-value-parm = identifier ":" value-param-type-spec.

formal-value-parms = formal-value-pax-m {ff,ff formal-value-parm}.

fraction = V' digit{digit}.

generated-datatype = record-type I choice-type 1 array-type I pointer-type.

33

39

38

38

31

29

39

32

42

34

39

33

33

33

32

38

38

38

38

40

40

37

38

48

@ ISO/IEC ISO/IEC 13886: 1996(E)

identifier = letter {pseudo-letter}.

imaginary-part = real-literal.

import = ffimportsff C"("import-symbol-1ist")"l "fromff
[interface-synonym Vf] object-identifier.

import-symbol = identifier.

index-lowerbound = value-expression. 39

index-type = type-specifier 1 index-lowerbound 'Lff index-upperbound.

index-type-list = index-type {ff,ff index-type}.

index-upperbound = value-expression.

integer-literal = [ff-ff]digit{digit}.

integer-type = "integer".

interface-body = {import} {declaration ff;ff}.

interface-identifier = object-identifier.

import-symbol-list = import-symbol {ff,ff import-symbol}.

interface-synonym = identifier.

interface-type = "interface" [interface-synonym Vf]
[interface-identifier] "begin" interface-body ffendff.

letter = “B()I1’B”~“C”~“~“I((E”~“~“(“G()~”~”~”~”~” J”~“K”~“L”~“M”~“N”~“0”~

"P"
ffaff
'f 0 P

‘f Q ‘f 1 “R” 1 ‘f S 0 1 “T” 1 “U”

ffbff 1 o c tt 1 ffdff 1 tte tt 1 ttf O

’ ’ qff 1 ffrff 1 ff sff 1 tftff 1 ffuff

ttgtt lffhff 1 ttitt 1 ttj tt 1 ffkff ltflft lttmtt 1 ttntt 1 ttott 1
"v" I"w" 1 "x" 1 "y" 1 "z" .

lowerbound = value-expression

41

38

30

30

39

39

39

32

32

29

29

30

29

29

42

0 * tt . 39

lower-bound = value-expression.

ObjectIdComponent = identifier I digit I identifier ff(ffdigit {digit}ff)ff.

object-identifier = "(ffObjectIdComponent {ObjectIdComponent}ff}ff.

octet-type = ffoctetff.

40

41

41

33

49

ISO/IEC 13886:1996(E) @ ISO/IEC

ordinal-literal = digit {digit}.

ordinal-type = ffordinalff.

parameterized-type-decl =
"typeff type-identifier ff(ffformal-value-parmsff)ff "=" type-specifier.

parameterized-type-reference = [interface-synonym O::ff]
identifier "("actual-value-parm

pointer-type = ffpointerff fftoff "("element-type'

primitive-datatype = integer-type I real-type]

{ 'f/t actual-value-parm}")".

>
’ ’

.

character-type I
boolean-type I enumerated-type 1 octet-type I
procedure-type I state-type I ordinal-type I time-type I
bit-type I rational-type I scaled-type I complex-type 1
void-type.

procedure-declaration =
ffprocedureff procedure-identifier "(" [argument-list] ff)ff

[ffreturnsff ff(ffreturn-argumentff)ff]
["raises " ff(fftermination-listff)ff] .

procedure-identifier = identifier.

procedure-reference = procedure-identifier.

procedure-type = "procedure" "(" [argument-list] ff)ff
[ffreturnsff ff(ff return-argument ff)ff]
[ffraisesff " ("

pseudo-letter = letter I digit

radix = value-expression.

termination-list ff)ff 1.

underline.

range = lower-bound ff..0 upper-bound I O..ff upper-bound I lower-bound ff..ff.

rational-literal = [ff-ff] digit{digit} [ff/ff digit{digit}] .

rational-type = ffrationalff.

real-literal = integer-literal ["."digit{digit}] [[ff-ff] Wf digit{digit}] .

real-part = real-literal.

real-type = ffrealff ["(" radix ff,ff factor ")" 1.

record,-type = "recordff "off' ff(fffield-listff)ff.

36

36

40

41

40

32

35

35

35

34

42

32

40

37

37

32

38

32

38

50

@ ISO/IEC ISO/IEC 13886:1996(E)

repertoire-identifier = value-expression.

repertoire-list = repertoire-identifier {ff,ff repertoire-identifier}.

return-argument = [argument-name ":"I argument-type.

scaled-literal = [ff-ff] digit{digit} [fraction].

scaled-type = ffscaledff "(" radix "," factor ">".

select-element = value-expression I range.

select-item = value-expression I select-range.

select-list = select-item {ff,ff select-item}.

select-range = lowerbound ".." upperbound.

state-literal = identifier.

state-type = %tateff "(" state-value-list ")".

state-value-list = state-literal (ff,ff state-literal}.

subtype-spec = ffselectff ff(ffselect-element {"/ select-element}ff)ff.

tag-type = type-specifier.

tag-value-list = select-list.

termination-list = termination-reference {ff,ff termination-reference}

termination-reference = [interface-synonym "::"] identifier .

time-literal = digit{digit} [Vfdigit{digit}].

time-type = "time" "(" time-unit ["," radix "," factor]ff)ff .

time-unit = ffyearff 1 ffmonthff] "day" I "hour" I "minuteff I "second" I
parametric-value.

type-decl = "type0 type-identifier O=ff type-specifier)
parameterized-type-decl.

type-identifier = identifier.

type-reference = [interface-synonym ff::O] identifier I

33

33

34

37

37

40

39

39

39

36

36

36

40

39

39

34

34

37

37

37

31

31

41

51

ISO/IEC 13886:1996(E) @ ISO/IEC

parameterized-type-reference.

type-specifier = primitive-datatype 1 generated-datatype 1 defined-datatype. 32

underline = "2'. 42

upperbound = value-expression 1 "*O.

upper-bound = value-expression.

value-decl = Value" value-identifier Vr
constant-type-spec ((=)) value-expression.

value-expression = value-reference 1 procedure-reference 1
integer-literal I real-literal 1 character-literal I
boolean-literal I enumerated-literal I state-literal I
ordinal-literal I time-literal I bit-literal I
rational-literal I scaled-literal I complex-literal I
void-literal.

value-identifier = identifier. 31

value -parm-type -spec = type-specifier.

value-reference = [interface-synonym "::"] identifier {V' identifier}. 41

void-literal = WY. 38

void-type = ttvoid*t. 38

39

40

31

31

40

52

@ ISO/IEC ISO/IEC 13886:1996(E)

Annex C
(informative)

How to do an LIPC binding for a language

The LIPC model is based upon the familiar “client-server” concept: a client program calling a
server procedure. There is a “virtual contract” between the two partners, in which the procedure
(server) side agrees to provide the service (of executing the procedure), and the program (client)
side agrees to provide the necessary calling information (i.e. the actual parameters) in accordance
with the parameter passing methods required.

The binding of a programmin g language to LIPC must therefore consists of two parts, one specifying
the binding when a program in the language is acting in client mode, calling an LIPC procedure,
the other specifying the binding when a procedure written in the language is the subject of an
LIPC call. These bindings will be expressed as requirements, respectively, on the client’s LIPC
service and the client side of the virtual contract, and on the server’s LIPC service and the server
side of the virtual contract. They must be separate and self-contained, since a particular language
processor may have available only one or other LIPC service or both; i.e. it may be able to act as a
client but not as a server, as a server but not as a client, or as either. However, the bindings must be
consistent; an LIPC call to a procedure written in the same language must be indistinguishable from
a direct call, subject only to processor-dependent variations permitted by the language standard,
and any implementation constraints imposed by the particular LIPC service.

One thing to bear in mind when specifying the bindings is that languages may be conceived,
designed and used with a much more integrated view of a procedure and its call than is feasible (or
perhaps even desirable) in an LIPC‘environment. This can be reflected in the language standard,
which will need to be examined in case it contains any inbuilt assumptions, that are not stated
explicitly, about what it means to call a procedure. The decoupling of the client and server sides
of a procedure call may need to be more complete than in the language standard, which may take
a more close-coupled view. Hence aspects may be uncovered which will need to be made more
explicit in the binding standard than has hitherto been customary in the language community.

The decoupling therefore needs to be accompanied by a conscious search for such implicit assump-
tions. Care will need to be taken, when making these explicit in the binding standard, that this
process remains faithful to the view of procedure calling familiar to language users.

C.l Linking the client and the server

Languages vary greatly in the way that the language processor is expected to recognise and locate
any procedures called by a program. Strictly block-structured languages may require “declaration
before use”, or at least that the procedure be declared in the same block, or some surrounding
block, from where the call originates. Languages with a more disjoint structure, designed for
separate compilation of procedures, may assume the existence of a “link editor” - left undefined
or implementation-dependent in the language standard - to make the connections. Some require
explicit invocation of required libraries or modules, either within the program text, or through use
of processor directives or options outside the program itself. Some make the procedure heading

53

ISO/IEC 13886:1996(E) @ ISO/IEC

separable from the procedure body, so the specification of the formal parameters etc. can appear
explicitly in the text of the calling (client) program.

In the block-structured case, external procedures can be provided by assuming the existence of a
“super-block”, surrounding the outermost block of the program itself, in which all needed proce-
dures are “declared”. In the disjoint case, it is up to the (implementation-dependent) link editor
to find the missing blocks, e.g. by pre-processor commands or compiler directives.

Such matters are often regarded by the responsible committee as outside the scope of the language
standard. This is one situation where the language standard needs to be examined in case it
contains any inbuilt assumptions, but subject to that, they can be left out of the language binding
standard as well - though it should be stated explicitly that they are left out, and why. Only
when the language standard explicitly addresses access to modules or procedure libraries may it be
necessary to say something in the binding standard about accessing LIPC procedures.

Throughout, the essential principle to maintain is that the call of an LIPC procedure from within
a client program must be indistinguishable in the program text from the call of a native language
(external) procedure. The user of the client program will need to know how to access the required
procedure, but that is the case for any external procedure. Nothing extra should be needed for an
LIPC procedure.

If the language standard address exception handling, then regardless of how the language deals with
external procedures, the binding standard should cover any exception conditions particular to LIPC
calls (e.g. unable to locate external procedure, no binding available for datatype parameter).
Inclusion of such exception reporting may be worth considering even when the language standard
itself does not address exceptions.

C.2 Client mode binding

For a language processor acting in client mode, the client LIPC service fist needs to marshal
the actual parameters (including the returned result, considered as an extra “out” parameter)
into LIPC form. Marshalling includes, for each actual parameter, both identifying the parameter
passing method, and mapping the local datatype into the corresponding LID datatype. The binding
standard does not need to provide the datatype mappings, which can be established by reference
to the language’s LID binding. However, it does need to cite explicitly any constraints that the
language imposes on the allowed datatypes for parameters (including the returned result).

NOTE - It may be felt desirable to include ‘Wowed extensions” of the datatypes permitted for
parameters, to widen the range of LIPC procedures that can be called, e.g. to allow aggregates
to be passed as parameters. However, in that case it would be logical to permit the extensions
for server mode too, in which case it would seem better to include the parameter extensions in
an separate addendum - optional or mandatory - to the language standard, rather than confine
it to the LIPC context.

As well as datatypes of actual parameters, the binding standard should cite the parameter passing
mechanisms supported by the language standard and relate them to the parameter passing modes
of the LIPC standard, together with the rules for marshalling parameters of each kind. In every
case it must be made explicit whether the mechanism is allowed, recommended, or required. For
the purpose of LIPC binding it may be thought desirable to be stricter than in the purely local

54

@ ISO/IEC ISO/IEC 13886:1996(E)

case, to promote efficiency: for example, a language standard may in the general case allow either
“call by reference” or “copy in copy out” for an “out” parameter, but for an LIPC call the binding
could recommend, or even require, use of “copy in copy out”, assuming that the server procedure
itself can accept that mechanism in the virtual contract.

The client mode binding will of course also need to allow for the reverse unmarshalling of returned
results (out parameters) as a result of the call.

C.3 Server mode binding

Superficially it might appear that the server mode binding would be symmetrical to the client mode
binding, a kind of mirror image. However, this is not quite the case; the apparent symmetry is
deceptive. It is the server side which primarily determines the virtual contract; the definition of
the server procedure specifies the number and datatypes of the parameters, including the returned
value if any. The server side also determines the allowable methods of parameter passing: if the
client cannot pass a parameter by the required method, then the call cannot take place.

NOTE 1 - LIPC does not and cannot ensure that any valid
called by a valid procedure invocation in any other language.

procedure in any language can be

For a language processor acting in server mode, the server LIPC service needs to unmarshal from
the incoming LIPC form into the form which would be required for the call if it were from the
server’s own language. This will require a datatype mapping, provided by the LID standard, and
possibly also a datatype conversion.

The standard for the server language may already allow some automatic datatype conversions. For
example, if a formal parameter called by value (on initiation) is of datatype real; then the standard
may permit also an actual parameter of datatype integer, the integer value being converted into
(say) floating point form. Therefore, if the server’s LIPC server receives such an actual parameter,
it can map it from LID Integer to server integer and pass in the value. The binding standard need
say nothing about the consequent datatype conversion, since that will be handled inside the server
processor just as it is were it part of an ordinary, non-LIPC call.

However, suppose that the incoming actual parameter is of LID datatype Scaled - e.g. because
the client language does not support floating point or other approximate real datatype, or provides
fixed-point as well as floating point ? The binding standard does now need to specify whether the
conversion of LID Scaled to server real is permitted, and if so how it is to take place.

NOTE 2 - Hence datatype conversions in an LIPC call are in general of two kinds - within
the LIPC service during unmarshalling, which are specified in the binding standard, and within
the server processor during procedure initialising, which are not. Some actual parameters may
indeed go through conversions of both kinds. The calling client sees no difference.

The binding standard for server mode therefore needs to specify not just the LID mappings for
parameter datatypes, but also, explicitly, allowed conversions from LID datatypes without direct
equivalents in the server language.

55

ISO/IEC 13886:1996(E) @ ISO/IEC

NOTE 3 - The LID binding standard may specify, or aUow, or suggest such conversions, but
the LIPC binding must revisit the subject in the light of the particular context of parameter
passing, which may (and in many languages does) impose additional restrictions on allowed
datatypes.

Mention was made, in respect of client mode binding, of the allowed parameter passing modes
within the language. This holds also on the server side, of course. The binding standard should
ensure that there is no inconsistency between the two.

The server mode binding will of course also need to allow for the reverse marshalling of returned
results (out parameters) as a result of the call.

There are two further matters to be considered for server mode: procedure parameters, and “global
variables”.

CA Procedure parameters

If the server procedure has a formal parameter of a procedure datatype, this means that the
server procedure, during execution, will call the actual procedure supplied as the actual parameter.
The server procedure may, depending on the language, specify (directly or indirectly) the number
and datatypes of parameters for the supplied actual procedure, or be able to treat the (formal)
procedure parameter generically. Since LID procedure datatypes carry information about the
number and datatypes of the procedure’s parameters, the two LIPC services, on the client and
server sides, will be able to communicate the necessary information through the LID mappings
of the procedure parameter, to decide whether the actual procedure parameter supplied can be
called by the server. If the server specifies the number and datatypes of parameters for the actual
procedure, the unmarshalling can check that the incoming procedure parameter is acceptable. .

In general, the call itself will be one of three kinds:

1. It may be of a procedure local to the server side

2. It may be of a procedure local to the client side

3. It may be a procedure local to neither the client nor the server, but residing on another server.

The binding standard will need to cover all three cases.

In case 1, the server can simply call the procedure normally, and continue.

In case 2, where the procedure referenced by the procedure parameter is local to the client side,
the call amounts to a “reverse call” from the server side (acting in client mode for this procedure
datatype parameter) to the client side (acting in server mode for the same procedure parameter).
Thus procedure parameters cannot be supported unless the processors in both sides can act in both
modes, and the conformity rules for the LIPC binding standard will need to reflect this.

NOTE - Note that, since both sides conform in both modes, the two LIPC services can agree
parameter passing modes for calls of actual parameters of procedure datatype, as well as for the
original calI.

Note that the passing mode ‘WI by value sent on request”, and references in the server pro-
cedure body to pointer parameters, can aII be treated as if they were reverse calls of “mini

56

@ ISO/IEC ISO/IEC 13886:1996(E)

procedures”, but this does not need to be addressed by the LIPC binding standard. This is
because supporting those features does not need full mutual procedure c&ng capacity, and can

be left implementation-dependent - though possibly subject to constraints or conditions.

In case 3, where the procedure referenced by the procedure parameter reside on a third system, the
call entails the server side to act in client mode in respect of the third system. Hence, in this case
too the server side (but not the client side of the original call) must be able to act in both modes,
and the conformity rules for the LIPC binding standard will need to reflect this.

C .5 Global variables

Some languages permit, in the procedure body, reference to “global variables”, i.e. entities declared
and specified not within the procedure body, but in some surrounding environment such as an
enclosing block. In the LIPC environment, if these global variables are always provided on the
server side, then they cause no problem. Problems arise only if the missing entities are assumed to
be provided on the client side.

The LIPC binding standard needs to address this question. A simple solution is to say that a
server procedure referencing global variables on the client side does not conform to the LIPC
binding standard. However, this would preclude close-coupled cases where both the client and
the server languages can reference common storage areas and the LIPC environment can support
them. Another solution is to deem all such global variables to be notional additional parameters,
to be passed in addition to ordinary parameters in the LIPC. These notional parameters would be
passed (in virtual contract terms) in the same way as others, but the service contract between the
two LIPC services would handle them via common storage, subject only to the condition that the
net effect is identical to what would occur were the global variables to be replaced, in the server
procedure specification, by formal parameters.

Circumstances will vary greatly, both between languages and between LIPC services and envi-
ronments, and no general guidance can be given on how to address this question in the binding
standard. However, if the language does allow undeclared global variables within procedure bodies,
the LIPC binding standard must address it.

NOTE - The detailed LIPC model in clause 6 of what it means to call a procedure may help
in deciding how to handle the question of global variables in the binding standard.

57

ISO/IEC 13886:1996(E)

Annex D
(informative)

@ ISO/IEC

LIPC IDN - RPC IDL Alignment overview

This annex compares the concepts implicit in the LIPC Interface Definition Notation (LIPC IDN)
as defined in this International Standard, with the concepts implicit in the RPC Interface Definition
Language (RPC IDL), as defined in Clause 4 of the RPC standard (ISO/IEC 11578).

No comparison is made of the detailed syntactic forms of the two notations.

In general, LIPC IDN provides a richer set of semantic distinctions than RPC IDL. Every RPC
IDL type has an abstractly equivalent form in LIPC IDN. That is, the LIPC type describes the
same set of values as the RPC type. However, RPC IDL can describe representation issues that
are beyond the scope of LIPC, and RPC IDL can provide additional non-type information relevant
to a particular RPC service specification.

The top level declaration in both LIPC IDN and RPC IDL is the interface declaration. All other
declarations occur as part of interface declarations. Where the omission of the interface identifier
in the specification does not cause any ambiguities, the interface declaration may be omitted, and
the ‘normal’ declaration may be used as top level declaration.

D.l Interface Declarations

The “interface” concept in LIPC and RPC are similar.

D.l.l Attributes

LIPC IDN allows an OS1 object-identifier to be supplied which uniquely identifies the interface.
RPC IDL has a uuid(X) attribute that performs the same function, although the X is not an OS1
object-identifier.

RPC IDL has three attributes (version, endpoint, and local) which pertain to the use of RPC
IDL in providing an RPC service. These have no LIPC analog.

RPC IDL has a pointer-default attribute which allows certain pointer attributes to be omitted
in the body of the interface. This is purely a notational convenience.

D.1.2 Imports Clause

Both LIPC IDN and RPC IDL permit names to be “imported” into the current interface declaration
from another (preexisting) interface. This allows the names to be used in the body of the current
interface.

LIPC IDN can limit the names imported from a preexisting interface (by explicitly listing the
desired names). RPC IDL cannot.

58

@ ISO/IEC ISO/IEC 13886:1996(E)

LIPC IDN permits imported names to be “qualified” with the name of the source interface. RPC
IDL does not.

D.2 Other Declarations

Both LIPC IDN and RPC IDL allow interfaces to declare named types, named values, and named
procedures (operations). In addition, LIPC IDN requires that termination conditions be named.

D.2.1 Type Declarations

Both LIPC IDN and RPC IDL can associate a name with any type definable in the respective
notations.

LIPC IDN makes a distinction between assigning a synonym to an existing type, and defining
a name for a new type. RPC IDL does not make this distinction in general, but does allow the
distinction for structure types and union types. (See the “tagged-declarator” concept in RPC IDL.)

LIPC IDN allows type generators (parameterized types) to be defined (both as synonyms and new
types). RPC IDL does not.

See below for a discussion of the datatypes definable in LIPC IDN and RPC IDL.

D.2.2 Value Declarations

Both LIPC IDN and RPC IDL can associate a name with a value.

LIPC IDN allows names to be given to any type of value, and provides literal notations for all types
of values.

RPC IDL allows names to be given to values of a limited set of types. The permitted types are
integer, boolean, character, pointer-to-character (string), and pointer-to-void.

RPC IDL permits computation of the values involved. LIPC IDN does not.

D.2.3 Procedure Declarations

Both LIPC IDN and RPC IDL can declare named procedures (operations).

In both IDNs, procedures can have zero or more parameters and an optional return type. Each
parameter has a “direction” and a type. In RPC IDL the allowed directions are in and out. In
LIPC IDN the allowed directions are in, out, and inout. The inout direction is equivalent to a
specification of two parameters, one in and one out, both of the same type.

RPC IDL limits out parameters to be arrays or pointers. This is because RPC IDL views those
as being suitable types for assignment. LIPC IDN is not concerned about what is done with a
returned (out) value. Thus LIPC IDN does not restrict the type of an out parameter. In practice,
the following correspondence holds between parameter types:

59

ISO/IEC 13886:1996(E) @ ISO/IEC

RPC parameter type LIPC parameter type

T*
T [...I

T
array (integer range (...)) of (T)

This correspondence is not one-to-one, a knowledge of the application semantics will be needed to
select the best match.

LIPC IDN requires that a procedure declaration list all the termination conditions (exceptions,
errors) that might occur as part of the semantics of the procedure. RPC IDL does not. See
Termination Declarations (D.2.4).

RPC IDL has three RPC specific attributes applicable to procedures: idernpotent, broadcast,
and maybe.

D.2.4 Termination Declarations

In LIPC, a procedure can return normally or in one of a set of named terminations. On normal
return, new out and inout parameter values are provided by the procedure as well as any explicit
return value. On a named termination, a different set of values is provided: those declared in the
termination declaration.

An LIPC IDN termination declaration consists of a name for the termination, and a list of zero or
more types for the returned values.

RPC IDL does not provide any means for declaring non-normal return conditions.

D.3 Primitive Datatypes

D.3.1 Boolean

The LIPC IDN boolean type and the RPC IDL boolean type are identical.

D.3.2 State

The LIPC IDN state type generator is similar to the RPC IDL enum type generator, except that
the values of a state datatype are unordered.

In translating a RPC enum datatype into LIPC IDN, a knowledge of the application semantics will
be needed to select the best match (state versus enumerated).

D.3.3 Enumerated

The LIPC IDN enumerated type generator and the RPC IDL enum type generator are identical.

In translating a RPC enurn datatype into LIPC IDN, a knowledge of the application semantics will
be needed to select the best match (state versus enumerated).

60

@ ISO/IEC ISO/IEC 13886: 1996(E)

D.3.4 Character

The LIPC IDN character(R) datatype consists of all characters in standard character repertoire R.

There are four RPC IDL character datatypes: char, ISOLATIN,1, ISOJCS, and ISOMJLTI-LINGUAL.

The RPC IDL char datatype appears to be implementation defined, but is guaranteed to contain
at least the IS0 646 character repertoire. Thus, if char is used only in a portable manner, we have

RPC type LIP C equivalent

char character (iso standard 646)
ISO,LATIN-1 character (iso(1) st andard(0) 8859 part (1))
ISOUCS character (iso(1) standard(0) 10646)
ISO-MULTI-LINGUAL character (iso(1) standard(0) 10646 multi-lingual-plane)

The three RPC IDL “ISO” character types imply a representation as well as repertoire.

DA5 Ordinal

The LIPC IDN ordinal type is similar to integer range (0. .). The closest RPC IDL analog
would be unsigned hyper.

D.3.6 Time

RPC IDL has no analog to the LIPC IDN time type generator.

A possible encoding of the LIPC IDN time(unit ,radix,factor) type into a RPC IDL type would
be hyper with the interpretation that a hyper value of h has the interpretation

h * (radixBfactm) * unit

when viewed as a value of type time(unit ,radix,factor).

D.3.7 Integer

LIPC IDN provides a single integer type of unbounded range, while RPC IDL provides 8 integer
types as follows:

61

ISO/IEC 13886:1996(E) @ ISO/IEC

RPC type LIP C equivalent

hYP= integer range (-263 . . 263-l)
long integer range (-231 . . 231-l)
short integer range (-215 . . 215-1)
small integer range (-27 . . 27-1)
unsigned hyper integer range (0 . . 264-l)
unsigned long integer range (0 . . 232-l)
unsigned short integer range (0 . . 216-1)
unsigned small integer range (0 . . 28-1)

In translating an LIPC integer into RPC IDL, a knowledge of the application semantics will be
needed to select the best match. A perfect translation is not possible.

D.3.8 Rational

RPC IDL has no analog to the LIPC IDN rational type.

A possible encoding of the LIPC IDN rational type into a RPC IDL type would be

struct { hyper numerator, denominator; }

where the denominator is greater than 0 and the numerator and denominator are coprime.

D.3.9 Scaled

RPC IDL has no analog to the LIPC IDN scaled type generator.

A possible encoding of the LIPC IDN scaled(radix,factor) type into a RPC IDL type would
be hyper with the interpretation that a hyper value of h has the interpretation

h * (radixmfactm)

when viewed as a value of type scaled(radix ,f actor).

DA10 Real

LIPC IDN provides a real type generator, with the granularity of the approximation given as

(d Ta ixBfactm).

RPC IDL provides two approximations to real numbers: float and double. The precision and
range of these two types are unspecified, although they may be intended to be similar to the IEC
559 single and double precision types. If this is so, the LIPC analogs of these types are

RPC type LIPC analog

float
double

real (2,24)
real (2,53)

62

@ ISO/IEC ISO/IEC 13886: 1996(E)

DA11 Complex

RPC IDL has no analog to the LIPC IDN complex type generator.

A possible encoding of the LIPC IDN complex(radix ,factor) type into a RPC IDL type would
be one of

struct { float real-part, imaginary-part; }
struct { double real-part, imaginary-part; }

where the choice of float or double would be based on which type was a better approximation to
real (radix, f actor).

D.3.12 Void

LIPC IDN and RPC IDL provide an identical void type. However, the use of void in RPC IDL is
restricted to (1) the target of a pointer, or (2) the return type of a procedure.

A pointer to void would seem to have little use. However, in RPC IDL there seems to be an
implicit assumption (perhaps inherited from C) that any T* can be coerced to and from a void*
without loss of information. Thus, void* can be used to pass pointer data opaquely through an
interface. The LIPC IDN analog of this is private.

D.4 Type Qualifiers

RPC IDL has no facilities corresponding to the six type qualifiers defined by LIPC IDN: Range,

Selecting, Excluding, Extended, Size and Subtype.

D.5 Generated Datatypes

D.5.l Choice

The LIPC IDN choice type generator provides a pairing of a tag value and a value of one of a
number of alternative element types. The tag value determines which of the alternative elements
types is used.

The RPC IDL union type generator has the same semantics as the LIPC IDN choice type gen-
erator, except that (in RPC IDL) the type of the tag is restricted to be an integer type, boolean,
char, or an enumeration type. In LIPC IDN the tag type may be any exact datatype. An exact
datatype is one that is not real, not complex, and not generated from real or complex.

Both LIPC IDN and RPC IDL allow the tag portion of a choice or union to be omitted from
the value. This can be done only when the choice or union is embedded in a larger datatype (or
parameter list) one of whose fields provides the tag value.

RPC IDL prohibits the use of a conformant or conformant-varying array as a union alternative.
LIPC IDN has no such restrictions.

Note that the RPC IDL syntax’allows for new named union types.

63

ISO/IEC 13886:1996(E) @ ISO/IEC

D.5.2 Pointer

The LIPC IDN pointer to (T) type generator and RPC IDL T* type generator have basically the
same semantics. However, RPC IDL provides two attributes to modify the meaning of its pointers,
and significantly restricts the use of pointers.

RPC type LIPC equivalent

[Ptrl T * pointer to (T)
[refl T * pointer to (T) excluding (null)

The RPC IDL [ref] attribute also provides information to an RPC service, including an assertion
that there is no aliasing involving the data referenced by the pointer during RPC invocations.

RPC IDL considers certain pointers to be equivalent to arrays or as substitutes for arrays. Thus in
translating RPC IDL pointer types into LIPC IDN, a knowledge of the application semantics and
the detailed rules of RPC IDL will be needed toselect the best match (pointer versus array).

See the Type Declaration (D.2.1) and Procedure clauses for further comments on pointers.

DA.3 Procedure

The RPC IDL does not support procedure types. Procedures in LIPC are defined as operations in
RPC (see D.2.3).

D.6 Aggregate Datatypes

D.6.1 Record ,

The LIPC IDN record type generator and the RPC IDL struct type generator are identical.

Note that the RPC IDL syntax allows for new named struct types.

D.6.2 Set

RPC IDL does not provide a set type generator. The LIPC IDN concept of set would presumably
be modelled as a RPC IDL array. For example,

LIPC type RPC analog

set of (T) struct { long size; T element [size]; }

Thus, in translating a RPC IDL array type into LIPC IDN, a knowledge of the application seman-
tics is necessary to determine if what is really needed is a set.

64

@ ISO/IEC ISO/IEC 13886:1996(E)

D.6.3 Bag

RPC IDL does not provide a bag type generator. The LIPC IDN concept of bag would presumably
be modelled as a RPC IDL array. For example,

LIPC type RPC analog

bag of (T) struct { long size; T element [size]; }

Thus, in translating a RPC IDL array type into LIPC IDN, a knowledge of the application seman-
tics is necessary to determine if what is really needed is a bag.

D.6.4 Sequence

RPC IDL does not provide a sequence type generator. The LIPC IDN concept of sequence would
presumably be modelled as a RPC IDL array. For example,

LIPC type RPC analog

sequence of (T) struct { long size; T element [size]; }

Thus, in translating a RPC IDL array type into LIPC IDN, a knowledge of the application seman-
tics is necessary to determine if what is really needed is a sequence.

D.6.5 Array

The LIPC IDN array (I) of (T) type generator defines indexed collections of values. A particular
LIPC array value associates an element value in T to each index value in I. Thus, all values of a
particular LIPC array type have the same “length,” which is determined by the size of the index
type I. The index type can be any finite type.

The RPC IDL array type generator defines indexed collections of values as well. However, the only
permitted index type is a range of integers.

RPC type LIPC equivalent

T [a..b] array (integer range (a..b)) of (T)

Both LIPC IDN and RPC IDL permit arrays to have multiple dimensions (index types).

Both LIPC IDN and RPC IDL provides a means of allowing array bounds to be determined by
dependent values. See the clause on Dependent Values (D.9) below.

RPC IDL makes a distinction between the storage bounds of an array and the valid-data bounds of
the same array. LIPC IDN specifications are independent of this sort of representation information.

65

ISO/IEC 13886:1996(E) @ ISO/IEC

in specifying the storage bounds of
values in specifying the valid-data

A RPC IDL conformant array is one that uses dependent values
an array. A RPC IDL varying array is one that uses dependent
bounds of an array.

Since RPC IDL’does not distinguish sequences, bags, and tables from arrays, some uses of RPC
arrays may be more properly viewed as sequences. See the clauses on Sequences (D.6.4), Bags
(D.6.3), and Tables (D.6.6).

D.6.6 Table

RPC IDL does not provide a table type generator. The LIPC IDN concept of table would
presumably be modelled as a RPC IDL array of structs. For example,

LIPC type RPC analog

table (FL) struct { long size; struct {FL’} row [size]; }

where FL’ is the RPC equivalent of the LIPC field list FL.

Thus, in translating a RPC IDL array type into LIPC IDN, a knowledge of the application seman-
tics is necessary to determine if what is really needed is a table.

D.7 Derived Datatypes and Generators

D.7.1 Naturalnumber

The RPC IDL analog to the naturalnumber type would be unsigned hyper.

D.7.2 Modulo

The RPC IDL analog to the module(n) type would be aa unsigned integer type large enough to
represent the values 0 through n-l.

D.7.3 Bit

The RPC IDL analog to the bit type would be boolean.

D.7.4 Bitstring

The RPC IDL analog to the bitstring type would be

struct { long size; T element [size]; }

If the bitstring were of fixed size, the best RPC IDL analog would be a boolean array.

66

@ ISO/IEC ISO/IEC 13886:1996(E)

D.7.5 Characterstring

The LIPC IDN characterstring datatype contains strings (sequences) of characters of type
character(R). Thus strings over any character set can be defined.

RPC IDL can defined strings of chars, bytes, or structures containing only bytes. These latter
forms are used to handle character repertoires other than IS0 646 at a representation level rather
than a logical level.

RPC type LIP C equivalent

[string] char * characterstring (X50-646)

In translating string types from LIPC IDN to RPC IDL the logical concept of a character repertoire
must be replaced by a specific representation in terms of bytes. This requires selecting a particular
representation.

In the reverse translation, knowledge of the application semantics will be needed to determine the
character repertoire intended.

D. 7.6 Timeint erval

RPC IDL has no analog to the LIPC IDN timeinterval type generator.

A possible encoding of the LIPC IDN timeinterval(unit ,radix,factor) type into a RPC IDL
type would be hyper with the interpretation that a hyper value of h has the interpretation

h * (radix-factor) * unit

when viewed as a value of type timeinterval(unit ,radix,factor).

D.7.7 Octet

The LIPC IDN octet type is identical to the RPC IDL unsigned small type.

D.7.8 Octetstring

The RPC IDL analog to the octetstring type would be

struct { long size; unsigned small element [size]; }

If the octetstring were of fixed size, the best RPC IDL analog would be an unsigned small
array.

67

ISO/IEC 13886:1996(E) @ ISO/IEC

D.7.9- Private

The LIPC IDN private(n) datatype contains opaque data n bits long.

The RPC IDL byte datatype contains opaque data, presumably 8 bits long. Thus,

RPC type LIPC equivalent

byte private (8)

Some uses of byte may correspond better to the LIPC octet type (which is not opaque).

D.8 Other RPC Datatypes

The RPC datatypes handle-t, pipe T, and contexthandle are specific to the RPC service, and
are opaque. They have no direct LIPC equivalent.

Opaque service specific types are best handled abstractly as new private types.

The RPC datatypes error-status-t is specific to the RPC service, however it is not opaque.

RPC type LIPC equivalent

errorstatus-t integer range (0 . . 232-l)

D.9 “Dependent Values” .

A “dependent value” is an identifier, used in the specification of the type of a field (of a record)
or a parameter (of a procedure), which is not defined to be a constant. Rather it is the name of a
field in an enclosing record, or the name of a parameter in the same procedure parameter list.

D.10 Cross References

The above discussion has been organized around the LIPC datatypes. The following table lists
each RPC datatype and the clause above that discusses it.

68

@ ISO/IEC ISO/iEC 13886:1996(E)

RPC datatype Discussed in

boolean
byte
char
ISO,LATIN-1
IsoUcs
ISO-MULTI-LINGUAL
small
short
long
hYP=
unsigned small
unsigned short
unsigned long
unsigned hyper
float
double
pointer
array

string
enum
struct
union
procedure
void
cant ext handle
handle
Pipe
error status

Boolean (D.3.1)
Private, (D.7.9), Octet (D.7.7)
Character (D.3.4)
Character (D.3.4)
Character (D.3.4)
Character (D.3.4)
Integer (D.3.7)
Integer (D.3.7)
Integer (D.3.7)
Integer (D.3.7)
Integer (D.3.7)
Integer (D.3.7)
Integer (D.3.7)
Integer (D.3.7)
Real (D.3.10)
Real (D.3.10)
Pointer (D.5.2)
Array, (D.6.5), Sequence (D.6.4), Set (D.6.2),
Bag (D.6.3), Table (D.6.6)
Characterstring (D.7.5)
Enumerated, (D.3.3), State (D.3.2)
Record (D.6.1)
Choice (D.5.1)
Procedure (D.5.3)
Void (D.3.12) ’ l

Other RPC Datatypes (D.8)
Other RPC Datatypes (D.8)
Other RPC Datatypes (D.8)
Other RPC Datatypes (D.8), T ermination Declarations (D .2.4)

69

This page intentionally left blank

This page intentionally left blank

ISO/IEC 13886:1996(E) o lSO/IEC

ICS 35.060
Descriptors: data processing, information interchange, computer software, programming languages, computer interfaces, models.

Price based on 69 pages

