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Foreword

ISO (the International Organization for Standardization) and IEC (the In-
ternational Electrotechnical Commission) form the specialized system
for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards
through technical coommittees established by the respective organiza-
tion to deal with particular fields of technical activity. ISO and IEC tech-
nical committees collaborate in fields of mutual interest. Other interna-
tional organizations, governmental and non-governmental, in liaison
with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a
joint technical committee, ISO/IEC JTC1. Draft International Standards
adopted by the joint technical committee are circulated to national bod-
ies for voting. Publication as an International Standard requires approv-
al by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 11404 was prepared by Joint Technical
Committee ISO/IEC JTC1, Information technology, Subcommittee
SC22, Programming languages, their environments and system soft-
ware interfaces.

Annexes A to G  of this International Standard are for information only.
v



ISO/IEC 11404:1996 (E)  ISO/IEC
Introduction

Many specifications of software services and applications libraries are, or are in the process of becoming, Interna-
tional Standards. The interfaces to these libraries are often described by defining the form of reference, e.g. the “pro-
cedure call”, to each of the separate functions or services in the library, as it must appear in a user program written
in some standard programming language (Fortran, COBOL, Pascal, etc.). Such an interface specification is com-
monly referred to as the “<language> binding of <service>”, e.g. the “Fortran binding of PHIGS”
(ISO/IEC 9593-1:1990, Information processing systems — Computer Graphics — Programmer’s Hierarchical Inter-
active Graphics System (PHIGS) language bindings — Part 1: FORTRAN).

This approach leads directly to a situation in which the standardization of a new service library immediately requires
the standardization of the interface bindings to every standard programming language whose users might reasonably
be expected to use the service, and the standardization of a new programming language immediately requires the
standardization of the interface binding to every standard service package which users of that language might rea-
sonably be expected to use. To avoid this n-to-m binding problem, ISO/IEC JTC1 (Information Technology) assigned
to SC22 the task of developing an International Standard for Language-Independent Procedure Calling and a parallel
International Standard for Language-Independent Datatypes, which could be used to describe the parameters to such
procedures.

This International Standard provides the specification for the Language-Independent Datatypes. It defines a set of
datatypes, independent of any particular programming language specification or implementation, that is rich enough
so that any common datatype in a standard programming language or service package can be mapped to some
datatype in the set.

The purpose of this International Standard is to facilitate commonality and interchange of datatype notions, at the con-
ceptual level, among different languages and language-related entities. Each datatype specified in this International
Standard has a certain basic set of properties sufficient to set it apart from the others and to facilitate identification of
the corresponding (or nearest corresponding) datatype to be found in other standards. Hence, this International Stan-
dard provides a single common reference model for all standards which use the concept datatype. It is expected that
each programming language standard will define a mapping from the datatypes supported by that programming lan-
guage into the datatypes specified herein, semantically identifying its datatypes with datatypes of the reference mod-
el, and thereby with corresponding datatypes in other programming languages.

It is further expected that each programming language standard will define a mapping from those Language-Indepen-
dent (LI) Datatypes which that language can reasonably support into datatypes which may be specified in the pro-
gramming language. At the same time, this International Standard will be used, among other applications, to define
a “language-independent binding” of the parameters to the procedure calls constituting the principal elements of the
standard interface to each of the standard services. The production of such service bindings and language mappings
leads, in cooperation with the parallel Language-Independent Procedure Calling mechanism, to a situation in which
no further “<language> binding of <service>” documents need to be produced: Each service interface, by defining
its parameters using LI datatypes, effectively defines the binding of such parameters to any standard programming
language; and each language, by its mapping from the LI datatypes into the language datatypes, effectively defines
the binding to that language of parameters to any of the standard services.
vi
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Information technology  —  Programming languages,
their environments and system software interfaces  —
Language-independent datatypes
1 Scope

This International Standard specifies the nomenclature and shared semantics for a collection of datatypes commonly o
in programming languages and software interfaces, referred to as the Language-Independent (LI) Datatypes. It spec
primitive datatypes, in the sense of being defined ab initio without reference to other datatypes, and non-primitive datat
the sense of being wholly or partly defined in terms of other datatypes. The specification of datatypes in this Internation
dard is "language-independent" in the sense that the datatypes specified are classes of datatypes of which the actual
used in programming languages and other entities requiring the conceptdatatype are particular instances.

This International Standard expressly distinguishes three notions of "datatype", namely:

• the conceptual, or abstract, notion of a datatype, which characterizes the datatype by its nominal values and pro

• the structural notion of a datatype, which characterizes the datatype as a conceptual organization of specific com
datatypes with specific functionalities; and

• the implementation notion of a datatype, which characterizes the datatype by defining the rules for representation
datatype in a given environment.

This International Standard defines the abstract notions of many commonly used primitive and non-primitive datatypes
possess the structural notion of atomicity. This International Standard does not define all atomic datatypes; it defines on
which are common in programming languages and software interfaces. This International Standard defines structural no
the specification of other non-primitive datatypes and provides a means by which datatypes not defined herein can be
structurally in terms of the LI datatypes defined herein.

This International Standard defines a partial vocabulary for implementation notions of datatypes and provides for, but d
require, the use of this vocabulary in the definition of datatypes. The primary purpose of this vocabulary is to identify co
implementation notions associated with datatypes and to distinguish them from conceptual notions. Specifications for th
implementation notions are deemed to be outside the scope of this International Standard, which is concerned solely
identification and distinction of datatypes.

This International Standard specifies the required elements of mappings between the LI datatypes and the datatypes of s
language. This International Standard does not specify the precise form of a mapping, but rather the required information
of a mapping.

2 Conformance

An information processing product, system, element or other entity may conform to this International Standard either d
by utilizing datatypes specified in this International Standard in a conforming manner (2.1), or indirectly, by means of ma
between internal datatypes used by the entity and the datatypes specified in this International Standard (2.2).

NOTE — The general terminformation processing entity is used in this clause to include anything which processes information and con
the concept ofdatatype.Information processing entities for which conformance to this International Standard may be appropriate includ
standards (e.g. standards for programming languages or language-related facilities), specifications, data handling facilities and services, etc.
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2.1 Direct conformance

An information processing entity whichconforms directly to this International Standard shall:

i) specify which of the datatypes and datatype generators specified in Clauses 8 and 10 are provided by the en
which are not, and which, if any, of the declaration mechanisms in Clause 9 it provides; and

ii) define the value spaces of the LI datatypes used by the entity to be identical to the value-spaces specified by th
national Standard; and

iii) use the notation prescribed by clauses 7 through 10 of this International Standard to refer to those datatypes a
others; and

iv) to the extent that the entity provides operations other than movement or translation of values, define operation
LI datatypes which can be derived from, or are otherwise consistent with, the characterizing operations spec
this International Standard.

NOTES

1. This International Standard defines a syntax for the denotation of values of each datatype it defines, but, in general, requirement(iii) does
not require conformance to that syntax. Conformance to the value-syntax for a datatype is required only in those cases in which the
pears in atype-specifier, that is, only where the value is part of the identification of a datatype.

2. The requirements above prohibit the use of atype-specifierdefined in this International Standard to designate any other datatype. T
make no other limitation on the definition of additional datatypes in a conforming entity, although it is recommended that either the
Clause 8 or the form in Clause 10 be used.

3. Requirement (iv) does not require all characterizing operations to be supported and permits additional operations to be provide
intention is to permit addition of semantic interpretation to the LI datatypes and generators, as long as it does not conflict with the interps
given in this International Standard. A conflict arises only when a given characterizing operation could not be implemented or would
meaningful, given the entity-provided operations on the datatype.

4. Examples of entities which could conform directly are language definitions or interface specifications whose datatypes, and the
for them, are those defined herein. In addition, the verbatim support by a software tool or application package of the datatype syntax
inition facilities herein should not be precluded.

2.2 Indirect conformance

An information processing entity whichconforms indirectly to this International Standard shall:

i) provide mappings between its internal datatypes and the LI datatypes conforming to the specifications of Claus
this International Standard; and

ii) specify for which of the datatypes in Clause 8 and Clause 10 an inward mapping is provided, for which an ou
mapping is provided, and for which no mapping is provided.

NOTES

1. Standards for existing programming languages are expected to provide for indirect conformance rather than direct conformanc

2. Examples of entities which could conform indirectly are language definitions and implementations, information exchange specif
and tools, software engineering tools and interface specifications, and many other entities which have a concept of datatype and a
notation for it.

2.3 Conformance of a mapping standard

In order to conform to this International Standard, a standard for a mapping shall include in its conformance requireme
requirement to conform to this International Standard.

NOTES

1. It is envisaged that this International Standard will be accompanied by other standards specifying mappings between the internal
specified in language and language-related standards and the LI datatypes. Such mapping standards are required to comply with th
2
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2. Such mapping standards may define "generic" mappings, in the sense that for a given internal datatype the standard specifies
trized LI datatype in which the parametric values are not derived from parametric values of the internal datatype nor specified by the
itself, but rather are required to be specified by a "user" or "implementor" of the mapping standard. That is, instead of specifying a p
LI datatype, the mapping specifies a family of LI datatypes and requires a further user or implementor to specify which member of the
applies to a particular use of the mapping standard. This is always necessary when the internal datatypes themselves are, in the inten
language standard, either explicitly or implicitly parametrized. For example, a programming language standard may define a datatyp
GER with the provision that a conforming processor will implement some range of Integer; hence the mapping standard may map the
datatype INTEGER to the LI datatype :

integer range (min..max),
and require a conforming processor to provide values for "min" and "max".

3 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this Internationa
dard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agre
based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of
dards indicated below.  Members of IEC and ISO maintain registers of current valid International Standards.

ISO/IEC 8601:1988,Data elements and interchange formats — Information interchange —Representation of dates and

ISO/IEC 8824:1990,Information technology — Open Systems Interconnection — Specification of Abstract Syntax Notatio
(ASN.1).

ISO/IEC 10646-1:1993,Information technology — Universal Multiple-Octet Coded Character Set  (UCS) —
Part 1: Architecture and Basic Multilingual Plane.

4 Definitions

For the purposes of this International Standard, the following definitions apply.

NOTE — These definitions may not coincide with accepted mathematical or programming language definitions of the same terms.

4.1 actual parametric datatype: a datatype appearing as a parametric datatype in a use of a datatype generator, as o
to theformal-parametric-typesappearing in the definition of the datatype generator.

4.2 actual parametric value: a value appearing as a parametric value in a reference to a datatype family or datatype gen
as opposed to theformal-parametric-valuesappearing in the corresponding definitions.

4.3 aggregate datatype: a generated datatype each of whose values is made up of values of the component datatype
sense that operations on all component values are meaningful.

4.4 annotation: a descriptive information unit attached to a datatype, or a component of a datatype, or a procedure (
to characterize some aspect of the representations, variables, or operations associated with values of the datatype whic
yond the scope of this International Standard.

4.5 approximate: a property of a datatype indicating that there is not a 1-to-1 relationship between values of the conc
datatype and the values of a valid computational model of the datatype.

4.6 bounded: a property of a datatype, meaning bothbounded aboveandbounded below.

4.7 bounded above: a property of a datatype indicating that there is a value U in the value space such that, for all valu
the value space, s≤ U.

4.8 bounded below: a property of a datatype indicating that there is a value L in the value space such that, for all values in
the value space, L≤ s.

4.9 characterizing operations:
(of a datatype): a collection of operations on, or yielding, values of the datatype, which distinguish this datatyp
3



ISO/IEC 11404:1996 (E)  ISO/IEC

ication
cal value

ich the

.

y this

value

pes.

y valid

will

hich

fined

pro-

efined

, service

ich as-

d spec-
other datatypes with identical value spaces;
(of a datatype generator): a collection of operations on, or yielding, values of any datatype resulting from an appl

of the datatype generator, which distinguish this datatype generator from other datatype generators which produce identi
spaces from identical parametric datatypes.

4.10 component datatype: a datatype which is a parametric datatype to a datatype generator, i.e. a datatype on wh
datatype generator operates.

4.11 datatype: a set of distinct values, characterized by properties of those values and by operations on those values

4.12 datatype declaration:
(1) the means provided by this International Standard for the definition of a LI datatype which is not itself defined b

International Standard;
(2) an instance of use of this means.

4.13 datatype family: a collection of datatypes which have equivalent characterizing operations and relationships, but
spaces which differ in the number and identification of the individual values.

4.14 datatype generator: an operation on datatypes, as objects distinct from their values, which generates new dataty

4.15 defined datatype: a datatype defined by a type-declaration.

4.16 defined generator: a datatype generator defined by a type-declaration.

4.17 exact: a property of a datatype indicating that every value of the conceptual datatype is distinct from all others in an
computational model of the datatype.

4.18 formal-parametric-type: an identifier, appearing in the definition of a datatype generator, for which a LI datatype
be substituted in any reference to a (defined) datatype resulting from the generator.

4.19 formal-parametric-value: an identifier, appearing in the definition of a datatype family or datatype generator, for w
a value will be substituted in any reference to a (defined) datatype in the family or resulting from the generator.

4.20 generated datatype: a datatype defined by the application of a datatype generator to one or more previously-de
datatypes.

4.21 generated internal datatype: a datatype defined by the application of a datatype generator defined in a particular
gramming language to one or more previously-defined internal datatypes.

4.22 generator: a datatype generator (q.v.).

4.23 generator declaration:
(1) the means provided by this International Standard for the definition of a datatype generator which is not itself d

by this International Standard;
(2) an instance of use of this means.

4.24 internal datatype: a datatype whose syntax and semantics are defined by some other standard, language, product
or other information processing entity.

4.25 inward mapping: a conceptual association between the internal datatypes of a language and the LI datatypes wh
signs to each LI datatype either a single semantically equivalent internal datatype or no equivalent internal datatype.

4.26 LI datatype:
(1) a datatype defined by this International Standard, or
(2) a datatype defined by the means of datatype definition provided by this International Standard.

4.27 lower bound: in a datatype which is bounded below, the value L such that, for all valuess in the value space, L≤ s.

4.28 mapping:
(of datatypes): a formal specification of the relationship between the (internal) datatypes which are notions of, an

ifiable in, a particular programming language and the (LI) datatypes specified in this International Standard;
4



 ISO/IEC ISO/IEC 11404:1996 (E)

s of the

on its

which

oss of

g con-

pe of a

ll char-

which

s-Naur
tax,
umma-
(of values): a corresponding specification of the relationships between values of the internal datatypes and value
LI datatypes.

4.29 order: a mathematical relationship among values (see 6.3.2).

4.30 ordered: a property of a datatype which is determined by the existence and specification of an order relationship
value space.

4.31 outward mapping: a conceptual association between the internal datatypes of a language and the LI datatypes
identifies each internal datatype with a single semantically equivalent LI datatype.

4.32 parametric datatype: a datatype on which a datatype generator operates to produce a generated-datatype.

4.33 parametric value:
(1) a value which distinguishes one member of a datatype family from another, or
(2) a value which is a parameter of a datatype or datatype generator defined by atype-declaration (see 9.1).

4.34 primitive datatype: an identifiable datatype that cannot be decomposed into other identifiable datatypes without l
all semantics associated with the datatype.

4.35 primitive internal datatype: a datatype in a particular programming language whose values are not viewed as bein
structed in any way from values of other datatypes in the language.

4.36 representation:
(of a LI datatype): the mapping from the value space of the LI datatype to the value space of some internal dataty

computer system, file system or communications environment;
(of a value):  the image of that value in the representation of the datatype.

4.37 subtype: a datatype derived from another datatype by restricting the value space to a subset whilst maintaining a
acterizing operations.

4.38 upper bound: in a datatype which is bounded above, the value U such that, for all values s in the value space, s≤ U.

4.39 value space: the set of values for a given datatype.

4.40 variable: a computational object to which a value of a particular datatype is associated at any given time; and to
different values of the same datatype may be associated at different times.

5 Conventions Used in this International Standard

5.1 Formal syntax

This International Standard defines a formal datatype specification language. The following notation, derived from Backu
form, is used in defining that language. In this clause, the wordmark is used to refer to the characters used to define the syn
while the wordcharacteris used to refer to the characters used in the actual datatype specification language. Table 5-1 s
rizes the syntactic metanotation.

" (QUOTATION MARK) delimits a terminal symbol

’ (APOSTROPHE) delimits a terminal symbol

{ } (CURLY BRACKETS) delimit a repeated sequence (zero or more occurrences)

[ ] (SQUARE BRACKETS) delimit an optional sequence (zero or one occurrence)

| (VERTICAL LINE) delimits an alternative sequence

= (EQUALS SIGN) separates a non-terminal symbol from its definition

. (FULL STOP) terminates a production

Table 5-1 — Metanotation Marks
5
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A terminal symbol is a sequence of marks beginning with either aQUOTATION MARK (") or anAPOSTROPHE mark (’)
and terminated by the next occurrence of the same mark. The terminal symbol represents the occurrence of the sequenc
acters in an implementation character-set corresponding to the marks enclosed by (but not including) theQUOTATION MARK
or APOSTROPHE delimiters.

A non-terminal symbol is a sequence of marks, each of which is either a letter or theHYPHEN-MINUS (-) mark, terminated
by the first mark which is neither a letter nor aHYPHEN-MINUS. A non-terminal symbol represents any sequence of termi
symbols which satisfies theproductionfor that non-terminal symbol. For each non-terminal symbol there is exactly one pro
tion in clauses 7, 8, 9, and 10.

A sequenceof symbols represents exactly one occurrence of a (group of) terminal symbol(s) represented by each symb
sequence in the order in which the symbols appear in the sequence, and no other symbols.

A repeated sequenceis a sequence of terminal and/or non-terminal symbols enclosed between aLEFT CURLY BRACKET
mark ({) and aRIGHT CURLY BRACKET mark (}). A repeated sequence represents any number of consecutive occurr
of the sequence of symbols so enclosed, including no occurrence.

An optional sequenceis a sequence of terminal and/or non-terminal symbols enclosed between aLEFT SQUARE BRACKET
mark ([) and aRIGHT SQUARE BRACKET mark (]). An optional sequence represents either exactly one occurrence o
sequence of symbols so enclosed or no symbols at all.

An alternative sequenceis a sequence of terminal and/or non-terminal symbols preceded by aVERTICAL LINE (|) mark and
followed by either aVERTICAL LINE mark or aFULL STOP mark (.). An alternative sequence represents the occurrenc
either the sequence of symbols so delimited or the sequence of symbols preceding the (first)VERTICAL LINE mark.

A production defines the valid sequences of symbols which a non-terminal symbol represents.  A production has the fo
non-terminal-symbol = valid-sequence .

wherevalid-sequenceis any sequence of terminal symbols, non-terminal symbols, optional sequences, repeated sequen
alternative sequences. TheEQUALS SIGN (=) mark separates the non-terminal symbol being defined from the valid-sequ
which represents its definition.  TheFULL STOP mark terminates the valid-sequence.

5.2 Text conventions

Within the text:

• A reference to a terminal symbol syntactic object consists of the terminal symbol in quotation marks, e.g. "type".

• A reference to a non-terminal symbol syntactic object consists of the non-terminal-symbol in italic script, e.g.type-dec-
laration.

• Non-italicized words which are identical or nearly identical in spelling to a non-terminal-symbol refer to the conce
object represented by the syntactic object. In particular,xxx-typerefers to the syntactic representation of an "xxx datatyp
in all occurrences.

6 Fundamental Notions

6.1 Datatype

A datatype is a a set of distinct values, characterized by properties of those values and by operations on those values.
terizing operations are included in this International Standard solely in order to identify the datatype. In this Internationa
dard, characterizing operations are purely informative and have no normative impact.

NOTE — Characterizing operations are included in order to assist in the identification of the appropriate datatypes for particular purpos
as mapping to programming languages.

The termLI datatype (for Language-Independent datatype) is used to mean a datatype defined by this International Sta
LI datatypes (plural) refers to some or all of the datatypes defined by this International Standard.

The terminternal datatype is used to mean a datatype whose syntax and semantics are defined by some other standard, la
product, service or other information processing entity.
6
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NOTE — The datatypes included in this standard are "common", not in the sense that they are directly supported by, i.e. "built-in" t
languages, but in the sense that they are common and useful generic concepts among users of datatypes, which include, but go w
programming languages.

6.2 Value space

A value spaceis the collection of values for a given datatype. The value space of a given datatype can be defined in one
following ways:

• enumerated outright, or

• defined axiomatically from fundamental notions, or

• defined as the subset of those values from some already defined value space which have a given set of propert

• defined as a combination of arbitrary values from some already defined value spaces by a specified construction
dure.

Every distinct value belongs to exactly one datatype, although it may belong to many subtypes of that datatype (see 8.

6.3 Datatype properties

The model of datatypes used in this International Standard is said to be an "abstract computational model". It is "comput
in the sense that it deals with the manipulation of information by computer systems and makes distinctions in the typing o
mation units which are appropriate to that kind of manipulation. It is "abstract" in the sense that it deals with the perceive
erties of the information units themselves, rather than with the properties of their representations in computer systems

NOTES

1. It is important to differentiate between the values, relationships and operations for a datatype and the representations of those v
lationships and operations in computer systems. This International Standard specifies the characteristics of the conceptual datatypesy
provides a means for specification of characteristics of representations of the datatypes.

2. Some computational properties derive from theneed for the information units to be representablein computers. Such properties are
deemed to be appropriate to the abstract computational model, as opposed to purelyrepresentationalproperties, which derive from thenature
of specific representations of the information units.

3. It is not proper to describe the datatype model used herein as "mathematical", because a truly mathematical model has no notio
cess to information units" or "invocation of processing elements", and these notions are important to the definition of characterizing op
for datatypes and datatype generators.

6.3.1 Equality

In every value space there is a notion ofequality, for which the following rules hold:

• for any two instances (a, b) of values from the value space, either a is equal tob, denoted a = b, or ais not equal tob,
denoted a≠ b;

• there is no pair of instances (a, b) of values from the value space such that both a = b and a≠ b;

• for every value a from the value space, a = a;

• for any two instances (a, b) of values from the value space, a = b if and only if b = a;

• for any three instances (a, b, c) of values from the value space, if a = b and b = c, then a = c.

On every datatype, the operation Equal is defined in terms of the equality property of the value space, by:

• for any values a, b drawn from the value space, Equal(a,b)is true if a = b, andfalseotherwise.

6.3.2 Order

A value space is said to beordered if there exists for the value space anorder relation, denoted≤, with the following rules:

• for every pair of values (a, b) from the value space, either a≤ b or b≤ a, or both;

• for any two values (a, b) from the value space,  if a≤ b and b≤ a, then a = b;

• for any three values (a, b, c) from the value space, if a≤ b and b≤ c, then a≤ c.
7
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For convenience, the notation a < b is used herein to denote the simultaneous relationships:  a≤ b and a≠ b.

A datatype is said to beordered if an order relation is defined on its value space. A corresponding characterizing opera
called InOrder, is then defined by:

• for any two values (a, b) from the value space, InOrder(a, b) istrue if a ≤ b, andfalseotherwise.

NOTE — There may be several possible orderings of a given value space. And there may be several different datatypes which have a
value space, each using a different order relationship. The chosen order relationship is a characteristic of an ordered datatype and
the definition of other operations on the datatype.

6.3.3 Bound

A datatype is said to bebounded aboveif it is ordered and there is a value U in the value space such that, for all values s in
value space, s≤ U. The value U is then said to be anupper bound of the value space. Similarly, a datatype is said to bebounded
below if it is ordered and there is a value L in the space such that, for all valuess in the value space, L≤ s. The value L is then
said to be alower bound of the value space. A datatype is said to bebounded if its value space has both an upper bound and
lower bound.

NOTE — The upper bound of a value space, if it exists, must be unique under the equality relationship. For if U1 and U2 are both uppe
of the value space, then U1≤ U2 and U2≤ U1, and therefore U1 = U2, following the second rule for the order relationship. And similarly
lower bound, if it exists, must also be unique.

On every datatype which is bounded below, the niladic operation Lowerbound is defined to yield that value which is the
bound of the value space, and, on every datatype which is bounded above the niladic operation Upperbound is defined
that value which is the upper bound of the value space.

6.3.4 Cardinality

A value space has the mathematical concept of cardinality: it may be finite, denumerably infinite (countable), or non-den
bly infinite (uncountable). A datatype is said to have the cardinality of its value space. In the computational model, th
three significant cases:

• datatypes whose value spaces are finite,

• datatypes whose value spaces are exact (see 6.3.5) and denumerably infinite,

• datatypes whose value spaces are approximate (see 6.3.5), and therefore have a finite or denumerably infinite c
tional model, although the conceptual value space may be non-denumerably infinite.

Every conceptually finite datatype is necessarily exact.  No computational datatype is non-denumerably infinite.

NOTE — For a denumerably infinite value space, there always exist representation algorithms such that no two distinct values have
representation and the representation of any given value is of finite length. Conversely, in a non-denumerably infinite value space the
exist values which do not have finite representations.

6.3.5 Exact and approximate

The computational model of a datatype may limit the degree to which values of the datatype can be distinguished. If eve
in the value space of the conceptual datatype is distinguishable in the computational model from every other value in th
space, then the datatype is said to beexact.

Certain mathematical datatypes having values which do not have finite representations are said to beapproximate, in the fol-
lowing sense:

Let M be the mathematical datatype andC be the corresponding computational datatype, and let P be the mapping from
value space ofM to the value space ofC. Then for every valuev’ in C, there is a corresponding valuev in M and a real valueh
such that P(x) = v’ for all x in M such that |v - x | < h. That is, v’ is the approximation inC to all values inM which are "within
distanceh of valuev". Furthermore, for at least one valuev’ in C, there is more than one valuey in M such that P(y) = v’. And
thusC is not an exact model ofM.

In this International Standard, all approximate datatypes have computational models which specify, via parametric valuede-
gree of approximation, that is, they require a certain minimum set of values of the mathematical datatype to be distinguis
in the computational datatype.

NOTE — The computational model described above allows a mathematically dense datatype to be mapped to a datatype with fixed-le
resentations and nonetheless evince intuitively acceptable mathematical behavior. When the real valueh described above is constant over th
8
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value space, the computational model is characterized as having "bounded absolute error" and the result is a scaled datatype (8.1.9h
has the formc • | v |, wherec is constant over the value space, the computational model is characterized as having "bounded relative
which is the model used for the Real (8.1.10) and Complex (8.1.11) datatypes.

6.3.6 Numeric

A datatype is said to benumeric if its values are conceptually quantities (in some mathematical number system). A dat
whose values do not have this property is said to benon-numeric.

NOTE — The significance of the numeric property is that the representations of the values depend on someradix, but can be algorithmically
transformed from one radix to another.

6.4 Primitive and non-primitive datatypes

In this International Standard, datatypes are categorized, for syntactic convenience, into:

• primitive  datatypes, which are  defined ab initio without reference to other datatypes, and

• generated datatypes, which are specified, and partly defined, in terms of other datatypes.

In addition, this International Standard identifies structural and abstract notions of datatypes. The structural notion of a d
characterizes the datatype as either:

• conceptuallyatomic, having values which are intrinsically indivisible, or

• conceptuallyaggregate, having values which can be seen as an organization of specific component datatypes with sp
functionalities.

All primitive datatypes are conceptually atomic, and therefore have, and are defined in terms of, well-defined abstract n
Some generated datatypes are conceptually atomic but are dependent on specifications which involve other datatypes.
are defined in terms of their abstract notions. Many other datatypes may represent objects which are conceptually ato
are themselves conceptually aggregates, being organized collections of accessible component values. For aggregate
this International Standard defines a set of basic structural notions (see 6.8) which can be recursively applied to produce
space of a given generated datatype. The only abstract semantics assigned to such a datatype by this International St
those which characterize the aggregate value structure itself.

NOTE — The abstract notion of a datatype is the semantics of the values of the datatype itself, as opposed to its utilization to represe
of a particular information unit or a particular abstract object. The abstract and structural notions provided by this International Stan
sufficient to define its role in the universe of discourse between two languages, butnot to define its role in the universe of discourse betwee
two programs. For example, Array datatypes are supported as such by both Fortran and Pascal, so that Array of Real has sufficient s
for procedure calls between the two languages. By comparison, both linear operators and lists of Cartesian points may be represente
of Real, and Array of Real is insufficient to distinguish those meanings in the programs.

6.5 Datatype generator

A datatype generatoris a conceptual operation on one or more datatypes which yields a datatype. A datatype generator o
on datatypes to generate a datatype, rather than on values to generate a value. Specifically, a datatype generator is the co
of:

• a collection of criteria for the number and characteristics of the datatypes to be operated upon,

• a construction procedure which, given a collection of datatypes meeting those criteria, creates a new value space
value spaces of those datatypes, and

• a collection of characterizing operations which attach to the resulting value space to complete the definition of a
datatype.

The application of a datatype generator to a specific collection of datatypes meeting the criteria for the datatype generat
a generated datatype. The generated dataype is sometimes called theresulting datatype, and the collection of datatypes to
which the datatype generator was applied are called itsparametric datatypes.

6.6 Characterizing operations

The set ofcharacterizing operations for a datatypecomprises those operations on or yielding values of the datatype wh
distinguish this datatype from other datatypes having value spaces which are identical except possibly for substitution of sy
9
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The set ofcharacterizing operations for a datatype generatorcomprises those operations on or yielding values of any datat
resulting from an application of the datatype generator which distinguish this datatype generator from other datatype ge
which produce identical value spaces from identical parametric datatypes.

NOTES

1. Characterizing operations are needed to distinguish datatypes whose value spaces differ only in what the values are called. Fo
the value spaces (one, two, three, four), (1, 2, 3, 4), and (red, yellow, green, blue) all have four distinct values and all the names (sym
different.  But one can claim that the first two support the characterizing operation Add, while the last does not:

Add(one, two) = three; and Add(1,2) = 3; but Add(red, yellow)≠ green.
It is this characterizing operation (Add) which enables one to recognize that the first two datatypes are the same datatype, while the
different datatype.

2. The characterizing operations for an aggregate datatype are compositions of characterizing operations for its datatype generator
acterizing operations for its component datatypes.  Such operations are, of course, only sufficient to identify the datatype as a structure.

3. The characterizing operations on a datatype may be:
a) niladic operations which yield values of the given datatype,
b) monadic operations which map a value of the given datatype into a value of the given datatype or into a value of datatype B
c) dyadic operations which map a pair of values of the given datatype into a value of the given datatype or into a value of datype

Boolean,
d) n-adic operations which map ordered n-tuples of values, each of which is of a specified datatype, which may be the given d

or a parametric datatype, into values of the given datatype or a parametric datatype.

4. In general, there is no unique collection of characterizing operations for a given datatype. This International Standard specifies
lection of characterizing operations for each datatype (or datatype generator) which is sufficient to distinguish the (resulting) datatypel
other datatypes with value spaces of the same cardinality. While some effort has been made to minimize the collection of characteriz
ations for each datatype, no assertion is made that any of the specified collections is minimal.

5. InOrder is always a characterizing operation on ordered datatypes (see 6.3.2).

6.7 Datatype families

If there is a one-to-one symbol substitution which maps the entire value space of one datatype (thedomain) into a subset of the
value space of another datatype (therange) in such a way that the value relationships and characterizing operations of the do
datatype are preserved in the corresponding value relationships and characterizing operations of the range datatype, a
are no additional characterizing operations on the range datatype, then the two datatypes are said to belong to the samefamily of
datatypes. An individual member of a family of datatypes is distinguished by the symbol set making up its value space.
International Standard, the symbol set for an individual member of a datatype family is specified by one or more values
theparametric values of the datatype family.

6.8 Aggregate datatypes

An aggregate datatypeis a generated datatype, each of whose values is, in principle, made up of values of the para
datatypes. The parametric datatypes of an aggregate datatype or its generator are also calledcomponent datatypes. An aggre-
gate datatype generator generates a datatype by

• applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space of the ag
datatype, and

• providing a set of characterizing operations specific to the generator.

Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of an aggregate
accessible through characterizing operations.

Aggregate datatypes of various kinds are distinguished one from another by properties which characterize relationship
the component datatypes and relationships between each component and the aggregate value. This subclause defines
erties.

The properties specific to an aggregate are independent of the properties of the component datatypes. (The fundame
erties of arrays, for example, do not depend on the nature of the elements.) In principle, any combination of the properti
ified in this subclause defines a particular form of aggregate datatype, although most are only meaningful for homogene
gregates (see 6.8.1) and there are implications of some direct access methods (see 6.8.5).
10
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6.8.1 Homogeneity

An aggregate datatype ishomogeneous, if and only if all components must belong to a single datatype. If different compone
may belong to different datatypes, the aggregate datatype is said to beheterogeneous. The component datatype of a homoge
neous aggregate is also called theelement datatype.

NOTES

1. Homogeneous aggregates view all their elements as serving the same role or purpose. Heterogeneous aggregates divide the
into different roles.

2. The aggregate datatype is homogeneous if its components all belong to the same datatype, even if the element datatype is itse
ogeneous aggregate datatype. Consider the datatype label_list defined by:

type label = choice (state(name, handle)) of  ((name): characterstring, (handle): integer);
type label_list = sequence of (label);

Formally, alabel_list value is a homogeneous series oflabel values. One could argue that it is really a series of heterogeneous values, be
everylabel value is of a choice datatype (see 8.3.1). Choice is clearly heterogeneous because it iscapable of introducing variationin element
type.  But Sequence (see 8.4.4) is homogeneous because it itselfintroduces no variation in element type.

6.8.2 Size

Thesizeof an aggregate-value is the number of component values it contains. The size of the aggregate datatype isfixed, if and
only if all values in its value space contain the same number of component values. The size isvariable, if different values of
the aggregate datatype may have different numbers of component values. Variability is the more general case; fixed-
constraint.

6.8.3 Uniqueness

An aggregate-value has theuniquenessproperty if and only if no value of the element datatype occurs more than once in
aggregate-value.  The aggregate datatype has the uniqueness property, if and only if all values in its value space do.

6.8.4 (Aggregate-imposed) ordering

An aggregate datatype has theordering property, if and only if there is a canonical first element of each non-empty value in
value-space. This ordering is (externally) imposed by the aggregate value, as distinct from the value-space of the
datatype itself being (internally)ordered (see 6.3.2). It is also distinct from the value-space of the aggregate datatype beinor-
dered.

EXAMPLE — The type-generatorsequence has the ordering property.  The datatypecharacterstring is defined as
sequence of (character(repertoire)). The ordering property ofsequence means that in every value of typecharacterstring, there is a first
character value. For example, the first element value of the characterstring value “computation” is ’c’. This is different from the que
whether the element datatypecharacter(repertoire) is ordered: is ’a’ < ’c’? It is also different from the question of whether the value spa
of datatypecharacterstring is ordered by some collating-sequence: is “computation” < “Computer”?

6.8.5 Access method

Theaccess methodfor an aggregate datatype is the property which determines how component values can be extracted
given aggregate-value.

An aggregate datatype has adirect access method, if and only if there is an aggregate-imposed mapping between values of
or more “index” (or “key”) datatypes and the component values of each aggregate value. Such a mapping is required to b
valued, i.e. there is at most one element of each aggregate value which corresponds to each (composite) value of
datatype(s).  Thedimensionof an aggregate datatype is the number of index or key datatypes the aggregate has.

An aggregate datatype is said to beindexed, if and only if it has a direct access method, every index datatype is ordered, an
element of the aggregate value is actually present and defined for every (composite) value in the value space of th
datatype(s). Every indexed aggregate datatype has a fixed size, because of the 1-to-1 mapping from the index value s
addition, an indexed datatype has a "partial ordering" in each dimension imposed by the order relationship on the index
for that dimension; in particular, an aggregate datatype with a single ordered index datatype implicitly has theordering imposed
by sequential indexing.

An aggregate datatype is said to bekeyed, if and only if it has a direct access method, but either the index datatypes or the
ping do not meet the requirements forindexed. That is, the “index” (or “key”) datatypes need not be ordered, and a value of
11
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aggregate datatype need not have elements corresponding to all of the key values.

An aggregate datatype is said to have onlyindirect access methodsif there is no aggregate-imposed index mapping. Indire
access may be by position (if the aggregate datatype hasordering), by value of the element (if the aggregate datatype hasunique-
ness), or by some implementation-dependent selection mechanism, modelled as random selection.

NOTES

1. The access methods become characterizing operations on the aggregate types. It is preferable to define the types by their intri
erties and to see these access properties be derivable characterizing operations.

2. Sequence (see 8.4.4) is said to haveindirect accessbecause the only way a given element value (or an element value satisfying some
condition) can be found is to traverse the list in order until the desired element is the “Head”. In general, therefore, one cannot access th
element without first accessing all (undesired) elements appearing earlier in the sequence. On the other hand, Array (see 8.4.5) hasdirect access
because the access operation for a given element is “find the element whose index is i” – the ith element can be accessed without acc
other element in the given Array. Of course, if the Array element which satisfies a condition not related to the index value is wanted
would be indirect.

6.8.6 Recursive structure

A datatype is said to berecursive if a value of the datatype can contain (or refer to) another value of the datatype. In this I
national Standard, recursivity is supported by the type-declaration facility (see 9.1), and recursive datatypes can be desc
ing type-declaration in combination with choice datatypes (8.3.1) or pointer datatypes (8.3.2). Thus recursive structurnot
considered to be a property of aggregate datatypes per se.

EXAMPLE — LISP has several "atomic" datatypes, collected under the generic datatype "atom", and a "list" datatype which is a sequ
elements each of which can be an atom or a list.  This datatype can be described using the Tree datatype generator defined in 10.2.2.

7 Elements of the Datatype Specification Language

This International Standard defines a datatype specification language, in order to formalize the identification and declar
datatypes conforming to this International Standard. The language is a subset of the Interface Definition Notation de
ISO/IEC 13886:1996,Information technology — Programming languages — Language-independent procedure calling, which
is completely specified in Annex D.  This clause defines the basic syntactic objects used in that language.

7.1 IDN character-set

The following productions define the character-set of the datatype specification language, summarized in Table 7-1.

Syntax Characters

letter a b c d e f g h i j k l m n o p q r s t u v w x y z

digit 0 1 2 3 4 5 6 7 8 9

special (  ) . , : ; -
(parentheses) (full stop) (comma) (colon) (semicolon) (hyphen minus)

{  } / * ^ = [  ]
(curly brackets) (solidus) (asterisk) (circumflex) (equals sign) (square brackets)

underscore _
(low line)

apostrophe ’
(apostrophe)

quote "
(quotation mark)

escape !
(exclamation mark)

space

Table 7-1 — IDN Character Set
12
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letter  = "a"  |  "b"  |  "c"  |  "d"  |  "e"  |  "f"  |  "g"  |  "h"  |  "i"  |  "j"  |  "k"  |  "l"  |  "m"  |
"n"  |  "o"  |  "p"  |  "q"  |  "r"  |  "s"  |  "t"  |  "u"  |  "v"  |  "w"  |  "x"  |  "y"  |  "z"  .

digit  = "0"  |  "1"  |  "2"  |  "3"  |  "4"  |  "5"  |  "6"  |  "7"  |  "8"  |  "9"  .
special  = "("  |  ")"  |  "."  |  ","  |  ":"  |  ";"  |  "="  |  "/"  |  "*"  |  "-"  |  "{"  |  "}"  |  "["  |  "]"  .
underscore  = "_"  .
apostrophe  = "’"  .
quote  = ’"’  .
escape  = "!"  .
space  = " "  .
non-quote-character  =  letter  |  digit  |  underscore  |  special  |  apostrophe  |  space  .
bound-character  =  non-quote-character  |  quote  .
added-character  = not defined by this International Standard .

These productions are nominal. Lexical productions are always subject to minor changes from implementation to imple
tion, in order to handle the vagaries of available character-sets.  The following rules, however, always apply:

1) Thebound-characters,and theescapecharacter, are required in any implementation to be associated with particular m
bers of the implementation character set.

2) The characterspaceis required to be bound to the "space" member of ISO/IEC 10646-1: 1993, but it only has meaning
in character-literals and string-literals.

3) A bound-characteris required to be associated with the member having the corresponding symbol, if any, in any imple
tation character-set derived from ISO/IEC 10646-1:1993, except that no significance is attached to the "case" of le

4) An added-characteris any other member of the implementation character-set which is bound to the member having th
responding symbol in an ISO/IEC 10646-1 character-set.

7.2 Whitespace

A sequence of one or morespacecharacters, except within a character-literal or string-literal (see 7.3), shall be consid
whitespace.Any use of this International Standard may define any other characters or sequences of characters not in th
character set to be whitespace as well, such as horizontal and vertical tabulators, end of line and end of page indicato.

A commentis any sequence of characters beginning with the sequence "/*" and terminating with the first occurrence the
of the sequence "*/".  Every character of a comment shall be considered whitespace.

With respect to interpretation of a syntactic object under this International Standard, any annotation (see 7.4) is con
whitespace.

Any two lexical objects which occur consecutively may be separated by whitespace, without effect on the interpretation
syntactic construction.  Whitespace shall not appearwithin lexical objects.

Any two consecutive keywords or identifiers, or a keyword preceded or followed by an identifier, shall be separa
whitespace.

7.3 Lexical objects

The lexical objects are all terminal symbols except those defined in 7.1, and the objectsidentifier, digit-string, character-literal,
string-literal.

7.3.1 Identifiers

An identifier is a terminal symbol used to name a datatype or datatype generator, a component of a generated datatype, o
of some datatype.

identifier  =  letter  {  pseudo-letter  }  .
pseudo-letter  =  letter  |  digit  |  underscore  .
13
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Multiple identifiers with the same spelling are permitted, as long as the object to which the identifier refers can be determ
the following rules:

1) An identifier X declared by atype-declarationor value-declarationshall not be declared in any other declaration.

2) The identifier X in a component of atype-specifier(Y) refers to that component of Y which Y declares X to identify, if any
or whatever X refers to in thetype-specifierwhich immediately contains Y, if any, or else the datatype or value which X
declared to identify by a declaration.

7.3.2 Digit-string

A digit-string is a terminal-symbol consisting entirely of digits. It is used to designate a value of some datatype, with the
pretation specified by that datatype definition.

digit-string  =  digit  {  digit  }  .

7.3.3 Character-literal and string-literal

A character-literal is a terminal-symbol delimited byapostrophecharacters. It is used to designate a value of a charac
datatype, as specified in 8.1.4.

character-literal  =  "’"  any-character  "’"  .
any-character  =  bound-character  |  added-character  |  escape-character  .
escape-character  =  escape  character-name  escape  .
character-name  =  identifier  {  " "  identifier  }  .

A string-literal is a terminal-symbol delimited byquotecharacters. It is used to designate values of time datatypes (8.1
bitstring datatypes (10.1.4), and characterstring datatypes (10.1.5), with the interpretation specified for each of those dypes.

string-literal  =  quote  {  string-character  }  quote  .
string-character  =  non-quote-character  |  added-character  |  escape-character  .

Every character appearing in acharacter-literalor string-literal shall be a part of the literal, even when that character would o
erwise be whitespace.

7.3.4 Keywords

The termkeyword refers to any terminal symbol which also satisfies the production foridentifier, i.e. is not composed of specia
characters. The keywords appearing in Table 7-2 are "reserved", in the sense that none of them shall be interpreted as
fier. All other keywords appearing in this International Standard shall be interpreted as predefined identifiers for the data
type-generator to which this International Standard defines them to refer.

NOTE — All of the above keywords are reserved because they introduce (or are part of) syntax which cannot validly follow anidentifier for a
datatype or type-generator. Most datatype identifiers defined in Clause 8 are syntactically equivalent to atype-reference(see 8.5), except for
their appearance in Clause 8.

7.4 Annotations

An annotation,or extension,is a syntactic object defined by a standard or information processing entity which uses this Int
tional Standard.  All annotations shall have the form:

Table 7-2 — Reserved Keywords

array choice default excluding from in inout

new of out plus pointer procedure raises

range record returns selecting size subtype table

termination to type value
14
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annotation  =  "["  annotation-label  ":"  annotation-text  "]"  .
annotation-label  =  objectidentifiercomponent-list  .
annotation-text  = not defined by this International Standard  .

Theannotation-labelshall identify the standard or information processing entity which defines the meaning of theannotation-
text. The entity identified by theannotation-labelshall also define the allowable syntactic placement of a given type of ann
tion and the syntactic object(s), if any, to which the annotation applies. Theobjectidentifiercomponent-listshall have the struc-
ture and meaning prescribed by clause 10.1.10.

NOTE — Of the several forms ofobjectidentifiercomponent-valuespecified in 10.1.10, thenameformis the most convenient for labelling an-
notations. Following ISO/IEC 8824:1990, every value of the objectidentifier datatype must have as its first component one of "iso", "c
"joint-iso-ccitt", but an implementation or use is permitted to specify an identifier which represents a sequence of component values b
with one of the above, as:

value rpc : objectidentifier = { iso(1) standard(0) 11578 };
and that identifier may then be used as the first (or only) component of anannotation-label, as in:

[rpc: discriminant = n].
(This example is fictitious.  ISO/IEC 11578:1995 does not define any annotations.)
Non-standard annotations, defined by vendors or user organizations, for example, can acquire such labels through one of the { iso
body <nation> ... } or { iso identified-organization <organization> ... } paths, using the appropriate national or international registration aor-
ity.

7.5 Values

The identification of members of a datatype family, subtypes of a datatype, and the resulting datatypes of datatype ge
may require the syntactic designation of specific values of a datatype. For this reason, this International Standard provid
tation for values of every datatype that is defined herein or can be defined using the features provided by clause 10, ex
datatypes for which designation of specific values is not appropriate.

A value-expressiondesignates a value of a datatype.  Syntax:

value-expression  =  independent-value  |  dependent-value  |  formal-parametric-value  .

An independent-valueis a syntactic construction which resolves to a fixed value of some LI datatype. Adependent-valueis a
syntactic construction which refers to the value possessed by another component of the same datatype. Aformal-parametric-
value refers to the value of aformal-type-parameterin a type-declaration,as provided in 9.1.

7.5.1 Independent values

An independent-valuedesignates a specific fixed value of a datatype.   Syntax:

independent-value  =  explicit-value  |  value-reference  .
explicit-value  =  boolean-literal  |  state-literal  |  enumerated-literal  |  character-literal

|  ordinal-literal  |  time-literal  |  integer-literal  |  rational-literal
|  scaled-literal  |  real-literal  |  complex-literal  |  void-literal
|  extended-literal  |  pointer-literal  |  procedure-reference  |  string-literal
|  bitstring-literal  |  objectidentifier-value  |  choice-value  |  record-value
|  set-value  |  sequence-value  |  bag-value  |  array-value  |  table-value  .

value-reference  =  value-identifier  .
procedure-reference  =  procedure-identifier  .

An explicit-valueuses an explicit syntax for values of the datatype, as defined in clauses 8 and 10. Avalue-referencedesignates
the value associated with thevalue-identifierby avalue-declaration, as provided in 9.2. Aprocedure-referencedesignates the
value of a procedure datatype associated with aprocedure-identifier, as described in 8.3.3.

NOTES

1. Two syntactically differentexplicit-values may designate the same value, such asrational-literals3/4 and6/8, orset of (integer) values
(1,3,4) and (4,3,1).

2. The sameexplicit-valuesyntax may designate values of two different datatypes, as19940101 can be an Integer value, or an Ordinal val
ue. In general, the syntax requires that the intended datatype of avalue-expressioncan be determined from context when thevalue-expression
15
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3. The IDN productions forvalue-referenceandprocedure-referenceappearing in Annex D are more general. The above productions
sufficient for the purposes of this International Standard.

7.5.2 Dependent values

When a parameterized datatype appears within a procedure parameter (see 8.3.3) or a record datatype (see 8.4.1), it
to specify that the parametric value is always identical to the value of another parameter to the procedure or another co
within the record.  Such a value is referred to as adependent-value. Syntax:

dependent-value  =  primary-dependency  {  "."  component-reference  }  .
primary-dependency  =  field-identifier  |  parameter-name  .
component-reference  =  field-identifier  |  "*"  .

A type-specifier xis said toinvolve adependent-valueif x contains thedependent-valueand no component ofx contains thede-
pendent-value. Thus, exactly onetype-specifierinvolves a givendependent-value. A type-specifierwhich involves adependent-
valueis said to be adata-dependent type. Every data-dependent type shall be the datatype of a component of some gen
datatype.

Theprimary-dependencyshall be the identifier of a (different) component of a procedure or record datatype which (also) con
the data-dependent type. The component so identified will be referred to in the following as theprimary component; the gen-
erated datatype of which it is a component will be referred to as thesubject datatype. That is, the subject datatype shall hav
an immediate component to which theprimary-dependencyrefers, and a different immediate component which,at some level,
contains the data-dependent type.

When the subject datatype is a procedure datatype, theprimary-dependencyshall be aparameter-nameand shall identify a pa-
rameter of the subject datatype. If thedirectionof the parameter (component) which contains the data-dependent type is"in" or
"inout", then thedirectionof the parameter designated by theprimary-dependencyshall also be"in" or "inout". If the parameter
which contains the data-dependent type is thereturn-parameteror hasdirection"out", then theprimary-dependencymay desig-
nate any parameter in theparameter-list. If the parameter which contains the data-dependent type is aterminationparameter,
then theprimary-dependencyshall designate another parameter in the sametermination-parameter-list.

When the subject datatype is a record datatype, theprimary-dependencyshall be afield-identifierand shall identify a field of the
subject datatype.

When thedependent-valuecontains nocomponent-references, it refers to the value of the primary component. Otherwise, t
primary component shall be considered the "0th component-reference", and the following rules shall apply:

1) If thenth component-referenceis the lastcomponent-referenceof thedependent-value, thedependent-value shall refer to
the value to which thenth component-reference refers.

2) If thenth component-referenceis not the lastcomponent-reference, then the datatype of thenth component-referenceshall
be a record datatype or a pointer datatype.

3) If thenth component-referenceis not the lastcomponent-reference, and the datatype of thenth component-reference is a
record datatype, then the(n+1)th component-reference shall be afield-identifier which identifies a field of that record
datatype; and the(n+1)th component-reference shall refer to the value of that field of the value referred to by thenth com-
ponent-reference.

4) If thenth component-referenceis not the lastcomponent-reference, and the datatype of thenth component-reference is a
pointer datatype, then the(n+1)th component-referenceshall be "*"; and the(n+1)th component-referenceshall refer to the
value resulting from Dereference applied to the value referred to by thenth component-reference.

NOTES

1. The datatype which involves adependent-valuemust be a component of some generated datatype, but that generated datatype ma
be a component of another generated datatype, and so on.  The subject datatype may be several levels up this hierarchy.

2. The primary component, and thus the subject datatype, cannot be ambiguous, even when theprimary-dependencyidentifier appears more
than once in such a hierarchy, according to the scope rules specified in 7.3.1.

3. In the same wise, an identifier which may be either avalue-identifieror adependent-valuecan be resolved by application of the sam
scope rules. If the identifier X is found to have a "declaration" anywhere within the outermosttype-specifierwhich contains the reference to
X, then that declaration is used. If no such declaration is found, then a declaration of X in a "global" context, e.g. as avalue-identifier, applies.
16
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8 Datatypes

This clause defines the collection of  LI datatypes.  A LI datatype is either:

• a datatype defined in this clause, or

• a datatype defined by a datatype declaration, as defined in 9.1.

Since this collection is unbounded, there are four formal methods used in the definition of the datatypes:

• explicit specification ofprimitive datatypes, which have universal well-defined abstract notions, each independent o
other datatype.

• implicit specification ofgenerateddatatypes, which are syntactically and in some ways semantically dependent on
datatypes used in their specification.  Generated datatypes are specified implicitly by means of explicit specifica
datatype generators, which themselves embody independent abstract notions.

• specification of the means ofdatatype declaration, which permits the association of additional identifiers and refine
ments to primitive and generated datatypes and to datatype generators.

• specification of the means of definingsubtypes of the datatypes defined by any of the foregoing methods.

A reference to a LI datatype is atype-specifier, with the following syntax:

type-specifier  =  primitive-type  |  subtype  |  generated-type  |  type-reference  |  formal-parametric-type  .

A type-specifiershall not be aformal-parametric-type, except in some cases intype-declarations, as provided by clause 9.1.3.

This clause also provides syntax for the identification of values of LI datatypes. Notations for values of datatypes are r
in the syntactic designations for subtypes and for some primitive datatypes.

NOTES

1. For convenience, or correctness, some datatypes and characterizing operations are defined in terms of other LI datatypes. Th
LI datatype defined in this clause always refers to the datatype so defined.

2. The names used in this International Standard to identify the datatypes are derived in many cases from common programming
usage, but nevertheless do not necessarily correspond to the names of equivalent datatypes in actual languages. The same applies
and symbols for the operations associated with the datatypes, and to the syntax for values of the datatypes.

8.1 Primitive datatypes

A datatype whose value space is defined either axiomatically or by enumeration is said to be aprimitive datatype . All primitive
LI datatypes shall be defined by this International Standard.

primitive-type = boolean-type  |  state-type  |  enumerated-type  |  character-type
|  ordinal-type  |  time-type  |  integer-type  |  rational-type
|  scaled-type |  real-type  |  complex-type  |  void-type  .

Each primitive datatype, or datatype family, is defined by a separate subclause. The title of each such subclause gives
mal name for the datatype, and the datatype is defined by a single occurrence of the following template:

Description: prose description of the conceptual datatype.

Syntax: the syntactic productions for the type-specifier for the datatype.

Parametric values: identification of any parametric values which are necessary for the complete identification of a d
member of a datatype family.

Values: enumerated or axiomatic definition of the value space.

Value-syntax: the syntactic productions for denotation of a value of the datatype, and the identification of the 
denoted.

Properties: properties of the datatype which indicate its admissibility as a component datatype of certain d
generators: numeric or non-numeric, approximate or exact, unordered or ordered and, if ordered
bounded or unbounded.
17
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Operations: definitions of characterizing operations.

The definition of an operation herein has one of the forms:

operation-name (parameters) : result-datatype = formal-definition; or

operation-name (parameters) : result-datatype is prose-definition.

In either case, "parameters" may be empty, or be a list, separated by commas, of one or more formal parameters of the
in the form:

parameter-name : parameter-datatype, or

parameter-name1 , parameter-name2 : parameter-datatype.

Theoperation-nameis an identifier unique only within the datatype being defined. Theparameter-namesare formal identifiers
appearing in theformal- or prose-definition. Each is understood to represent an arbitrary value of the datatype designat
parameter-datatype, and all occurrences of the formal identifier represent the same value in any application of the operatio
result-datatypeindicates the datatype of the value resulting from an application of the operation. Aformal-definitiondefines the
operation in terms of other operations and constants. Aprose-definitiondefines the operation in somewhat formalized natur
language. When there are constraints on the parameter values, they are expressed by a phrase beginning "where" im
before the = oris.

In some operation definitions, characterizing operations of a previously defined datatype are referenced with the
datatype.operation(parameters), wheredatatypeis thetype-specifierfor the referenced datatype andoperationis the name of a
characterizing operation defined for that datatype.

8.1.1 Boolean

Description:  Boolean is the mathematical datatype associated with two-valued logic.

Syntax:
boolean-type  =  "boolean"  .

Parametric Values:  none.

Values:  "true", "false", such that true≠ false.

Value-syntax:
boolean-literal  =  "true"  |  "false"  .

Properties:  unordered, exact, non-numeric.

Operations:  Equal, Not, And, Or.

Equal(x, y: boolean): boolean is defined by tabulation:
x y Equal(x,y)
true true true
true false false
false true false
false false true

Not(x: boolean): boolean is defined by tabulation:
x Not(x)
true false
false true

Or(x,y: boolean): boolean is defined by tabulation:
x y Or(x,y)
true true true
true false true
false true true
false false false

And(x, y: boolean): boolean = Not(Or(Not(x), Not(y))).

NOTE — Either And or Or is sufficient to characterize the boolean datatype, and given one, the other can be defined in terms of it. T
both defined here because both of them are used in the definitions of operations on other datatypes.
18
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8.1.2 State

Description:  State is a family of datatypes, each of which comprises a finite number of distinguished but unordered va

Syntax:
state-type  =  "state"  "("  state-value-list  ")"  .
state-value-list  =  state-literal  {  ","  state-literal  }  .
state-literal  =  identifier  .

Parametric Values:  Eachstate-literal identifier shall be distinct from all otherstate-literal identifiers of the samestate-type.

Values: The value space of a state datatype is the set comprising exactly the named values in thestate-value-list, each of which
is designated by a uniquestate-literal.

Value-syntax:
state-literal  =  identifier  .

A state-literal denotes that value of the state datatype which has the same identifier.

Properties:  unordered, exact, non-numeric.

Operations:  Equal.

Equal(x, y: state(state-value-list)): booleanis true if x and y designate the same value in thestate-value-list,
and false otherwise.

NOTE — Other uses of the IDN syntax make stronger requirements on the uniqueness ofstate-literalidentifiers.

EXAMPLE — The declaration:
type switch = new state (on, off);

defines a state datatype comprising two  distinguished but unordered values, which supports the characterizing operation:
Invert(x: switch): switchis if x = off then on, else off.

8.1.3 Enumerated

Description:  Enumerated is a family of datatypes, each of which comprises a finite number of distinguished values hav
intrinsic order.

Syntax:
enumerated-type  =  "enumerated"  "("  enumerated-value-list  ")"  .
enumerated-value-list  =  enumerated-literal  {  ","  enumerated-literal  }  .
enumerated-literal  =  identifier  .

Parametric Values: Eachenumerated-literalidentifier shall be distinct from all otherenumerated-literalidentifiers of the same
enumerated-type.

Values: The value space of an enumerated datatype is the set comprising exactly the named values in theenumerated-value-list,
each of which is designated by a uniqueenumerated-literal.  The  order of these values is given by the sequence of the
occurrence in theenumerated-value-list, designated thenaming sequence.

Value-syntax:
enumerated-literal  =  identifier  .

An enumerated-literal denotes that value of the enumerated datatype which has the same identifier.

Properties:  ordered, exact, non-numeric, bounded.

Operations:  Equal, InOrder, Successor

Equal(x, y: enumerated(enum-value-list)): booleanis true if x and y designate the same value in theenum-value-list, and
false otherwise.

InOrder(x, y: enumerated(enum-value-list)): boolean, denoted x≤ y, is true if x = y or if x precedes y in the naming
sequence, else false.

Successor(x: enumerated(enum-value-list)): enumerated(enum-value-list) is
if for all y: enumerated(enum-value-list), x ≤ y implies x = y, then undefined;
else the value y: enumerated(enum-value-list), such that x< y and for all z≠ x, x ≤ z implies y≤ z.
19
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NOTE — Other uses of the IDN syntax make stronger requirements on the uniqueness ofenumerated-literalidentifiers.

8.1.4 Character

Description:  Character is a family of datatypes whose value spaces are character-sets.

Syntax:
character-type  =  "character"  [  "("  repertoire-list  ")"  ]  .
repertoire-list  =  repertoire-identifier  {  ","  repertoire-identifier  }  .
repertoire-identifier  =  value-expression  .

Parametric Values: Thevalue-expressionfor a repertoire-identifiershall designate a value of the objectidentifier datatype (s
10.1.10), and that value shall refer to a character-set. Arepertoire-identifiershall not be aformal-parametric-value, except
in some cases in declarations (see 9.1).   Allrepertoire-identifiersin a givenrepertoire-list shall designate subsets of the
same reference character-set. Whenrepertoire-listis not specified, it shall have a default value. The means for specificat
of the default is outside the scope of this International Standard.

Values: The value space of a character datatype comprises exactly the members of the character-sets identified by therepertoire-
list. In cases where the character-sets identified by the individualrepertoire-identifiershave members in common, the value
space of the character datatype is the (set) union of the character-sets (without duplication).

Value-syntax:
character-literal  =  "’"  any-character  "’"  .
any-character  =  bound-character  |  added-character  |  escape-character  .
bound-character  =  non-quote-character  |  quote  .
non-quote-character  =  letter  |  digit  |  underscore  |  special  |  apostrophe  |  space  .
added-character  = not defined by this International Standard  .
escape-character  =  escape  character-name  escape  .
character-name  =  identifier  {  " "  identifier  }  .

Everycharacter-literaldenotes a single member of the character-set identified byrepertoire-list.  A bound-character de-
notes that member which is associated with the symbol for thebound-characterper 7.1. Anadded-characterdenotes that
member which is associated with the symbol for theadded-characterby the implementation, as provided in 7.1. Anescape-
characterdenotes that member whose "character name" in the (reference) character-set identified byrepertoire-listis the
same ascharacter-name.

Properties:  unordered, exact, non-numeric.

Operations:  Equal.

Equal(x, y: character(repertoire-list)): booleanis true if x and y designate the same member of the character-set given
repertoire-list, and false otherwise.

NOTES

1. The Character datatypes are distinct from the State datatypes in that the values of the datatype are defined by other standards
by this International Standard or by the application. This distinction is semantically unimportant, but it is of great significance in any
these standards.

2. The standardization ofrepertoire-identifiervalues will be necessary for any use of this International Standard and will of necessity ex
to character sets which are defined by other than international standards. Such standardization is beyond the scope of this Internati
dard.  A partial list of the international standards defining such character-sets is included, for informative purposes only, in Annex A.

3. While an order relationship is important in many applications of character datatypes, there is no standard order for any of the Inte
Standard character sets, and many applications require the order relationship to conform to rules which are particular to the applica
or its language environment. There will also be applications in which the order is unimportant. Since no standard order of character
be defined by this International Standard, character datatypes are said to be "unordered", meaning, in this case, that the order relatio
application-defined addition to the semantics of the datatype.

4. The termscharacter-set, member, symbolandcharacter-nameare those of ISO/IEC 10646-1:1993, but there should be analogous not
in any character set referenceable by a repertoire-identifier.

5. The value space of a Character datatype is the characterset, not the charactercodes, as those terms are defined by ISO/IEC 10646-1:199
The encoding of a character set is a representation issue and therefore out of the scope of this International Standard. Many uses of
national Standard, however, may require the association to codes implied by therepertoire-identifier.
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6. An occurrence of three consecutive APOSTROPHE characters (’’’) is a validcharacter-literal denoting the APOSTROPHE character.

EXAMPLE — character({ iso standard 8859 part 1 }) denotes a character datatype whose values are the members of the character-se
ified by ISO 8859-1 (Latin alphabet No. 1). It is possible to give this datatype a convenient name, by means of atype-declaration(see 9.1), e.g.:

type Latin1 = character({ iso standard 8859  1 });
or by means of avalue-declaration (see 9.2):

value latin : objectidentifier = { iso(1) standard(0) 8859 part(1) };.
Now, the colon mark (:) is a member of the ISO 8859-1 character set and therefore a value of datatype Latin1, or equivalently, of
character(latin).  Thus,  ’:’ and ’!colon!’, among others, are validcharacter-literals denoting that value.

8.1.5 Ordinal

Description: Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Integer). O
is the infinite enumerated datatype.

Syntax:
ordinal-type  =  "ordinal"  .

Parametric Values:  none.

Values:  the mathematical ordinal numbers: "first", "second", "third", etc., (a denumerably infinite list).

Value-syntax:
ordinal-literal  =  number  .
number  =  digit-string  .

An ordinal-literal denotes that ordinal value which corresponds to the cardinal number identified by thedigit-string, inter-
preted as a decimal number.   Anordinal-literal shall not be zero.

Properties:  ordered, exact, non-numeric, unbounded above, bounded below.

Operations:  Equal, InOrder, Successor

Equal(x, y: ordinal): booleanis true if x and y designate the same ordinal number, and false otherwise.

InOrder(x,y: ordinal): boolean, denoted x≤ y, is true if x = y or if x precedes y in the ordinal numbers, else false.

Successor(x: ordinal): ordinalis the value y: ordinal, such that x < y and for all z≠ x, x ≤ z implies y≤ z.

8.1.6 Date-and-Time

Description:  Date-and-Time is a family of datatypes whose values are points in time to various common resolutions:  y
month, day, hour, minute, second, and fractions thereof.

Syntax:
time-type  =  "time"  "("  time-unit  [  ","  radix  ","  factor  ] ")"  .
time-unit  =  "year"  |  "month"  |  "day"  |  "hour"  |  "minute"  |  "second"  |  formal-parametric-value  .
radix  =  value-expression  .
factor  =  value-expression  .

Parametric Values:Time-unitshall be a value of the datatypestate(year, month, day, hour, minute, second), designating the
unit to which the point in time is resolved. Ifradix andfactorare omitted, the resolution is to one of the specifiedtime-unit.
If present,radix shall have an integer value greater than 1, andfactor shall have an integer value.  Whenradix andfactor
are present, the resolution is to oneradix(-factor) of the specifiedtime-unit. Time-unit, andradix andfactor if present, shall
not beformal-parametric-values except in some occurrences in declarations (see 9.1).

Values:  The value-space of a date-and-time datatype is the denumerably infinite set of all possible points in time with so-
lution (time-unit, radix, factor).

Value-syntax:
time-literal  =  string-literal  .

A time-literaldenotes a date-and-time value.  The characterstring value represented by thestring-literal shall conform to
ISO 8601:1988,Representation of dates and times. Thetime-literaldenotes the date-and-time value specified by the ch
acterstring as interpreted under ISO 8601:1988.
21



ISO/IEC 11404:1996 (E)  ISO/IEC

by

e y;

.

ring

lue.
Properties:  ordered, exact, non-numeric, unbounded.

Operations:  Equal, InOrder, Difference, Round, Extend.

Equal(x, y: time(time-unit, radix, factor)): booleanis true if x and y designate the same point in time to the resolution (time-
unit, radix, factor), and false otherwise.

InOrder(x, y: time(time-unit, radix, factor)): booleanis true if the point in time designated by x precedes that designated
y; else false.

Difference(x, y: time(time-unit, radix, factor)): timeinterval(time-unit, radix, factor) is:
if InOrder(x,y), then the number of time-units of the specified resolution elapsing between the time x and the tim
else, let z be the number of time-units elapsing between the time y and the time x, then Negate(z).

Extend.res1tores2(x: time(unit1, radix1, factor1)): time(unit2, radix2, factor2), where the resolution (res2) specified by
(unit2, radix2, factor2) is more precise than the resolution (res1) specified by (unit1, radix1, factor1),is that value of
time(unit2, radix2, factor2) which designates the first instant of time occurring within the span of time(unit2, radix2,
factor2) identified by the instant x.

Round.res1tores2(x: time(unit1, radix1, factor1)): time(unit2, radix2, factor2), where the resolution (res2) specified by
(unit2, radix2, factor2) is less precise than the resolution (res1) specified by (unit1, radix1, factor1),is the largest value
y of time(unit2, radix2, factor2) such that InOrder(Extend.res2tores1(y), x).

NOTE — The operations yielding specific time-unit elements from atime(unit, radix, factor) value, e.g. Year, Month, DayofYear, Dayof-
Month, TimeofDay, Hour, Minute, Second, can be derived from Round, Extend, and Difference.

EXAMPLE — time(second, 10, 0) designates a date-and-time datatype whose values are points in time with accuracy to the second
"19910401T120000" specifies the value of that datatype which is exactly noon on April 1, 1991, universal time.

8.1.7 Integer

Description:  Integer is the mathematical datatype comprising the exact integral values.

Syntax:
integer-type  =  "integer"  .

Parametric Values:  none.

Values: Mathematically, the infinite ring produced from the additive identity (0) and the multiplicative identity (1) by requi
0 ≤ 1 and Add(x,1)≠ y for any y≤ x.  That is: ..., -2, -1, 0, 1, 2, ... (a denumerably infinite list).

Value-syntax:
integer-literal  =  signed-number  .
signed-number  =  [  "-"  ]  number  .
number  =  digit-string  .

An integer-literaldenotes an integer value.  If the negative-sign ("-") is not present, the value denoted is that of thedigit-
string interpreted as a decimal number.  If the negative-sign is present, the value denoted is the negative of that va

Properties:  ordered, exact, numeric, unbounded.

Operations:  Equal, InOrder, NonNegative, Negate, Add, Multiply.

Equal(x, y: integer): booleanis true if x and y designate the same integer value, and false otherwise.

Add(x,y: integer): integeris the mathematical additive operation.

Multiply(x, y: integer): integeris the mathematical multiplicative operation.

Negate(x: integer): integeris the value y: integer such that Add(x, y) = 0.

NonNegative(x: integer): booleanis
true if x = 0 or x can be developed by one or more iterations of adding 1,

i.e. if  x = Add(1, Add(1, ... Add(1, Add(1,0)) ...));
else false.

InOrder(x,y: integer): boolean = NonNegative(Add(x, Negate(y))).

The following operations are defined solely in order to facilitate other datatype definitions:
22



 ISO/IEC ISO/IEC 11404:1996 (E)

datatype

value o

e

Quotient(x, y: integer): integer, where 0< y, is the upperbound of the set of all integers z such that Multiply(y,z)≤ x.

Remainder(x, y: integer): integer, where 0≤ x and 0< y, = Add(x, Negate(Multiply(y, Quotient(x,y))));

8.1.8 Rational

Description:  Rational is the mathematical datatype comprising  the "rational numbers".

Syntax:
rational-type  =  "rational"  .

Parametric Values:  none.

Values:  Mathematically, the infinite field produced by closing the Integer ring under multiplicative-inverse.

Value-syntax:
rational-literal  =  signed-number  [  "/"  number  ]  .

Signed-numberandnumbershall denote the corresponding integer values.Numbershall not designate the value 0.  The
rational value denoted by the formsigned-numberis:

Promote(signed-number),
and the rational value denoted by the formsigned-number/numberis:

Multiply(Promote(signed-number), Reciprocal(Promote(number))).

Properties:  ordered, exact, numeric, unbounded.

Operations:  Equal, NonNegative, InOrder, Negate, Add, Multiply, Reciprocal, Promote.

Equal(x, y: rational): booleanis true if x and y designate the same rational number, and false otherwise.

Promote(x: integer): rationalis the embedding isomorphism between the integers and the integral rational values.

Add(x,y: rational): rationalis the mathematical additive operation.

Multiply(x, y: rational): rationalis the mathematical multiplicative operation.

Negate(x: rational): rationalis the value y: rational such that Add(x, y) = 0.

Reciprocal(x: rational): rational, where x≠ 0, is the value y: rational such that Multiply(x, y) = 1.

NonNegative(k: rational): booleanis defined by:
For every rational valuek, there is a non-negative integern, such that Multiply(n,k) is an integral value, and:
NonNegative(k) = integer.NonNegative(Multiply(n,k)).

InOrder(x,y: rational): boolean = NonNegative(Add(x, Negate(y)))

8.1.9 Scaled

Description: Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual
having a fixed denominator, but the scaled datatypes possess the concept of approximate value.

Syntax:
scaled-type  = "scaled" "(" radix "," factor ")" .
radix  =  value-expression  .
factor  =  value-expression  .

Parametric Values:Radixshall have an integer value greater than 1, andfactor shall have an integer value. Radix andfactor
shall not beformal-parametric-values except in some occurrences in declarations (see 9.1).

Values:  The value space of a scaled datatype is that set of values of the rational datatype which are expressible as a f
datatype Integer divided byradix raised to the powerfactor.

Value-syntax:
scaled-literal  =  integer-literal  [  "*"  scale-factor  ]  .
scale-factor  =  number  "^"  signed-number  .

A scaled-literaldenotes a value of a scaled datatype.  Theinteger-literal is interpreted as a decimal integer value, and th
scale-factor, if present, is interpreted asnumberraised to the powersigned-number, wherenumberandsigned-numberare
expressed as decimal integers.Numbershould be the same as theradix of the datatype.  If thescale-factoris not present,
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the value is that denoted byinteger-literal. If the scale-factoris present, the value denoted is the rational value Multiply(in-
teger-literal, scale-factor).

Properties:  ordered, exact, numeric, unbounded.

Operations:  Equal, InOrder, Negate, Add, Round, Multiply, Divide

Equal(x, y: scaled(r,f)): booleanis true if x and y designate the same rational number, and false otherwise.

InOrder(x,y: scaled (r,f)): boolean = rational.InOrder(x,y)

Negate(x: scaled (r,f)): scaled (r,f) = rational.Negate(x)

Add(x,y: scaled (r,f)): scaled (r,f) = rational.Add(x,y)

Round(x: rational): scaled(r,f)is the value y: scaled(r,f) such that rational.InOrder(y, x) and for all z: scaled(r,f),
rational.InOrder(z,x) implies rational.InOrder(z,y).

Multiply(x,y: scaled(r,f)): scaled(r,f) = Round(rational.Multiply(x,y))

Divide(x,y: scaled(r,f)): scaled(r,f) = Round(rational.Multiply(x, Reciprocal(y)))

EXAMPLES

1. A datatype representing monetary values exact to two decimal places can be defined by:
type currency = new scaled(10, 2);

where the keyword "new" is used because currency does not support the Multiply and Divide operations characterizing scaled(10,2).

2. The value 39.50 (or 39,50), i.e.thirty-nine and fifty one-hundredths, is represented by:3950 * 10 ^ -2, while the value 10.00 (or 10,00)
may be represented by:10.

NOTES

1. The case factor = 0, i.e.scaled(r, 0) for any r, has the same value-space as Integer, and is isomorphic to Integer under all oper
except Divide, which is not defined on Integer in this International Standard, but could be defined consistent with the Divide opera
scaled(r, 0).  It is recommended that the datatypescaled(r, 0) not be used explicitly.

2. Any reasonable rounding algorithm is equally acceptable. What is required is that any rational valuev which is not a value of the scaled
datatype is mapped into one of the two scaled values n•r(-f) and (n+1)•r(-f), such that in the Rational value space,  n•r(-f) < v < (n+1)•r(-f) .

3. The proper definition of scaled arithmetic is complicated by the fact that scaled datatypes with the same radix can be combined a
in an arithmetic expression and the arithmetic is effectively Rationaluntil a final result must be produced. At this point, rounding to the prop
scale for the result operand occurs. Consequently, the given definition of arithmetic, for operands with a common scale factor, shou
considered a specification for arithmetic on the scaled datatype.

4. The values in any scaled value space are taken from the value space of the Rational datatype, and for that reason Scaled ma
be a "subtype" of both Rational and Real (see 8.2). But scaled datatypes do not "inherit" the Rational or Real Multiply and Reciproca
tions. Therefore scaled datatypes are not proper subtypes of datatype Real or Rational. The concept of Round, and special Multiply a
operations, characterize the scaled datatypes. Unlike Rational, Real and Complex, however, Scaled is not a mathematical group und
inition of Multiply, although the results are intuitively acceptable.

5. The value space of a scaled datatype contains the multiplicative identity (1) if and only if factor≥ 0.

6. Every scaled datatype is exact, because every value in its value space can be distinguished in the computational model. (The v
can be mapped 1-to-1 onto the integers.)  It is only theoperationson scaled datatypes which are approximate.

7. Scaled-literalsare interpreted as decimal values regardless of theradix of the scaled datatype to which they belong. It was not foun
necessary for this International Standard to provide for representation of values in other radices, particularly since representation of
radices greater than 10 introduces additional syntactic complexity.

8.1.10 Real

Description: Real is a family of datatypes which are computational approximations to the mathematical datatype compris
"real numbers".  Specifically, each real datatype designates a collection of mathematical real values which are kno
certain applications to some finite precision and must be distinguishable to at least that precision in those applicat

Syntax:
real-type  = "real"  [  "("  radix  ","  factor  ")"  ]  .
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radix  =  value-expression  .
factor  =  value-expression  .

Parametric Values:Radixshall have an integer value greater than 1, andfactor shall have an integer value.Radix andfactor
shall not beformal-parametric-valuesexcept in some occurrences in declarations (see 9.1). Whenradix andfactorare not
specified, they shall have default values.  The means for specification of these defaults is outside the scope of this
tional Standard.

Values:  The value space of the mathematical real type comprises all values which are the limits of convergent sequen
tional numbers. The value space of a computational real datatype shall be a subset of the mathematical real type, c
ized by two parametric values,radixandfactor, which, taken together, describe the precision to which values of the datat
are distinguishable, in the following sense:

Let ℜ denote the mathematical real value space and forv in ℜ, let |v | denote the absolute value ofv. LetV denote the value
space of datatypereal(radix, factor), and letε = radix(-factor). ThenV shall be a subset ofℜ with the following properties:

– 0 is inV;
– for eachr in ℜ such that |r | ≥ ε, there exists at least oner in V such that |r - r | ≤ | r | • ε;
– for eachr in ℜ such that |r | < ε, there exists at least oner in V such that |r - r | ≤ ε2;.

Value-syntax:
real-literal  =  integer-literal  [  "*"  scale-factor  ]  .
scale-factor  =  number  "^"  signed-number  .

A real-literal denotes a value of a real datatype. Theinteger-literal is interpreted as a decimal integer value, and thescale-
factor, if present, is interpreted asnumberraised to the powersigned-number, wherenumberandsigned-numberare ex-
pressed as decimal integers. If thescale-factoris not present, the value is that denoted byinteger-literal. If the scale-factor
is present, the value denoted is the rational value Multiply(integer-literal, scale-factor).

Properties:  ordered, approximate, numeric, unbounded.

Operations:  Equal, InOrder, Promote, Negate, Add, Multiply, Reciprocal.

In the following operation definitions, letM designate an approximation function which maps eachr in ℜ into a corresponding
r in V with the properties given above and the further requirement that for eachv in V, M(v) = v.

Equal(x, y: real(radix, factor)): booleanis true if x and y designate the same value, and false otherwise.

InOrder(x,y: real(radix, factor)): booleanis true if x ≤ y, where≤ designates the order relationship onℜ, and false otherwise.

Promote(x: rational): real(radix, factor) = M(x).

Add(x,y: real(radix, factor)): real(radix, factor) = M(x + y), where + designates the additive operation on the mathemat
reals.

Multiply(x, y: real(radix, factor)): real(radix, factor) = M(x • y), where • designates the multiplicative operation on the
mathematical reals.

Negate(x: real(radix, factor)): real(radix, factor) = M(-x), where -x is the real additive inverse of x.

Reciprocal(x: real(radix, factor)): real(radix, factor), where x≠ 0, =M(x’) where x’ is the real multiplicative inverse of x.

NOTES

1. The LI datatype Real is not the abstract mathematical real datatype, nor is it an abstraction of floating-point implementations. It i
putational model of the mathematical reals which is similar to the "scientific number" model used in many sciences. Details of the rela
of a real datatype to floating-point implementations may be specified by the use of annotations (see 7.4). For languages whose sem
some way assumes a floating-point representation, the use of such annotations in the datatype mappings may be necessary. On the
for some applications, the representation of a real datatype may be something other than floating-point, which the application would s
different annotations.

2. Detailed requirements for the approximation function, its relationship to the characterizing operations, and the implementation of t
acterizing operations in languages are provided by ISO/IEC 10967-1:1994, Information technology — Programming languages, their
ements and system software interfaces — Language-Independent arithmetic — Part 1: Integer and real arithmetic. IEC 559:1988
Point Arithmetic for Microprocessors specifies the requirements for floating-point implementations thereof.

EXAMPLES

real(10, 7) denotes a real datatype with values which are accurate to 7 significant decimal figures.
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real(2, 48) denotes a real datatype whose values have at least 48 bits of precision.

1 * 10 ^ 9 denotes the value 1 000 000 000, i.e. 10 raised to the ninth power.
15 * 10 ^ -4 denotes the value 0,0015, i.e. fifteen ten-thousandths.
3 * 2 ^ -1 denotes the value 1.5, i.e. 3/2.

8.1.11 Complex

Description:  Complex is a family of datatypes, each of which is a computational approximation to the mathematical da
comprising the "complex numbers". Specifically, each complex datatype designates a collection of mathematical co
values which are known to certain applications to some finite precision and must be distinguishable to at least that pr
in those applications.

Syntax:
complex-type  =  "complex"  [  "("  radix  ","  factor  ")"  ]  .
radix  =  value-expression  .
factor  =  value-expression  .

Parametric Values:Radixshall have an integer value greater than 1, andfactor shall have an integer value.Radix andfactor
shall not beformal-parametric-valuesexcept in some occurrences in declarations (see 9.1). Whenradix andfactorare not
specified, they shall have default values.  The means for specification of these defaults is outside the scope of this
tional Standard.

Values:  The value space of the mathematical complex type is the field which is the solution space of all polynomial eq
having real coefficients. The value space of a computational complex datatype shall be a subset of the mathemati
plex type, characterized by two parametric values,radix andfactor, which, taken together, describe the precision to whic
values of the datatype are distinguishable, in the following sense:

Let C denote the mathematical complex value space and forv in C, let |v | denote the absolute value ofv. Let V denote the
value space of datatypecomplex(radix, factor), and letε = radix(-factor). ThenV shall be a subset ofC with the following
properties:

– 0 is inV;
– for eachv in C such that |v | ≥ ε, there exists at least onev in V such that |v - v | ≤ | v | • ε;
– for eachv in C such that |v | < ε, there exists at least onev in V such that |v - v | ≤ ε2;.

Value-syntax:
complex-literal  =  "("  real-part  ","  imaginary-part  ")"  .
real-part  =  real-literal  .
imaginary-part  =  real-literal  .

A complex-literal denotes a value of a complex datatype.  Thereal-part and theimaginary-part are interpreted as real val-
ues, and the complex value denoted is:M(real-part+ (imaginary-part• i)), where + is the additive operation on the mat
ematical complex numbers and • is the multiplicative operation on the mathematical complex numbers, andi is the "principal
square root" of -1 (one of the two solutions to x2 + 1 = 0).

Properties:  approximate, numeric, unordered.

Operations:  Equal, Promote, Negate, Add, Multiply, Reciprocal, SquareRoot.

In the following operation definitions, letM designate an approximation function which maps eachv in C into a corresponding
v in V with the properties given above and the further requirement that for eachv in V, M(v) = v.

Equal(x, y: complex(radix, factor)): booleanis true if x and y designate the same value, and false otherwise.

Promote(x: real(radix, factor)): complex(radix, factor) = M(x), considering x as a mathematical real value.

Add(x,y: complex(radix, factor)): complex(radix, factor) = M(x + y), where + designates the additive operation on the
mathematical complex numbers.

Multiply(x, y: complex(radix, factor)): complex(radix, factor) = M(x • y), where • designates the multiplicative operatio
on the mathematical complex numbers.

Negate(x: complex(radix, factor)): complex(radix, factor) = M(-x), where -x is the complex additive inverse of x.

Reciprocal(x: complex(radix, factor)): complex(radix, factor), where x≠ 0, =M(x’) where x’ is the complex multiplicative
inverse of x.
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SquareRoot(x: complex(radix, factor)): complex(radix, factor) = M(y), where y is one of the two mathematical complex
values such that y • y = x.  Every complex number can be uniquely represented in the form a + b •i, wherei is the
"principal square root" of -1, in which a is designated thereal partand b is designated theimaginary part. The y value
used is that in which the real part of y is positive, if any, else that in which the real part of y is zero and the imag
part is non-negative.

NOTE — Detailed requirements for the approximation function, its relationship to the characterizing operations, and the implementatio
characterizing operations in languages are to be provided by (future) Parts of ISO/IEC 10967 Language-Independent Arithmetic.

8.1.12 Void

Description: Void is the datatype representing an object whose presence is syntactically or semantically required, but ca
information in a given instance.

Syntax:
void-type  = "void"  .

Parametric Values:  none.

Values: Conceptually, the value space of the void datatype is empty, but a single nominal value is necessary to perform t
ence required" function.

Value-syntax:
void-literal  =   "nil"  .

"nil" is the syntactic representation of an occurrence of void as a value.

Properties:  none.

Operations:  Equal.

Equal(x, y: void) = true;

NOTES

1. The void datatype is used as the implicit type of the result parameter of a procedure datatype (8.3.3) which returns no value, or
ternative of a choice datatype (8.3.1) when that alternative has no content.

2. The void datatype is represented in some languages as a record datatype (see 8.4.1) which has no fields. In this International
the void datatype is not a record datatype, because it has none of the properties or operations of a record datatype.

3. Like the motivation for the void datatype itself, Equal is required in order to support the comparison of aggregate values contain
and it must yield "true".

4. The "empty set" is not a value of datatype Void, but rather a value of the appropriate set datatype (see 8.4.2).

8.2 Subtypes and extended types

A subtypeis a datatype derived from an existing datatype, designated thebasedatatype, by restricting the value space to a sub
of that of the base datatype whilst maintaining all characterizing operations. Subtypes are created by a kind of datatype g
which is unusual in that its only function is to define the relationship between the value spaces of the base datatype and
type.

subtype =  range-subtype  |  selecting-subtype  |  excluding-subtype
  |  size-subtype  |  explicit-subtype  |  extended-type  .

Each subtype generator is defined by a separate subclause. The title of each such subclause gives the informal name fo
type generator, and the subtype generator is defined by a single occurrence of the following template:

Description: prose description of the subtype value space.

Syntax: the syntactic production for a subtype resulting from the subtype generator, including identificat
all parametric values which are necessary for the complete identification of a distinct subtype.

Components: constraints on the base datatype and parametric values.

Values: formal definition of resulting value space.
27



ISO/IEC 11404:1996 (E)  ISO/IEC

presence
 on the

eration in
e which,
leted from

e space.

.

prise
y

onstruct-
Properties: all datatype properties are the same in the subtype as in the base datatype, except possibly the
and values of the bounds.  This entry therefore defines only the effects of the subtype generator
bounds.

All characterizing operations are the same in the subtype as in the base datatype, but the domain of a characterizing op
the subtype may not be identical to the domain in the base datatype. Those values from the value space of the subtyp
under the operation on the base datatype, produce result values which lie outside the value space of the subtype, are de
the domain of the operation in the subtype.

8.2.1 Range

Description:  Range creates a subtype of any ordered datatype by placing new upper and/or lower bounds on the valu

Syntax:
range-subtype  =  base  "range"  "("  select-range  ")"  .
select-range  =  lowerbound  ".."  upperbound  .
lowerbound  =  value-expression  |  "*"  .
upperbound  =  value-expression  |  "*"  .
base  =  type-specifier  .

Components:Baseshall designate an ordered datatype.  Whenlowerboundandupperboundarevalue-expressions, they shall
have values of the base datatype such that InOrder(lowerbound, upperbound). Whenlowerboundis "*", it indicates that no
lower bound is being specified, and whenupperbound is "*", it indicates that no upper bound is being specified.Lower-
boundandupperboundshall not beformal-parametric-values, except in some occurrences in declarations (see 9.1).

Values: all valuesv from the base datatype such thatlowerbound≤ v, if lowerboundis specified, andv ≤ upperbound, if upper-
boundis specified.

Properties:  The subtype is bounded (above, below, both) if the base datatype is so bounded or if  theselect-range specifies the
corresponding bounds.

8.2.2 Selecting

Description:  Selecting creates a subtype of any exact datatype by enumerating the values in the subtype value-space

Syntax:
selecting-subtype  =  base  "selecting"  "("  select-list  ")"  .
select-list  =  select-item  {  ","  select-item  }  .
select-item  =  value-expression  |  select-range  .
select-range  =  lowerbound  ".."  upperbound  .
lowerbound  =  value-expression  |  "*"  .
upperbound  =  value-expression  |  "*"  .
base  =  type-specifier  .

Components:Baseshall designate an exact datatype. When theselect-itemsarevalue-expressions, they shall have values of the
base datatype, and each value shall be distinct from all others in the select-list.  Aselect-item shall not be aselect-range
unless the base datatype is ordered. Whenlowerboundandupperboundarevalue-expressions, they shall have values of the
base datatype such that InOrder(lowerbound, upperbound).  Whenlowerbound is "*", it indicates that no lower bound is
being specified, and whenupperbound is "*", it indicates that no upper bound is being specified.  Novalue-expression oc-
curring in theselect-listshall be aformal-parametric-value, except in some occurrences in declarations (see 9.1).

Values: The values specified by theselect-listdesignate those values from the value-space of the base datatype which com
the value-space of the selecting subtype. Aselect-itemwhich is avalue-expressionspecifies the single value designated b
thatvalue-expression.  A select-item which is aselect-range specifies all valuesv of the base datatype such that
lowerbound≤ v, if lowerbound is specified, andv ≤ upperbound, if upperbound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if noselect-rangeappears in the
select-list or if all select-ranges in theselect-list specify the corresponding bounds.

8.2.3 Excluding

Description: Excluding creates a subtype of any exact datatype by enumerating the values which are to be excluded in c
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Syntax:
excluding-subtype  =  base  "excluding"  "("  select-list  ")"  .
select-list  =  select-item  {  ","  select-item  }  .
select-item  =  value-expression  |  select-range  .
select-range  =  lowerbound  ".."  upperbound  .
lowerbound  =  value-expression  |  "*"  .
upperbound  =  value-expression  |  "*"  .
base  =  type-specifier  .

Components:Baseshall designate an exact datatype. Aselect-itemshall not be aselect-rangeunless the base datatype is ordered
Whenlowerboundandupperboundarevalue-expressions, they shall have values of the base datatype such that InOrder(low-
erbound, upperbound). Whenlowerboundis "*", it indicates that no lower bound is being specified, and whenupperbound
is "*", it indicates that no upper bound is being specified. Novalue-expressionoccurring in theselect-listshall be aformal-
parametric-value, except in some occurrences in declarations (see 9.1).

Values:  The value space of the Excluding subtype comprises all values of the base datatype except for those specifie
select-list. A select-itemwhich is avalue-expressionspecifies the single value designated by thatvalue-expression. A se-
lect-item which is aselect-range specifies all valuesv of the base datatype such thatlowerbound≤ v, if a lower bound is
specified, andv ≤ upperbound, if an upper bound is specified.

Properties:  The subtype is bounded (above, below, both) if the base datatype is so bounded or if someselect-range appears in
theselect-list and does not specify the corresponding bound.

8.2.4 Size

Description: Size creates a subtype of any Sequence, Set, Bag or Table datatype by specifying bounds on the number of
any value of the base datatype may contain.

Syntax:
size-subtype  =  base  "size"  "("  minimum-size  [  ".."  maximum-size  ]  ")"  .
maximum-size  =  value-expression  |  "*"  .
minimum-size  =  value-expression  .
base  =  type-specifier  .

Components:Base shall designate a generated datatype resulting from the Sequence, Set, Bag or Table generator, or f
"new" datatype generator whose value space is constructed by such a generator (see 9.1.3).Minimum-size shall have an
integer value greater than or equal to zero, andmaximum-size, if it is avalue-expression, shall have an integer value such
that minimum-size≤ maximum-size.  If maximum-size is omitted, the maximum size is taken to be equal to theminimum-
size, and ifmaximum-sizeis "*", the maximum size is taken to be unlimited.Minimum-sizeandmaximum-sizeshall not be
formal-parametric-values, except in some occurrences in declarations (see 9.1).

Values:  The value space of the subtype consists of all values of the base datatype which contain at leastminimum-size values
and at mostmaximum-sizevalues of the element datatype.

Subtypes:  Any size subtype of the same base datatype, such that base-minimum-size≤ subtype-minimum-size, and
subtype-maximum-size≤ base-maximum-size.

Properties: those of the base datatype; the aggregate subtype has fixed size if the maximum size is (explicitly or implicitly
to the minimum size.

8.2.5 Explicit subtypes

Description: Explicit subtyping identifies a datatype as a subtype of the base datatype and defines the construction proce
the subset value space in terms of LI datatypes or datatype generators.

Syntax:
explicit-subtype  =  base "subtype"  "("  subtype-definition  ")"  .
base  =  type-specifier  .
subtype-definition  =  type-specifier  .

Components:Basemay designate any datatype. Thesubtype-definitionshall designate a datatype whose value space is (isom
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Values:  The subtype value space is identical to the value space of the datatype designated by thesubtype-definition.

Properties:  exactly those of thesubtype-definition datatype.

NOTES

1. When the base datatype is generated by a datatype generator, the ways in which a subset value space can be constructed are c
dependent on the nature of the base datatype itself.  Clause 8.3 specifies the subtyping possibilities associated with each datatype generator.

2. It is redundant, but syntactically acceptable, for thesubtype-definition to be an occurrence of a subtype-generator, e.g.
integer subtype (integer selecting(0..5)).

8.2.6 Extended

Description:  Extended creates a datatype whose value-space contains the value-space of  the base datatype as a pro

Syntax:
extended-type  =  base  "plus"  "("  extended-value-list  ")"  .
extended-value-list  =  extended-value  {  ","  extended-value  }  .
extended-value  =  extended-literal  |  formal-parametric-value  .
extended-literal  =  identifier  .
base  =  type-specifier  .

Components:Basemay designate any datatype. Anextended-valueshall be anextended-literal, except in some occurrences in
declarations (see 9.1). Eachextended-literalshall be distinct from allvalue-literalsandvalue-identifiers, if any, of the base
datatype and distinct from all others in theextended-value-list.

Values:  The value space of the extended datatype comprises all values in the value-space of the base datatype plus t
tional values specified in theextended-value-list.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the additional values a
or lower bounds.

The definition of an extended datatype shall include specification of the characterizing operations on the base datatype a
to, or yielding, the added values in theextended-value-list. In particular, when the base datatype is ordered, the behavior of
InOrder operation on the added values shall be specified.

NOTES

1. Extended produces a subtype relationship in which the base datatype is the subtype and the extended datatype has the larger va

2. Other uses of the IDN syntax make stronger requirements on the uniqueness ofextended-literalidentifiers.

8.3 Generated datatypes

A generated datatypeis a datatype resulting from an application of a datatype generator. Adatatype generatoris a conceptual
operation on one or more datatypes which yields a datatype. A datatype generator operates on datatypes to generate a
rather than on values to generate a value. The datatypes on which a datatype generator operates are said to be itsparametric or
component datatypes. The generated datatype is semantically dependent on the parametric datatypes, but has its own
terizing operations. An important characteristic of all datatype generators is that the generator can be applied to many
parametric datatypes. The Pointer and Procedure generators generate datatypes whose values are atomic, while Cho
generators of aggregate datatypes generate datatypes whose values admit of decomposition. Agenerated-typedesignates a gen-
erated datatype.

generated-type  =  pointer-type  |  procedure-type  |  choice-type  |  aggregate-type  .

This International Standard defines common datatype generators by which an application of this International Standard
fine generated datatypes. (An application may also define "new" generators, as provided in clause 9.1.3.) Each datatyp
ator is defined by a separate subclause. The title of each such subclause gives the informal name for the datatype gene
the datatype generator is defined by a single occurrence of the following template:

Description: prose description of the datatypes resulting from the generator.
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Syntax: the syntactic production for a generated datatype resulting from the datatype generator, includi
identification of all parametric datatypes which are necessary for the complete identification of a dis
datatype.

Components: number of and constraints on the parametric datatypes and parametric values used by the gen

Values: formal definition of resulting value space.

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype of
datatype generators:  numeric or non-numeric, approximate or exact, ordered or unordered, and
ordered, bounded or unbounded.

Subtypes: generators, subtype-generators and parametric values which produce subset value spaces.

Operations: characterizing operations for the resulting datatype which associate to the datatype generator.
definitions of operations have the form described in 8.1.

NOTE — Unlike subtype generators, datatype generators yield resulting datatypes whose value spaces are entirely distinct from th
component datatypes of the datatype generator.

8.3.1 Choice

Description:  Choice generates a datatype called achoice datatype, each of whose values is a single value from any of a set
alternative datatypes. The alternative datatypes of a choice datatype are logically distinguished by their correspond
values of another datatype, called the tag datatype.

Syntax:
choice-type  =  "choice"  "("  [  field-identifier  ":"  ]  tag-type  [  "="  discriminant  ]  ")"

"of"  "("  alternative-list  ")"  .
field-identifier  =  identifier  .
tag-type  =  type-specifier  .
discriminant  =  value-expression  .
alternative-list  =  alternative  {  ","  alternative  }  [  default-alternative  ]  .
alternative  =  tag-value-list  [  field-identifier  ]  ":"  alternative-type  .
default-alternative  =  "default"  ":"  alternative-type  .
alternative-type  =  type-specifier .
tag-value-list  =  "("  select-list  ")"   .
select-list  =  select-item  {  ","  select-item  }  .
select-item  =  value-expression  |  select-range  .
select-range  =  lowerbound  ".."  upperbound  .
lowerbound  =  value-expression  |  "*"  .
upperbound  =  value-expression  |  "*"  .

Components:  Eachalternative-type in thealternative-listmay be any datatype.  Thetag-type shall be an exact datatype.  The
tag-value-listof eachalternativeshall specify values in the value space of the (tag) datatype designated bytag-type. A se-
lect-item shall not be aselect-range unless the tag datatype is ordered.  Whenlowerboundandupperboundare value-ex-
pressions, they shall have values of the tag datatype such that InOrder(lowerbound, upperbound). Whenlowerboundis "*",
it indicates that no lowerbound is being specified, and whenupperbound is "*", it indicates that no upperbound is being
specified. Novalue-expressionin the select-list shall be a parametric value, except in some occurrences in declaration
9.1).

A choice datatype defines an association from the value space of the tag datatype to the set of alternative datatyp
alternative-list, such that each value of the tag datatype associates with exactly one alternative datatype. Thetag-value-list
of analternativespecifies those values of the tag datatype which are associated with the alternative datatype design
thealternative-typein the alternative.  A select-item which is avalue-expression specifies the single value of the tag
datatype designated by thatvalue-expression. A select-itemwhich is aselect-rangespecifies all valuesv of the tag datatype
such thatlowerbound≤ v, if  lowerbound is specified, andv ≤ upperbound, if upperbound is specified.  Thedefault-alter-
native, if present, specifies that all values of the tag datatype which do not appear in any otheralternativeare associated with
the alternative datatype designated by itsalternative-type.

No value of the tag datatype shall appear in thetag-value-list of more than onealternative.
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The occurrence of afield-identifierbefore thetag-typeor in analternativehas no meaning in the resulting choice-type. It
purpose is to facilitate mappings to programming languages.

Thediscriminant, if present, shall designate a value of the tag datatype.  It identifies the tag value, or the source of 
value, to be used in a particular occurrence of the choice datatype.

Values: all values having the conceptual form (tag-value, alternative-value), wheretag-valueis a value of the tag datatype which
occurs (explicitly or implicitly) in somealternativein thealternative-listand is uniquely mapped to an alternative datatyp
thereby, andalternative-valueis any value of that alternative datatype.

Value-syntax:
choice-value  =  "("  tag-value  ":"  alternative-value  ")"  .
tag-value  =  independent-value  .
alternative-value  =  independent-value  .

A choice-value denotes a value of a choice datatype. Thetag-valueof achoice-valueshall be a value of the tag datatype o
the choice datatype, and thealternative-valueshall designate a value of the corresponding alternative datatype. The v
denoted shall be that value having the conceptual form (tag-value, alternative-value).

Properties:  unordered, exact if and only if all alternative datatypes are exact, non-numeric.

Subtypes:  any choice datatype in which the tag datatype is the same as, or a subtype of, the tag datatype of the base,
and the alternative datatype corresponding to each value of the tag datatype in the subtype is the same as, or a s
the alternative datatype corresponding to that value in the base datatype.

Operations:  Equal, Tag, Cast, Discriminant.

Discriminant(x: choice (tag-type) of (alternative-list)): tag-typeis the tag-value of the value x.

Tag.type(x: type,s: tag-type): choice (tag-type) of (alternative-list), wheretypeis that alternative datatype inalternative-list
which corresponds to the value s, is that value of the choice datatype which has tag-value s and alternative-value

Cast.type(x: choice (tag-type) of (alternative-list)): type, wheretypeis an alternative datatype inalternative-list, is:
if the tag value of x selects an alternative whosealternative-typeis type,then that value oftypewhich is the (alternative)
value of x, else undefined.

Equal(x, y: choice (tag-type) of (alternative-list)): booleanis:
if Discriminant(x) and Discrminant(y) select the same alternative, then

type.Equal(Cast.type(x), Cast.type(y)),
wheretypeis the alternative datatype of the selected alternative andtype.Equal is the Equal operation on the datatyp
type, else false.

NOTES

1. The Choice datatype generator is referred to in some programming languages as a "(discriminated) union" datatype, and in o
datatype with "variants". The generator defined here represents the Pascal/Ada "variant-record" concept, but it allows the C-language
and similar discriminated union concepts, to be supported by a slight subterfuge.  E.g. the C datatype:

union {
float a1;
int a2;
char* a3;  }

may be represented by:
choice ( state(a1, a2, a3) ) of (

(a1): real,
(a2): integer,
(a3): characterstring ).

2. The actual value space of the tag datatype from which tag-values may be drawn is actually a subtype of the value space of the d
tag datatype, namely that subtype consisting exactly of the values which are mapped into alternative datatypes by thealterntaive-list. The set
of tag values appearing explictly or implicitly in thealternative-listis not required to cover the value space of the tag datatype.

3. The subtypes of a choice datatype are typically choice datatypes with a smaller list of alternatives, and in the simplest case,
reduced to a single datatype.

4. The operation Discriminant is a conceptual operation which reflects the ability to determine which alternative of a choice-type is s
in a given value. When a choice-value is moved between two contexts, as between a program and a data repository, representation of
alternative is required, and most implemenations explicitly incorporate the tag-value.
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5. Another useful model of Choice is choice (field-list), where exactly one field is present in any given value, and the means of discrimina
is not specified.  In this model, the operation:

IsField.field(x: choice (field-list)): boolean = true if the designatedfield is present in the value x, otherwise false;
replaces Discriminant, with corresponding changes to the other characterizing operatoins. It is recognized that this model is mathe
more elegant (the Or-graph to match the And-graph of the fields in Record), but in parctice, either IsField is not provided (which m
operations user-defined) or IsField is implemented by tag-value (which makes IsField equivalent to Discriminant).

EXAMPLES — see 10.2.2 and 10.2.4.

8.3.2 Pointer

Description: Pointer generates a datatype, called apointer datatype, each of whose values constitutes a means of reference
values of another datatype, designated theelement datatype.  The values of a pointer datatype are atomic.

Syntax:
pointer-type  =  "pointer"  "to"  "("  element-type  ")"  .
element-type  =  type-specifier  .

Components:  Any single datatype, designated theelement-type.

Values: The value space is that of an unspecified state datatype, each of whose values, save one, is associated with a va
element datatype.  The single valuenull may belong to the value space but it is never associated with any value of th
ment datatype.

Value-syntax:
pointer-literal  = "null"  .

"Null" denotes thenull value.  There is no denotation for any other value of a pointer datatype.

Properties:  unordered, exact, non-numeric.

Subtypes: any pointer datatype for which the element datatype is a subtype of the element datatype of the base pointer

Operations:  Equal, Dereference.

Equal(x, y: pointer(element)): booleanis true if the values x and y are identical values of the unspecified state datatype,
false;

Dereference(x: pointer(element)): element,where x≠ null, is the value of the element datatype associated with the valu

NOTES

1. A pointer datatype defines an association from the "unspecified state datatype" into the element datatype. There may be many
the pointer datatype which are associated with the same value of the element datatype; and there may be members of the element data
are not associated with any value of the pointer datatype. The notion that there may be values of the "unspecified state datatype" to
element value is associated, however, is an artifact of implementations – conceptually, except fornull, those values of the (universal) "unspec
ified state datatype" which are not associated with values of the element datatype arenot in the value spaceof the pointer datatype.

2. Two pointer values are equal only if they are identical; it does not suffice that they are associated with the same value of the
datatype.  The operation which compares the associated values is

Equal.element(Dereference(x), Dereference(y)),
where Equal.element is the Equal operation on the element datatype.

3. The computational model of the pointer datatype often allows the association to vary over time. E.g., ifx is a value of datatypepointer
to (integer), thenx may be associated with the value 0 at one time and with the value 1 at another. This implies that such pointer dataty
support an operation, calledassignment, which associates a (new) value of datatypee to a value of datatypepointer(e), thus changing the value
returned by the Dereference operation on the value of datatypepointer to e. This assignment operation was not found to benecessaryto char-
acterize the pointer datatype, and listing it as a characterizing operation would imply that support of the pointer datatyperequiresit, which is
not the intention.

4. The termlvalueappears in some language standards, meaning "a value which refers to a storage object or area". Since the stora
is a means of association, anlvalue is therefore a value of some pointer datatype. Similarly, the implementation notionmachine-address, to
the extent that it can be manipulated by a programming language, is often a value of some pointer datatype.

5. The hardware implementation of the "means of reference to" a value of the element-type is usually a memory cell or cells which
a value of the element-type. The memory cell has an "address", which is the "value of the unspecified state datatype". The memory c
ically maintains the association between the address (pointer-value) and the element-value which is stored in the cell. The Dereferen
tion is conceptually applied to the "address", but is implemented by a "fetch" from the memory cell. Thus in the computational mod
here, the "address" and the "memory cell" are not distinguished: a pointer-value is both the cell and its address, because the cell ca
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manipulated through its address.  The cell, which is the pointer-value,is distinguished from its contents, which is the element-value.
The notion "variable of datatype T" appears in programming languages and is usually implemented as a cell which contains a

type T. Language standards often distinguish between the "address of the variable" and the "value of the variable" and the "name o
able", and one might conclude that the "variable" is the cell itself. Butall operations on such a "variable" actually operate on either the "addr
of the variable" — the value of LI datatype "pointer to (T)" — or the "value of the variable" — the value of LI datatype T. And thus thos
the only objects which are needed in the datatype model. This notion is further elaborated in ISO/IEC 13886:1995,Language-independent
procedure calling, which relates pointer-values to the "boxes" (or "cells") which are elements of thestate of a running program.

8.3.3 Procedure

Description:  Procedure generates a datatype, called aprocedure datatype, each of whose values is an operation on values o
other datatypes, designated theparameter datatypes.  That is, a procedure datatype comprises the set of all operation
values of a particular collection of datatypes.   All values of a procedure datatype are conceptually atomic.

Syntax:
procedure-type =  "procedure"  "("  [  parameter-list  ]  ")"  [  "returns"  "("  return-parameter  ")"  ]

[  "raises"  "("  termination-list  ")"  ]  .
parameter-list  =  parameter-declaration  {  ","  parameter-declaration  }  .
parameter-declaration  =  direction  parameter  .
direction  =  "in"  |  "out"  |  "inout"  .
parameter  =  [  parameter-name  ":"  ]  parameter-type  .
parameter-type  =  type-specifier  .
parameter-name  =  identifier  .
return-parameter  =  [  parameter-name  ":"  ]  parameter-type  .
termination-list  =  termination-reference  {  ","  termination-reference  }  .
termination-reference  =  termination-identifier  .

Components: Aparameter-typemay designate any datatype. Theparameter-namesof parametersin theparameter-listshall be
distinct from each other and from theparameter-name of thereturn-parameter,if any. Thetermination-referencesin the
termination-list, if any, shall be distinct.

Values:  Conceptually, a value of a procedure datatype is a function which maps an input space to a result space.  Aparameter
in theparameter-list is said to be aninput parameter if its parameter-declaration contains the direction"in" or "inout".
The input space is the cross-product of the value spaces of the datatypes designated by theparameter-typesof all the input
parameters.  A parameter is said to be aresult parameter if it is thereturn-parameter or it appears in theparameter-list
and itsparameter-declarationcontains the direction"out" or "inout". Thenormal result spaceis the cross-product of the
value spaces of the datatypes designated by theparameter-typesof all the result parameters, if any, and otherwise the valu
space of the void datatype. When there is notermination-list, the result space of the procedure datatype is the normal res
space, and every valuep of the procedure datatype is a function of the mathematical form:

p:  I1 x I2 x ... x In → RP x R1 x R2 x ... x Rm
where Ik is the value space of the parameter datatype of thekth input parameter, Rk is the value space of the parameter
datatype of thekth result parameter, and RPis the value space of the return-parameter.

When atermination-list is present, eachtermination-reference shall be associated, by sometermination-declaration (see
9.3), with analternative result spacewhich is the cross-product of the value spaces of the datatypes designated by thpa-
rameter-typesof theparametersin thetermination-parameter-list. Let Aj be the alternative result space of thejth termina-
tion.  Then:

Aj  =  E1
j x E2

j x ... x Emj
j,

where Ek
j is the value space of the parameter datatype of thekth parameter in thetermination-parameter-list of thejth ter-

mination.  The normal result space then becomes the alternative result space associated withnormal termination  (A0),
modelled as havingtermination-identifier"*normal". Consider thetermination-references, and "*normal", to represent val-
ues of an unspecified state datatype ST.  Then the result space of the procedure datatype is:

ST x  (A0 | A1 | A2 | ... | AN),

where A0 is the normal result space and Ak is the alternative result space of thekth termination; and every value of the pro
cedure datatype is a function of the form:

p:  I1 x I2 x ... x In → ST x  (A0 | A1 | A2 | ... | AN).

Any of the input space, the normal result space and the alternative result space corresponding to a giventermination-iden-
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tifier may be empty. An empty space can be modelled mathematically by substituting for the empty space the value
of the datatype Void (see 8.1.12).

The value space of a procedure datatype conceptually comprises all operations which conform to the above model, i
which operate on a collection of values whose datatypes correspond to the input parameter datatypes and yield a c
of values whose datatypes correspond to the parameter datatypes of the normal result space or the appropriate a
result space. The termcorrespondingin this regard means that to each parameter datatype in the respective product
the "collection of values" shall associate exactly one value of that datatype. When the input space is empty, the valu
of the procedure datatype comprises all niladic operations yielding values in the result space. When the result spac
ty, the mathematical value space contains only one value, but the value space of the computational procedure dataty
contain many distinct values which differ in their effects on the "real world", i.e. physical operations outside of the 
mation space.

Value-syntax:
procedure-declaration  =  "procedure"  procedure-identifier  "("  [  parameter-list  ]  ")"

[  "returns"  "("  return-parameter  ")"  ]  [  "raises"  "("  termination-list  ")"  ]  .
procedure-identifier  =  identifier  .

A procedure-declaration declares theprocedure-identifierto refer to a (specific) value of the procedure datatype whos
type-specifieris identical to theprocedure-declarationafter deletion of theprocedure-identifier. The means of association
of theprocedure-identifier with a particular value of the procedure datatype is outside the scope of this International
dard.

Properties:  unordered, exact, non-numeric.

Subtypes:  For two procedure datatypesP andQ:

• P is said to beformally compatible with Q if their parameter-lists are of the same length, thedirectionof eachparameter
in theparameter-list of P is the same as the correspondingparameter in theparameter-list of Q, both have areturn-pa-
rameter or neither does, and thetermination-lists of P and Q, if present, contain the sametermination-references.

• If P is formally compatible withQ, and for every result parameter ofQ , the parameter datatype of the corresponding p
rameter ofP is a (not necessarily proper) subtype of the parameter datatype of the parameter ofQ, thenP is said to be a
result-subtypeof Q. If the return parameter datatype and all of the parameter datatypes in theparameter-listof P andQ
are identical (none are proper subtypes), then each is a result-subtype of the other.

• If P is formally compatible withQ, and for every input parameter ofQ , the parameter datatype of the corresponding p
rameter ofP is a (not necessarily proper) subtype of the parameter datatype of the parameter ofQ, thenQ is said to be an
input-subtypeof P. If all of the input parameter datatypes in theparameter-listsof P andQ are identical (none are proper
subtypes), then each is an input-subtype of the other.

Every subtype of a procedure datatype shall be both an input-subtype of that procedure datatype and a result-subtyp
procedure datatype.

Operations:  Equal, Invoke.

The definitions of Invoke and Equals below are templates for the definition of specific Invoke and Equals operators for e
dividual procedure datatype. Each procedure datatype has its own Invoke operator whose first parameter is a value of th
dure datatype, and whose remaining input parameters, if any, have the datatypes in the input space of that procedure
and whose result-list has the datatypes of the result space of the procedure datatype.

Invoke(x: procedure(parameter-list), v1: I1, ..., vn: In): record (r1: R1, ..., rm: Rm) is that value in the result space which is
produced by the procedure x operating on the value of the input space which corresponds to values (v1, ..., vn).

Equal(x, y: procedure(parameter-list)): booleanis:
true if for each collection of values (v1: I1, ..., vn: In), corresponding to a value in the input space of x and y, eithe

neither x nor y is defined on (v1, ..., vn), or
Invoke(x, v1, ..., vn) = Invoke(y, v1, ..., vn);

andfalseotherwise.

NOTES

1. The definition of Invoke above is simplistic and ignores the concept of alternative terminations, the implications of procedure and
datatypes appearing in the parameter-list, etc. The true definition of Invoke is beyond the scope of this International Standard and
principal part of ISO/IEC 13886:1996,Language-independent procedure calling.

2. Considered as a function, a given value of a procedure datatype may not be defined on the entire input space, that is, it may n
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value for every possible input. In describing a specific value of the procedure datatype it is necessary to specify limitations on the inpu
on which the procedure value is defined. In the general case, these limitations are on combinations of values which go beyond specifyi
subtypes of the individual parameter datatypes. Such limitations are therefore not considered to affect the admissibility of a given p
as a value of the procedure datatype.

3. The subtyping of procedure datatypes may be counterintuitive.  Assume the declarations:
type P = procedure (in a: integer range (0..100), out b: typeX);
type Q = procedure (in a: integer range (0..100), out b: typeY);
type R = procedure(in a: integer, out b: typeX);

If typeX is a subtype oftypeY then P is a subtype of Q, as one might expect. Butinteger range (0..100) is a subtype ofinteger, which makes
R a subtype of P, and not the reverse! In general, the collection of procedures which can accept an arbitrary input from the larger input
(integer) is a subset of the collection of procedures which can accept an input from the more restricted input datatype (integer range (0..100)).
If a procedure is required to be of type P, then it is presumed to be applicable to values ininteger range (0..100). If a procedure of type R is
actually used, it can indeed be safely applied to any value ininteger range (0..100), becauseinteger range (0..100) is a subtype of the do-
main of the procedures in R. But the converse is not true. If a procedure is required to be of type R, then it is presumed to be applica
arbitraryinteger value, for example, -1, and therefore a procedure of type P, which is not necessarily defined at -1, cannot be used.

4. In describing individual values of a procedure datatype, it is common in programming languages to specify parameter-names, in
to parameter datatypes, for the parameters. These identifiers provide a means of distinguishing the functionality of the individual pa
values. But while this functionality is important in distinguishing onevalueof a procedure datatype from another, it has no meaning at all
the procedure datatype itself. For example,Subtract(in a:real, in b:real, out diff: real) andMultiply(in a:real, in b:real, out prod: real) are
both values of the procedure datatypeprocedure(in real, in real, out real), but the functionality of the parameters a and b in the two procedu
values is unrelated.

5. In describing procedures in programming languages, it is common to distinguish parameters asinput, output,andinput/output, to import
information fromcommoninterchange areas, and to distinguish returning a single result value from returning values through the para
and/or the interchange areas. These distinctions are supported by the syntax, but conceptually, a procedure operates on an set of i
to produce a set of output values. The syntactic distinctions relate to the methods of moving values between program elements, whic
side the scope of this International Standard. This syntax is used in other international standards which define such mechanisms. It is
to facilitate the mapping to programming language constructs.

6. As may be apparent from the definition of Invoke above, there is a natural isomorphism between the normal result space of a p
datatype and the value space of some record datatype (see 8.4.1). Similarly, there is an isomorphism between the general form of
space and the value space of a choice datatype (see 8.3.1) in which the tag datatype is the unspecified state datatype and each alte
cluding "normal", has the form:

termination-name: alternative-result-space (record-type).

8.4 Aggregate Datatypes

An aggregate datatypeis a generated datatype each of whose values is, in principle, made up of values of the comp
datatypes.  An aggregate datatype generator generates a datatype by

• applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space of the ag
datatype, and

• providing a set of characterizing operations specific to the generator.

Thus, many of the properties of aggregate datatypes are those of the generator, independent of the datatypes of the co
Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of an aggregate
accessible through characterizing operations.

This clause describes commonly encountered aggregate datatype generators, attaching to them only the semantics wh
from the construction procedure.

aggregate-type  =  record-type  |  set-type  |  sequence-type  |  bag-type  |  array-type  |  table-type  .

The definition template for an aggregate datatype is that used for all datatype generators (see 8.3), with an addition of t
erties paragraph to describe which of the aggregate properties described in clause 6.8 are possessed by that generato

NOTES

1. In general, an aggregate-value contains more than one component value. This does not, however, preclude degenerate case
“aggregate” value has only one component, or even none at all.

2. Many characterizing operations on aggregate datatypes are "constructors", which construct a value of the aggregate datatype f
lection of values of the component datatypes, or "selectors", which select a value of a component datatype from a value of the a
36



 ISO/IEC ISO/IEC 11404:1996 (E)

tself char-

ome lan-
them. For
ndard mod-
t Basic, for
in 1-char-
cterstring

he datatype.

f these
employed

no char-
nd thus the
ny par-
pability is

s of
entifier".

of
datatype. Since composition is inherent in the concept of aggregate, the existence of construction and selection operations is not in i
acterizing.  However, the nature of such operations, together with other operations on the aggregate as a whole, is characterizing.

3. In principle, from each aggregate it is possible to extract a single component, using selection operations of some form. But s
guages may specify that particular (logical) aggregates must be treated as atomic values, and hence not provide such operations for
example, a character string may be regarded as an atomic value or as an aggregrate of Character components. This international sta
els characterstring (10.1.5) as an aggregate, in order to support languages whose fundamental datatype is (single) Character. Bu
example, sees the characterstring as the primitive type, and defines operations on it which yield other characterstring values, where
acter strings are not even a special case. This difference in viewpoint does not prevent a meaningful mapping between the chara
datatype and Basic strings.

4. Some characterizations of aggregate datatypes are essentially implementations, whereas others convey essential semantics of t
For example, an object which is conceptually a tree may be defined by either:

type tree = record (
label: character_string ({ iso standard 8859 1 }),
branches: set of (tree));

or:
type tree = record (

label: character_string ({ iso standard 8859 1 }),
son: pointer to (tree),
sibling: pointer to (tree)).

The first is a proper conceptual definition, while the second is clearly the definition of a particular implementation of a tree. Which o
datatype definitions is appropriate to a given usage, however, depends on the purpose to which this International Standard is being
in that usage.

5. There is no "generic" aggregate datatype. There is no "generic" construction algorithm, and the "generic" form of aggregate has
acterising operations on the aggregate values. Every aggregate is, in a purely mathematical sense, at least a "bag" (see 8.4.3). A
ability to “select one” from any aggregate value is a mathematical requirement given by the axiom of choice. The ability to perform a
ticular operation on each element of an aggregate is sometimes cited as characterizing. But in this International Standard, this ca
modelled as a composition of more primitive functions, viz.:

Applytoall(A: aggregate-type, P:procedure-type) is:
if not IsEmpty(A) begin

e := Select(A);
Invoke (P, e);
Applytoall (Delete(A, e), P);

end;
and the particular “Select” operations available, as well as the need for IsEmpty and Delete, arecharacterizing.

8.4.1 Record

Description: Record generates a datatype, called arecord datatype, whose values are heterogeneous aggregations of value
component datatypes, each aggregation having one value for each component datatype, keyed by a fixed "field-id

Syntax:
record-type  =  "record"  "("  field-list  ")"  .
field-list  =  field  {  ","  field  }  .
field  =  field-identifier  ":"  field-type  .
field-identifier  =  identifier  .
field-type  =  type-specifier  .

Components: A list offields, each of which associates afield-identifierwith a singlefield datatype, designated by thefield-type,
which may be any datatype.  Allfield-identifiersof fields in thefield-list shall be distinct.

Values: all collections of named values, one perfield in thefield-list, such that the datatype of each value is the field datatype
thefield to which it corresponds.

Value-syntax:
record-value  =  field-value-list   |  value-list  .
field-value-list   =  "("  field-value  {  ","  field-value  }  ")"  .
field-value  =  field-identifier  ":"  independent-value  .
value-list  =  "("  independent-value  {  ","  independent-value  }  ")"  .

A record-valuedenotes a value of a record datatype. When therecord-valueis afield-value-list, eachfield-identifierin the
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field-list of the record datatype to which therecord-valuebelongs shall occur exactly once in thefield-value-list, eachfield-
identifier in therecord-value shall be one of thefield-identifiers in thefield-list of therecord-type, and the corresponding
independent-value shall designate a value of the corresponding field datatype.  When therecord-value is avalue-list, the
number ofindependent-valuesin thevalue-listshall be equal to the number of fields in thefield-list of the record datatype
to which the value belongs, eachindependent-valueshall be associated with the field in the corresponding position, and e
independent-value shall designate a value of the field datatype of the associated field.

Properties:  non-numeric, unordered, exact if and only if all component datatypes are exact.

Aggregate properties: heterogeneous, fixed size, no ordering, no uniqueness, access is keyed byfield-identifier, one dimensional.

Subtypes:  any record datatype with exactly the samefield-identifiers as the base datatype, such that the field datatype of ea
field of the subtype is the same as, or is a subtype of, the corresponding field datatype of the base datatype.

Operations:  Equal, FieldSelect, Aggregate.

Equal(x, y: record (field-list)): booleanis true if for everyfield-identifier f of the record datatype,
field-type.Equal(FieldSelect.f(x), FieldSelect.f(y)), else false
(wherefield-type.Equal is the equality relationship on the field datatype corresponding to f).

There is one FieldSelect and one FieldReplace operation for each field in the record datatype, of the forms:

FieldSelect.field-identifier(x: record (field-list)): field-typeis
the value of the field of record x whose field-identifier isfield-identifier.

FieldReplace.field-identifier(x: record (field-list), y: field-type): record (field-list) is
that value z: record(field-list) such that FieldSelect.field-identifier(z) = y, and for all other fieldsf in record(field-list),
FieldSelect.f(x) = FieldSelect.f(z)
i.e. FieldReplace yields the record value in which the value of the designatedfield of x has been replaced by y.

NOTES

1. The sequence of fields in a Record datatype is not semantically significant in the definition of the Record datatype generator. A
mentation of a Record datatype may define a representation convention which is an ordering of physically distinct fields, but that is a p
consideration and not a part of the conceptual notion of the datatype. Indeed, the optimal representation for certain Record values m
bit string, and then FieldReplace would be an encoding operation and FieldSelect would be a decoding operation. Note that in arecord-value
which is avalue-list, however, the physical sequence of fieldsis significant: it is the convention used to associate the component values in
value-list with the fields of the Record value.

2. A record datatype can be modelled as a heterogeneous aggregate of fixed size which is accessed by key, where the key datatyp
datatype whose values are the field identifiers. But in a value of a record datatype, totality of the mapping is required: no field (keye
can be missing.

3. A record datatype with a subset of the fields of a base record datatype (a "sub-record" or "projection" of the record datatype) isnota sub-
type of the base record datatype: none of the values in the sub-record value space appears in the base value-space. And there are
a great many different "embeddings" which map the sub-record datatype into the base datatype, each of which supplies different valu
missing fields. Supplyingvoidvalues for the missing fields is only possible if the datatypes of those fields are of the form choice (tag-type) of
(...,v: void).

4. "Subtypes" of a "record" datatype which haveadditionalfields is an object-oriented notion which goes beyond the scope of this Inter
tional Standard.

8.4.2 Set

Description: Set generates a datatype, called aset datatype, whose value-space is the set of all subsets of the value space of
element datatype, with operations appropriate to the mathematicalset.

Syntax:
set-type  =  "set"  "of"  "("  element-type  ")"  .
element-type  =  type-specifier  .

Components:  The element-typeshall designate an exact datatype, called theelement datatype.

Values: every set of distinct values from the value space of the element datatype, including the set of no values, called theempty-
set. A value of a set datatype can be modelled as a mathematical function whose domain is the value space of the
datatype and whose range is the value space of the boolean datatype (true, false), i.e., ifs is a value of datatype set of (E),
thens: E → B, and for any valuee in the value space ofE, s(e)= true meanse "is a member of" the set-values,ands(e)=
false meanse"is not a member of" the set-values. The value-space of the set datatype then comprises all functionsswhich
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Value-syntax:
set-value  =  empty-value  |  value-list  .
empty-value  =  "("  ")"  .
value-list  =  "("  independent-value  {  ","  independent-value  }  ")"  .

Eachindependent-value in thevalue-list shall designate a value of the element datatype.  Aset-value denotes a value of a
set datatype, namely the set containing exactly the distinct values of the element datatype which appear in thevalue-list, or
equivalently the functionswhich yields true at every value in thevalue-listand false at all other values in the element valu
space.

Properties:  non-numeric, unordered, exact.

Aggregate properties: homogeneous, variable size, uniqueness, no ordering, access indirect (by value).

Subtypes:
a) any set datatype in which the element datatype of the subtype is the same as, or a subtype of, the element d

the base set datatype; or
b) any datatype derived from a base set datatype conforming to (a) by use of the Size subtype-generator (see 8

Operations:  IsIn, Subset, Equal, Difference, Union, Intersection, Empty, Setof, Select

IsIn(x: element-type, y: set of (element-type)): boolean = y(x), i.e.
 true if the value x is a member of the set y, else false;

Subset(x,y: set of (element-type)): booleanis true if for every valuev of the element datatype,
Or(Not(IsIn(v,x)), IsIn(v,y)) = true, else false;  i.e. true if and only if every member of x is a member of y;

Equal(x, y: set of (element-type)): boolean = And(Subset(x,y), Subset(y,x));

Difference(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the element datatype su
that And(IsIn(v, x), Not(IsIn(v,y)));

Union(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the element datatype such t
Or(IsIn(v,x), IsIn(v,y));

Intersection(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the element datatype su
that And(IsIn(v,x), IsIn(v,y));

Empty(): set of (element-type) is the functions such that for all values v of the element datatype,s(v)= false;  i.e. the set
which consists of no values of the element datatype;

Setof(y:element-type):set of (element-type) is the functionssuch thats(y) = true and for all valuesv ≠ y, s(v)= false; i.e.
the set consisting of the single value y;

Select(x: set of (element-type)): element-type, where Not(Equal(x, Empty()),is some one value from the value space of
element datatype which appears in the set x.

NOTE — Set is modelled as having only the (undefined) Select operation derived from the axiom of choice. In another sense, the acces
for an element of a set value is “find the element (if any) with valuev”, which actually uses the characterizing “IsIn” operation, and the uniqu
ness property.

8.4.3 Bag

Description:  Bag generates a datatype, called abag datatype, whose values are collections of instances of values from the 
ment datatype. Multiple instances of the same value may occur in a given collection; and the ordering of the value in
is not significant.

Syntax:
bag-type  = "bag"  "of"  "("  element-type  ")"  .
element-type  =  type-specifier  .

Components:  The element-typeshall designate an exact datatype, called theelement datatype.

Values: all finite collections of instances of values from the element datatype, including the empty collection. A value of
datatype can be modelled as a mathematical function whose domain is the value space of the element datatype a
range is the nonnegative integers, i.e., ifb is a value of datatype bag of (E), thenb: E → Z, and for any valuee in the value
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n times in" the bag-valueb. The value-space of the bag datatype then comprises all functionsb which are distinct.

Value-syntax:
bag-value  =  empty-value  |  value-list  .
empty-value  =  "("  ")"  .
value-list  =  "("  independent-value  {  ","  independent-value  }  ")"  .

Eachindependent-valuein thevalue-listshall designate a value of the element datatype. Abag-valuedenotes a value of a
bag datatype, namely that function which at each valueeof the element datatype yields the number of occurrences ofe in
thevalue-list.  .

Properties:  non-numeric, unordered, exact.

Aggregate properties: homogeneous, variable size, no uniqueness, no ordering, access indirect.

Subtypes:
a) any bag datatype in which the element datatype of the subtype is the same as, or a subtype of, the element da

the base bag datatype; or
b) any datatype derived from a base bag datatype conforming to (a) by use of the Size subtype-generator (see 8

Operations:  IsEmpty, Equal, Empty, Serialize, Select, Delete, Insert

IsEmpty(x: bag of (element-type)): booleanis true if for alle in the element value space, x(e) = 0, else false;

Equal(x, y: bag of (element-type)): booleanis true if for alle in the element value space, x(e) = y(e), else false;

Empty(): bag of (element-type) is that function x such that for alle in the element value space, x(e) = 0;

Serialize(x: bag of (element-type)): sequence of (element-type) is:
if IsEmpty(x), then (),
else any sequence value s such that for eache in the element value space,e occurs exactly x(e) times in s;

Select(x: bag of (element-type)): element-type = Sequence.Head(Serialize(x));

Delete(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of (element-type) such that:
for all e ≠ y, z(e) = x(e), and
if x(y) > 0 then z(y) = x(y) - 1 and if x(y) = 0 then z(y) = 0;

i.e. the collection formed by deleting one instance of the value y, if any, from the collection x;

Insert(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of (element-type) such that:
for all e ≠ y, z(e) = x(e), and z(y) = x(y) + 1;

i.e. the collection formed by adding one instance of the value y to the collection x;

8.4.4 Sequence

Description:  Sequence generates a datatype, called asequence datatype, whose values are ordered sequences of values fro
the element datatype.  The ordering is imposed on the values and not intrinsic in the underlying datatype;  the sam
may occur more than once in a given sequence.

Syntax:
sequence-type  =  "sequence"  "of"  "("  element-type  ")"  .
element-type  =  type-specifier  .

Components:  The element-typeshall designate any datatype, called theelement datatype.

Values:  all finite sequences of values from the element datatype, including the empty sequence.

Value-syntax:
sequence-value  =  empty-value  |  value-list  .
empty-value  =  "("  ")"  .
value-list  =  "("  independent-value  {  ","  independent-value  }  ")"  .

Eachindependent-valuein thevalue-listshall designate a value of the element datatype. Asequence-valuedenotes a value
of a sequence datatype, namely the sequence containing exactly the values in thevalue-list, in the order of their occurrence
in the value-list.  .

Properties:  non-numeric, unordered, exact if and only if the element datatype is exact.
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Aggregate properties: homogeneous, variable size, no uniqueness, imposed ordering, access indirect (by position).

Subtypes:
a) any sequence datatype in which the element datatype of the subtype is the same as, or a subtype of, the elemen

of the base sequence datatype; or
b) any datatype derived from a base sequence datatype conforming to (a) by use of the Size subtype-generator (s

Operations:  IsEmpty, Head, Tail, Equal, Empty, Append.

IsEmpty(x: sequence of (element-type)): booleanis true if the sequence x contains no values, else false;

Head(x: sequence of (element-type)): element-type,where Not(IsEmpty(x)),is the first value in the sequence x;

Tail(x: sequence of (element-type)): sequence of (element-type) is the sequence of values formed by deleting the first valu
if any, from the sequence x;

Equal(x, y: sequence of (element-type)): booleanis:
if IsEmpty(x), then IsEmpty(y);
else if Head(x) = Head(y), then Equal(Tail(x), Tail(y));
else, false;

Empty(): sequence of (element-type) is the sequence containing no values;

Append(x: sequence of (element-type), y: element-type): sequence of (element-type) is
the sequence formed by adding the single value y to the end of the sequence x.

NOTES

1. Sequence differs from Bag in that the ordering of the values is significant and therefore the operations Head, Tail, and Appen
depend on position, are provided instead of Select, Delete and Insert, which depend on value.

2. The extended operation Concatenate(x, y: sequence of (E)): sequence of (E) is:
if IsEmpty(y) then x; else Concatenate(Append(x, Head(y)), Tail(y));

3. The notionsequential file, meaning "a sequence of values of a given datatype, usually stored on some external medium", is an imp
tation of datatype Sequence.

8.4.5 Array

Description: Array generates a datatype, called anarray datatype, whose values are associations between the product spac
one or more finite datatypes, designated theindex datatypes, and the value space of theelementdatatype, such that every
value in the product space of the index datatypes associates to exactly one value of the element datatype.

Syntax:
array-type  =  "array"  "("  index-type-list  ")"  "of"  "("  element-type  ")"  .
index-type-list  =  index-type  {  ","  index-type  }  .
index-type  =  type-specifier  |  index-lowerbound  ".."  index-upperbound  .
index-lowerbound  =  value-expression  .
index-upperbound  =  value-expression  .
element-type  =  type-specifier  .

Components:  The element-typeshall designate any datatype, called theelement datatype.  Eachindex-type shall designate an
ordered and finite exact datatype, called anindex datatype.  When theindex-type has the form:

index-lowerbound .. index-upperbound,
the implied index datatype is:

integer range(index-lowerbound .. index-upperbound),
andindex-lowerboundandindex-upperboundshall have integer values, such thatindex-lowerbound≤ index-upperbound.

Thevalue-expressions for index-lowerboundandindex-upperbound may bedependent-values when the array datatype ap
pears as aparameter-type, or in a component of aparameter-type, of a procedure datatype, or in a component of a reco
datatype.  Neitherindex-lowerboundnor index-upperboundshall bedependent-values in any other case.  Neitherindex-
lowerboundnor index-upperboundshall beformal-parametric-values, except in certain cases in declarations (see 9.1).

Values: all functions from the cross-product of the value spaces of the index datatypes appearing in theindex-type-list, designat-
ed theindex product space, into the value space of the element datatype, such that each value in the index product
associates to exactly one value of the element datatype.
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Value-syntax:
array-value  =  value-list  .
value-list  =  "("  independent-value  {  ","  independent-value  }  ")"  .

An array-valuedenotes a value of an array datatype. The number ofindependent-valuesin thevalue-listshall be equal to
the cardinality of the index product space, and eachindependent-valueshall designate a value of the element datatype. T
define the associations, the index product space is first ordered lexically, with the last-occurring index datatype varyin
rapidly, then the second-last, etc., with the first-occurring index datatype varying least rapidly. The firstindependent-value
in the array-valueassociates to the first value in the product space thus ordered, the second to the second, etc.  Th array-
value denotes that value of the array datatype which makes exactly those associations.

Properties:  non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, fixed size, no uniqueness, no ordering, access is indexed, dimensionality is equa
number ofindex-types in theindex-type-list.

Subtypes: any array datatype having the same index datatypes as the base datatype and an element datatype which is
of the base element datatype.

Operations:  Equal, Select, Replace.

Select(x: array (index1, ..., indexn) of (element-type), y1: index1, ..., yn: indexn): element-typeis that value of the element
datatype which x associates with the value (y1, ..., yn) in the index product space;

Equal(x, y: array (index1, ..., indexn) of (element-type)): booleanis true if for every value (v1, ..., vn) in the index product
space, Select(x, v1, ..., vn) = Select(y,v1, ..., vn), else false;

Replace(x: array (index1, ..., indexn) of (element-type), y1: index1, ..., yn: indexn, z: element-type): array (index1, ..., indexn)
of (element-type) is that valuew of the array datatype such thatw: (y1, ..., yn) → z,
and for all valuesp of the index product space except (y1, ..., yn), w: p → x(p);
i.e. Replace yields the function which associatesz with the value (y1, ..., yn) and is otherwise identical to x.

NOTES

1. The general array datatype is "multidimensional", where the number of dimensions and the index datatypes themselves are p
conceptual datatype. The index space is an unordered product space, although it is necessarily ordered in each "dimension", that is, w
index datatype. This model was chosen in lieu of the "array of array" model, in which an array has a single ordered index datatype, in t
that it facilitates the mappings to programming languages.  Note that:

type arrayA = array (1..m, 1..n) of (integer);
definesarrayA to be a 2-dimensional datatype, whereas

type arrayB = array (1..m) of (array [1..n] of (integer));
definesarrayB to be a 1-dimensional (with element datatypearray (1..n) of (integer), rather thaninteger). This allows languages in which
A[i][j] is distinguished from A[i, j] to maintain the distinction in mappings to the LI Datatypes. Similarly, languages which disallow the A[
construct can properly state the limitation in the mapping or treat it as the same as A[i, j], as appropriate.

2. The array of a single dimension is simply the case in which the number of index datatypes is 1 and the index product space is
space of that datatype. The order of the index datatype then determines the association to the independent-values in a correspon
value.

3. Support for index datatypes other than integer is necessary to model certain Pascal and Ada datatypes (and possibly others) with
semantics.

4. It is not required that the specific index values be preserved in any mapping of an array datatype, but rather that each index da
mapped 1-to-1 onto a corresponding index datatype and the corresponding indexing functions be preserved.

5. Since the values of an array datatype are functions, the array datatype is conceptually a special case of the procedure datatype
In most programming languages, however, arrays are conceptually aggregates, not procedures, and have such constraints as to ens
function can be represented by a sequence of values of the element datatype, where the size of the sequence is fixed and equal to the
of the index product space.

6. In order to define an interchangeable representation of the Array as a sequence of element values, it is first necessary to define th
which maps the index product space to the ordinal datatype. There are many such functions. The one used in interpreting thearray-value
construct is as follows:

Let A be a value of datatype array(array (index1, ..., indexn) of (element-type). For each index datatypeindexi, let lowerboundi andup-
perboundi be the lower and upper bounds on its value space. Define the operation Mapi to map the index datatypeindexi into a range of integer
by:
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Mapi(x: indexi):  integer is:
Mapi(lowerboundi) = 0; and
Mapi(Successori(x)) = Mapi(x) + 1, for all x≠ upperboundi.

And define the constant:sizei = Mapi(upperboundi) - Mapi(lowerboundi) + 1. Then Ord(x1: index1, ..., xn: indexn): ordinal is the ordinal value
corresponding to the integer value:

where the non-existentsizen+1 is taken to be 1.  And the Ord(x1, ..., xn)th position in the sequence representation is occupied by A(x1, ..., xn).

EXAMPLE — The Fortran declaration:
CHARACTER*1  SCREEN (80, 24)

declares the variable "screen" to have the LI datatype:
array (1..80, 1..24) of  character (unspecified).

And the Fortran subscript operation:
S = SCREEN (COLUMN, ROW)

is equivalent to the characterizing operation:
Select (screen, column, row);

while
SCREEN(COLUMN, ROW) = S

is equivalent to the characterizing operation:
Replace(screen, column, row, S).

The Fortran standard (ISO/IEC 1539:1991,Information technology — Programming languages — Fortran), however, requires a mapping
function which gives a different sequence representation from that given in Note 6.

8.4.6 Table

Description: Table generates a datatype, called atable datatype, whose values are collections of values in the product space
one or morefielddatatypes, such that each value in the product space represents an association among the values of i
Although the field datatypes may be infinite, any given value of a table datatype contains a finite number of assoc

Syntax:
table-type  =  "table"  "("  field-list  ")"  .
field-list  =  field  {  ","  field  }  .
field  =  field-identifier  ":"  field-type  .
field-identifier  =  identifier  .
field-type  =  type-specifier  .

Components: A list offields, each of which associates afield-identifierwith a singlefield datatype, designated by thefield-type,
which may be any datatype.  Allfield-identifiersof fields in thefield-list shall be distinct..

Values: The value space of table(field-list) is isomorphic to the value space ofbag of (record(field-list)), that is, all finite col-
lections of  associations represented by values from the cross-product of the value spaces of all the field datatype
field-list.

Value-syntax:
table-value  =  empty-value  |  "("  table-entry  {  ","  table-entry  }  ")"  .
table-entry  =  field-value-list  |  value-list  .
field-value-list   =  "("  field-value  {  ","  field-value  }  ")"  .
field-value  =  field-identifier  ":"  independent-value  .
value-list  =  "("  independent-value  {  ","  independent-value  }  ")"  .

A table-valuedenotes a value of a table datatype, namely the collection comprising exactly the associations designa
thetable-entrys appearing in thetable-value. A table-entrydenotes a value in the product space of the field datatypes in
field-listof thetable-type. When thetable-entryis afield-value-list, eachfield-identifierin thefield-listof the table datatype
to which thetable-valuebelongs shall occur exactly once in thefield-value-list, eachfield-identifierin thetable-entryshall
be one of thefield-identifiers in thefield-list of thetable-type, and the correspondingindependent-value shall designate a
value of the corresponding field datatype. When thetable-entryis avalue-list, the number ofindependent-valuesin theval-
ue-listshall be equal to the number of fields in thefield-list of the table datatype to which the value belongs, eachindepen-
dent-valueshall be associated with the field in the corresponding position, and eachindependent-valueshall designate a val-

Σ
i = 1

n
Mapi(xi) • ( Π

j = i

n
sizej+1 ),1 +
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Properties:  non-numeric, unordered, exact if and only if all field datatypes are exact.

Aggregate properties: heterogeneous, variable size, no uniqueness, no ordering, dimensionality is two.

Subtypes:
a) any table datatype which has exactly the samefield-identifiers in thefield-list, and the field datatype of each field of

the subtype is the same as, or is a subtype of, the corresponding field datatype of the base datatype;  or
b) any table datatype derived from a base table datatype conforming to (a) by use of the Size subtype-generator (se

Operations:  MaptoBag, MaptoTable, Serialize, IsEmpty, Equal, Empty, Delete, Insert, Select, Fetch.

MaptoBag(x: table(field-list)): bag of (record(field-list)) is the isomorphism which maps the table to a bag of records.

MaptoTable(x: bag of (record(field-list))): table(field-list) is the inverse of the MaptoBag isomorphism.

Serialize(x: table(field-list)): sequence of (record(field-list)) = Bag.Serialize(MaptoBag(x));

IsEmpty(x: table(field-list)): boolean = Bag.IsEmpty(MaptoBag(x));

Equal(x, y: table(field-list)): boolean = Bag.Equal(MaptoBag(x), MaptoBag(y));

Empty(): table(field-list) = ();

Delete(x: table(field-list), y: record(field-list)): table(field-list) = MaptoTable(Bag.Delete(MaptoBag(x), y));

Insert(x: table(field-list), y: record(field-list)): table(field-list) = MaptoTable(Bag.Insert(MaptoBag(x), y));

Select(x: table (field-list), criterion: procedure(in row: record(field-list)): boolean): table(field-list) = MaptoTable(z), where
z is the bag value whose elements are exactly those record values r in MaptoBag(x) for which criterion(r) = tru

Fetch(x: table(field-list)): record(field-list), where Not(IsEmpty(x)), = Sequence.Head(Serialize(x));

NOTES

1. Table would be a defined-generator (as in 10.2), but the type (generator) declaration syntax (see 9.1) does not permit the param
ment list to be a variable length list of field-specifiers.

2. This definition of Table is aligned with the notion of Table specified by ISO 9075:1990, Structured Query Language (SQL) . In SQ
"select procedure" may take as input rows from more than one table, but this is a generalization of the characterizing operation Sele
than an extention to the Table datatype concept.

3. In general, access to a Table is indirect, via Fetch or MaptoBag. Access to a Table is sometimes said to be "keyed" because the
utilization of this data structure represents "relationships" in which some field or fields are designated "keys" on which the values of a
fields are said to be "dependent", thus creating a mapping between the product space of the key value spaces and the value spaces
fields. (In database terminology, such a relationship is said to be of the "third normal form".) The specification of this mapping, when p
is a complex part of the SQL language standard and goes beyond the scope of this International Standard.

8.5 Defined Datatypes

A defined datatypeis a datatype defined by atype-declaration(see 9.1). It is denoted syntactically by atype-reference, with
the following syntax:

type-reference  =  type-identifier  [  "("  actual-type-parameter-list  ")"  ]  .
type-identifier  =  identifier  .
actual-type-parameter-list  =  actual-type-parameter  {  ","  actual-type-parameter  }  .
actual-type-parameter  =  value-expression  |  type-specifier  .

Thetype-identifiershall be thetype-identifierof sometype-declarationand shall refer to the datatype or datatype generator the
by defined. Theactual-type-parameters, if any, shall correspond in number and in type to theformal-type-parametersof the
type-declaration. That is, eachactual-type-parametercorresponds to theformal-type-parameterin the corresponding position
in theformal-type-parameter-list. If the formal-parameter-typeis atype-specifier, then theactual-type-parametershall be aval-
ue-expressiondesignating a value of the datatype specified by theformal-parameter-type.If the formal-parameter-typeis
"type", then theactual-type-parametershall be atype-specifierand shall have the properties required of that parametric datat
in the generator-declaration.

Thetype-declarationidentifies thetype-identifierin thetype-referencewith a single datatype, a family of datatypes, or a dataty
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generator. If thetype-identifierdesignates a single datatype, then thetype-referencerefers to that datatype. If thetype-identifier
designates a datatype family, then thetype-referencerefers to that member of the family whose value space is identified by
type-definitionafter substitution of eachactual-type-parametervalue for all occurrences of the correspondingformal-paramet-
ric-value. If the type-identifierdesignates a datatype generator, then thetype-referencedesignates the datatype resulting from
application of the datatype generator to the actual parametric datatypes, that is, the datatype whose value space is ide
the type-definitionafter substitution of eachactual-type-parameterdatatype for all occurrences of the correspondingformal-
parametric-type.In all cases, the defined datatype has the values, properties and characterizing operations defined, exp
implicitly, by thetype-declaration.

When atype-referenceoccurs in atype-declaration, the requirements for itsactual-type-parametersare as specified by clause
9.1. In any other occurrence of atype-reference, noactual-type-parametershall be aformal-parametric-valueor aformal-para-
metric-type.

9 Declarations

This International Standard specifies an indefinite number of generated datatypes, implicitly, as recursive application
datatype generators to the primitive datatypes. This clause defines declaration mechanisms by which new datatypes a
ators can be derived from the datatypes and generators of Clause 8, named and constrained. It also specifies a declara
anism for naming values and a mechanism for declaring alternative terminations of procedure datatypes (see 8.3.3).

declaration  =  type-declaration  |  value-declaration  |  procedure-declaration  |  termination-declaration  .

NOTE — This clause provides the mechanisms by which the facilities of this International Standard can be extended to meet the n
particular application. These mechanisms are intended to facilitate mappings by allowing for definition of datatypes and subtypes ap
to a particular language, and to facilitate definition of application services by allowing the definition of more abstract datatypes.

9.1 Type Declarations

A type-declarationdefines a newtype-identifierto refer to a datatype or a datatype generator. A datatype declaration ma
used to accomplish any of the following:

• to rename an existing datatype or name an existing datatype which has a complex syntax, or

• as the syntactic component of the definition of a new datatype, or

• as the syntactic component of the definition of a new datatype generator.

Syntax:
type-declaration  =  "type"  type-identifier  [  "("  formal-type-parameter-list  ")"  ]

"="  [  "new"  ]  type-definition  .
type-identifier  =  identifier  .
formal-type-parameter-list  =  formal-type-parameter  {  ","  formal-type-parameter  }  .
formal-type-parameter  =  formal-parameter-name  ":"  formal-parameter-type  .
formal-parameter-name  =  identifier  .
formal-parameter-type  =  type-specifier  |  "type"  .
type-definition  =  type-specifier  .
formal-parametric-value  =  formal-parameter-name  .
formal-parametric-type  =  formal-parameter-name  .

Everyformal-parameter-nameappearing in theformal-type-parameter-listshall appear at least once in thetype-definition. Each
formal-parameter-namewhoseformal-parameter-typeis atype-specifiershall appear as aformal-parametric-valueand eachfor-
mal-parameter-namewhoseformal-parameter-typeis "type" shall appear as aformal-parametric-type. Except for such occur-
rences, novalue-expressionappearing in thetype-definitionshall be aformal-parametric-valueand notype-specifierappearing
in thetype-definition shall be aformal-parametric-type.

The type-identifierdeclared in atype-declarationmay be referenced in a subsequent use of atype-reference(see 8.5). Thefor-
mal-type-parameter-listdeclares the number and required nature of theactual-type-parameterswhich must appear in atype-ref-
erencewhich references thistype-identifier. A type-referencewhich references thistype-identifiermay appear in analternative-
typeof a choice-typeor in theelement-typeof a pointer-type in thetype-definitionof this or any precedingtype-declaration. In
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any other case, thetype-declaration for thetype-identifier shall appear before the first reference to it in atype-reference.

No type-identifier shall be declared more than once in a given context.

What thetype-identifieris actually declared to refer to depends on whether the keyword"new" is present and whether theformal-
parameter-type"type" is present.

9.1.1 Renaming declarations

A type-declarationwhich does not contain the keyword"new" declares thetype-identifierto be a synonym for thetype-definition.
A type-referencereferencing thetype-identifierrefers to the LI datatype identified by thetype-definition, after substitution of the
actual datatype parameters for the corresponding formal datatype parameters.

9.1.2 New datatype declarations

A type-declarationwhich contains the keyword"new" and does not contain theformal-parameter-type"type" is said to be a
datatype declaration. It defines the value-space of a new LI datatype, which is distinct from any other LI datatype. If thefor-
mal-type-parameter-listis not present, then thetype-identifieris declared to identify a single LI datatype. If theformal-type-
parameter-listis present, then thetype-identifieris declared to identify a family of datatypes parametrized by theformal-type-
parameters.

Thetype-definitiondefines the value space of the new datatype (family) — there is a one-to-one correspondence between
of the new datatype and values of the datatype described by thetype-definition. The characterizing operations, and any oth
property of the new datatype which cannot be deduced from the value space, shall be provided along with thetype-declaration
to complete the definition of the new datatype (family). The characterizing operations may be taken from those of the d
(family) described by thetype-definition directly, or defined by some algorithmic means using those operations.

NOTE — The purpose of the "new" declaration is to allow both syntactic and semantic distinction between datatypes with identical valu
es. It is not required that the characterizing operations on the new datatype be different from those of thetype-definition. A semantic distinction
based on application concerns too complex to appear in the basic characterizing operations is possible. For example, acceleration an
may have identical computational value spaces and operations (datatype "real") but quite different physical ones.

9.1.3 New generator declarations

A type-declarationwhich contains the keyword"new" and at least oneformal-type-parameterwhoseformal-parameter-typeis
"type" is said to be agenerator declaration. A generator declaration declares thetype-identifierto be a new datatype generato
parametrized by theformal-type-parametersand the associated value space construction algorithm to be that specified b
type-definition. The characterizing operations, and other properties of the datatypes resulting from the generator which
be deduced from the value space, shall be provided along with the generator declaration to complete the definition of
datatype generator.

Theformal-type-parameterswhoseformal-parameter-typeis "type" are said to beparametric datatypes. A generator declara-
tion shall be accompanied by a statement of the constraints on the parametric datatypes and on the values of the otheformal-
type-parameters, if any.

9.2 Value Declarations

A value-declaration declares an identifier to refer to a specific value of a specific datatype.  Syntax:

value-declaration  =  "value"  value-identifier  ":"  type-specifier  "="  independent-value  .
value-identifier  =  identifier  .

Thevalue-declarationdeclares the identifiervalue-identifierto denote that value of the datatype designated by thetype-specifier
which is denoted by the givenindependent-value(see 7.5.1). Theindependent-valueshall (be interpreted to) designate a valu
of the designated LI datatype, as specified by Clause 8 or Clause 10.

No independent-valueappearing in avalue-declarationshall be aformal-parametric-valueand notype-specifierappearing in a
value-declarationshall be aformal-parametric-type.
46



 ISO/IEC ISO/IEC 11404:1996 (E)

res

atatypes
rnational

tatypes
.

ametric

 and

atatype
d,

tatype,
9.3 Termination Declarations

A termination-declarationdeclares atermination-identifierto refer to an alternate termination common to multiple procedu
or procedure datatypes (see 8.3.3) and declares the collection of procedure parameters returned by that termination.

termination-declaration  =  "termination"  termination-identifier  [  "("  termination-parameter-list  ")"  ]  .
termination-identifier  =  identifier  .
termination-parameter-list  =  parameter  {  ","  parameter  }  .
parameter  =  [  parameter-name  ":"  ]  parameter-type  .
parameter-type  =  type-specifier  .
parameter-name  =  identifier  .

Theparameter-namesof theparametersin a termination-parameter-listshall be distinct. Notermination-identifiershall be de-
clared more than once, nor shall it be the same as anytype-identifier.

Thetermination-declarationis a purely syntactic object. All semantics are derived from the use of thetermination-identifieras
a termination-referencein a procedure or procedure datatype (see 8.3.3).

10 Defined Datatypes and Generators

This clause specifies the declarations for commonly occurring datatypes and generators which can be derived from the d
and generators defined in Clause 8 using the declaration mechanisms defined in Clause 9. They are included in this Inte
Standard in order to standardize their designations and definitions for interchange purposes.

10.1 Defined datatypes

This clause specifies the declarations for a collection of commonly occurring datatypes which are treated as primitive da
by some common programming languages, but can be derived from the datatypes and generators defined in Clause 8

The template for definition of such a datatype is:

Description: prose description of the datatype.

Declaration: atype-declaration for the datatype.

Parametric values: when the defined datatype is a family of datatypes, identification of and constraints on the par
values of the family.

Values: formal definition of the value space.

Value-syntax: when there is a special notation for values of this datatype, the requisite syntactic productions,
identification of the values denoted thereby.

Properties: properties of the datatype which indicate its admissibility as a component datatype of certain d
generators:  numeric or non-numeric,  approximate or exact, ordered or unordered, and if ordere
bounded or unbounded.

Operations: characterizing operations for the datatype.

The notation for values of a defined datatype may be of two kinds:

1) If the datatype is declared to have a specific value syntax, then that value syntax is a valid notation for values of the da
and has the interpretation given in this clause.

2) If the datatype is not declared to have a specific value syntax, then the syntax forexplicit-values of the datatype identified
by thetype-definition is a valid notation for values of the defined datatype.

10.1.1 Natural number

Description:  Naturalnumber is the datatype of the cardinal or natural numbers.

Declaration:
47



ISO/IEC 11404:1996 (E)  ISO/IEC

 using

",

h values.
type naturalnumber = integer range (0..*);

Parametric Values:  none.

Values:  the non-negative subset of the value-space of datatype Integer.

Properties:  ordered, exact, numeric, unbounded above, bounded below.

Operations:  all those of datatype Integer, except Negate (which is undefined everywhere).

10.1.2 Modulo

Description:  Modulo is a family of dataypes derived from Integer by replacing the operations with arithmetic operations
the modulus characteristic.

Declaration:
type modulo (modulus: integer) = new integer range(0..modulus) excluding(modulus);

Parametric Values:modulus is an integer value, such that 1≤ modulus, designated themodulus of the Modulo datatype.

Values:  all Integer valuesv such that 0≤ v andv < modulus.

Properties:  ordered, exact, numeric.

Operations:  Equal, InOrder from Integer; Add, Multiply, Negate.

Add(x,y: modulo (modulus)): modulo(modulus) =
integer.Remainder(integer.Add(x,y),modulus).

Negate(x: modulo (modulus)): modulo (modulus) is the (unique) value y in the value space of modulo(modulus) such that
Add(x, y) = 0.

Multiply(x,y: modulo (modulus)): modulo(modulus) =
integer.Remainder(integer.Multiply(x,y),modulus).

10.1.3 Bit

Description:  Bit is the datatype representing the finite field of  two symbols designated "0", the additive identity, and "1 the
multiplicative identity.

Declaration:
type bit = modulo(2);

Parametric Values:  none.

Values:  0, 1

Properties:  ordered, exact, numeric, bounded.

Operations:  (Equal, InOrder, Add, Multiply) from Modulo.

10.1.4 Bit string

Description:  Bitstring is the datatype of variable-length strings of binary digits.

Declaration:
type bitstring = new sequence of (bit);

Parametric Values:  none.

Values: Each value of datatype bitstring is a finite sequence of values of datatype bit. The value-space comprises all suc

Value-syntax:
bitstring-literal  =  quote  {  bit-literal  }  quote  .
bit-literal  =  "0"  |  "1"  .

Thebitstring-literal denotes that value in which the first value in the sequence is that denoted by the leftmostbit-literal, the
second value in the sequence is that denoted by the next bit-literal, etc.  If there are nobit-literals in thebitstring-literal,
then the value denoted is the sequence of length zero.
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Properties:  unordered, exact, non-numeric.

Operations:  (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTES

1. Bitstring is assumed to be a Sequence, rather than an Array, in that the values may be of different lengths.

2. The description and properties of bitstring are identical to those of sequence of (bit). Bitstring is said to be "new" in order to fa
mappings. Entities may need to attach special properties to the bitstring datatype.

10.1.5 Character string

Description:  Characterstring is a family of datatypes which represent strings of symbols from standard character-sets.

Declaration:
type characterstring (repertoire: objectidentifier) = new sequence of (character (repertoire));

Parametric Values:repertoire is a "repertoire-identifier" (see 8.1.4).

Values:  Each value of a characterstring datatype is a finite sequence of members of the character-set identified byrepertoire.
The value-space comprises the collection of all such values.

Value syntax:
string-literal  =  quote  {  string-character  }  quote  .
string-character  =  non-quote-character  |  added-character  |  escape-character  .
non-quote-character  =  letter  |  digit  |  underscore  |  special  |  apostrophe  |  space  .
added-character  = not defined by this International Standard  .
escape-character  =  escape  character-name  escape  .
character-name  =  identifier  {  " "  identifier  }  .

Eachstring-characterin thestring-literal denotes a single member of the character-set identified byrepertoire, as provided
in 8.1.4. Thestring-literal denotes that value of the characterstring datatype in which the first value in the sequence i
denoted by the leftmoststring-character, the second value in the sequence is that denoted by the nextstring-character, etc.
If there are nostring-characters in thestring-literal, then the value denoted is the sequence of length zero.

Properties:  unordered, exact, non-numeric, denumerable.

Operations:  (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTES

1. There is no general international standard for collating sequences, although certain international character-set standards requi
collating sequences. Applications which need the order relationship on characterstring, and which share a character-set for which t
standard collating sequence, need to create a defined datatype or a repertoire-identifier which refers to the character-set and the ag
collating sequence.

2. Characterstring is defined to be a  Sequence, rather than an Array, to permit values to be of different lengths.

3. The description and properties of the characterstring(r) datatype are identical to those of sequence of (character(r)). Chara
datatypes are said to be "new" in order to facilitate mappings.  Entities may need to attach special properties to character string datatypes.

4. Many languages distinguish as separate datatypes objects represented by character strings with specific syntactic requiremen
ample, LISP has dynamic evaluation of "s-expressions"; Prolog has a similar construct; COBOL represents currency as a "numer
string"; and several languages have an "identifier" datatype whose values are treated as user-defined objects to which properties
tached. In a multi-language environment, such objects can probably be manipulated only as datatype characterstring, except in the la
which the special properties were intended to be interpreted. Thus, such datatypes should be declared as LI datatypes "derived from
string", e.g.:

type identifier = new characterstring(repertoire) size(1..maxidsize);
or:

type editcharacter = character({iso standard 646}) selecting (’0’..’9’, ’.’, ’,’, ’+’, ’-’, ’$’, ’#’, ’*’);
type numericedited = new sequence of (editcharacter);

In each case, the keyword "new" should be used to indicate the presence of unusual characterizing operations, formation rules and
tions (see 9.1.2).
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10.1.6 Time interval

Description:  Timeinterval is a family of datatypes representing elapsed time in seconds or fractions of a second (as opo
Date-and-time, which represents a point in time, see 8.1.6).  It is a generated datatype derived from a scaled data
limiting the operations.

Declaration:
type timeinterval(unit: timeunit, radix: integer, factor: integer) =  new scaled (radix, factor);
type timeunit = state(year, month, day, hour, minute, second);

Parametric Values:Radixis a positive integer value, andfactor is an integer value.

Values:  all values which are integral multiples of oneradix(-factor) unit of the specified timeunit.

Properties:  ordered, exact, numeric, unbounded.

Operations:  (Equal, Add, Negate) from Scaled;  ScalarMultiply.

Let scaled.Multiply() be the Multiply operation defined on scaled datatypes.  Then:

ScalarMultiply(x: scaled(r,f), y: timeinterval(u,r,f)): timeinterval(u,r,f) = scaled.Multiply(x,y).

EXAMPLE — timeinterval(second, 10, 3) is the datatype of elapsed time in milliseconds.

10.1.7 Octet

Description:  Octet is the datatype of 8-bit codes, as used for character-sets and private encodings.

Declaration:
type octet = new integer range (0..255);

Parametric Values:  none.

Values:  Each value of  datatype Octet is a code, represented by a non-negative integer value in the range [0, 255].

Properties:  ordered, bounded, exact, non-numeric, finite.

Operations:  (Equal, InOrder) from Integer.

NOTES

1. Octet is a common datatype in communications protocols.

2. It is common to define "characterizing operations" that convert anoctet value to abitstring value or anarray of bit value, but there is no
agreement on which bit of the octet is first in the bit string, or equivalently, how the array indices map to the bits.

10.1.8 Octet string

Description:  Octetstring is the datatype of variable-length encodings using 8-bit codes.

Declaration:
type octetstring = sequence of (octet);

Parametric Values:  none.

Values:  Each value of the octetstring datatype is a finite sequence of codes represented by octet values.  The value-s-
prises the collection of all such values, including the empty sequence.

Properties:  unordered, exact, non-numeric, denumerable.

Operations:  (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTE — Among other uses, an octetstring value is the representation of a characterstring value, and is used when the characterstri
manipulated as codes. In particular,octetstring should be preferred when the values may contain codes which are not associated with c
ters in the repertoire.

10.1.9 Private

Description:  A Private datatype represents an application-defined value-space and operation set which are intentional
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Declaration:
type private(length: NaturalNumber) = new array (1..length) of (bit);

Parametric Values:Lengthshall have a positive integer value.

Values:  application-defined.

Properties:  unordered, exact, non-numeric.

Operations:  none.

NOTES

1. There is no denotation for a value of a Private datatype.

2. The purpose of the Private datatype is to provide a means by which:
a) an object of a non-standard datatype, having a complex internal structure, can be passed between two parties which unde

type through a standard-conforming service without the service having to interpret the internal structure, or
b) values of a datatype which is meaningless to all parties but one, such as "handles", can be provided to an end-user for la use by

the knowledgeable service, for example, as part of a package interface.
In either case, the length and ordering of the bits must be properly maintained by all intermediaries. In the former case, the Private
may be encoded by the provider (or his marshalling agent) and decoded by the recipient (or his marshalling agent). In the latter case t
datatype will be encoded and decoded only by the knowledgeable agent, and all others, including end-users, will handle it as a bit-array.

10.1.10 Object identifier

Description:  Objectidentifier is the datatype of "object identifiers", i.e. values which uniquely identify objects in a (OpenSys-
tems Interconnection)  communications protocol, using the formal structure defined by Abstract Syntax Notation O
(ISO/IEC 8824:1990).

Declaration:
type objectidentifier = new sequence of (objectidentifiercomponent) size(1..*);
type objectidentifiercomponent = new integer range(0..*);

Parametric Values:  none.

Values: The value space of datatype objectidentifiercomponent is isomorphic to the cardinal numbers (10.1.1), but the m
of each value is determined by its position in an objectidentifier value.

The value-space of datatype objectidentifier comprises all non-empty finite sequences of objectidentifiercomponent
The meaning of each objectidentifiercomponent value within the objectidentifier value is determined by the sequence
ues preceding it, as provided by ISO/IEC 8824:1990. The sequence constituting a single value of datatype objectid
uniquely identifies an object.

Value syntax:
objectidentifier-value  =  ASN-object-identifier  |  collection-identifier  .
ASN-object-identifier  =  “{“  objectidentifiercomponent-list  “}”  .
objectidentifiercomponent-list  =  objectidentifiercomponent-value  {  objectidentifiercomponent-value  }  .
objectidentifiercomponent-value  =  nameform  |  numberform  |  nameandnumberform  .
nameform  =  identifier  .
numberform  =  number  .
nameandnumberform  =  identifier  “(“  numberform  “)”  .
collection-identifier  =  registry-name  registry-index  .
registry-name  =  "ISO_10646"  |  "ISO_2375"  |  "ISO_7350"  |  "ISO_10036"  .
registry-index  =  number  .

An objectidentifier-valuedenotes a value of datatype objectidentifier. Anobjectidentifiercomponent-valuedenotes a value
of datatype objectidentifiercomponent. Avalue-identifierappearing in thenumberformshall refer to a non-negative integer
value. In all cases, the value denoted by anASN-object-identifieris that prescribed by ISO/IEC 8824:1990 Abstract Synta
Notation One.

A collection-identifierdenotes a value of datatype objectidentifier which refers to a registered character-set.
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The keyword"ISO_10646" refers to the collections defined in Annex A of ISO/IEC 10646-1:1993 and the collection d
ignated is that collection whose "collection-number" is the value ofregistry-index. The form of the object identifier value is:

{ iso(1) standard(0) 10646 part1(1)registry-index}.
A collection-identifier beginning with the keyword"ISO_2375" designates the collection registered under the provisio
of ISO 2375:1985 whose registration-number is the value ofregistry-index.  The form of the object identifier value is:

{ iso(1) standard(0) 2375registry-index}.
A collection-identifier beginning with the keyword"ISO_7350" designates the collection registered under the provisio
of ISO 7350:1991 whose registration-number is the value ofregistry-index.  The form of the object identifier value is:

{ iso(1) standard(0) 7350registry-index}.
A collection-identifierbeginning with the keyword"ISO_10036" designates the collection registered under the provisio
of ISO 10036:1991 whose registration-number is the value ofregistry-index.  The form of the object identifier value is:

{ iso(1) standard(0) 10036registry-index}.

Properties:  unordered, exact, non-numeric.

Operations on objectidentifiercomponent:  Equal from Integer;

Operations on objectidentifier:  Append from Sequence;  Equal, Length, Detach, Last.

Length(x: objectidentifier): integeris the number of objectidentifiercomponent values in the sequence x;

Detach(x: objectidentifier): objectidentifier, where Length(x) > 1,is the objectidentifier formed by removing the last
objectidentifiercomponent value from the sequence x;

Last(x: objectidentifier): objectidentifiercomponentis the objectidentifiercomponent value which is the last element of t
sequence x;

Equal(x,y: objectidentifier): boolean =
if Not(Length(x) = Length(y)) then false,
else if Not(objectidentifiercomponent.Equal(Last(x), Last(y))) then false,
else if Length(x) = 1 then true,
else Equal(Detach(x), Detach(y));

NOTES

1. IsEmpty, Head and Tail from Sequence are not meaningful on datatype objectidentifier. Therefore, Length and Equal are defin
although they could be derived by using the Sequence operations.

2. ObjectIdentifier is treated as a primitive type by many applications, but the mechanism of definition of its value space, and the us
mechanism by some applications, such as Directory Services for OSI, requires the values to be lists of an accessible element
(objectidentifiercomponent).

10.2 Defined generators

This clause specifies the declarations for a collection of commonly occurring datatype generators which can be derived
datatypes and generators appearing in Clause 8.

The template for definition of such a datatype generator is:

Description: prose description of the datatype generator.

Declaration: a type-declaration for the datatype generator.

Components: number of, and constraints on, the parametric datatypes and parametric values used by the ge
procedure.

Values: formal definition of the resulting value space.

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype of 
datatype generators:  numeric or non-numeric, approximate or exact, ordered or unordered, and
ordered, bounded or unbounded.

When the generator generates an aggregate datatype, the aggregate properties described in claus
also specified.

Operations: characterizing operations for the resulting datatype which associate to the datatype generator. 
definitions of operations have the form described in 8.1.
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10.2.1 Stack

Description: Stack is a generator derived from Sequence by replacing the characterizing operation Append with the cha
ing operation Push. That is, the insertion operation (Push) puts the values on the beginning of the sequence rather
end of the sequence (Append).

Declaration:
type stack (element: type) = new sequence of (element);

Components:element may be any datatype.

Values:  all finite sequences of values from theelement datatype.

Properties:  non-numeric, unordered, exact if and only if theelementdatatype is exact.

Aggregate properties:  homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by position).

Operations:  (IsEmpty, Equal, Empty) from Sequence;  Top, Pop, Push.

Top(x: stack (element)): element= sequence.Head(x).

Pop(x: stack (element)): stack (element) = sequence.Tail(x).

Push(x: stack (element), y: element): stack (element) is the sequence formed by adding the single value y to the beginn
of the sequence x.

10.2.2 Tree

Description:  Tree is a generator which generates recursive list structures.

Declaration:
type tree (leaf: type) = new sequence of (choice( state(atom, list) ) of (

(atom): leaf,
(list): tree(leaf)));

Components:leafshall be any datatype.

Values: all finite recursive sequences in which every value is either a value of theleafdatatype, or a (sub-)treeitself. Ultimately,
every "terminal" value is of theleafdatatype.

Properties:  unordered, non-numeric, exact if and only if theleaf type is exact, denumerable.

Aggregate properties:  homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by position).

Operations:  (IsEmpty, Equal, Empty, Head, Tail) from Sequence;  Join.

To facilitate definition of the operations, the datatype tree_member is introduced, with the declaration:
type tree_member(leaf: type) = choice( state(atom, list) ) of ((atom): leaf, (list): tree(leaf));

tree_member(leaf) is then the element datatype of the sequence datatype underlying the tree datatype.

Join(x: tree(leaf), y: tree_member(leaf)): tree(leaf) is the sequence whose Head (first member) is the value y, and whose
is all members of the sequence x.

NOTE — Tree is an aggregate datatype which is formally an aggregate (sequence) of tree_members. Conceptually, tree is an
datatype whose values are aggregates ofleafvalues.  In either case, it is proper to consider Tree a homogeneous aggregate.

10.2.3 Cyclic enumerated

Description: Cyclic (enumerated) is a generator which redefines the successor operation on an enumerated datatype, s
successor of the last value is the first value.

Declaration:
type cyclic of (base: type) = new base;

Components:baseshall designate an enumerated datatype.

Values:  all valuesv of the base datatype.

Properties:  ordered, exact, non-numeric.
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Operations:  (Equal, InOrder) from the base datatype; Successor.

Let base.Successor denote the Successor operation defined on thebasedatatype; then:

Successor(x: cyclic of (base)): cyclic of (base)is
if for all y in the value space ofbase, Or(Not(InOrder(x,y)), Equal(x,y)), then that value z in the value space ofbase
such that for all y in the value space ofbase,Or(Not(InOrder(y,z)), Equal(y,z));elsebase.Successor(x).

10.2.4  Optional

Description:  Optional is a generator which effectively adds the "nil" value to the value space of a base datatype.

Declaration:
type optional(base: type) = new choice (boolean) of ((true): base, (false): void);

Components:baseshall designate any datatype.

Values:  all valuesv of the base datatype plus the "nil value" of void.  This type is isomorphic to the set of pairs:
{ (true, v) | v inbase } union { (false, nil) },
which is the modelled value space of the choice-type.

Properties:  all properties of the base datatype, except for the value "nil".

Operations:  IsPresent (= Discriminant from Choice); all operations on the base datatype, modified as indicated below.

IsPresent(x: optional(base)): boolean = Discriminant(x);

All unary operations of the form: Unary-op(x:base): result-type are defined on optional(base) by:

Unary-op(x: optional(base)): result-typeis if IsPresent(x) then Unary-op(Cast.base(x)), else undefined.

All binary operations of the form: Binary-op(x, y:base): result-type are defined on optional(base) by:

Binary-op(x, y: optional(base)): result-typeis:
if And(IsPresent(x), IsPresent(y)), then Binary-op(Cast.base(x), Cast.base(y)),
else undefined.

Other operations are defined similarly.

NOTE — An optional datatype is the proper type of an object, such as a parameter to a procedure or a field of a record, which in some
may have no value.

EXAMPLES

1. A record-type containing optional (sometimes not present or "undefined") values can be declared:
record (

required_name: characterstring,
optional_value: optional(integer));

2. A procedure parameter which may only sometimes be provided can be declared:
procedure search(in t: T, in tableT: sequence of (T), in index: optional(procedure(in i: integer, in j: integer): integer)):

boolean;
The parameterindex, which is an indexing function fortableT, need not always be provided.  That is, it may have value "nil".

11 Mappings

This clause defines the general form of and requirements for mappings between the datatypes of a programming or spe
language and the LI datatypes.

The internal datatypes of a language are considered to include the information type and structure notions which can be e
in that language, particularly those which describe the nature of objects manipulated by the language primitives. Like
datatypes, the datatype notions of a language can be divided into primitive datatypes and datatype generators. The
datatypes of a language are those object types which are considered in the language semantics to be primitive, that is,
generated from other internal datatypes. The datatype generators of a language are those language constructs which c
to produce new datatypes, objects with new datatypes, more elaborate information structures or static inter-object relas.
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This International Standard defines a neutral language for the formal identification of precise semantic datatype notions
datatypes. The notion of amappingbetween the internal datatypes of a language and the LI datatypes is the conceptual id
cation of semantically equivalent notions in the two languages. There are then two kinds of mappings between the
datatypes of a language and the LI datatypes:

• a mapping from the internal datatypes of the language into the LI datatypes, referred to as anoutward mapping, and

• a mapping from the LI datatypes to the internal datatypes of the language, referred to as aninward mapping.

This International Standard does not specify the precise form of a mapping, because many details of the form of a map
language-dependent. This clause specifies requirements for the information content of inward and outward mappings
ditions for the acceptability of such mappings.

NOTES

1. Mapping, in this sense, does not apply to program modules or service specifications directly, because they manipulate specif
types, which have specific datatypes expressed in a specific language or languages. The datatypes of a program module or service sp
can therefore be described in the LI datatypes language directly, or inferred from the inward and outward mappings of the language
the module or specification is written.

2. The companion notion ofconversion of valuesfrom an internal representation to a neutral representation associated with LI datatyp
not a part of this International Standard, but may be a part of standards which refer to this International Standard.

11.1 Outward Mappings

An outward mapping for a primitive internal datatype shall identify the syntactic and semantic constructs and relationship
language which together uniquely represent that internal datatype and associate the internal datatype with a correspo
datatype expressed in the formal language defined by Clauses 7 through 10.

An outward mapping for an internal datatype generator shall identify the syntactic and semantic constructs and relation
the language which together uniquely represent that internal datatype generator and associate the internal datatype gene
a corresponding LI datatype generator expressed in the formal language defined in this International Standard.

The collection of outward mappings for the datatypes and datatype generators of a language shall be said to constitute theoutward
mapping of the language and shall have the following properties:

i) to each primitive or generated internal datatype, the mapping shall associate a single corresponding LI dataty

ii ) for each internal datatype, the mapping shall specify the relationship between each allowed value of the i
datatype and the equivalent value of the corresponding LI datatype; and

iii ) for each value of each LI datatype appearing in the mapping, the mapping shall specify whether any value of
ternal datatype is mapped onto it, and if so, which values of the internal datatypes are mapped onto it.

NOTES

1. There is no requirement for a primitive internal datatype to be mapped to a primitive LI datatype. This International Standard pro
variety of conceptual mechanisms for creating generated LI datatypes from primitive or previously-created datatypes, which are, inte
tended to facilitate mappings.

2. An internal datatype constructed by application of an internal datatype generator to a collection of internal parametric datatype
implicitly mapped to the LI datatype generated by application of the mapped datatype generator to the mapped parametric datatype
way, property(i) above may be satisfied for internal generated datatypes.

3. The conceptual mapping to LI datatypes may not be either 1-to-1 or onto. A mapping must document the anomalies in the iden
of internal datatypes with LI datatypes, specifically those values which are distinct in the language, but not distinct in the LI datatype, a
values of the LI datatype which are not accessible in the language.

4. Among other uses, an outward mapping may be used to identify an internal datatype with a particular LI datatype in order to req
eration or representation definitions specified for LI datatypes by another standard to be properly applied to the internal datatype.

5. An outward mapping may be used to ensure that interfaces between two program units using a common programming language
erly provided by a third-party service which is ignorant of the language involved.
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11.2 Inward Mappings

An inward mapping for a primitive LI datatype, or a single generated LI datatype, shall associate the LI datatype with a
internal datatype, defined by the syntactic and semantic constructs and relationships in the language which together uniq
resent that internal datatype. Such a mapping shall specify limitations on the parametric values of any LI datatype family
exclude members of that family from the mapping. Different members of a single LI datatype family may be mapped on
similar internal datatypes.

An inward mapping for a LI datatype generator shall associate the LI datatype generator with an internal datatype gener
fined by the syntactic and semantic constructs and relationships in the language which together uniquely represent tha
datatype generator. Such a mapping shall specify limitations on the parametric datatypes of any LI datatype generat
exclude corresponding classes of generated datatypes from the mapping. The same LI datatype generator with different
ric datatypes may be mapped onto dissimilar internal datatype generators.

An inward mapping for a LI datatype shall associate the LI datatype with an internal datatype on which it is possible to imp
all of the characterizing operations specified for that LI datatype.

The collection of inward mappings for the LI datatypes and datatype generators onto the internal datatypes and datatyp
ators of a language shall be said to constitute theinward mapping of the language and shall have the following properties:

i) for each LI datatype (primitive or generated), the mapping shall specify whether the LI datatype is supported
language (as specified in 11.4), and if so, identify a single corresponding internal datatype; and

ii ) for each LI datatype which is supported, the mapping shall specify the relationship between each allowed valu
LI datatype and the equivalent value of the corresponding internal datatype; and

iii ) for each value of an internal datatype, the mapping shall specify whether that value is the image (under the m
of any value of any LI datatype, and if so, which values of which LI datatypes are mapped onto it.

NOTES

1. A LI generated datatype which is not specifically mapped by a primitive datatype mapping, and whose parametric datatypes ar
sible under the constraints on the datatype generator mapping, will be implicitly mapped onto an internal datatype constructed by ap
of the mapped internal datatype generator to the mapped internal parametric datatypes.

2. When a LI datatype, primitive or generated, is mapped onto a language datatype, whether explicitly or implicitly by mapping the
ators, the associated internal datatype should support the semantics of the LI datatype. The proof of this support is the ability to pe
characterizing operations on the internal datatype. It is not necessary for the language to support the characterizing operations direc
erator or built-in function or anything the like), but it is necessary for the characterizing operations to be conceptually supported by the
datatype. Either it should be possible to write procedures in the language which perform the characterizing operations on objects of th
ated internal datatype, or the language standard should require this support in the further mappings of its internal datatypes, whethe
resentations or into programming languages.

3. The conceptual mapping onto internal datatypes may not be either 1-to-1 or onto. A mapping must document the anomalies in
ciation of internal datatypes with LI datatypes, specifically those values which are distinct in the LI datatype, but not distinct in the lan
and those values of the internal datatype which are not accessible through interfaces using LI datatypes.

4. An inward mapping to a programming language may be used to ensure that an interface between two program units specified in
LI datatypes can be properly used by programs written in that language, with language-specific, butnot application-specific, software tools
providing conversions of information units.

11.3 Reverse Inward Mapping

An inward mapping from a LI datatype into the internal datatypes of a language defines a particular set of values of i
datatypes to be theimageof the LI datatype in the language. Thereverse inward mappingfor a LI datatype maps those value
of the internal datatypes which constitute its image to the corresponding values of that LI datatype using the correspo
which is established by the inward mapping. For the reverse inward mapping to be unambiguous, the inward mapping
LI datatype must be 1-to-1.  This is formalized as follows:

i) if a is a value of the LI datatype and the inward mapping mapsa to a valuea’ of some internal datatype, then the inwar
mapping shall not map any valueb of the same LI datatype intoa’, unlessb = a; and
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ii) if a is a value of a LI datatype and the inward mapping mapsa to a valuea’ of some internal datatype, then the revers
inward mapping mapsa’ to a; and

iii) if c is a value of a LI datatype which is excepted from the domain of the inward mapping, i.e. maps to no value
corresponding internal datatype, then there is no valuec’ of any internal datatype such that the reverse inward mapp
mapsc’ to c.

The reverse inward mapping for a language is the collection of the reverse inward mappings for the LI Datatypes.

NOTES

1. When an interface between two program units is specified in terms of LI datatypes, it is possible for the interface to be utilized by p
units written in different languages and supported by a service which is ignorant of the languages involved. The inward mapping for e
guage is used by the programmer for that program unit to select appropriate internal datatypes and values to represent the informatio
used in the interface. Information is then sent by one program unit, using the reverse inward mapping for its language to map the intern
to the intended values of the LI datatypes, and received by the other program unit, using the inward mapping to map the LI datatyp
passed into suitable internal values. The actual transmission of the information may involve three software tools: one to perform the co
between the sender form and the interchange form, automating the reverse inward mapping, one to transmit the interchange form ba
datatypes, and one to perform the conversion between the interchange form and the receiving internal form, automating the inward
None of these intermediate tools depends on the particular interface being used. Thus, it is possible to implement an arbitrary interf
LI datatypes, in any programming language which supports those datatypes without interface-specific tools.

2. The reverse inward mapping for a language does not have useful formal properties. The same internal value can be mapped
different values, as long as the different values belong to different LI datatypes. It is the per-datatype reverse inward mapping which i

11.4 Support of Datatypes

An information processing entity is said tosupporta LI datatype if its mapping of that datatype into some internal datatype (
11.2) preserves the properties of that datatype (see 6.3) as defined in this subclause.

NOTE — For aggregate datatypes, preservation of the "aggregate properties" defined in 6.8 isnot required.

11.4.1 Support of equality

For a mapping to preserve the equality property, any two instances a, b of values of the internal datatype shall be conside
if and only if the corresponding values a’, b’ of the LI datatype are equal.

11.4.2 Support of order

For a mapping to preserve the order property, the order relationship defined on the internal datatype shall be consistent
order relationship defined on the LI datatype. That is, for any two instances a, b of values of the internal datatype, a≤ b shall be
true if and only if, for the corresponding values a’, b’ of the LI datatype, a’≤ b’.

11.4.3 Support of bounds

For a mapping to preserve the bounds, the internal datatype shall be bounded above if and only if the LI datatype is b
above, and the internal datatype shall be bounded below if and only if the LI datatype is bounded below.

NOTE — It follows that the values of the bounds must correspond.

11.4.4 Support of cardinality

For a mapping to preserve the cardinality of a finite datatype, the internal datatype shall have exactly the same number o
as the LI datatype. For a mapping to preserve the cardinality of an exact, denumerably infinite datatype, there shall be
one internal value for every value of the LI datatype and there shall be noa priori limitation on the values which can be repre
sented. For a mapping to preserve the cardinality of an approximate datatype, it suffices that it preserve the approximate
as provided in 6.3.5.

NOTES

1. There may be accidental limitations on the values of exact, denumerably infinite datatypes which can be represented, such a
amount of storage available to a particular user, or the physical size of the machine. Such a limitation is not an intentional limitation
datatype as implemented by a particular information processing entity, and is thus not considered to affect support.
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2. An entity whicha priori limits integer values to those which can be represented in 32 bits or characterstrings to a length of 256 cha
however, isnot considered to support the mathematically infinite Integer and CharacterString datatypes. Rather such an entity supp
scribable subtypes of those datatypes (see 8.2).

11.4.5 Support for the exact or approximate property

To preserve the exact property, the mapping between values of the LI datatype and values of the internal datatype shall b

For an inward mapping to preserve the approximate property, every value which is distinguishable in the LI datatype m
distinguishable in the internal datatype.

NOTE — The internal datatype may  havemore valuesthan the LI datatype, i.e. a finer degree of approximation.

For an outward mapping to preserve the approximate property, every value which is distinguishable in the internal dataty
be distinguishable in the LI datatype.

11.4.6 Support for the numeric property

There are no requirements for support of the numeric property. Support for the numeric property is a requirement on re
tations of the values of the datatype, which is outside the scope of this International Standard.
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Annex A
(informative)

Character-Set Standards

The following is a partial list of International Standards which define character-sets. Character sets defined by such st
are suitable for reference by a “repertoire-identifier” in the Character and CharacterString datatypes.

These standards define character-sets, in the sense of repertoires of characters. Most of them also define “character
integer values used to represent the character values for certain computational purposes. Whether “character(repertoire)” is in-
terpreted as requiring the characters to be represented by the codes defined by therepertoireis outside of the scope of this Inter-
national Standard.

None of these standards defines a collating sequence or order relationship on the character-sets. The definition of such
relationship requires additional standards or application agreements. Order relationships commonly supported by prog
languages are based on the integer ordering of the code values used in a particular implementation of the language. Su
ings have no semantics with respect to the character-set itself and are outside the scope of this International Standard

ISO/IEC 646:1991 Information technology — ISO 7-bit coded character set for information interchange

ISO 2047:1975 Information processing — Graphical representations for the control characters of the 7-bit co
character set

ISO 9036:1987 Information processing — Arabic 7-bit coded character set for information interchange

ISO/IEC 2022:1994 Information technology — Character code structure and extension techniques

ISO/IEC 6937:1994 Information technology — Coded graphic character set for text communication — Latin alphabe

ISO/IEC 4873:1991 Information technology — ISO 8-bit code for information interchange —
Structure and rules for implementation

ISO 8859-1:1987 Information processing — 8-bit single byte coded graphic character sets —
Part 1: Latin alphabet No. 1

ISO 8859-2:1987 Information processing — 8-bit single byte coded graphic character sets —
Part 2: Latin alphabet No. 2

ISO 8859-3:1988 Information processing — 8-bit single byte coded graphic character sets —
Part 3: Latin alphabet No. 3

ISO 8859-4:1988 Information processing — 8-bit single byte coded graphic character sets —
Part 4: Latin alphabet No. 4

ISO/IEC 8859-5:1988 Information processing — 8-bit single byte coded graphic character sets —
Part 5: Latin/Cyrillic alphabet

ISO 8859-6:1987 Information processing — 8-bit single byte coded graphic character sets —
Part 6: Latin/Arabic alphabet

ISO 8859-7:1987 Information processing — 8-bit single byte coded graphic character sets —
Part 7: Latin/Greek alphabet

ISO 8859-8:1988 Information processing — 8-bit single byte coded graphic character sets —
Part 8: Latin/Hebrew alphabet

ISO/IEC 8859-9:1989 Information processing — 8-bit single byte coded graphic character sets —
Part 9: Latin alphabet No. 5
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ISO/IEC 8859-10:1992Information technology — 8-bit single byte coded graphic character sets —
Part 10: Latin alphabet No. 6

ISO/IEC 10367:1991 Information technology — Standardized coded graphic character sets for use in 8-bit codes

ISO/IEC 10646-1:1993Information technology — Universal Multiple-Octet Coded Character Set  (UCS) —
Part 1: Architecture and Basic Multilingual Plane

ISO/IEC 6429:1992 Information technology — Control functions for coded character sets

ISO 6630: 1986 Documentation — Bibliographic control characters

ISO/IEC 10538:1991 Information technology — Control functions for text communication

ISO 5426:1983 Extension of the Latin alphabet coded character set for bibliographic information interchange

ISO 5427:1984 Extension of the Cyrillic alphabet coded character set for bibliographic information interchange

ISO 5428:1984 Greek alphabet coded character set for bibliographic information interchange

ISO 6438:1983 Documentation — African coded character set for bibliographic information interchange

ISO 6861: —1 Information and documentation — Cyrillic alphabet coded character sets for historic Slavo
languages and European non-Slavonic languages written in a Cyrillic script, for bibliograp
information interchange

ISO 6862: —1 Information and documentation — Mathematical coded character set for bibliographic informa
interchange

ISO 8957: —1 Information and documentation — Hebrew alphabet coded character sets for bibliographic informa
interchange

ISO 10585: —1 Information and documentation — Armenian alphabet coded character set for bibliogra
information interchange

ISO 10586: —1 Information and documentation — Georgian alphabet coded character set for bibliograp
information interchange

ISO 10754: —1 Information and documentation — Extension of the Cyrillic alphabet coded character set for non-S
languages for bibliographic information interchange

ISO/IEC 9541-1:1991 Information technology — Font information interchange — Part 1: Architecture

ISO/IEC 9541-2:1991 Information technology — Font information interchange — Part 2: Interchange Format

ISO/IEC 9541-3:1994 Information technology — Font information interchange — Part 3: Glyph Shape Representation

ISO/IEC 9541-4: —1 Information technology — Font information interchange — Part 4: Application-specific requireme

ISO 6093:1985 Information processing — Representation of numeric values in character strings for informa
interchange
(defines character sets and syntax for numeric strings)

ISO/IEC 8824:1990 Information technology — Open Systems Interconnection — Abstract Syntax Notation One (ASN
(defines interchange character sets both directly and by reference to sets registered under ISO

1. To be published
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of these

and
The following are International Standards for character-set registration. Character sets registered under the provisions
standards are suitable for reference by a "repertoire-identifier" in the Character and CharacterString datatypes.

ISO 2375:1985 Data Processing — Procedure for the registration of escape sequences

ISO/IEC 7350:1991 Information technology — Registration of repertoires of graphic characters from ISO 10367

ISO/IEC 10036:1993 Information technology — Font information interchange — Procedure for registration of glyph
glyph collection identifiers
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(informative)

Recommended Placement of Annotations

An annotation (see 7.4) is a descriptive information unit attached to atype-specifier, or a component datatype, or a procedu
(value), to characterize some aspect of the representations, variables, or operations associated with values of the datat
component or procedure, in some particular context. This International Standard does not specify the syntax or semanti
specificannotations. Common conventions for the placement ofannotations, however, makes it easier for the reader to dete
mine the object to which anannotationis intended to apply and the context in which it is intended to apply. This annex cont
guidelines for placement ofannotationsin the syntax and corresponding distinctions in the scope of application of theannota-
tions, as required by clause 7.4.

Use of the recommended placement conventions improves the compatibility of usages and implementations of the LI da
to the extent that they involve such annotations. Use of additional or substitute conventions by other standards and imp
tions is consistent with this International Standard.

B.1 Type-attributes

A type-attribute is anannotationattached to atype-specifier, and in particular to thetype-specifierof a type-definition, which
characterizes some aspect of the values or variables of the datatype specified, or the operations on those values or va
some particular context.  Type-attributes may include, among others:

• limitations on, or identification of parameters describing, the value-space of the datatype as implemented, or as u
particular context,

• constraints on, or specifications for, representation of the values of the datatype,

• constraints on, or specifications for, the operations which may be performed on values of the datatype,

• identification of procedures or parameters to be used for conversion of values of the datatype for a particular inter
or external medium.

Type-attributes should immediately follow thetype-specifierfor the datatype to which they are intended to apply. In particul
anannotationwhich applies to theelement-typeof anaggregate-typeshould appearinside the parentheses, while anannotation
which applies to theaggregate-type  should appearoutsidethe parentheses.

B.2 Component-attributes

A component-attribute is anannotationattached to a component of agenerated-typewhich characterizes some aspect of th
operations on, or representations of, values in that component of the particular generated datatype (i.e. values used in
as distinct from general limitations on values of the datatype of the component) in some particular context. Component-a
may include, among others:

• any of the attribute notions given in B.1, but restricted to the component,

• specification of the ordering, representation or alignment of the component in an aggregate structure,

• limitations on access to the component.

Component-attributes should immediately precede the componenttype-specifierfor the component to which they are intende
to apply. That is, in arecord-type, they should precede thefield-type; in achoice-type, they should precede thealternative-type;
and in a homogeneousaggregate-type, they should precede theelement-type.

B.3 Procedure-attributes

A procedure-attribute is anannotationattached to aprocedure-declarationwhich characterizes some aspect of the invocati
or use of the named procedure, in some particular context.  Procedure-attributes may include, among others:

• specification of the location of its instantiations,
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procedure
• specification of the procedure interface.

Procedure-attributes should precede the keyword “procedure” or follow the entiretype-specifier. In addition, procedure-at-
tributes should be distinguishable from type- or component- attributes by their text.

B.4 Argument-attributes

An argument-attribute is anannotationattached to anargumentto aprocedure-declarationor procedure-typewhich charac-
terizes some aspect of the operations on, or representations of, values passed through that argument of the particular
or procedure datatype (as distinct from general limitations on the datatype which is theargument-type) in some particular context.
Argument-attributes may include, among others:

• any of the attribute notions given in B.1, but restricted to the use of the datatype in this argument,

• specification of the means of passing the argument.

Argument-attributes should immediately precede theargumentor return-argumentwhich they are intended to describe (in apro-
cedure-type, aprocedure-declaration, or atermination-declaration).
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(informative)

Implementation Notions of Datatypes

This annex defines a collection of datatype notions excluded from this International Standard, because they were deem
notions of implementation or representation of datatypes, rather than conceptual notions.

The values of the datatypes defined by this International Standard are abstract objects conforming to a set of given rule
computer system has its owninternal datatypes, whose value spaces are (typically fixed-length) sequences ofn distinguished
symbols (most commonly, the two symbols "0" and "1"), and whose characterizing operations are theinstructions built into the
computer system. Arepresentationof a LI datatype is a mapping from the value space of the LI datatype to a computer sy
value space.

In addition tovaluesof datatypes, a computer system has the notion ofvariable – an object to which a value of some datatyp
or datatypes is dynamically associated. (In a certain sense, a variable is an implementation of a value of a pointer
(8.3.2).) The characterizing operations defined by this International Standard are abstract computational notions of func
plicable to the values of datatypes, used to identify the semantics of the datatypes. In a computer system, the operation
resentations of those values and variables containing those representations are actuallyexecuted.

The characteristics of representations, variables, and the execution of operations are beyond the scope of this Internatio
dard. Nonetheless, because these characteristics are inextricably mixed with the datatype notions in many programming
es, and because these characteristics are important to many applications of this International Standard, this Internationa
provides for their inclusion intype-specifiersand in datatype- and procedure-declarations viaannotations(see 7.4). Anannota-
tion is a descriptive information unit attached to a datatype, or a component of a datatype, or a procedure (value), to cha
some aspect of the representations, variables, or operations associated with values of the datatype, or the component or
in some particular context.

This annex identifies notions for which suchannotationsmay be appropriate and even necessary for certain language mapp
This International Standard does not specify the syntax or semantics of any specificannotationsto describe implementation no-
tions. The development of standards for suchannotationsmay be appropriate, but is outside the scope of this International S
dard.

C.1 StorageSize

StorageSize is a type-attribute specifying the number (and type) of storage units required or allotted to represent valu
datatype. It may also specify whether the number of storage units is constant over all values of (this instance of) the data
varies according to the requirements of the particular value to be represented.

StorageSize may apply to any datatype, except procedure datatypes.

NOTE — If there is a limitation on the maximum size of representable values, it implies that there is a limitation on the value space
datatype, which may be better documented by appropriate subtype specifications (see 8.2).

C.2 Mode

Mode is a type-attribute which specifies the radix of representation of a numeric datatype, the representation of the di
representation of the decimal-point, if any, and the sign representation and placement conventions. Such notions as “tw
plement binary”, “packed decimal with trailing sign” and the numeric representation formats of ISO 6093:1985,Information pro-
cessing — Representation of numeric values in character strings for information interchange, are examples of “modes”.

Mode applies only to numeric datatypes, principally Integer and Scaled.
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C.3 Floating-Point

Floating-point is a type-attribute which specifies that a numeric datatype has a floating-point representation and the cha
tics of that representation.

Following ISO/IEC 10967-1:1994,Information technology — Programming languages, their envrionements and system
ware interfaces — Language-independent arithmetic — Part 1: Integer and real arithmetic, a floating-point representation of the
value v has the form:

v = S  •  M  •  RE

where
R is theradix of the representation;
E is theexponent;, and
S is thesign,i.e. either S = 1 or S = -1;
M is themantissa, either zero or a value of the datatype scaled(radix, precision) range(radix ^ - precision, 1) excluding(1).

This representation can be characterized by five parameters:
radix andprecision, from above;
eminandemax, with the requirement:emin≤ E ≤ emax; and
denorm,with the requirement thatdenorm= “false” impliesd =  R-1 anddenorm= “true” impliesd =  R-precision.

Floating-point applies only to numeric datatypes, principally Real and Complex.

C.4 Fixed-Point

Fixed-point is a type-attribute which specifies that a numeric datatype has a fixed-point representation and the characte
that representation.

A fixed-point representation has the form:
v = S  x  M  x  R-P

where
R is theradix of the representation;
S is thesign,i.e. either S = 1 or S = -1;
M is themantissa, a value of the datatype Integer;
P is theprecision.

This representation can be characterized by theradix andprecisionparameters.

Fixed-point applies only to numeric datatypes, principally Scaled.

C.5 Tag

Tag is a type-attribute which specifies whether and how the tag-value of a value of a value of a choice datatype is repr.

Tag applies only to choice datatypes or their generators.

C.6 Discriminant

Discriminant specifies the source of the discriminant value of a Choice datatype.

Discriminant applies only to choice datatypes or their generators.

C.7 StorageSequence

StorageSequence attributes describe the order of presentation of the component values of a value of an aggregate data
as Set or Record, whose ordering is not implied by the type properties. Their values and meaning depend on the a
datatype involved.

StorageSequence attributes apply only to aggregate datatypes or to their generators.
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C.8 Packed

Packed and “unpacked” or “aligned” are type-attributes which characterize the juxtaposition of all components of a valu
aggregate datatype.  They distinguish between the optimization of space and the optimization of access-time.

Packed attributes apply only to aggregate datatypes or to their generators.

C.9 Alignment

Alignment is a component-attribute that characterizes the forced alignment of the representations of values of a given co
datatype on storage-unit boundaries. It implies that "padding" to achieve the necessary alignment may be inserted in th
sentation of the aggregate datatype which contains the annotated component.

C.10 Form

Form is a type-attribute which specifies that one datatype has the same representation as another. In particular,formpermits an
implementation to specify that a primitive LI datatype has a visible information structure, or that a particular generated d
has a primitive implementation.

Form may apply to any datatype.
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Syntax for the Common Interface Definition Notation

The syntax used in this International Standard is a subset of the syntax prescribed for the Interface Definition Notation (
ISO/IEC 13886:1995,Information technology — Programming languages — Language-independent procedure calling. This
annex contains the the complete IDN syntax, for reference only. A conforming IDN text is aninterface-type, whereas a conform-
ing LI datatype specification is atype-specifier.  In addition, a mapping, as provided in Clause 11, may containdeclarations.

Character-set productions: Normative text page

digit  =  "0"  |  "1"  |  "2"  |  "3"  |  "4"  |  "5"  |  "6"  |  "7"  |  "8"  |  "9"  . 13
letter  =  "a"  |  "b"  |  "c"  |  "d"  |  "e"  |  "f"  |  "g"  |  "h"  |  "i"  |  "j"  |  "k"  |  "l"  |  "m" |

"n"  |  "o"  |  "p"  |  "q"  |  "r"  |  "s"  |  "t"  |  "u"  |  "v"  |  "w"  |  "x"  |  "y"  |  "z"  . 13
special  =  "("  |  ")"  |  "."  |  ","  |  ":"  |  ";"  |  "="  |  "/"  |  "*"  |  "-"  |  "{"  |  "}"  |  "["  |  "]"  . 13
apostrophe  =  "’"  . 13
escape  =  "!"  . 13
quote  =  ’"’  . 13
space  =   " "  . 13
underscore  =  "_"  . 13
added-character  = not defined by this International Standard  . 13, 20, 49
bound-character  =  non-quote-character  |  quote  . 13, 20
non-quote-character  =  letter  |  digit  |  underscore  |  special  |  apostrophe  |  space  . 13, 20, 49

NOTE — Character-set productions are always subject to minor changes from implementation to implementation, in order to handl
garies of available character-sets.

Productions of the IDN used in this International Standard: Normative text pag

actual-type-parameter  =  value-expression  |  type-specifier  . 44
actual-type-parameter-list  =  actual-type-parameter  {  ","  actual-type-parameter  }  . 44
aggregate-type  =  record-type  |  set-type  |  sequence-type  |  bag-type  |  array-type  |  table-type  . 36
alternative  =  tag-value-list  [  field-identifier  ]  ":"  alternative-type  . 31
alternative-list  =  alternative  {  ","  alternative  }  [  default-alternative  ]  . 31
alternative-type  =  type-specifier . 31
alternative-value  =  independent-value  . 32
annotation  =  "["  annotation-label  ":"  annotation-text  "]"  . 14
annotation-label  =  objectidentifiercomponent-list  . 15
annotation-text  = not defined by this International Standard  . 15
any-character  =  bound-character  |  added-character  |  escape-character  . 14, 20
array-type  =  "array"  "("  index-type-list  ")"  "of"  "("  element-type  ")"  . 41
array-value  =  value-list  . 42
ASN-object-identifier  =  “{“  objectidentifiercomponent-list  “}”  . 51
bag-type  = "bag"  "of"  "("  element-type  ")"  . 39
bag-value  =  empty-value  |  value-list  . 40
base  =  type-specifier  . 28, 29, 30
bit-literal  =  "0"  |  "1"  . 48
bitstring-literal  =  quote  {  bit-literal  }  quote  . 48
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boolean-literal  =  "true"  |  "false"  . 18
boolean-type  =  "boolean"  . 18
character-literal  =  "’"  any-character  "’"  . 14, 20
character-name  =  identifier  {  " "  identifier  }  . 14, 20, 49
character-type  =  "character"  [  "("  repertoire-list  ")"  ]  . 20
choice-type  =  "choice"  "("  [  field-identifier  ":"  ]  tag-type  [  "="  discriminant  ]  ")"

"of"  "("  alternative-list  ")"  . 31
choice-value  =  "("  tag-value  ":"  alternative-value  ")"  . 32
collection-identifier  =  registry-name  registry-index  . 51
complex-literal  =  "("  real-part  ","  imaginary-part  ")"  . 26
complex-type  =  "complex"  [  "("  radix  ","  factor  ")"  ]  . 26
component-reference  =  field-identifier  |  "*"  . 16
declaration  =  type-declaration  |  value-declaration  |  procedure-declaration

|  termination-declaration  . 45
default-alternative  =  "default"  ":"  alternative-type  . 31
dependent-value  =  primary-dependency  {  "."  component-reference  }  . 16
digit-string  =  digit  {  digit  }  . 14
direction  =  "in"  |  "out"  |  "inout"  . 34
discriminant  =  value-expression  . 31
element-type  =  type-specifier  . 33, 38, 39, 40, 41
empty-value  =  "("  ")"  . 39, 40
enumerated-literal  =  identifier  . 19
enumerated-type  =  "enumerated"  "("  enumerated-value-list  ")"  . 19
enumerated-value-list  =  enumerated-literal  {  ","  enumerated-literal  }  . 19
escape-character  =  escape  character-name  escape  . 14, 20, 49
excluding-subtype  =  base  "excluding"  "("  select-list  ")"  . 29
explicit-subtype  =  base  "subtype"  "("  subtype-definition  ")"  . 29
explicit-value  =  boolean-literal  |  state-literal  |  enumerated-literal  |  character-literal

|  ordinal-literal  |  time-literal  |  integer-literal  |  rational-literal
|  scaled-literal  |  real-literal  |  complex-literal  |  void-literal
|  extended-literal  |  pointer-literal  |  procedure-reference  |  string-literal
|  bitstring-literal  |  objectidentifier-value  |  choice-value  |  record-value
|  set-value  |  sequence-value  |  bag-value  |  array-value  |  table-value  . 15

extended-literal  =  identifier  . 30
extended-type  =  base  "plus"  "("  extended-value-list  ")"  . 30
extended-value  =  extended-literal  |  formal-parametric-value  . 30
extended-value-list  =  extended-value  {  ","  extended-value  }  . 30
factor  =  value-expression  . 21, 23, 25, 26
field  =  field-identifier  ":"  field-type  . 37, 43
field-identifier  =  identifier  . 31, 37, 43
field-list  =  field  {  ","  field  }  . 37, 43
field-type  =  type-specifier  . 37, 43
field-value  =  field-identifier  ":"  independent-value  . 37, 43
field-value-list   =  "("  field-value  {  ","  field-value  }  ")"  . 37, 43
formal-parameter-name  =  identifier  . 45
formal-parameter-type  =  type-specifier  |  "type"  . 45
formal-parametric-type  =  formal-parameter-name  . 45
formal-parametric-value  =  formal-parameter-name  . 45
formal-type-parameter  =  formal-parameter-name  ":"  formal-parameter-type  . 45
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formal-type-parameter-list  =  formal-type-parameter  {  ","  formal-type-parameter  }  . 45
generated-type  =  pointer-type  |  procedure-type  |  choice-type  |  aggregate-type  . 30
identifier  =  letter  {  pseudo-letter  }  . 13
imaginary-part  =  real-literal  . 26
independent-value  =  explicit-value  |  value-reference  . 15
index-lowerbound  =  value-expression  . 41
index-type  =  type-specifier  |  index-lowerbound  ".."  index-upperbound  . 41
index-type-list  =  index-type  {  ","  index-type  }  . 41
index-upperbound  =  value-expression  . 41
integer-literal  =  signed-number  . 22
integer-type  =  "integer"  . 22
lowerbound  =  value-expression  |  "*"  . 28, 29, 31
maximum-size  =  value-expression  |  "*"  . 29
minimum-size  =  value-expression  . 29
nameandnumberform  =  identifier  “(“  numberform  “)”  . 51
nameform  =  identifier  . 51
number  =  digit-string  . 21, 22
numberform  =  number  . 51
objectidentifiercomponent-list  =

objectidentifiercomponent-value  {  objectidentifiercomponent-value  }  . 51
objectidentifiercomponent-value  =  nameform  |  numberform  |  nameandnumberform  . 51
objectidentifier-value  =  ASN-object-identifier  |  collection-identifier  . 51
ordinal-literal  =  number  . 21
ordinal-type  =  "ordinal"  . 21
parameter  =  [  parameter-name  ":"  ]  parameter-type  . 34, 47
parameter-declaration  =  direction  parameter  . 34
parameter-list  =  parameter-declaration  {  ","  parameter-declaration  }  . 34
parameter-name  =  identifier  . 34, 47
parameter-type  =  type-specifier  . 34, 47
pointer-literal  = "null"  . 33
pointer-type  =  "pointer"  "to"  "("  element-type  ")"  . 33
primary-dependency  =  field-identifier  |  parameter-name  . 16
primitive-type = boolean-type  |  state-type  |  enumerated-type  |  character-type

|  ordinal-type  |  time-type  |  integer-type  |  rational-type
|  scaled-type |  real-type  |  complex-type  |  void-type  . 17

procedure-declaration  =  "procedure"  procedure-identifier  "("  [  parameter-list  ]  ")"
[  "returns"  "("  return-parameter  ")"  ]  [  "raises"  "("  termination-list  ")"  ]  . 35

procedure-identifier  =  identifier  . 35
procedure-reference  =  procedure-identifier  . 15
procedure-type =  "procedure"  "("  [  parameter-list  ]  ")"  [  "returns"  "("  return-parameter  ")"  ]

[  "raises"  "("  termination-list  ")"  ]  . 34
pseudo-letter  =  letter  |  digit  |  underscore  . 13
radix  =  value-expression  . 21, 23, 25, 26
range-subtype  =  base  "range"  "("  select-range  ")"  . 28
rational-literal  =  signed-number  [  "/"  number  ]  . 23
rational-type  =  "rational"  . 23
real-literal  =  integer-literal  [  "*"  scale-factor  ]  . 25
real-part  =  real-literal  . 26
real-type  = "real"  [  "("  radix  ","  factor  ")"  ]  . 24
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record-type  =  "record"  "("  field-list  ")"  . 37
record-value  =  field-value-list   |  value-list  . 37
registry-index  =  number  . 51
registry-name  =  "ISO_10646"  |  "ISO_2375"  |  "ISO_7350"  |  "ISO_10036"  . 51
repertoire-identifier  =  value-expression  . 20
repertoire-list  =  repertoire-identifier  {  ","  repertoire-identifier  }  . 20
return-parameter  =  [  parameter-name  ":"  ]  parameter-type  . 34
scaled-literal  =  integer-literal  [  "*"  scale-factor  ]  . 23
scaled-type  = "scaled" "(" radix "," factor ")" . 23
scale-factor  =  number  "^"  signed-number  . 23, 25
select-item  =  value-expression  |  select-range  . 28, 29, 31
select-list  =  select-item  {  ","  select-item  }  . 28, 29, 31
select-range  =  lowerbound  ".."  upperbound  . 28, 29, 31
sequence-type  =  "sequence"  "of"  "("  element-type  ")"  . 40
sequence-value  =  empty-value  |  value-list  . 40
set-type  =  "set"  "of"  "("  element-type  ")"  . 38
set-value  =  empty-value  |  value-list  . 39
signed-number  =  [  "-"  ]  number  . 22
size-subtype  =  base  "size"  "("  minimum-size  [  ".."  maximum-size  ]  ")"  . 29
state-literal  =  identifier  . 19
state-type  =  "state"  "("  state-value-list  ")"  . 19
state-value-list  =  state-literal  {  ","  state-literal  }  . 19
string-character  =  non-quote-character  |  added-character  |  escape-character  . 14, 49
string-literal  =  quote  {  string-character  }  quote  . 14, 49
subtype =  range-subtype  |  selecting-subtype  |  excluding-subtype

  |  size-subtype  |  explicit-subtype  |  extended-type  . 27
subtype-definition  =  type-specifier  . 29
table-entry  =  field-value-list  |  value-list  . 43
table-type  =  "table"  "("  field-list  ")"  . 43
table-value  =  empty-value  |  "("  table-entry  {  ","  table-entry  }  ")"  . 43
tag-type  =  type-specifier  . 31
tag-value  =  independent-value  . 32
tag-value-list  =  "("  select-list  ")"   . 31
termination-declaration  =  "termination"  termination-identifier  [  "("  termination-parameter-list  ")"  ]  . 47
termination-identifier  =  identifier  . 47
termination-list  =  termination-reference  {  ","  termination-reference  }  . 34
termination-parameter-list  =  parameter  {  ","  parameter  }  . 47
termination-reference  =  termination-identifier  . 34
time-literal  =  string-literal  . 21
time-type  =  "time"  "("  time-unit  [  ","  radix  ","  factor  ] ")"  . 21
time-unit  =  "year"  |  "month"  |  "day"  |  "hour"  |  "minute"  |  "second"  |  formal-parametric-value  . 21
type-declaration  =  "type"  type-identifier  [  "("  formal-type-parameter-list  ")"  ]

"="  [  "new"  ]  type-definition  . 45
type-definition  =  type-specifier  . 45
type-identifier  =  identifier  . 44, 45
type-reference  =  type-identifier  [  "("  actual-type-parameter-list  ")"  ]  . 44
type-specifier  =  primitive-type  |  subtype  |  generated-type

|  type-reference  |  formal-parametric-type  . 17
upperbound  =  value-expression  |  "*"  . 28, 29, 31
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value-declaration  =  "value"  value-identifier  ":"  type-specifier  "="  independent-value  . 46
value-expression  =  independent-value  |  dependent-value  |  formal-parametric-value  . 15
value-identifier  =  identifier  . 46
value-list  =  "("  independent-value  {  ","  independent-value  }  ")"  . 37, 39, 40, 42, 43
value-reference  =  value-identifier  . 15
void-literal  =   "nil"  . 27
void-type  = "void"  . 27

Productions of the common IDN which appear in a more restricted form above:

procedure-reference  =  [  interface-synonym  "::"  ]  procedure-identifier  .
termination-reference  =  [  interface-synonym  "::"  ]  termination-identifier  .
type-reference  =  [  interface-synonym  "::"  ]  type-identifier  [  "("  actual-type-parameter-list  ")"  ]  .
value-reference  =  [  interface-synonym  "::"  ]  value-identifier  .

Additional productions of the IDN not used in this International Standard:

interface-type  =  "interface"  interface-reference  "begin"  interface-body  "end"  .
interface-reference  =  interface-synonym  |  [  interface-synonym  ":"  ]  interface-identifier   .
interface-identifier  =  object-identifier-value  .
interface-synonym  =  identifier  .
interface-body  =  {  import  }  {  declaration  ";"  }  .
import  =  "imports"  [  "("  import-symbol-list  ")"  ]  "from"  interface-reference  .
import-symbol-list  =  import-symbol  {  ","  import-symbol  }  .
import-symbol  =  procedure-identifier  |  termination-identifier  |  type-identifier  |  value-identifier  .
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Annex D
(informative)

Example Mapping to Pascal

This annex contains a draft “inward” mapping from the LI datatypes into the programming language Pascal, as def
ISO/IEC 7185:1990,Information technology — Programming languages — Pascal. Where appropriate, differences in the map
ping to the Extended Pascal language (ISO/IEC 10206:1991,Information technology — Programming languages — Extend
Pascal) are noted.

The purpose of this annex is to exemplify the nature and content of an inward mapping, and possibly a mapping standa
mapping should not be considered a definitive mapping from LI datatypes to the Pascal language.

D.1 LI Primitive Datatypes

D.1.1 Boolean

Boolean maps to the Pascal typeBoolean. Valuestrue andfalse map to the corresponding values of PascalBoolean. All char-
acterizing operations are preserved, using the Boolean operators of Pascal.

D.1.2 State

A state datatype of the formstate(state-value-list) maps to the Pascal enumeration type(state-value-list). Each state-value is
mapped to the Pascal value with the corresponding identifier.  All characterizing operations are preserved.

D.1.3 Enumerated

An enumerated datatype of the formenumerated(enumerated-value-list) maps to the Pascal enumeration type(enumerated-
value-list). Each enumerated-value is mapped to the Pascal value with the corresponding identifier. All characterizing
tions are preserved.

D.1.4 Character

A single character datatype of the formcharacter or character(repertoire-list) maps to the Pascal typechar. Pascal requires
each implementation to define the character-set associated with the typechar. The default character-set designated by the
datatype syntaxcharacter is presumed to be that character-set, andrepertoire-list, if present, must identify that character-se
or a subset of it. Each character-value in that character-set is mapped to the Pascal value having the same character-
characterizing operations are preserved.

No other character datatype is mapped into a Pascal datatype, although an implementation may specify a mapping of th
ter-codes into the Pascal typeinteger.

D.1.5 Ordinal

The LI datatypeordinal range(1..maxint) maps to the Pascal subrange type1..maxint. Pascal requires each implementation
define the value ofmaxint. The ordinal datatype with the corresponding maximum value (and any subtype thereof) is ma
as given above, with each ordinal value being mapped to the corresponding integer value under the mathematical isom
All characterizing operations are preserved.

No ordinal value greater thanmaxintcan be mapped, and no datatype containing such a value can be mapped into Pasca

D.1.6 Date-and-time

The LI datatypetime(unit, radix, factor) range(time1..time2) is mapped to Pascal in the same way that time interval dataty
are mapped (see D.4.6), with the convention that the Pascal value represents the interval betweentime1 and the designated point
in time, but only if the Pascal value representing the intervaltime2 – time1is less than the implementation-defined valuemaxint.
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No other date-and-time types can be mapped to Pascal.

D.1.7 Integer

The LI datatypeinteger range(minint..maxint) maps to the Pascal typeinteger, whereminint is defined to be Negate(maxint).
Pascal requires each implementation to define the value ofmaxint. The integer datatype with the corresponding minimum a
maximum values (and any subtype thereof) is mapped to the Pascal typeinteger, with each integer value being mapped into th
identical Pascal integer value.  All characterizing operations are preserved.

No integer value greater thanmaxint can be mapped, no integer value less thanminint can be mapped, and no datatype containin
such a value can be mapped into Pascal.

D.1.8 Rational

Rational maps to the Pascal type declared by

type rational = array [1..2] of integer;

with the characterizing operations defined as follows:

procedure Reduce(var x: rational);   (* reduces a rational value to lowest-terms *)
var t, r, d: integer;
begin

d := abs(x[1]);
r := abs(x[2]);
while (d mod r) > 0 do begin

t := d mod r;
d := r;  r := t;

end;
x[1] := x[1] div r;
x[2] := x[2] div r;

end;

procedure Add(x, y: rational; var t: rational);
begin

if x[2] = y[2] then begin
t[1] := x[1] + y[1];
t[2] := x[2];

end else begin
t[1] := x[1] * y[2] + y[1] * x[2];
t[2] := x[2] * y[2];

end;
Reduce(t);

end;

procedure Multiply(x, y: rational; var t: rational);
begin

t[1] := x[1] * y[1];
t[2] := x[2] * y[2];
Reduce(t);

end;

procedure Negate(x: rational; var t: rational);
begin

t[1] :=  - x[1];
t[2] := x[2];

end;

procedure Reciprocal(x: rational; var t: rational);
begin

t[1] := x[2];
t[2] := x[1];
if t[2] < 0 then begin

t[1] := -t[1];
t[2] := -t[2];
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end;
end;

function NonNegative(x: rational): Boolean;
begin NonNegative := (x[1] >= 0)  end;

function Equal(x, y: rational): Boolean;
begin Equal := ((x[1] * y[2]) = (x[2] * y[1]))  end;

Only rational values whose numerator and denominator are both within the range [–maxint, maxint] are mapped into the Pasca
datatype.  (This cannot be stated as a range constraint on the value space of the Rational datatype.)

NOTE — The above procedures are not optimal and a good implementation would require techniques for sign management and overflo
ance. These procedures are intended only as a demonstration that the characterizing operations can be implemented “conveniently”
as mapped.

D.1.9 Scaled

The LI datatypescaled(r, f) range(minrf..maxrf) maps to the Pascal typeinteger, whereminrf has the value–maxint• r(-f)

andmaxrfhas the valuemaxint• r(-f). A scaled datatype with the corresponding minimum and maximum values (and any
type thereof) is mapped to the Pascaltypeinteger, with each scaled value N • r(-f) being mapped into the Pascal integer value N
In order for the characterizing operations to be preserved, scaled multiply and divide operations have to be defined, ass:

type scaled = integer;
(* const rtothef = r pow f; *)

function scaledMultiply(x, y: scaled): scaled;
var

t: scaled;
round: Boolean;
negate: Boolean;

begin
t := x * y;
negate := (t < 0);
if negate then t := -t;
round := (t mod rtothef > rtothef / 2);
t := t div rtothef;
if round then t := t + 1;
if negate then t := -t;
scaledMultiply := t;

end;

function scaledDivide(x, y: scaled): scaled;
var

t: scaled;
negate: Boolean;

begin
negate := (x < 0);
if negate then x := -x;
if y < 0 then begin

negate := not negate;
y := -y;

end;
t := ( x * rtothef ) / y;
if (x * rtothef mod y) > rtothef / 2 then t := t + 1;
if negate then t := -t;
scaledDivide := t;

end;

Only those values of the datatypescaled(r, f) which are within the above range are mapped and no scaled datatype conta
values outside this range can be mapped into Pascal.

NOTE — A more general version of the scaled datatype can be defined using the Pascal type:
type scaled = record
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numerator: integer;
radix: 0..maxint;
factor: integer

end;
with “characterizing operations” which generalize the arithmetic on scaled datatypes. This model can be further tailored to a fixed ra
10) to get improved performance. The integer model is more useful for simple exchanges of information, while the generalized mode
erable for extensive manipulation of scaled values.

D.1.10 Real

The LI datatypesreal range(rmin..rmax) andreal(radix, precision) range(rmin..rmax) map to the Pascal typereal, only if
the given or defaultradix, precision, rminandrmaxparameters define a subset of the real values which is distinguishable in
subset of the mathematical real values defined by the Pascal implementation under the following mapping: Each LI Re
is mapped into the Pascalreal value which is mathematically nearest it and if two values are equidistant then either may be
sen. All characterizing operations are conceptually preserved, although the implementation-defined arithmetic may a
correctness of results.

No real value requiring more range or more precision can be mapped, and no datatype containing such a value can be
into Pascal.

D.1.11 Complex

The LI datatypescomplex andcomplex(radix, precision) are mapped into Pascal using the Pascal type:

type complex = record realpart,  imagpart: real end;

This type, however, only maps valuesc in C such that | Re(c) | < rmaxand | Im(c) | < rmax, wherermax is implementation-
defined, and then only ifrmaxand the given or defaultradix andprecisionparameters define a subset of the complex valu
whose Cartesian representations (x +iy) are distinguishable in the Cartesian product of thereal values defined by the Pascal im
plementation. (This cannot be stated as a constraint on the value space of the LI complex datatype.) No complex dat
quiring more range or precision can be mapped.

Each LI Complex valuec is mapped to the Pascal value whoserealpart field has the Pascalreal value mathematically neares
Re(c) and whoseimagpart field has the Pascalreal value mathematically nearest Im(c). (Re and Im are the mathematical pro
jections onto the real and imaginary axes, respectively.)

The definition of “characterizing operations” appropriate to the Cartesian representation of a complex-number can be de
the following Pascal procedures, although the implementation-defined arithmetic may affect the correctness of results.

function Equal(x, y: complex): Boolean;
begin Equal := (x.realpart = y.realpart) and (x.imagpart = y.imagpart)  end;

procedure Promote(x: real; var t: complex);
begin t.realpart := x; t.imagpart := 0.0; end;

procedure Add(x, y: complex; var t: complex);
begin

t.realpart := x.realpart + y.realpart;
t.imagpart := x.imagpart + y.imagpart;

end;

procedure Multiply(x, y: complex; var t: complex);
begin

t.realpart := x.realpart * y.realpart - x.imagpart * y.imagpart;
t.imagpart := x.realpart * y.imagpart + x.imagpart * y.realpart;

end;

procedure Negate(x: complex; var t: complex);
begin

t.realpart := - x.realpart
t.imagpart := - x.imagpart;

end;

procedure Reciprocal(x: complex; var t: complex);
var r: real;
begin
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r := x.realpart * x.realpart + x.imagpart * x.imagpart;
t.realpart := x.realpart / r;
t.imagpart := - x.imagpart / r;

end;

procedure Squareroot(x: complex; var t: complex);
var

r: real;
theta: real;

begin
r := sqrt(x.realpart * x.realpart + x.imagpart * x.imagpart);
if x.realpart = 0.0 then begin

if x.imagpart >= 0.0 then theta := 0.5 * pi;
else theta := - 0.5 * pi;

end else begin
theta := arctan(x.imagpart / x.realpart);
if x.realpart < 0.0 then theta := theta + pi;

end;
t.realpart := sqrt(r) * cos(0.5 * theta);
t.imagpart := sqrt(r) * sin(0.5 * theta);

end;

NOTE — In Extended Pascal , the LI datatypescomplex andcomplex(radix, precision) can be mapped to the typecomplex, only if rmax
and the given or defaultradix andprecisionparameters define a subset of the complex values which is distinguishable in the subset of the
ematical complex values defined by the Pascal implementation. All characterizing operations are conceptually preserved, although t
mentation-defined arithmetic may affect the correctness of results.

D.1.12 Void

The LI datatypevoid is mapped into Pascal only when it appears as an alternative of a choice datatype. In this case, it is m
into an empty-variant “()” of a variant-record (see D.2.1).

D.2 LI Generated Types

D.2.1 Choice

A choice datatype of the form:

choice (tag-type) of (
select-list1 : alternative-1,
. . .
select-listN : alternative-N )

is mapped into the Pascal variant-record type:

record case tag-variable : mapped-tag-type of
case-constant-list1 : mapped-type1;
. . .
case-constant-listN : mapped-typeN

end;

only when the following conditions are met:

1) Thetag-typemaps to a Pascal ordinal type, as specified in this Annex. Themapped-tag-typeis then the ordinal type which
is the image of the mapping.

2) Thealternative-type of eachalternative-ican be mapped into a Pascal type, as specified in this Annex.  If thealternative-
typemaps to a Pascal record-type, then the correspondingmapped-typeis: ( all-fields-of-the-Pascal-record-type ). If the
alternative-typeis void, then the correspondingmapped-typeis: (). If thealternative-typedoes not map to a Pascal record
type then the correspondingmapped-typeis: (mapped-field-identifier : mapped-alternative ), wheremapped-alternative
is the image of thealternative-typeunder the mapping, andmapped-field-identifieris thefield-identifierof alternative-i, if
it is present and forms a valid Pascal field identifier, otherwise any identifier which does not conflict with any other
identifier in the Pascal record-type.
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No other choice datatype can be mapped into Pascal.

The tag-variableis an invented identifier, used solely to implement the characterizing operations (see below), and is not
wise required. Eachselect-itemin theselect-listwhich is a single value is mapped to thecase-constantdenoting the correspond-
ing value of themapped-tag-type. Eachselect-itemin theselect-listwhich is aselect-rangeis mapped into acase-constant-list
containing the denotations of all corresponding values of themapped-tag-type.A select-listwhich isdefault is mapped into the
case-constant-list containing the denotations of all corresponding values of themapped-tag-type.

NOTE — In Extended Pascal, eachselect-itemin theselect-listwhich is aselect-rangeis mapped into the analogous abbreviated-list form, an
aselect-listwhich isdefault is mapped into thecase-constant-listotherwise.

All values of the choice datatype are mapped to the corresponding values of themapped-types specified above.

The characterizing operations Tag and Cast are implemented (at least conceptually) in Pascal by referencing a particula
the correspondingmapped-type, or assigning to it, respectively. The characterizing operation Discriminant is the value o
tag-variable. Equal can be implemented in Pascal by a case-statement using the tag-variable and the mappedselect-listsgiven
above to select field-by-field comparison for each alternative.

D.2.2 Pointer

A pointer datatype of the formpointer to (element-type) is mapped into the Pascal type^mapped-type, only when theelement-
typemaps to a Pascal type, as specified in this Annex. Themapped-typeis then the Pascal type which is the image of the mappin

Only those values of the pointer datatype which refer to objects on the Pascal “heap” are mapped into the correspondin
pointer-value. Other pointer-values may be supported by dereferencing them and copying theelement-valueonto the Pascal
heap, thereby generating an “equivalent” Pascal pointer-value, in the sense that Dereference will work correctly, but the
ified “assignment” operation (see Note 3 to clause 8.3.2) will not.

The Dereference operation is the Pascalidentified-variable, i.e.pointer-value^.

D.2.3 Procedure

A procedure datatype of the form:   procedure (parameter-list)
is mapped into a Pascal “procedure parameter specification”, only when it appears as the datatype of a procedure param
only if all of itsparameter-typescan be mapped to Pascal types, as specified in this Annex.
A procedure datatype of the form: procedure (parameter-list) returns (return-parameter)
can be mapped into a Pascal “procedure parameter specification” or “function parameter specification”, only when it app
the datatype of a procedure parameter, and only if all of itsparameter-types, including that of thereturn-parameter, can be
mapped to Pascal types, as specified in this Annex. If thereturn-parametermaps to a simple type or a pointer type in Pasca
then the procedure datatype is mapped to a Pascal “function parameter specification”; otherwise, it is mapped to a “pr
parameter specification”.

Every LI parameter-declarationof the formin identifier : parameter-type is mapped into a Pascal value-parameter-specific
tion of the formidentifier : mapped-type wheremapped-typeis the image of theparameter-typeunder the mapping into Pascal
Every LI parameter-declarationof the formsinout identifier : parameter-type or out identifier : parameter-type is mapped
into a Pascal variable-parameter-specification of the formvar identifier : mapped-type wheremapped-typeis the image of the
parameter-typeunder the mapping into Pascal. If the procedure datatype is mapped to a functional parameter specificat
parameter-typeof thereturn-parameteris mapped into theresult-typeof the Pascal function parameter-specification. If the pr
cedure datatype has areturn-parameterand is mapped to a procedure parameter specification, thereturn-parameteris mapped
as if it were an additionalout parameter.

Conceptually, every value of an LI procedure datatype which satisfies the above constraints could be defined as a Pasc
dure or function and could then appear as an actual parameter satisfying the corresponding formal parameter specifica

The Invoke operation is supported by the Pascal function-designator (call) within an expression or the Pascal procedu
statement, as appropriate to the form. Equal, in the sense defined for the LI datatype, is supported in Pascal by comp
results of the invocations, to the extent that this is possible.

Terminations other than normal are not supported by Pascal, and no procedure datatype involving them can be mapped
cal.
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D.2.4 Record

A LI record datatype of the form:record (field-list) is mapped into a Pascal record-type of the form:record field-list end, only
if all of its field-typescan be mapped to Pascal types, as specified in this Annex. No other record datatype can be mapp
Pascal.

Every LI field of the form identifier : field-type is mapped into a Pascal field of the formidentifier : mapped-type where
mapped-typeis the image of thefield-typeunder the mapping into Pascal.

Every value of an LI record datatype which satisfies the above constraints is mapped to a value of the correspondin
record-type by mapping the value of each field to its corresponding value, as specified in this Annex.

The FieldSelect operation is supported by the Pascal field-selection expression. The Aggregate operation is supported
by assignment of the given values to the appropriate fields of the record-variable. Equal is not directly supported by Pa
can be supported for each individual record-type by constructing a function which compares the corresponding field va

D.2.5 Set

A set datatype of the formset of (element-type) is mapped into the Pascal typeset of mapped-type, only if theelement-type
maps to a Pascal ordinal-type, as specified in this Annex, and the cardinality of the ordinal-type does not exceed the im
tation-defined maximum set cardinality required by Pascal. Themapped-typeis then the Pascal ordinal-type which is the imag
of the mapping.

Every value of an LI set datatype which satisfies the above constraints is mapped to a value of the corresponding Pasca
by mapping the value of each member of the set-value to its corresponding value, as specified in this Annex.

All characterizing operations are supported by Pascal set operations.

No other set datatype can be mapped into Pascal directly. It is possible to map some other set datatypes as a variant of
(see D.2.7), by defining the characterizing operations specifically for that structure.

D.2.6 Bag

No bag datatype can be mapped into Pascal directly. Some bag datatypes can be mapped as a variant of Sequence (
by defining the characterizing operations on that structure.

D.2.7 Sequence

A LI sequence datatype of the formsequence of (element-type) is mapped to the Pascal type:file of mapped-type, only if
theelement-typecan be mapped to a Pascal type other than afile type, as specified in this Annex. No other sequence dataty
can be mapped into Pascal directly.

Every value of a sequence datatype which satisfies the above constraints is mapped to a value of the corresponding P
type by mapping the value of each element of the sequence-value to its corresponding value, as specified in this Anne

With the declaration:

type sequenceoftype = file of mapped-type;

the characterizing operations are supported by the required procedures for file types, as follows:

function IsEmpty(var s: sequenceoftype): Boolean;
begin IsEmpty := eof(s) end;

procedure Head(var s: sequenceoftype; var t: mapped-type);
begin reset(s);  read(s, t);  reset(s);  end;

procedure Tail(var s: sequenceoftype; var t: sequenceoftype);
begin

reset(s); rewrite(t);
if not eof(s) then begin

get(s);
while not eof(s) do begin
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t^ := s^; get(s); put(t);
end;

end;
reset(s); reset(t);

end;

function Equal(var s, t: sequenceoftype): Boolean;
var continue: Boolean;
begin

reset(s);  reset(t); continue := true;
while continue do begin

continue := not (eof(s) or eof(t));
if continue then begin

get(s);  get(t);
continue := mapped-typeEqual(s^, t^);
if not continue then Equal := false;

end else
Equal := eof(s) and eof(t);

end;
reset(s); reset(t);

end;

procedure Empty(var s: sequenceoftype);
begin rewrite(s) end;

procedure Append(var s: sequenceoftype; t: mapped-type);
begin write(s, t) end;

Because a Pascalfile-type, however, cannot be thecomponent-typeof anotherfile-type, LI datatypes of the form:sequence of
(sequence (...)) or sequence of (record(...)), where the record datatype contains a sequence datatype, cannot be mappe
Pascal. Moreover, when thecomponent-typeof a file-typeis, or contains, apointer-type, there may be implementation-dependen
limitations which defeat the purpose of the mapping.

NOTE — Values of a sequence datatype of the formsequence of (element-type), where theelement-typemaps to some Pascal typemapped-
type, as specified in this Annex, can also be mapped into Pascal using the type:

type sequenceofT = ^sequenceofTmember;
sequenceofTmember = record

next: sequenceofT;
elementvalue: mapped-type

end;
Each member (value ofelement-type) of a value of the sequence datatype is mapped to a heap variable of the Pascal
sequenceofTmember, by mapping its value to the corresponding value ofmapped-type, as specified in this Annex, and placing that value i
the fieldelementvalue. The value of the sequence datatype is then represented by a value of the typesequenceofT, which is the pointer to
the heap variable representing the first member, ornil if the sequence is empty. Thenext field of the first member is set to point to the heap
variable representing the second member, etc. Thenext field of the last member is set tonil. All characterizing operations can be defined o
this representation.

D.2.8 Array

An array datatype of the formarray (index-list) of (element-type) is mapped into the Pascal type
array [mapped-index-list] of mapped-element-type, only if the following conditions hold:

1) Theelement-typemaps to some Pascal typemapped-element-type, as specified in this Annex.

2) Eachindex-typein theindex-listcan be mapped into some Pascal ordinal-typemapped-index-type, as specified in this An-
nex. Themapped-index-listis then the list of themapped-index-types, in corresponding order.

No other array datatype can be mapped into Pascal.

Every value of an LI array datatype which satisfies the above constraints is mapped to a value of the corresponding Pasc
type by mapping the value of each element of the array-value to its corresponding value, as specified in this Annex.

The Select operation is supported by Pascal indexing. The Replace operation is supported by assignment to the appro
of an array variable. Equal is not directly supported by Pascal. It can be supported for each individual array-type by cons
a function which compares the corresponding array element values.
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D.2.9 Table

No table datatype can be mapped into a Pascal datatype directly.

Values of a table datatype of the formtable (field-list), where eachfield-typein thefield-list maps to some Pascal typemapped-
field-type, as specified in this Annex, can be mapped into Pascal using the type:

type tableentry = record
field1: mapped-field-type-1;
. . .
fieldN: mapped-field-type-N

end;

Eachtableentry value is a Pascal record-value having the corresponding field values assigned to the fieldsfield1, ...,fieldN. The
value of the table datatype is then represented as a value of the Pascal typefile of tableentry, in the same way as a sequenc
datatype (see D.2.7).  The characterizing operations for the table datatype can be defined on that structure.

D.3 LI Subtypes

D.3.1 Range

LI range-subtypes map into Pascal subrange types, but only if the base type maps into a Pascal ordinal-type, as specif
Annex.

D.3.2 Selecting

LI selecting-subtypes do not have equivalents in Pascal. A selecting-subtype of a state type or an enumerated type is m
if it were the base type.

D.3.3 Excluding

LI excluding-subtypes do not have equivalents in Pascal. An excluding-subtype of a state type or an enumerated type is
as if it were the base type.

D.3.4 Size

LI size-subtypes do not map into native Pascal concepts. Size-subtypes could be supported by the sequence datatype i
tation in D.2.7, and certain size-subtypes are mapped to specific Pascal types in D.4.

D.3.5 Explicit subtypes

LI explicit-subtypes do not have equivalents in Pascal.  An explicit-subtype is mapped as if it were the base type.

D.3.6 Extended

LI extended-types cannot be mapped into Pascal, in general. In the case of enumerated datatypes, definition of an ent
type with value isomorphisms based on ordinal position may be possible.

D.4 LI Defined Datatypes

D.4.1 Natural number

The LI datatypenaturalnumber range(0..maxint) maps to the Pascal subrange type0..maxint, according to the mapping for
its type-definition. No naturalnumber value greater thanmaxint can be mapped, and no datatype containing such a value ca
mapped into Pascal.

D.4.2 Modulo

The LI datatypemodulo(modulus) maps to the Pascal subrange type0..modulus–1, according to the mapping for itstype-def-
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inition, but only if modulus-1 is less than or equal to the implementation-defined valuemaxint. The characterizing operations
can be derived from those of Pascal typeinteger (i.e. those of the subrange type) analogously to the derivation in clause 10.1

No other modulo datatype can be mapped into Pascal.

D.4.3 Bit

The bit datatype maps to the Pascal type declared by

type bit = 0..1;

0 and 1 map to the corresponding integer values. All characterizing operations are preserved, although the Add operat
be defined as:

function Add(x,y: bit): bit;
begin

if (x = y) then Add := 0 else Add := 1;
end;

D.4.4 Bit string

A bitstring datatype all of whose values are of a fixed constant length, i.e.bitstring size(k), is mapped into the Pascal type
packed array [1..k] of Boolean.

NOTE — Whilebitstring can just as well be mapped intopacked array of bit, packed array of Boolean is often much more efficiently
implemented.

With the definitions:

type bitstringsizek = packed array [1..k] of Boolean;
bitstringsizek1 = packed array [1.. (k-1)] of Boolean;

the characterizing operations Equal, Head and Tail are defined as follows:

function Equal(x,y: bitstringsizek): Boolean;
var i: integer;
begin

Equal := true;
for i := 1 to k do Equal := Equal and (x[i] = y[i]);

end;

function Head(x : bitstringsizek): bit;
begin

if x[1] then Head := 1
else Head := 0

end;

procedure Tail(x : bitstringsizek, var y: bitstringsizek1);
var i: integer;
begin

for i := 1 to k-1 do y[i] := x[i+1];
end;

Append, Empty, IsEmpty are not meaningful operations on a bit-string of fixed size.

The bitstring datatype can be mapped according to itstype-definition, that is,sequence of (bit) (see D.2.7), although more ef-
ficient structures for bitstring can be developed.

D.4.5 Character string

A characterstring datatype whose underlying character datatype can be mapped to Pascal (see D.1.4) and all of whose
of a fixed constant length, i.e.characterstring size(k), is mapped into the Pascal typepacked array [1..k] of char.

With the definitions:
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type charstringsizek = packed array [1..k] of char;
charstringsizek1 = packed array [1.. (k-1)] of char;

the characterizing operations Head and Tail are defined as follows:

function Head(x : charstringsizek): char;
begin Head := x[1] end;

procedure Tail(x : charstringsizek; var y: charstringsizek1);
var i: integer;
begin

for i := 1 to k-1 do y[i] := x[i+1];
end;

Equal is Pascal “=”.  Append, Empty, IsEmpty are not meaningful operations on a character-string of fixed size.

A characterstring datatype whose underlying character datatype can be mapped to Pascal (see D.1.4) can be mapped
to its type-definition, that is,sequence of (character) (see D.2.7), although more efficient structures for characterstring ty
can be developed.

D.4.6 Time interval

Time interval datatypes are mapped according to theirtype-definitions, that is, as specified for scaled datatypes (see D.1.9). T
scalarMultiply operation is mapped to

function scalarMultiply(x: scaled, y: timeinterval): timeinterval;

and the body is exactly the same as for thescaledMultiply operation defined in D.1.9, with the substitution oftimeinterval for
the type of the temporary resultt.

D.4.7 Octet

The octet datatype is mapped into the Pascal type:

type octet = 0..255;

All characterizing operations are preserved.

D.4.8 Octetstring

An octetstring datatype all of whose values are of a fixed constant length, i.e.octetstring size(k), is mapped into the Pascal type
packed array [1..k] of octet, whereoctet is defined as in D.4.7.

With the definitions:

type octetstringsizek = packed array [1..k] of octet;
octetstringsizek1 = packed array [1.. (k-1)] of octet;

the characterizing operations Equal, Head and Tail are defined as follows:

function Equal(x,y: octetstringsizek): Boolean;
var i: integer;
begin

Equal := true;
for i := 1 to k do Equal := Equal and (x[i] = y[i]);

end;

function Head(x : octetstringsizek): octet;
begin Head := x[1]  end;

procedure Tail(x : octetstringsizek, var y: octetstringsizek1);
var i: integer;
begin

for i := 1 to k-1 do y[i] := x[i+1];
end;

Append, Empty, IsEmpty are not meaningful operations on an octetstring of fixed size.
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The octetstring datatype can be mapped according to itstype-definition, that is,sequence of (octet) (see D.2.7), although more
efficient structures for octetstring can be developed.

D.4.9 Private

Private is defined in Pascal essentially as it is in 10.1.9:

type private = packed array [1..size] of bit;

or:

type private = packed array [1..size] of Boolean;

In many cases, only the latter will produce the desired (contiguous bitstring) implementation, although neither is in fact re
to do so.

D.4.10 Object identifier

The objectidentifier datatype can be mapped into Pascal according to itstype-definition, that is,
sequence of (objectidentifiercomponent) (see D.2.7), whereobjectidentifiercomponent is mapped to the Pascal type:

type objectidentifiercomponent = 0..maxint;

In many cases, however, the component values of an objectidentifier value are not useful to the application, and it may
useful to map theobjectidentifier type into anoctetstring type (see D.4.8).

D.5 Defined Generators

D.5.1 Stack

No stack datatype can be mapped into Pascal directly. Individual stack datatypes can be mapped into a linked structur
to the one suggested forsequence (see the Note to D.2.7), by defining the characterizing operations on that structure.

D.5.2 Tree

No tree datatype can be mapped into Pascal directly. Individual tree datatypes can be mapped by a linked structure sim
one suggested forsequence (see the Note to D.2.7), but there are many possible implementation choices, depending on
tended searching strategies, i.e. the true “characterizing operations” of the type.

D.5.3 Cyclic enumerated

LI datatypes of the formcyclic of (T) are mapped into Pascal as provided for the typeT in D.1.3, becauseT is required to be an
enumerated datatype. The chaacterizing operation Successor does not map to Pascalsucc(); it must be defined as specified in
10.2.3.

D.5.4 Optional

An LI datatype of the formoptional(T) can only be mapped to Pascal if the typeT can be mapped to Pascal, as specified in th
Annex.  The datatypeoptional(T) is mapped to Pascal as:

record case present: Boolean of
true: (valuegiven: mappedT);
false: ()

end;

wheremappedT is the mapping of LI datatypeT into Pascal.  The characterizing operation IsPresent is defined by:

function IsPresent(t: optionalT): Boolean;
begin IsPresent := t.present  end;

Unary characterizing operations on typeT of the form Op(t: optional(T)):T are supported by a Pascal procedure of the form

procedure op(t: optionalT, var result: mappedT);
begin

if IsPresent(t) then result := mappedTOp(t.valuegiven);
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And binary operations are similarly supported.

NOTE — Alternatively,optional(T) can be mapped tômappedT, wheremappedT is the mapping of LI datatypeT into Pascal, and the
object of typemappedT, when present, is allocated on the heap.
The characterizing operation IsPresent is defined by:

function IsPresent(t: optionalT): Boolean;
begin IsPresent := t <> nil  end;

Unary characterizing operations on typeT of the form Op(t: optional(T)):T are supported by a Pascal procedure of the form:
procedure op(t: optionalT, var result: mappedT);

begin
if IsPresent(t) then result := mappedTOp(t^);

end;
And binary operations are similarly supported.

D.6 Type-Declarations

In Pascal two type-specifiers refer to the same datatype only if they are both identifiers and spelled identically. Type-sp
which are not identifiers always refer to distinct datatypes. Because of this, additional datatype definitions may be nee
mapping Pascal to correctly support the identity of LI datatypes which do not have names.

D.6.1 Renaming declarations

This concept is supported in Pascal only for named datatypes. That is, if a Pascal typey is denoted by an identifier, then a Pasca
type definition of the form:

type x = y;
is a renaming declaration, equivalent to the LItype-declaration:

type x = y;

But if the Pascal typey is a syntactic designation other than an identifier, the Pascal type declaration of the form:
type x = y;

is effectively a “new” datatype declaration in all cases.

D.6.2 Datatype declarations

An LI datatype declaration which declares a single datatype (no parameters) can be mapped to Pascal as a Pascal type-d
in which the LItype-definitionis mapped into Pascal, as specified in this Annex. If thetype-definitiondoes not have a mapping
then the datatype so declared cannot be mapped into Pascal.

An LI datatype declaration which declares a family of datatypes, using one or more parameters, cannot, in general, be
into Pascal. In many cases, however, each member of the family which is to be used in a given context can be mapp
distinct Pascal type, by inventing a unique name and mapping thetype-definitionafter making lexical substitutions for the pa
rameter values.

D.6.3 Generator declarations

An LI generator declaration cannot, in general, be mapped into Pascal. In many cases, however, each resulting dataty
is to be used in a given context can be mapped into a distinct Pascal type, by inventing a unique name and mappingtype-
definitionafter making lexical substitutions for the parameter values.

NOTE — In Extended Pascal, many generators can be mapped to schemata.
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Annex E
(informative)

Example Mapping to MUMPS

This annex contains a draft “inward” mapping from the LI datatypes into the programming language MUMPS, as defin
ISO/IEC 11756:1992,Information technology — Programming languages — MUMPS.

NOTE — It is anticipated that the prospective revision of ISO 11756:1992 will use the name M, instead of MUMPS, as the primary na
the language.

The purpose of this annex is to exemplify a mapping to a language whose concept of datatype is significantly different fr
of strongly typed programming languages. This mapping should not be considered a definitive mapping from LI datatype
MUMPS language.

This annex specifies a mapping fromvaluesof LI datatypes into MUMPS values. In all cases, the MUMPS data being map
to is a string and the mapping expresses the form of the resulting string values.

For inward-mappings, the values produced are in a canonic form, as defined in ISO 11756:1992, unless otherwise sta
inward-mapping that produces values exceeding the Portability limits defined in section 2 of ISO 11756:1992 is non-po
When the result of mapping a value as herein specified would exceed the implementation limits, the result is unspecifie

For the reverse-inward-mappings any necessary coercion from the internal format takes place. Unless otherwise state
verse-inward-mapping is the inverse of the inward-mapping, using the necessary coercions. If the reverse-inward-mappin
result in values which are not within the range of the LI datatype, the result is unspecified. For example, a state-value m
produced from a string which is not one of the permissible state values.

When mapping to or from a numeric format is required, the accuracy of the the conversion is the responsibility of the imp
tation.

A further assumption of this binding is that it is an operational one, i.e. that the conversions are handled at run-time with
plementation mapping the interface specification in an automated fashion.

NOTE — An alternative approach would be to extend or “annotate” (see 7.4) the interface specification language — the Common I
Definition Notation (IDN) — to include mapping specifications, and then generate a mapping module which would handle the specific in
essentially external to the process.

In this specification, the MUMPS operation sequences that implement the characterizing operations on the LI datatypes
explicitly specified. Except as noted, all characterizing operations are supported on the resulting MUMPS values. Many
operations are provided as part of the MUMPS language; others can be implemented as additional extrinsic functions, if r

Use of the in-built MUMPS operations, such as addition, on data which is mapped to or from certain LI datatypes may
these values to be interpreted in ways other than specified in LI characterizing operations. Therefore the use of these
MUMPS program for manipulation, as opposed to transfer operations, requires the programmer to perform the appropri
versions. The LI datatypes involved are Date and Time, Rational, Scaled, Complex and all Generated and Defined Typ

E.1 LI Primitive Datatypes

E.1.1 Boolean

This maps to truth-value, true maps to 1 and false to 0.

E.1.2 State

Each state-value is mapped to its string value.
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E.1.3 Enumerated

Each enumeration value maps to its index in the LI enumerated-type definition, i.e. the first value maps to 1, the second

E.1.4 Character

A character datatype maps to a MUMPS Character Set Profile definition, which has an associated encoding for the ch

E.1.5 Ordinal

Each ordinal value maps to the corresponding positive integer value.

E.1.6 Date and Time

Date and time type values are mapped to the character string representation defined in ISO 8601:1988.

NOTE — An alternative is to map date and time values to a character string in $H[OROLOG] format, which has the form
D,S

where D is the numbers of days since December 31, 1840, and S is the number of seconds since midnight.
Since there are no intrinsic operations available on this format, this alternative may not be of greater value.

E.1.7 Integer

Each value maps to its canonic form.

E.1.8 Rational

Each value maps to the character representation of the correspondingrational-literal.

NOTE — An alternative if the denominator is greater than 0 is to map the value to numerator-value/denominator-value, i.e. the numbe
by performing the division of the two parts. This would allow normal arithmetic operations, but at a loss of precision. (See the note in.9.)

E.1.9 Scaled

Each value maps to the character representation of the correspondingscaled-literal.

NOTE — A scaled value could also be converted to a numeric value, as for Rational.

E.1.10 Real

Real values are mapped to the nearest numeric values.

E.1.11 Complex

Values are mapped to strings of the form

real-value%imaginary-value

where
real-value is the numeric value of thereal-part of the correspondingcomplex-literal, and
imaginary-value is the numeric value of the imaginary-part of the correspondingcomplex-literal.

E.1.12 Void

There is no mapping for this datatype, since it only appears as a formal part of an interface specification and has no va
does not represent data actually transferred across an interface.
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E.2 LI Generated Types

E.2.1 Choice

A value of a LI Choice datatype is mapped according to the specification for the type actually instantiated. In MUMPS
variable can actually have the behavior of a Choice datatype. The discriminant of the Choice is provided in V(0), where V
variable name of the associated MUMPS variable.

E.2.2 Pointer

A Pointer maps to a MUMPS variable. Access to the element value – the data pointed to – is provided by use of indire
some implementation-specific mechanism. That is, indirection (@) is the MUMPS support for the characterizing op
Dereference.

E.2.3 Procedure

A Procedure value maps to alabel andformallist of a formalline, which defines a subroutine call. Termination parameters a
mapped to additionalformallist names.Inout andout parameters are mapped (at run-time) to parameters called by refere

NOTE — The exact mechanism of the call may be subject to restrictions, such as those specified in ISO/IEC 13886:1995,Information tech-
nology — Programming languages — Language-independent procedure calling.

E.2.4 Record

A Record value maps to a MUMPS array in which the subscripts are thefield-identifiers, and the data is the mapping of the valu
of the correspondingfield of the record value.

NOTES

1. If the LI value were represented in one of therecord-value forms, the data would be the mapping of theindependent-value. In the
value-list form, the subscript is thefield-identifier corresponding to this position in the record type specification.

2. A record value could also be modelled with subscripts being the field position numbers, but the Notes to clause 8.4.1 indicate that
identifier is significant while the position is not.

E.2.5 Set

A Set maps to a MUMPS array with the subscripts being an integer, starting at 1, denoting the position of the independe
in the value-list.

E.2.6 Bag

A Bag maps in exactly the same way as Set.

E.2.7 Sequence

A Sequence maps in exactly the same way as Set.

E.2.8 Array

An Array maps to a MUMPS array with the first level subscript being the first independent-value in the value-list, the s
level subscript being the second independent-value etc.

E.2.9 Table

A Table maps to a MUMPS array with the first level subscript being an integer, starting at 1, denoting the position of the
entry within the table-value, the second level subscript being the field identifier associated with the independent-value. An
value is denoted by no data.
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E.3 LI Subtypes

In general all the subtypes are treated exactly as if they were the base type.

Extended types can be mapped, provided that the values are within the permissible range.

E.4 LI Defined Datatypes

E.4.1 Natural number

Values of Naturalnumber are mapped as values of the base type – integer (see E.1.7).

E.4.2 Modulo

Values of Modulo types are mapped as values of the base type – integer (see E.1.7).

E.4.3 Bit

Bit maps to the values 0 and 1.

E.4.4 Bit string

Bitstring maps to a string of 0s and 1s.

NOTE — This mapping may have smaller length limitations than expected because it is dependent on the maximum length of strin
portability minimum limit for this in ISO 11756:1992 is 255, that for the proposed revision is 510. Many implementations have larger l
Other possibilities are mapping to an array of Bit values or mapping to a character string whose values are made of (say) eight bit values.

E.4.5 Character string

Characterstring maps to a MUMPS string.

E.4.6 Time interval

Values of Time interval types are mapped as values of the base type – scaled (see E.1.9).

E.4.7 Octet

An Octet valuex maps to the character value $CHARACTER(x).

E.4.8 Octet string

Octetstring maps to a string whose individual characters are the mappings of the equivalent Octet values.

E.4.9 Private

Private maps to an array of strings with numeric subscripts indicating the order of data within the array.

E.4.10 Object identifier

Objectidentifier maps into a string, with the value being the characters of theobjectidentifier-value.

E.5 Type-Declarations and Defined Datatypes

Since MUMPS has no declaration facilities the implementation of these facilities is the responsibility of the interface spe
tion interpretation process.
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Annex F
(informative)

Resolved Issues

This annex contains a brief discussion of technical problems encountered in the development of this International Stan
the consensus resolution thereof by the technical committee.

F.1 Scope

Issue 1. Should LI Datatypes be a reference model only?

Consensus is that LI Datatypes has characteristics of a reference model, but its scope goes beyond that. An entity cla
use this International Standard as a “reference model” is said tocomply indirectly, but indirect compliance places requiremen
on the entity for formal statements of the relationships (mappings). These requirements are necessary to meet the origi
of the standard. Because of the formal syntax for the identification and definition of datatypes,direct complianceis also possible.
Direct compliance is needed so that products such as cross-language or cross-entity utilities can reference, use, and c
formity to, LI Datatypes, especially where no other relevant standards exist. In addition, the possibility of direct complianc
encourage future software products, including new kinds of products, to use standard LI datatypes directly rather than
their own syntax and semantics and then performing the mapping.

Issue 2. What datatypes should be included in the standard?

Consensus is that the standard should include all of the datatypes needed to support ISO programming languages and th
needs of interface specifications. If any language finds the need to distinguish two "possibly equivalent" datatypes or co
tors, then the standard should distinguish them; and if it is necessary to insure that datatypes of two different languages
mapped into different LI datatypes, then the standard should distinguish them; otherwise the standard should not.

Issue 3.  Should the standard specify a minimal collection of common datatypes or a rich collection?

A primary purpose of the standard is to specify datatypes for various forms of interchange and interface. A rich collec
datatypes encourages interface definitions to use datatypes which may be difficult to map to many programming languag
suggests that the set of “common” datatypes should be restricted to those that are readily mapped to most programming
es. On the other hand, a rich collection of datatypes encourages the user to specify the datatype hemeans, which may be both
clearer and more efficiently mapped than some work-around based on a small set of “common” datatypes.

The consensus is that the standard should provide a rich collection of conceptually distinct datatypes. As Annex E demo
most of the LI datatypescanbe mapped to most programming languages, and the work-arounds for particular languages b
a part of the language-specific mapping rather than a part of the interface specification. For example, Sequence is
datatype in LISP, and Set is a native datatype in Pascal. Both are common in conceptual interface specifications, but the
work-arounds to be mapped to C or Fortran. The user should not be forced to characterize a Sequence as a fixed-len
(which it is not) just to accommodate the limited type vocabulary of a programming language which may not even be rele
the application.

For various reasons, specific applications (and the related standards, if any) may find it useful to constrain the set of LI da
allowed/supported in that application (see Issue 6). Whether a language mapping should provide for all datatypes in th
national Standard is an unresolved issue, but out of the scope of this International Standard in any case.

Issue 4. Are representation concerns appropriate in the standard?

The scope of the project expressly stated that representation isnot a part of the standard. A number of representation concer
such as the characterization of Real as floating-point and the ordering of fields in a Record, clearly need to be addresse
use of the LI datatypes in defining “neutral representations”. Moreover, the datatypes of programming languages often h
resentation properties which are important in distinguishing "internal datatypes" and are therefore necessary for mappin
resentation attributes, on the other hand, are only a fraction of the datatype annotation capabilities needed by procedu
standards and applications. Consensus is that a common mechanism for such annotation is necessary (and provided
7.4), but particular annotations should not be a normative part of this International Standard.
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Issue 5. What is the relationship between this International Standard and ISO 13886 Language-Independent Procedure

ISO/IEC 13886:1995,Information technology — Programming languages — Language-independent procedure calling, pro-
vides the procedure call model, the requirements for interface specifications and the syntax of the Interface Definition N
(IDN), and the requirements for LI procedure calling service implementations. ISO 13886 makes normative reference
International Standard (ISO 11404) to define all the datatype-related aspects of the IDN. ISO 13886 defines in detail the d
notions associated with the Procedure and Pointer datatypes as they relate to the procedure calling model.

It was originally expected that ISO 13886 would provide the IDN syntax and this International Standard would provide o
fundamental definitions of datatypes. But the complexities of defining datatypes made it necessary for much of the ID
introduced into this International Standard.  Thus, the overlap between the two standards is the common IDN.

F.2 Conformance

Issue 6. Should support of certain datatypes be required of complying entities?

The nature of the standard should not be such as torequirethe support of any datatype. Rather other standards which incorpo
the LI Datatypes, such as LI Procedure Calling and Remote Procedure Call, should specify what datatypes are require
purposes of those standards.

Issue 7. Should implementations be required to support the characterizing operations?

The purpose of considering operations in this International Standard is solely to distinguish semantically distinct datatype
have common or similar value spaces. Moreover, where several choices were available, the choices of characterizing o
included in the standard are arbitrary. Consequently, mappings between language datatypes and LI datatypes should n
sarily imply express support for the characterizing operations appearing in the standard. However, an internal datatyp
never be mapped into a LI datatype having characterizing operations which the internal datatypecould notsupport. Such a map-
ping violates the notion of semantic equivalence of the datatypes.

F.6 Fundamental Notions

Issue 8. Should the LI datatypes provide axiomatic datatype definitions?

Much of the axiomatic definition work would be replication of well-known mathematical work. There is consensus that m
matical datatypes should be defined by appeal to standard mathematical references. There is also consensus that most
definition" of other datatypes is nothing more than mathematical statement of closure under what is herein called "charac
operations".

F.6.6 Characterizing operations

Issue 9. Is InOrder necessary?  Does the standard need to define an ordering operation?

Order is an important property of a datatype, and when the value space has multiple possible order relationships, the ch
particular order relationship is what makes the datatype ordered. When a datatype has a universally accepted order rel
it is appropriate to require that order in the standard. When there is no such order relationship, or when everyone disa
the order relationship, then not necessarily will a given implementation of the datatype support any order relationship giv
the LI datatype should not be defined to be ordered.

Issue 10.How many characterizing operations are enough?

There is consensus that the characterizing operations on any datatype should be limited to those which are necessary
guish the datatype from types with similar value spaces. It was later determined to be useful to include operations which
redundant with respect to distinguishing the datatype, would be used in the definitions of characterizing operations o
datatypes, e.g. Boolean And and Or.

Issue 11.Are conversion operations between datatypes characterizing?

"Conversion operations", that is, operations which map one datatype into another, are of several kinds, each of which
be considered differently:

a)  Operations which are part of the mathematical derivation of primitive datatypes are generally "characterizing
cifically, the Promote operation, which maps Integer into Rational and Rational to Real, etc., is part of the mathem
characterization of the numeric datatypes.

b) Other operations which map oneprimitivedatatype into another are clearly not "characterizing", if the datatype is w
defined. Specifically, the Pascal ORD operation on enumerated types is not characterizing - it has nothing to d
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the meaning of the enumerated datatype itself.  Similarly, Floor, which maps Real to Integer, is useful but not
terizing for either the Real or Integer datatypes.

c)  Operations which create a value of a generated type from values of the component datatypes may be charac
for the generator.  Thus Setof is characterizing for the Set generator, and Replace is characterizing for the Ar
erator.

d) Operations which project a value of a generated type onto any of its component datatypes may be characteri
the generator.  Thus Select (subscripting) is characterizing for Array and Dereference is characterizing for Po

e) All characterizing operations on datatype generators must be one of the above, but not necessarily are all su
tions characterizing. It suffices to define any set of such operations which unambiguously identifies the datatyp
erator.

Issue 12.Should characterizing operations identify exception conditions?

Consensus is no. Exceptions result from the performance of operations on datatype values, or from attempts to move o
a value from one environment to another. Specifications for operations, exchanges and conversions are out of the sco
International Standard, as stated in clauses 1 and 6.1.  They are addressed by related standards.

F.7 Elements of the Datatype Specification Language

Issue 13.Should the LI datatypes have a concrete syntax?

To allow the standard to be used to specify datatypes unambiguously, it must have a syntax, with specific production r
each of the datatypes and generators. Moreover, this syntax must permit datatype definitions to be recursive or contain
references, in order to permit definition of datatypes such as Tree, or the LISP-characteristic indefinite-list datatype.

The syntax chosen is a subset of the “common” Interface Definition Notation (see Issue 5).

F.8 Datatypes

Issue 14.Should datatypes with “units” be included in the standard?

The concept of datatypes which express values in particular units is considered important to interface definitions, but the
tion of values which might be appropriate for the “units” is open-ended and very application-dependent. For this reaso
is consensus that this version of LI Datatypes should not standardize such datatypes. There is one exception to this: T
are standardized and supported by a number of programming languages. Therefore, Date-and-Time and TimeIntervalare includ-
ed in this version.

Issue 15.Should some of the datatypes in Clause 8 be in Clause 10 (derived)?

The question of whether Enumerated can be “derived from” State, or Ordinal from Integer, etc., depends on the particula
omy of datatypes which is chosen. Other taxonomies of datatypes are possible which might entail such changes. No
made that the taxonomy in Clause 8 is the best available, but it is viable, and changing taxonomies would not bring ab
stantive improvements in the specification. What is important is that datatypes that are similar but can be distinguished
tinguished.

F.8.1.4 Character

Issue 16.Should Character types be ordered?

The problem is that the accepted ordering of characters in a standard character-set by ascending value of their integer
machine-oriented view of the datatype. The “dictionary” order for the character-set may vary from nation to nation or fro
plication to application. Thus, although everyone agrees that these datatypes are conceptually ordered, there is no agre
what the order relationship is. Therefore, no standard InOrder function can be defined, and for that reason these types
to be unordered.  (See Issue 9.)

F.8.1.8 Rational

Issue 17.Can the cardinality of the Rational datatype be supported by any language or implementation?

It is possible for a mapping of Rational to fully support the datatype, as defined in 6.3.4, if the language supports unb
integers.

For a language/implementation which does not support unbounded integers, however, no mapping of the Rational data
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F.8.1.9 Scaled

Issue 18.How is Scaled distinct from Real?  Is Scaled an implementation?

Scaled is a mathematically tractable datatype which has a number of properties which tend to be associated with repres
such as rounding. Scaled is not merely a subtype of Real, nor a poorer representation of Real values than floating-point.
Scaled is properly represented by integral values and not, in general, by floating-point.) It is the datatype of objects wh
exactto some number of (radix) places. Scaled, with these semantics, is the most frequently occurring datatype in COB
grams, and also appears in other standard languages, such as PL/I. Parameters radix and factor are provided for consis
the usage in programming languages. Only a single parameter, giving the common denominator of the datatype, is sem
necessary. Since both base-two and base-ten scaling are in common usage, generalizing to an arbitrary radix seems to
priate.  Mappings and implementations will limit this.

Issue 19. Is it necessary to support radices of Scaled datatypes other than 2 and 10?

Many applications use conceptually Scaled datatypes with unusual radices, notably 60 and 360, although they are repre
programs by an Integer with the scale-factor hidden in the semantic units. There is no reason not to make such datatypes
ible as LI datatypes, although there may be strong constraints on the mappings to programming languages.

F.8.1.10 Real

Issue 20.What is the computational notion of datatypes Real and Complex?

The LI Datatypes Real and Complex cannot usefully be the mathematical datatypes. The computational notion of thes
regardless of representation mechanism, is one of “approximate” values. The model used is the “scientific number”, wh
a widely accepted computational model in the physical sciences before the advent of computers. It is conceptually simil
“floating point” model, but the standard floating-point models (IEC 559) are too closely tied to representation concerns.

F.8.1.12 Void

Issue 21. Is Void a value of multiple types, as in SQL2 Null, or a datatype itself?

Void, or nil or null, is not a value of every type (or of many types). It has none of the properties of any datatype to which it
be assigned. Every value of type Integer, for example, can be compared with zero. Is nil < 0? Is nil = 0? Allowing such
parison is clearly inappropriate. Nil must therefore be a value distinct from those of any other primitive type. The SQL
valued column is properly described in LI datatypes as a choice datatype one of whose alternatives is the true dataty
column and and the other is some state datatype representing the "null values". And in general, objects which “could b
are better modelled as having choice datatypes. “Void” was originally called “Null”, but has been renamed to avoid con
with “null values” in SQL.

Issue 22. Is Undefined the same as Void?

There is consensus that Undefined isnot a datatype. Undefined is a part of the behaviour of entities which have the con
datatype, but it is distinct from the datatype of the entity. Its meaning arises from the nature of the entity and its usage. In
“undefined” models the case in which a value of some datatype is appropriate, but not available. Some processing ent
SQL, have more than one “undefined” value, in order to model different “situations” in which no value is available. Vo
the other hand, models the empty variant in Pascal and Ada and the Null type in ASN.1 and other places where an
datatype, or value, is syntactically or semantically required to complete a complex datatype, or value, but no (other) dat
value is appropriate. The Void datatype should not be confused with “undefined values” in various languages, which do n
these semantics.

F.8.2.2 Selecting

Issue 23.Should the base type of Selecting and Excluding be restricted to exact datatypes?

Exactness is required to ensure independence of implementation. Any implementation of an exact datatype must be ab
tinguish exactly the conceptual values. This requirement does not exist for approximate datatypes — it is permissible i
senting approximate datatypes to have more than the conceptual values and to be unable to distinguish values which
ciently close. If this is permitted for "Selecting" and “Excluding” subtypes, the same LI datatype as implemented by tw
chines might actually have non-isomorphic value spaces.
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F.8.3.2 Pointer

Issue 24. Is Pointer a conceptual datatype or solely an implementation mechanism?

Pointer is the name of an implementation mechanism, but it has a conceptual foundation. Pointer is the datatype form
conceptrelationshipin conceptual models, specifically of relationships between otherwise independent data objects whic
possess multiple such relationships. Objects of pointer datatype represent single-ended relationships, i.e. from (any) t
of element type), in which the usage of the pointer determines the other object (any) in the relationship. In this regard,
may be considered to be similar to the database conceptkey, which also conveys a single-ended relationship to the object wh
the key identifies. The related concepthandle, meaning a manipulable representative for an otherwise inaccessible object,
not appear to be quite the same, since the notion of accessing the data object to which the handle refers is intentionally
ported, while accessing the object to which a pointer refers is a characterizing operation of Pointer.

Issue 25. Is Pointer a primitive datatype or an aggregate datatype?

There is consensus that Pointer is a primitive datatype in that its values are objects with the property that values of
datatype can be associated to them. These objects are not “constructed from” values of the associated datatype; rathe
distinct primitive objects drawn from a conceptually large state-value space by the process of association. This notion is
to the mapping notion of Arrays, but unlike these explicit mappings, the values in the domain – the pointer value-space
no other semantics.

Issue 26.Must there be a characterizing operation which produces values of type Pointer to (T)?

After much debate on the merits of the Allocate and Associate operations, there is consensus that no single "constru
datatype pointer is truly characterizing, in the sense that any implementation of the datatype Pointer would necessarily b
support it.

Issue 27.Must there be a null value of every datatype Pointer to (T)?

It is acknowledged that “null” is not a useful value of a pointer datatype – the sole characterizing operation Dereference d
apply to “null”. Therefore it is possible to define “pointer” to mean “pure” pointer datatypes that do not have “null” values
to model the commonly occurring pointer datatypes as:

choice (boolean) of ((true): pointer to x, (false): void).
On the other hand, most programming languages which support pointer datatypes support null values of such datatyp
sensus is to make “null” a value of the LI datatype pointer to (T) for consistency with most applications. “Pure” pointer dat
can be modelled as:  pointer to (T) excluding (null).

F.8.4.1 Record

Issue 28. Is the ordering of fields in a Record significant?

Conceptually, a record is a collection of related information units which are accessible by name rather than by position.
fore, the ordering of fields in a Record is not a property of the conceptual datatype itself. Order is, however, an importa
sideration in mappings and representations of the datatype.

F.8.4.2 Set

Issue 29.Should the element type of a Set be required to be finite?

At the conceptual level, there is no reason to require the base datatype of a Set to be finite. There may, of course, be im
tation limitations.

Issue 30.Should the base type of Set be restricted to exact datatypes?

Exactness is required to assure independence of implementation. Any implementation of an exact datatype must be ab
tinguish exactly the conceptual values. This requirement does not exist for approximate datatypes — it is permissible i
senting approximate datatypes to have more than the conceptual values and to be unable to distinguish values which
ciently close. But the values of members of a set-value must be clearly distinguishable, in order for the uniqueness co
and the IsIn operation to be well-defined.

F.8.4.3 Bag

Issue 31.Should the base type of Bag be restricted to exact datatypes?

Exactness is required to assure independence of implementation. Like Sets, the values of members of a bag-value must
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F.8.4.5 Array

Issue 32. Is Array a variant of Sequence?

No. The important characteristic of an Array is the mapping of the index types onto the element type, while Sequence c
the fundamental notion ofsequence. They are only related by having similar representations. An Array can be made into
quence by adopting a convention for mapping the index space into the ordinals. There is nothing intrinsic about this m
if one chooses different conventions, as Fortran and Pascal do, one getsdifferentsequences which represent thesamearray value.
And in general, there isnoarray datatype which can be mapped to the value space of a sequence datatype: the set of val
given size is the image of many array datatypes, but each different size is the image of a different array datatype.

Issue 33.Does the syntax of the array-type properly support “Dynamic sized arrays”?

There are several “dynamic” size and shape notions applied to array types in various programming languages:

Array-types whose values have different numbers of elements (Ada [1:?n]). Such types are designated Sequence in thi
tional Standard (clause 8.4.4) and are fully supported thereby, although the complete Ada semantics may also require u
SIZE subtype capability (clause 8.2.4).

“Conformant” array-types -- types of procedure parameters whose subscript ranges are dependent on the values of oth
eters. Such types are supported in this International Standard by Array types (clause 8.4.5) whose subscript ranges ar
dent-values” (clause 7.5.2), i.e.  values of other parameters or other elements of a Record which contains the Array.

Array parameters whose “shape” is implicitly passed by the caller, possibly including array parameters with a variable n
of dimensions. This is not supported directly by LI datatypes. In general, what is actually passed is either a caller-defin
scripting function or a set of parameters by which the called subprogram can reconstruct the subscripting function. In a la
independent interface, in order for the two language environments to agree on the operations on the passed array v
“shape” function or parameters must be made explicit. Thus, this case is a special case of “conformant” arrays using “dep
values” which are other passed parameters.

F.9 Declarations

Issue 34.How will multiple and contradictory definitions of defined-datatypes be avoided?

It is expected that datatype definitions will occur in at least the following places:
a) this International Standard
b) standards containing the outward mappings of programming languages
c) standards defining service interfaces
d) the LI Procedure Calling and Remote Procedure Calling standards
e) users using the Interface Definition Notation for the LIPC/RPC.
f) other user applications

In all of cases a-d, the reference to astandardensures common understanding of the name and meaning of the defined-data
In case e, it is expected that all users of the same procedure interface will share a common IDN description – a kind o
standard” ensuring common understanding. In case f, if the application is private to a particular user, it is not necessary
be shared, and if it is not private, then one of the means a-e should be sought. Nonetheless, over time, it may be expe
multiple definitions of a common datatype will occur in cases b and c. This would certainly be grounds for modifying Clau
of this International Standard. On the other hand, definitions of different datatypes with the same name can be expected
b, c and e as well. This is unfortunate and cannot be avoided in the general case, but it does not affect the interchange of d
except when conflicting standards are used in the same application. A work-around for this should be provided in the LIP
but in general, this situation is probably grounds for a revision of the standards in question.

F.10.1.1 Natural number

Issue 35.Should NaturalNumber or Unsigned be LI datatypes?

Naturalnumber is a semantic datatype, but for LI datatype purposes, it is nothing more than integer range(0..*) and is so d
"Unsigned" is an implementation convention for the representation of certain Integer and Enumerated datatypes, includ
uralnumber.
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F.10.1.2 Modulo

Issue 36.Should Modulo be limited to integers?

In various drafts, Modulo has been:
a) a datatype derived from Integer,
b) a datatype generator applicable to any ordered datatype, with extremely complex characterizing operations,
c) a defined generator, applicable only to enumerated datatypes, which redefines Successor.

Characterization (a) is deemed to be the only commonly occurring instance of (b) and has properties that do not general
as multiplication. Characterization (b) is at most a defined generator, because Modulo affects only the operations, not t
space, and applicability to arbitrary ordered datatypes is an unnecessarily complex generalization. Characterization (c), h
is thought to be potentially useful and is retained as “Cyclic of (enumerated datatype)”.

F.10.1.3 Bit

Issue 37.What is the nature of the Bit datatype?

The LI datatypes define four two-valued datatypes, all of which are semantically different, and each of which is some e
definition of "Bit". Making some or all of these datatypes identical is a feature of some programming languages, while m
them distinct is a feature of others. The LI datatypes must support the latter, while proper use of mapping will support the f

In the standard, the datatype Bit is used to refer to the numeric finite field of two values — the Modulo(2) datatype derive
Integer — which is conveyed by the term "binary digit". The datatype integer range(0..1) is different, in that Add (1,1) pro
different results in the two datatypes. The datatype Boolean is mathematically equivalent to Bit, in that identification of th
(Add) and And (Multiply) operations produces the same finite field. But semantically, Boolean is not a numeric datatyp
can be characterized by other operations associated with the logic notions true and false, while Bit is a numeric datatyp
characterized by the numeric operations Add and Multiply only. Two-valued Enumerated or State datatypes are non
above. They have neither numeric nor logical operations. Since the cardinality of all the value spaces is 2, it is obviously p
to map one into another, but it is the characterizing operations which determine the true datatype.

F.10.1.5 Character string

Issue 38. Is Character-string primitive?

No. A character-string must be manipulated as a sequence of members of some character-set in order for the definiti
character-set itself to be useful. That is, the definition of any such datatype is dependent on the (International) Standard
the character-set. Thus the character datatype whose value space is defined by the standard is the primitive datatype an
acter-string datatypes are constructed from it. Some programming languages make the character-string primitive in ord
fine useful operations that don’t generalize to Sequences or Arrays in that language. Others, such as LISP, APL and Pas
the single character a primitive type.

Issue 39.Should Character-string types be ordered?

The problem is that the collating sequence for character-strings using the same character-set varies from nation to nati
often constrained by other application-dependent standards. Thus, although everyone agrees that these datatypes are
ally ordered, there is no agreement on what that ordering is. Therefore, no standard InOrder function can be defined, an
reason these types are said to be unordered.  (See Issue 9.)

F.10.2 Defined generators

Issue 40.Should mathematical Matrix and Tensor constructors be standard generators?

At one level, Tensor-of-degree-n is simply an array datatype with mathematical operations, e.g.
type tensor2 (rows: integer, columns: integer, numbers: type) = new array (1..rows, 1..columns) of (numbers);

But Tensor is, at another level, a legitimate mathematical datatype generator, which generates vector spaces, or linear
spaces, over a numeric datatype.  The consensus is:

a) The tensor datatype generator is adequately supported by generator-declaration, and could be added to subcl
if there were consensus on the numbering of the elements (from 0, from 1) and on the ordering of the dimensio
ifications (rows first, columns first, etc.).  (There is no such consensus.)

b) Conceptually, Tensor should be the mathematical object, but the mathematical type generator is not really su
by any programming language. Some programming languages (e.g. BASIC, APL) support special operations o
datatypes which support the mathematical interpretation of the array representation, but these operations tend t
eralized to the array datatypes as such and only in some cases emulate the mathematical operations.  Thus T
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Issue 41.Should File be a standard generator?

A file, seen as a medium or the object managed by the operating system, which has name, type, organization, state, pos
attributes, goes beyond the scope of this standard. The datatype, its attributes and operations, are better defined by an
system services standard. To the extent that such file objects are integral to programming languages, it is necessary th
defined for the specific programming language, since there does not appear to be a common model.

A file, seen as a structure of datatype values, may be adequately supported by an aggregate type generator, such as
Array or Table (see clause 8.4 and also Annex D.2.7).

F.11 Mappings

Issue 42.How much of the concept "mapping onto the LI datatypes" should be standardized?

Consensus is that formal requirements forindirect conformanceare necessary to relate language standards to language-inde
dent specifications. The mapping is a necessary part of the concept of indirect conformance and therefore a necessary p
standard. There is further consensus that the standard should specify exactly what a mapping, or a set of mappings, co
This should include specifying values of all "parameters" of the LI datatypes, and a discussion of the distinction between
identification of two datatypes" and "physical transformation between two datatypes". It should be left to the language st
to formalize the individual mappings, since distinguishing the language syntax constructions which equate to various LI da
might be quite complicated.

Issue 43.What support of “aggregate properties” should be required?

There was no consensus on requirements for support of aggregate properties, most notably the nature of array indexin
access) as against position in sequence (indirect access). Thus the consensus standard contains no requirements for
aggregate properties.

Issue 44.Should the standard address implementation of a mapping?

The implementation of a mapping or binding may occur at the level of language syntax (the representation of the type
another language) or at the level of value representation or both. Such requirements are left to other standards w
datatypes and datatype syntax for a particular purpose. The binding for a datatype in databases and exchange files, for
may specify a particular value representation but no operations, while requirements for support of the same datatype
gramming language specify syntax and operations but not representation.
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