INTERNATIONAL STANDARD [0 ISO/IEC ISO/IEC 11404: 1996 (E)

Information technology — Programming languages,
their environments and system software interfaces —
Language-independent datatypes

Technologies de l'information — Langages de programmation,
leur environnement et interfaces du logiciel systeme —
Types de données indépendants du langage

ISO/IEC 11404:1996 (E)

Contents
FOMBWOIT ... %
T 0T [T 1o) o USSR Vi
L S COPE. ..ttt 1
2 CONFOMMEANCE ...ttt e e e e e eee s 1
2.1 Direct CONfOrMANCEcoeviiieeeiiiiiiiiiiieeee e 2
2.2 Indirect CONfOrMANCEcooiiiiiieiiiiiiee e 2
2.3 Conformance of a mapping standardcccccoceiiieeennnininns 2
NOrmative REfEIENCES.......cooiiiiiiiiiiieeeee e 3
DEFINILIONS ..t e e e e 3
Conventions Used in this International Standard...............cccceen..e. 5
5.1 FOrmMal SYNAX ..occeeiiiiiiiiiiiiiiiiiie e s e e e e e e e ee e 5
5.2 TexXt CONVENLIONS ..occcoiiiiiiiiiiieiie e 6
6 Fundamental NOtIONS............cocoiiiiiiiii 6
6.1 DatatyPe ..oooiceiiiiiieeii e 6
6.2 ValUB SPACE ..o 7
6.3 Datatype PropertieScooooiiiiiiiiiiiieieee e 7
6.3.1 EQUAIILY ..eovieiiiiiii 7
L 2 @ o = SRRSO 7
6.3.3 BOUNG ..o 8
6.3.4 Cardinalitycccceeeiiiiiiiieiii e 8
6.3.5 Exact and approximateccccccvrrirrrieeeeeeiissiinnreeeee 8
6.3.6 NUMEIIC .evtviiiiiiiiee it 9
6.4 Primitive and non-primitive datatypesccccccovviiieeeiiiiieeenns 9
6.5 Datatype geNeratoreeveuvermrmeiiiiisieieieeeeeeaaasaarereeereeeeen. 9
6.6 Characterizing OpPerationscooiiiiiiiiiiiiieeee e 9
6.7 Datatype familieSccccoiriiiiiiiii 10
6.8 Aggregate datatyPeSccccceiieieeeiiiiiiir e 10
6.8.1 HOMOQENEItY ...ccoeiiiiiiiiiiiieee e 11

O ISO/IEC 1996
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Offices Case Postale 5% CH-1211 Genéve 2@ Switzerland
Printed in Switzerland

O ISO/IEC

O ISO/IEC

ISO/IEC 11404:1996 (E)

B.8.2 SIZE i 11
6.8.3 UNIQUENESS ..ottt 11
6.8.4 (Aggregate-imposed) Orderingcccceeeereivnereennnnnn 11
6.8.5 Access Methodcccoevviiiiiiiiii 11
6.8.6 ReCcursive StruCturecccoooiciiiiieeiiiieeeeen e 12
Elements of the Datatype Specification Language........................ 12
7.1 IDN CharaCter-Setccoeiieeiiiiiiiiiiieiieeea e 12
7.2 WRILESPACE ..ooiiiiiiiiie i 1:
7.3 LeXiCal ODJECLS ...vvviiiiiiieee i 13
7.3. 1 1dentifiers ... 13
7.3.2 DIQIt-StrNG ...eveeiiiiiiiiieiiiee e 14
7.3.3 Character-literal and string-literalccccceveeeeennn. 14
7.3.4 KeYWOrdScoooiiiiiiiieiie et 14
A Y o T] 7= L1 1 P 14
7.5 VAIUBS oo 1E
7.5.1 Independent Valuesccccccoriiiiiiiiiiiiiiiieiee e 15
7.5.2 Dependent Valuesccccoocuiieieiiiiieeeiiniiieee i 16
DAtALYPES ...t 17
8.1 Primitive datatypescccccvveiiiiiieiee i 17
8.1.1 BO0OI€AN ... 18
B.1.2 SHALB iiciiiie e 19
8.1.3 Enumeratedccccceiiiiiiiiei e 19
8.1.4 CharaCtercccuviiiiiiiieie e 20
8.1.5 OrdiNal .eeeviiieeiiiiiie e 21
8.1.6 Date-and-Timeccccceviiiiieieiiiiiee e 21
8.1.7 INTEOET . 22
8.1.8 RaAtiONalcoooii 23
8.1.9 SCAlEA ...oeviiiiiiiie e 23
8.1.10 REAI ueiiiii it 24
8.1.11 COMPIEX weeiiiiiiiiiiee ettt 26
8.1.12 VOId oo 27
8.2 Subtypes and extended typesoooooiiiiiiiiiiiiiiee 2
8.2.1 RANJGE oo 28
8.2.2 SElECtiNG ..cceei i 28
8.2.3 EXCIUAING .coooieii i 28
B.2.4 SIZE i 29
8.2.5 EXplicit SUDLYPES ...ccooieieeieeee e 29
8.2.6 EXtended ... 30
8.3 Generated datatypesccoociiiieiiiiiiie e 3
8.3.1 CQOICE .oiiiiiiiiiie ettt 31
8.3.2 POINEI o 33
8.3.3 Procedureoooiiiiiii s 34
8.4 Aggregate DatatyPeScceeevrurmmmiiiiiinieieeeeeeeeerereeeerereeeenennnnnnn 3¢
8. 4.1 RECOI ..ovieiiiiiiiii i 37
B.4.2 SEL it ————— 38
8.4.3 BaAg .o 39
8.4.4 SEQUENCEcoooiieiieeeeeeeeeee s 4C
845 AITAY coiiiiiiii i 41

ISO/IEC 11404:1996 (E)

8.4.6 TaADIE .oooiiii 43
8.5 Defined DatatyPeseeeeieiiiiiiiiiiiiiiiiiiiet e 44
O DECIAIALIONSeiiiiiiiiiie et 45
9.1 Type Declarationsoccccuuiiiiiiiiiieeee e 45
9.1.1 Renaming declarationsccccccceeiiiiiineenniiiee e, 46
9.1.2 New datatype declarationsccccccveeereereeeniiiininnns 46
9.1.3 New generator declarationsccccccueeeeeieeeeenniinnnns 46
9.2 Value DecClarationSccc.ueeeiiiiieeeeiiiiiiiiiee e e 46
9.3 Termination Declarationsccccccceveiiiiiieeeiiiiieee e 47
10 Defined Datatypes and GENEratorsS............coccvvvvverereeeeeeeesiescenineeeens 47
10.1 Defined datatypescccceeiieiiiiiieeeiie e a7
10.1.1 Natural NUMDEr ... 47
10.1.2 MOAUIO .ooiiiiiiiiii i s 48
L10.1.3 Bib ceeiiieiiiiiiee ettt 48
10.1.4 Bt SHING vveeieiiiiiiiee et 48
10.1.5 Character Stringcccccveeereereeeeieiirciieeer e 49
10.1.6 Time intervalccceeeeeiiiiiiiiiiiieeee e 50
10.0.7 OCEBL oot 50
10.1.8 OCtEt SING wevvveeeeeieeiiiieee e 50
10.1.9 PIIVALE ..eteiiiiiieiei ettt 50
10.1.10 Object identifierccccoviiiieeiiiiiee e 51
10.2 Defined geNEratorscccccvveeeiieieeeeiiiiiiiiier e e e e e e s 52
10.2. 1 StACK .eveiiiiiiiiiee e 53
10.2.2 T8 oo 53
10.2.3 Cyclic enumeratedcccccvvriiereeeeeiiiiscireeer e 53
10.2.4 OPLONAI . 54
5 |V - o] o1 o -SSR 54
11.1 Outward MapPingSeeeeeeeeeeeaiiiiiiiieieeee e e e e e e e 55
11.2 Inward MappinNgScccooiiureeeeaiiiiieee ittt 56
11.3 Reverse Inward Mappingcceeeeeeeoiiiiiciiiiiiieeeee e 56
11.4 Support Of DatatyPesccooiiiiiiiiiiiieeie e 57
11.4.1 Support of eqUAlILYcccuveveiiiiiiiieiiie e, 57
11.4.2 Support Of OFAErccccvviiiieii e 57
11.4.3 Support of DOUNASeeiiiiiiiiiiiie s 57
11.4.4 Support of cardinalitycccocoeeeeiiiiiiiieiiiie e, 57
11.4.5 Support for the exact or approximate property 58
11.4.6 Support for the numeric propertycccccceeeevicunnnee. 58
Annex A. Character-Set Standards............ccccovvviriieiiiieeee e 59
Annex B. Recommended Placement of Annotations.................cuveee.. 62
Annex C. Implementation Notions of Datatypes.........ccccceevveeeeiiiiiinnnns 64
Annex D. Example Mapping to Pascal...........ccccviiiiiiniiiiiiniieceee 67
Annex E. Example Mapping to MUMPS.............ccccoiiiiiiniiii, 80
ANnexX F. ReSOIVEd ISSUES........ccoiiiiiiiiiiieet e 84

O ISO/IEC

O ISO/IEC

ISO/IEC 11404:1996 (E)

Foreword

ISO (the International Organization for Standardization) and IEC (the In-
ternational Electrotechnical Commission) form the specialized system
for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards
through technical coommittees established by the respective organiza-
tion to deal with particular fields of technical activity. 1SO and IEC tech-
nical committees collaborate in fields of mutual interest. Other interna-
tional organizations, governmental and non-governmental, in liaison
with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a
joint technical committee, ISO/IEC JTC1. Draft International Standards
adopted by the joint technical committee are circulated to national bod-
ies for voting. Publication as an International Standard requires approv-
al by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 11404 was prepared by Joint Technical
Committee ISO/IEC JTC1, Information technology, Subcommittee
SC22, Programming languages, their environments and system soft-
ware interfaces.

Annexes A to G of this International Standard are for information only.

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Introduction

Many specifications of software services and applications libraries are, or are in the process of becoming, Interna-
tional Standards. The interfaces to these libraries are often described by defining the form of reference, e.g. the “pro-
cedure call”, to each of the separate functions or services in the library, as it must appear in a user program written
in some standard programming language (Fortran, COBOL, Pascal, etc.). Such an interface specification is com-
monly referred to as the “<language> binding of <service>", e.g. the “Fortran binding of PHIGS”
(ISO/IEC 9593-1:1990, Information processing systems — Computer Graphics — Programmer’s Hierarchical Inter-
active Graphics System (PHIGS) language bindings — Part 1: FORTRAN).

This approach leads directly to a situation in which the standardization of a new service library immediately requires
the standardization of the interface bindings to every standard programming language whose users might reasonably
be expected to use the service, and the standardization of a new programming language immediately requires the
standardization of the interface binding to every standard service package which users of that language might rea-
sonably be expected to use. To avoid this n-to-m binding problem, ISO/IEC JTC1 (Information Technology) assigned
to SC22 the task of developing an International Standard for Language-Independent Procedure Calling and a parallel
International Standard for Language-Independent Datatypes, which could be used to describe the parameters to such
procedures.

This International Standard provides the specification for the Language-Independent Datatypes. It defines a set of
datatypes, independent of any particular programming language specification or implementation, that is rich enough
so that any common datatype in a standard programming language or service package can be mapped to some
datatype in the set.

The purpose of this International Standard is to facilitate commonality and interchange of datatype notions, at the con-
ceptual level, among different languages and language-related entities. Each datatype specified in this International
Standard has a certain basic set of properties sufficient to set it apart from the others and to facilitate identification of
the corresponding (or nearest corresponding) datatype to be found in other standards. Hence, this International Stan-
dard provides a single common reference model for all standards which use the concept datatype. It is expected that
each programming language standard will define a mapping from the datatypes supported by that programming lan-
guage into the datatypes specified herein, semantically identifying its datatypes with datatypes of the reference mod-
el, and thereby with corresponding datatypes in other programming languages.

Itis further expected that each programming language standard will define a mapping from those Language-Indepen-
dent (LI) Datatypes which that language can reasonably support into datatypes which may be specified in the pro-
gramming language. At the same time, this International Standard will be used, among other applications, to define
a “language-independent binding” of the parameters to the procedure calls constituting the principal elements of the
standard interface to each of the standard services. The production of such service bindings and language mappings
leads, in cooperation with the parallel Language-Independent Procedure Calling mechanism, to a situation in which
no further “<language> binding of <service>" documents need to be produced: Each service interface, by defining
its parameters using LI datatypes, effectively defines the binding of such parameters to any standard programming
language; and each language, by its mapping from the LI datatypes into the language datatypes, effectively defines
the binding to that language of parameters to any of the standard services.

Vi

INTERNATIONAL STANDARD [0 ISO/IEC ISO/IEC 11404: 1996 (E)

Information technology — Programming languages,
their environments and system software interfaces —
Language-independent datatypes

1 Scope

This International Standard specifies the nomenclature and shared semantics for a collection of datatypes commonly occu
in programming languages and software interfaces, referred to as the Language-Independent (LI) Datatypes. It specifies
primitive datatypes, in the sense of being defined ab initio without reference to other datatypes, and non-primitive datatype:
the sense of being wholly or partly defined in terms of other datatypes. The specification of datatypes in this International St
dard is "language-independent" in the sense that the datatypes specified are classes of datatypes of which the actual dat
used in programming languages and other entities requiring the cdatafypeare particular instances.

This International Standard expressly distinguishes three notions of "datatype”, namely:
« the conceptual, or abstract, notion of a datatype, which characterizes the datatype by its nominal values and proper

« the structural notion of a datatype, which characterizes the datatype as a conceptual organization of specific compo
datatypes with specific functionalities; and

« the implementation notion of a datatype, which characterizes the datatype by defining the rules for representation of
datatype in a given environment.

This International Standard defines the abstract notions of many commonly used primitive and non-primitive datatypes wr
possess the structural notion of atomicity. This International Standard does not define all atomic datatypes; it defines only tt
which are common in programming languages and software interfaces. This International Standard defines structural notion
the specification of other non-primitive datatypes and provides a means by which datatypes not defined herein can be def
structurally in terms of the LI datatypes defined herein.

This International Standard defines a partial vocabulary for implementation notions of datatypes and provides for, but does
require, the use of this vocabulary in the definition of datatypes. The primary purpose of this vocabulary is to identify comm
implementation notions associated with datatypes and to distinguish them from conceptual notions. Specifications for the us
implementation notions are deemed to be outside the scope of this International Standard, which is concerned solely witt
identification and distinction of datatypes.

This International Standard specifies the required elements of mappings between the LI datatypes and the datatypes of some
language. This International Standard does not specify the precise form of a mapping, but rather the required information cor
of a mapping.

2 Conformance

An information processing product, system, element or other entity may conform to this International Standard either direc
by utilizing datatypes specified in this International Standard in a conforming manner (2.1), or indirectly, by means of mappir
between internal datatypes used by the entity and the datatypes specified in this International Standard (2.2).

NOTE — The general ternmformation processing entityis used in this clause to include anything which processes information and contains
the concept oflatatype.Information processing entities for which conformance to this International Standard may be appropriate include oth
standards (e.g. standards for programming languages or language-related facilities), specifications, data handlingdasslitiees, etc.

ISO/IEC 11404:1996 (E) [0 ISO/IEC

2.1 Direct conformance

An information processing entity whidonforms directly to this International Standard shall:

i) specify which of the datatypes and datatype generators specified in Clauses 8 and 10 are provided by the entity and
which are not, and which, if any, of the declaration mechanisms in Clause 9 it provides; and

i) define the value spaces of the LI datatypes used by the entity to be identical to the value-spaces specified by this Inter-
national Standard; and

iii) use the notation prescribed by clauses 7 through 10 of this International Standard to refer to those datatypes and to no
others; and

iv) to the extent that the entity provides operations other than movement or translation of values, define operations on the
LI datatypes which can be derived from, or are otherwise consistent with, the characterizing operations specified by
this International Standard.

NOTES

1. ThisInternational Standard defines a syntax for the denotation of values of each datatype it defines, but, in general, regi)icmesnt

not require conformance to that syntax. Conformance to the value-syntax for a datatype is required only in those cases in which the value ap-
pears in dype-specifierthat is, only where the value is part of the identification of a datatype.

2. The requirements above prohibit the use btffge-specifiedefined in this International Standard to designate any other datatype. They
make no other limitation on the definition of additional datatypes in a conforming entity, although it is recommended that either the form in
Clause 8 or the form in Clause 10 be used.

3. Requirementiy) does not require all characterizing operations to be supported and permits additional operations to be provided. The
intention is to permit addition of semantic interpretation to the LI datatypes and generators, as long as it does not conflict with the interpretation
given in this International Standard. A conflict arises only when a given characterizing operation could not be implemented or would not be
meaningful, given the entity-provided operations on the datatype.

4. Examples of entities which could conform directly are language definitions or interface specifications whose datatypes, and the notation

for them, are those defined herein. In addition, the verbatim support by a software tool or application package of the datatype syntax and def-
inition facilities herein should not be precluded.

2.2 Indirect conformance

An information processing entity whicdonforms indirectly to this International Standard shall:

i) provide mappings between its internal datatypes and the LI datatypes conforming to the specifications of Clause 11 of
this International Standard; and

i) specify for which of the datatypes in Clause 8 and Clause 10 an inward mapping is provided, for which an outward
mapping is provided, and for which no mapping is provided.

NOTES
1. Standards for existing programming languages are expected to provide for indirect conformance rather than direct conformance.
2. Examples of entities which could conform indirectly are language definitions and implementations, information exchange specifications

and tools, software engineering tools and interface specifications, and many other entities which have a concept of datatype and an existing
notation for it.

2.3 Conformance of a mapping standard

In order to conform to this International Standard, a standard for a mapping shall include in its conformance requirements the
requirement to conform to this International Standard.

NOTES

1. ltis envisaged that this International Standard will be accompanied by other standards specifying mappings between the internal datatypes
specified in language and language-related standards and the LI datatypes. Such mapping standards are required to comply with this Interna-

0 ISO/IEC ISO/IEC 11404:1996 (E)

tional Standard.

2. Such mapping standards may define "generic" mappings, in the sense that for a given internal datatype the standard specifies a pa
trized LI datatype in which the parametric values are not derived from parametric values of the internal datatype nor specified by the stan
itself, but rather are required to be specified by a "user" or "implementor" of the mapping standard. That is, instead of specifying a partic
LI datatype, the mapping specifies a family of LI datatypes and requires a further user or implementor to specify which member of the fan
applies to a particular use of the mapping standard. This is always necessary when the internal datatypes themselves are, in the intention
language standard, either explicitly or implicitly parametrized. For example, a programming language standard may define a datatype IN
GER with the provision that a conforming processor will implement some range of Integer; hence the mapping standard may map the inte
datatype INTEGER to the LI datatype :
integer range (min..max),

and require a conforming processor to provide values for "min" and "max".

3 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this International St
dard. Atthe time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreem
based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the
dards indicated below. Members of IEC and ISO maintain registers of current valid International Standards.

ISO/IEC 8601:1988)ata elements and interchange formats — Information interchange —Representation of dates and time

ISO/IEC 8824:1990information technology — Open Systems Interconnection — Specification of Abstract Syntax Notation O
(ASN.1).

ISO/IEC 10646-1:1993nformation technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane.

4 Definitions
For the purposes of this International Standard, the following definitions apply.
NOTE — These definitions may not coincide with accepted mathematical or programming language definitions of the same terms.

4.1 actual parametric datatype a datatype appearing as a parametric datatype in a use of a datatype generator, as oppc
to theformal-parametric-typeappearing in the definition of the datatype generator.

4.2 actual parametric value a value appearing as a parametric value in a reference to a datatype family or datatype genera
as opposed to tfermal-parametric-valueappearing in the corresponding definitions.

4.3 aggregate datatypea generated datatype each of whose values is made up of values of the component datatypes, in
sense that operations on all component values are meaningful.

4.4 annotation a descriptive information unit attached to a datatype, or a component of a datatype, or a procedure (valt
to characterize some aspect of the representations, variables, or operations associated with values of the datatype which gc
yond the scope of this International Standard.

4.5 approximate a property of a datatype indicating that there is not a 1-to-1 relationship between values of the conceptt
datatype and the values of a valid computational model of the datatype.

4.6 bounded a property of a datatype, meaning bbttunded abovandbounded below.

4.7 bounded abovea property of a datatype indicating that there is a value U in the value space such that, for all values s
the value space,ssU.

4.8 bounded belowa property of a datatype indicating that there is a value L in the value space such that, for albvalues
the value space, £ s.

4.9 characterizing operations
(of a datatype): a collection of operations on, or yielding, values of the datatype, which distinguish this datatype frc

ISO/IEC 11404:1996 (E) [0 ISO/IEC

other datatypes with identical value spaces;

(of a datatype generator): a collection of operations on, or yielding, values of any datatype resulting from an application
of the datatype generator, which distinguish this datatype generator from other datatype generators which produce identical value
spaces from identical parametric datatypes.

4.10 component datatypea datatype which is a parametric datatype to a datatype generator, i.e. a datatype on which the
datatype generator operates.

4.11 datatype a set of distinct values, characterized by properties of those values and by operations on those values.
4.12 datatype declaration

(1) the means provided by this International Standard for the definition of a LI datatype which is not itself defined by this
International Standard;

(2) an instance of use of this means.

4.13 datatype family. a collection of datatypes which have equivalent characterizing operations and relationships, but value
spaces which differ in the number and identification of the individual values.

4.14 datatype generatoran operation on datatypes, as objects distinct from their values, which generates new datatypes.
4.15 defined datatypea datatype defined by a type-declaration.
4.16 defined generatora datatype generator defined by a type-declaration.

4.17 exacta property of a datatype indicating that every value of the conceptual datatype is distinct from all others in any valid
computational model of the datatype.

4.18 formal-parametric-type: an identifier, appearing in the definition of a datatype generator, for which a LI datatype will
be substituted in any reference to a (defined) datatype resulting from the generator.

4.19 formal-parametric-value an identifier, appearing in the definition of a datatype family or datatype generator, for which
a value will be substituted in any reference to a (defined) datatype in the family or resulting from the generator.

4.20 generated datatypea datatype defined by the application of a datatype generator to one or more previously-defined
datatypes.

4.21 generated internal datatypea datatype defined by the application of a datatype generator defined in a particular pro-
gramming language to one or more previously-defined internal datatypes.

4.22 generator a datatype generator (q.v.).

4.23 generator declaration

(1) the means provided by this International Standard for the definition of a datatype generator which is not itself defined
by this International Standard,;

(2) an instance of use of this means.

4.24 internal datatype a datatype whose syntax and semantics are defined by some other standard, language, product, service
or other information processing entity.

4.25 inward mapping a conceptual association between the internal datatypes of a language and the LI datatypes which as-
signs to each LI datatype either a single semantically equivalent internal datatype or no equivalent internal datatype.

4.26 LI datatype:
(1) a datatype defined by this International Standard, or
(2) a datatype defined by the means of datatype definition provided by this International Standard.

4.27 lower bound in a datatype which is bounded below, the value L such that, for all wluése value space, £s.
4.28 mapping

(of datatypes): a formal specification of the relationship between the (internal) datatypes which are notions of, and spec-
ifiable in, a particular programming language and the (LI) datatypes specified in this International Standard;

0 ISO/IEC ISO/IEC 11404:1996 (E)

(of values): a corresponding specification of the relationships between values of the internal datatypes and values o
LI datatypes.

4.29 order. a mathematical relationship among values (see 6.3.2).

4.30 ordered a property of a datatype which is determined by the existence and specification of an order relationship on
value space.

4.31 outward mapping a conceptual association between the internal datatypes of a language and the LI datatypes wh
identifies each internal datatype with a single semantically equivalent LI datatype.

4.32 parametric datatype a datatype on which a datatype generator operates to produce a generated-datatype.
4.33 parametric value

(1) a value which distinguishes one member of a datatype family from another, or

(2) a value which is a parameter of a datatype or datatype generator definggdoyleclaratior(see 9.1).

4.34 primitive datatype: an identifiable datatype that cannot be decomposed into other identifiable datatypes without loss
all semantics associated with the datatype.

4.35 primitive internal datatype: a datatype in a particular programming language whose values are not viewed as being co
structed in any way from values of other datatypes in the language.

4.36 representation

(of a LI datatype): the mapping from the value space of the LI datatype to the value space of some internal datatype
computer system, file system or communications environment;

(of a value): the image of that value in the representation of the datatype.

4.37 subtype a datatype derived from another datatype by restricting the value space to a subset whilst maintaining all ch
acterizing operations.

4.38 upper bound in a datatype which is bounded above, the value U such that, for all values s in the valuesdgace, s
4.39 value spacethe set of values for a given datatype.

4.40 variable a computational object to which a value of a particular datatype is associated at any given time; and to whi
different values of the same datatype may be associated at different times.

5 Conventions Used in this International Standard

5.1 Formal syntax

This International Standard defines a formal datatype specification language. The following notation, derived from Backus-N
form, is used in defining that language. In this clause, the wuaickis used to refer to the characters used to define the syntax,

while the wordcharacteris used to refer to the characters used in the actual datatype specification language. Table 5-1 sum
rizes the syntactic metanotation.

Table 5-1 — Metanotation Marks

(QUOTATION MARK) delimits a terminal symbol
' (APOSTROPHE) delimits a terminal symbol
{} (CURLY BRACKETS) delimit a repeated sequence (zero or more occurrences)
[1 (SQUARE BRACKETS) delimit an optional sequence (zero or one occurrence)
| (VERTICAL LINE) delimits an alternative sequence
= (EQUALS SIGN) separates a non-terminal symbol from its definition
(FULL STOP) terminates a production

ISO/IEC 11404:1996 (E) [0 ISO/IEC

A terminal symbol is a sequence of marks beginning with eith@EdOTATION MARK (") or anAPOSTROPHE mark (')

and terminated by the next occurrence of the same mark. The terminal symbol represents the occurrence of the sequence of char-
acters in an implementation character-set corresponding to the marks enclosed by (but not inclu@uf) T#TION MARK

or APOSTROPHE delimiters.

A non-terminal symbol is a sequence of marks, each of which is either a letter oH¥feHEN-MINUS (-) mark, terminated

by the first mark which is neither a letter noHYy PHEN-MINUS. A non-terminal symbol represents any sequence of terminal
symbols which satisfies thgroductionfor that non-terminal symbol. For each non-terminal symbol there is exactly one produc-
tion in clauses 7, 8, 9, and 10.

A sequenceof symbols represents exactly one occurrence of a (group of) terminal symbol(s) represented by each symbol in the
sequence in the order in which the symbols appear in the sequence, and no other symbols.

A repeated sequencés a sequence of terminal and/or non-terminal symbols enclosed betwdeRiTaCURLY BRACKET
mark () and aRIGHT CURLY BRACKET mark (}). A repeated sequence represents any number of consecutive occurrences
of the sequence of symbols so enclosed, including no occurrence.

An optional sequencés a sequence of terminal and/or non-terminal symbols enclosed beti&#fTasSQUARE BRACKET
mark ([) and aRIGHT SQUARE BRACKET mark (]). An optional sequence represents either exactly one occurrence of the
sequence of symbols so enclosed or no symbols at all.

An alternative sequencas a sequence of terminal and/or non-terminal symbols preceded/BRaICAL LINE (]) mark and
followed by either &/ERTICAL LINE mark or aFULL STOP mark (.). An alternative sequence represents the occurrence of
either the sequence of symbols so delimited or the sequence of symbols preceding MERTEDAL LINE mark.

A production defines the valid sequences of symbols which a non-terminal symbol represents. A production has the form:
non-terminal-symbol = valid-sequence .

wherevalid-sequencés any sequence of terminal symbols, non-terminal symbols, optional sequences, repeated sequences and

alternative sequences. TEQUALS SIGN (=) mark separates the non-terminal symbol being defined from the valid-sequence

which represents its definition. TR&JLL STOP mark terminates the valid-sequence.

5.2 Text conventions

Within the text:
A reference to a terminal symbol syntactic object consists of the terminal symbol in quotation marks, e.g. "type".

« A reference to a non-terminal symbol syntactic object consists of the non-terminal-symbol in italic schigtealgc-
laration.

* Non-italicized words which are identical or nearly identical in spelling to a non-terminal-symbol refer to the conceptual
object represented by the syntactic object. In particubas;typeefers to the syntactic representation of an "xxx datatype”
in all occurrences.

6 Fundamental Notions

6.1 Datatype

A datatypeis a a set of distinct values, characterized by properties of those values and by operations on those values. Charac-
terizing operations are included in this International Standard solely in order to identify the datatype. In this International Stan-
dard, characterizing operations are purely informative and have no normative impact.

NOTE — Characterizing operations are included in order to assist in the identification of the appropriate datatypes for particular purposes, such
as mapping to programming languages.

The termLI datatype (for Language-Independent datatype) is used to mean a datatype defined by this International Standard.
LI datatypes (plural) refers to some or all of the datatypes defined by this International Standard.

The terminternal datatype is used to mean a datatype whose syntax and semantics are defined by some other standard, language,
product, service or other information processing entity.

0 ISO/IEC ISO/IEC 11404:1996 (E)

NOTE — The datatypes included in this standard are "common"”, not in the sense that they are directly supported by, i.e. "built-in" to, m:
languages, but in the sense that they are common and useful generic concepts among users of datatypes, which include, but go well be
programming languages.

6.2 Value space

A value spacds the collection of values for a given datatype. The value space of a given datatype can be defined in one of
following ways:

¢ enumerated outright, or
« defined axiomatically from fundamental notions, or
« defined as the subset of those values from some already defined value space which have a given set of properties,

« defined as a combination of arbitrary values from some already defined value spaces by a specified construction pra
dure.

Every distinct value belongs to exactly one datatype, although it may belong to many subtypes of that datatype (see 8.2).

6.3 Datatype properties

The model of datatypes used in this International Standard is said to be an "abstract computational model". Itis "computatio
in the sense that it deals with the manipulation of information by computer systems and makes distinctions in the typing of inf
mation units which are appropriate to that kind of manipulation. Itis "abstract" in the sense that it deals with the perceived pr
erties of the information units themselves, rather than with the properties of their representations in computer systems.

NOTES

1. ltisimportant to differentiate between the values, relationships and operations for a datatype and the representations of those value
lationships and operations in computer systems. This International Standard specifies the characteristics of the conceptual datatyges, but
provides a means for specification of characteristics of representations of the datatypes.

2. Some computational properties derive from tleed for the information units to be representalsleomputers. Such properties are
deemed to be appropriate to the abstract computational model, as opposed togpresgntationaproperties, which derive from theature
of specific representations of the information units.

3. ltis not proper to describe the datatype model used herein as "mathematical”, because a truly mathematical model has no notions ©
cess to information units" or "invocation of processing elements", and these notions are important to the definition of characterizing operat
for datatypes and datatype generators.

6.3.1 Equality

In every value space there is a notioregfiality, for which the following rules hold:

« for any two instances (a, b) of values from the value space, eitheqgaal tdb, denoted a = b, oria not equal td,
denoted & b;

« there is no pair of instances (a, b) of values from the value space such that both a #b;and a
« for every value a from the value space, a = a;

« for any two instances (a, b) of values from the value space, a = b if and only if b = a;

« for any three instances (a, b, c) of values from the value space, ifa=b and b =c, thena =c.

On every datatype, the operation Equal is defined in terms of the equality property of the value space, by:
- for any values a, b drawn from the value space, Equalétrbie if a = b, andialseotherwise.

6.3.2 Order

A value space is said to bedered if there exists for the value spaceader relation, denoted, with the following rules:
« for every pair of values (a, b) from the value space, eitkdy ar b< a, or both;
« for any two values (a, b) from the value space, sftaand kx a, then a = b;
« for any three values (a, b, c) from the value spaces i and k= c, then & c.

ISO/IEC 11404:1996 (E) [0 ISO/IEC

For convenience, the notation a < b is used herein to denote the simultaneous relatioashipad & b.

A datatype is said to berdered if an order relation is defined on its value space. A corresponding characterizing operation,
called InOrder, is then defined by:

- for any two values (a, b) from the value space, InOrder(ath)asf a < b, andfalseotherwise.

NOTE — There may be several possible orderings of a given value space. And there may be several different datatypes which have a common
value space, each using a different order relationship. The chosen order relationship is a characteristic of an ordered datatype and may affect
the definition of other operations on the datatype.

6.3.3 Bound

A datatype is said to bleounded aboveif it is ordered and there is a value U in the value space such that, for all values s in the
value space, s U. The value U is then said to be apper bound of the value space. Similarly, a datatype is said tbdwended
belowif it is ordered and there is a value L in the space such that, for all valinethe value space, ks. The value L is then

said to be dower bound of the value space. A datatype is said tddoeindedif its value space has both an upper bound and a
lower bound.

NOTE — The upper bound of a value space, if it exists, must be unique under the equality relationship. Forif U1 and U2 are both upper bounds
of the value space, then U2 and U2< U1, and therefore U1 = U2, following the second rule for the order relationship. And similarly the
lower bound, if it exists, must also be unique.

On every datatype which is bounded below, the niladic operation Lowerbound is defined to yield that value which is the lower
bound of the value space, and, on every datatype which is bounded above the niladic operation Upperbound is defined to yield
that value which is the upper bound of the value space.

6.3.4 Cardinality

A value space has the mathematical concept of cardinality: it may be finite, denumerably infinite (countable), or non-denumera-
bly infinite (uncountable). A datatype is said to have the cardinality of its value space. In the computational model, there are
three significant cases:

« datatypes whose value spaces are finite,
« datatypes whose value spaces are exact (see 6.3.5) and denumerably infinite,

« datatypes whose value spaces are approximate (see 6.3.5), and therefore have a finite or denumerably infinite computa-
tional model, although the conceptual value space may be non-denumerably infinite.

Every conceptually finite datatype is necessarily exact. No computational datatype is non-denumerably infinite.

NOTE — For a denumerably infinite value space, there always exist representation algorithms such that no two distinct values have the same
representation and the representation of any given value is of finite length. Conversely, in a non-denumerably infinite value space there always
exist values which do not have finite representations.

6.3.5 Exact and approximate

The computational model of a datatype may limit the degree to which values of the datatype can be distinguished. If every value
in the value space of the conceptual datatype is distinguishable in the computational model from every other value in the value
space, then the datatype is said t@xact

Certain mathematical datatypes having values which do not have finite representations are sajgptoXiemate, in the fol-
lowing sense:

Let M be the mathematical datatype abdbe the corresponding computational datatype, and let P be the mapping from the
value space d# to the value space @@. Then for every value’ in C, there is a corresponding valuén M and a real valué
such that P{) = v’ for all xin M such that {/ - x| <h. Thatis V' is the approximation iiC to all values inM which are "within
distanceh of valuev'. Furthermore, for at least one valukin C, there is more than one valyeén M such that B{) =v’. And
thusC is notan exact model d¥l.

In this International Standard, all approximate datatypes have computational models which specify, via parametricdelues, a
gree of approximation, that is, they require a certain minimum set of values of the mathematical datatype to be distinguishable
in the computational datatype.

NOTE — The computational model described above allows a mathematically dense datatype to be mapped to a datatype with fixed-length rep-
resentations and nonetheless evince intuitively acceptable mathematical behavior. When the rhalesdtibed above is constant over the

0 ISO/IEC ISO/IEC 11404:1996 (E)

value space, the computational model is characterized as having "bounded absolute error” and the result is a scaled datatype (811.9). W
has the fornt | v |, wherec is constant over the value space, the computational model is characterized as having "bounded relative errc
which is the model used for the Real (8.1.10) and Complex (8.1.11) datatypes.

6.3.6 Numeric

A datatype is said to beumeric if its values are conceptually quantities (in some mathematical number system). A datatyp
whose values do not have this property is said t@omenumeric.

NOTE — The significance of the numeric property is that the representations of the values depend cadsqgrhat can be algorithmically
transformed from one radix to another.

6.4 Primitive and non-primitive datatypes

In this International Standard, datatypes are categorized, for syntactic convenience, into:
* primitive datatypes, which are defined ab initio without reference to other datatypes, and
« generateddatatypes, which are specified, and partly defined, in terms of other datatypes.

In addition, this International Standard identifies structural and abstract notions of datatypes. The structural notion of a data
characterizes the datatype as either:

« conceptuallyatomic, having values which are intrinsically indivisible, or

» conceptuallyaggregate having values which can be seen as an organization of specific component datatypes with speci
functionalities.

All primitive datatypes are conceptually atomic, and therefore have, and are defined in terms of, well-defined abstract notic
Some generated datatypes are conceptually atomic but are dependent on specifications which involve other datatypes. The
are defined in terms of their abstract notions. Many other datatypes may represent objects which are conceptually atomic
are themselves conceptually aggregates, being organized collections of accessible component values. For aggregate dat:
this International Standard defines a set of basic structural notions (see 6.8) which can be recursively applied to produce the
space of a given generated datatype. The only abstract semantics assigned to such a datatype by this International Stand:
those which characterize the aggregate value structure itself.

NOTE — The abstract notion of a datatype is the semantics of the values of the datatype itself, as opposed to its utilization to represent v:
of a particular information unit or a particular abstract object. The abstract and structural notions provided by this International Standard
sufficient to define its role in the universe of discourse between two languagesytiatdefine its role in the universe of discourse between
two programs For example, Array datatypes are supported as such by both Fortran and Pascal, so that Array of Real has sufficient sema
for procedure calls between the two languages. By comparison, both linear operators and lists of Cartesian points may be represented by
of Real, and Array of Real is insufficient to distinguish those meanings in the programs.

6.5 Datatype generator

A datatype generatoris a conceptual operation on one or more datatypes which yields a datatype. A datatype generator oper
on datatypes to generate a datatype, rather than on values to generate a value. Specifically, a datatype generator is the comb
of:

« a collection of criteria for the number and characteristics of the datatypes to be operated upon,

 aconstruction procedure which, given a collection of datatypes meeting those criteria, creates a new value space frorm
value spaces of those datatypes, and

* a collection of characterizing operations which attach to the resulting value space to complete the definition of a nev
datatype.

The application of a datatype generator to a specific collection of datatypes meeting the criteria for the datatype generator fc

a generated datatype The generated dataype is sometimes calleddbalting datatype and the collection of datatypes to
which the datatype generator was applied are callgghitsmetric datatypes

6.6 Characterizing operations

The set ofcharacterizing operations for a datatypecomprises those operations on or yielding values of the datatype which
distinguish this datatype from other datatypes having value spaces which are identical except possibly for substitution of symb

ISO/IEC 11404:1996 (E) [0 ISO/IEC

The set otharacterizing operations for a datatype generatoicomprises those operations on or yielding values of any datatype
resulting from an application of the datatype generator which distinguish this datatype generator from other datatype generators
which produce identical value spaces from identical parametric datatypes.

NOTES

1. Characterizing operations are needed to distinguish datatypes whose value spaces differ only in what the values are called. For example,
the value spaces (one, two, three, four), (1, 2, 3, 4), and (red, yellow, green, blue) all have four distinct values and all the names (symbols) are
different. But one can claim that the first two support the characterizing operation Add, while the last does not:

Add(one, two) = three; and Add(1,2) = 3; but Add(red, yelldwyeen.
It is this characterizing operation (Add) which enables one to recognize that the first two datatypes are the same datatype, while the last is a
different datatype.

2. The characterizing operations for an aggregate datatype are compositions of characterizing operations for its datatype generator with char-
acterizing operations for its component datatypes. Such operations are, of course, only sufficient to identify the datttyptues.

3. The characterizing operations on a datatype may be:
a) niladic operations which yield values of the given datatype,
b) monadic operations which map a value of the given datatype into a value of the given datatype or into a value of datatype Boolean,
¢) dyadic operations which map a pair of values of the given datatype into a value of the given datatype or into a vajye of data
Boolean,
d) n-adic operations which map ordered n-tuples of values, each of which is of a specified datatype, which may be the given datatype
or a parametric datatype, into values of the given datatype or a parametric datatype.

4. Ingeneral, there is no unique collection of characterizing operations for a given datatype. This International Standard specifies one col-
lection of characterizing operations for each datatype (or datatype generator) which is sufficient to distinguish the (resulting) datatype from al
other datatypes with value spaces of the same cardinality. While some effort has been made to minimize the collection of characterizing oper-
ations for each datatype, no assertion is made that any of the specified collections is minimal.

5. InOrder is always a characterizing operation on ordered datatypes (see 6.3.2).

6.7 Datatype families

If there is a one-to-one symbol substitution which maps the entire value space of one datatdpen@dh® into a subset of the

value space of another datatype (thege) in such a way that the value relationships and characterizing operations of the domain
datatype are preserved in the corresponding value relationships and characterizing operations of the range datatype, and if there
are no additional characterizing operations on the range datatype, then the two datatypes are said to belong tathidysaime
datatypes An individual member of a family of datatypes is distinguished by the symbol set making up its value space. In this
International Standard, the symbol set for an individual member of a datatype family is specified by one or more values, called
theparametric valuesof the datatype family.

6.8 Aggregate datatypes

An aggregate datatypeis a generated datatype, each of whose values is, in principle, made up of values of the parametric
datatypes. The parametric datatypes of an aggregate datatype or its generator are alsorcpeént datatypes An aggre-
gate datatype generator generates a datatype by

« applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space of the aggregate
datatype, and

« providing a set of characterizing operations specific to the generator.

Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of an aggregate value are
accessible through characterizing operations.

Aggregate datatypes of various kinds are distinguished one from another by properties which characterize relationships among
the component datatypes and relationships between each component and the aggregate value. This subclause defines those pror
erties.

The properties specific to an aggregate are independent of the properties of the component datatypes. (The fundamental prop-
erties of arrays, for example, do not depend on the nature of the elements.) In principle, any combination of the properties spec-
ified in this subclause defines a particular form of aggregate datatype, although most are only meaningful for homogeneous ag-
gregates (see 6.8.1) and there are implications of some direct access methods (see 6.8.5).

10

0 ISO/IEC ISO/IEC 11404:1996 (E)

6.8.1 Homogeneity

An aggregate datatypel®mogeneousif and only if all components must belong to a single datatype. If different components
may belong to different datatypes, the aggregate datatype is saichitdr®@geneous The component datatype of a homoge-
neous aggregate is also called ¢kmment datatype

NOTES

1. Homogeneous aggregates view all their elements as serving the same role or purpose. Heterogeneous aggregates divide their el
into different roles.

2. The aggregate datatype is homogeneous if its components all belong to the same datatype, even if the element datatype is itself an
ogeneous aggregate datatype. Consider the datatype label_list defined by:

type label = choice (state(name, handle)) of ((name): characterstring, (handle): integer);

type label_list = sequence of (label);

Formally, alabel_list value is a homogeneous seriedaifel values. One could argue that it is really a series of heterogeneous values, becaus
everylabel value is of a choice datatype (see 8.3.1). Choice is clearly heterogeneous becateggaibie of introducing variatiom element
type. But Sequence (see 8.4.4) is homogeneous because ihitedlices no variatiorin element type.

6.8.2 Size

Thesizeof an aggregate-value is the number of component values it contains. The size of the aggregate désespié &nd

only if all values in its value space contain the same number of component values. The &z@bde, if different values of

the aggregate datatype may have different numbers of component values. Variability is the more general case; fixed-size
constraint.

6.8.3 Uniqueness

An aggregate-value has tlhmiquenessproperty if and only if no value of the element datatype occurs more than once in the
aggregate-value. The aggregate datatype has the uniqueness property, if and only if all values in its value space do.

6.8.4 (Aggregate-imposed) ordering

An aggregate datatype has thelering property, if and only if there is a canonical first element of each non-empty value in its
value-space. This ordering is (externally) imposed by the aggregate value, as distinct from the value-space of the eler
datatype itself being (internallyrdered (see 6.3.2). Itis also distinct from the value-space of the aggregate datatypeibeing
dered.

EXAMPLE — The type-generat@equence has the ordering property. The datatgharacterstring is defined as

sequence of (character(repertoire)). The ordering property afequence means that in every value of typbaracterstring, there is a first
character value. For example, the first element value of the characterstring value “computation” is 'c’. This is different from the question
whether the element datatypkaracter(repertoire) is ordered: is 'a’ <'c'? Itis also different from the question of whether the value space
of datatypecharacterstring is ordered by some collating-sequence: is “computation” < “Computer”?

6.8.5 Access method

Theaccess methodor an aggregate datatype is the property which determines how component values can be extracted fro
given aggregate-value.

An aggregate datatype hasligect access methodif and only if there is an aggregate-imposed mapping between values of one
or more “index” (or “key”) datatypes and the component values of each aggregate value. Such a mapping is required to be sir
valued, i.e. there is at most one element of each aggregate value which corresponds to each (composite) value of the |
datatype(s). Thdimensionof an aggregate datatype is the number of index or key datatypes the aggregate has.

An aggregate datatype is said toihdexed, if and only if it has a direct access method, every index datatype is ordered, and al
element of the aggregate value is actually present and defined for every (composite) value in the value space of the ir
datatype(s). Every indexed aggregate datatype has a fixed size, because of the 1-to-1 mapping from the index value spac
addition, an indexed datatype has a "partial ordering” in each dimension imposed by the order relationship on the index data
for that dimension; in particular, an aggregate datatype with a single ordered index datatype implicitlydndering imposed

by sequential indexing.

An aggregate datatype is said tokeyed, if and only if it has a direct access method, but either the index datatypes or the map
ping do not meet the requirements fodexed That is, the “index” (or “key”) datatypes need not be ordered, and a value of the

11

ISO/IEC 11404:1996 (E) [0 ISO/IEC

aggregate datatype need not have elements corresponding to all of the key values.

An aggregate datatype is said to have dnljirect access methodsf there is no aggregate-imposed index mapping. Indirect
access may be by position (if the aggregate datatyperdasing), by value of the element (if the aggregate datatypeinégue-
nesg, or by some implementation-dependent selection mechanism, modelled as random selection.

NOTES

1. The access methods become characterizing operations on the aggregate types. Itis preferable to define the types by their intrinsic prop-
erties and to see these access properties be derivable characterizing operations.

2. Sequence (see 8.4.4) is said to hadérect accesdecause the only way a given element value (or an element value satisfying some given
condition) can be found is to traverse the list in order until the desired element is the “Head”. In general, therefore, one cannot access the desired
element without first accessing all (undesired) elements appearing earlier in the sequence. On the other hand, Array (sedi@dt arbass

because the access operation for a given element is “find the element whose index is i” — the ith element can be accessed without accessing any
other element in the given Array. Of course, if the Array element which satisfies a condition not related to the index value is wanted, access
would be indirect.

6.8.6 Recursive structure

A datatype is said to beecursive if a value of the datatype can contain (or refer to) another value of the datatype. In this Inter-
national Standard, recursivity is supported by the type-declaration facility (see 9.1), and recursive datatypes can be described us-
ing type-declaration in combination with choice datatypes (8.3.1) or pointer datatypes (8.3.2). Thus recursive strmuature is
considered to be a property of aggregate datatypes per se.

EXAMPLE — LISP has several "atomic" datatypes, collected under the generic datatype "atom", and a "list" datatype which is a sequence of
elements each of which can be an atom or a list. This datatype can be described using the Tree datatype generatdd.@e?ined in 1

7 Elements of the Datatype Specification Language

This International Standard defines a datatype specification language, in order to formalize the identification and declaration of
datatypes conforming to this International Standard. The language is a subset of the Interface Definition Notation defined in
ISO/IEC 13886:1996)nformation technology — Programming languages — Language-independent procedure, edliicty

is completely specified in Annex D. This clause defines the basic syntactic objects used in that language.

7.1 IDN character-set

The following productions define the character-set of the datatype specification language, summarized in Table 7-1.

Table 7-1 — IDN Character Set

Syntax Characters
letter abcdefghijklmnopgrstuvwxyz
digit 0123456789
special () . , : ; -
(parentheses) (full stop) (comma) (colon) (semicolon) (hyphen minus)
/ - " = []
(curly brackets) (solidus) (asterisk) (circumflex) (equals sign) (square brackets)
underscore
(low line)
apostrophe '
(apostrophe)
quote "
(quotation mark)
escape !
(exclamation mark)
space

12

0 ISO/IEC ISO/IEC 11404:1996 (E)

letter = k= U I I A o U I o A 1 R O T L B 1 B
I B e T B B BT BV A B B U e 4

digit = O R I I I T - A - * A

special = G I I T B B A T I e A A B A B

underscore = " "

apostrophe = ™"

quote =

escape = "

space = "

non-quote-character = letter | digit | underscore | special | apostrophe | space .
bound-character = non-quote-character | quote .
added-character = not defined by this International Standard

These productions are nominal. Lexical productions are always subject to minor changes from implementation to impleme
tion, in order to handle the vagaries of available character-sets. The following rules, however, always apply:

1) Thebound-charactersand theescapecharacter, are required in any implementation to be associated with particular mem
bers of the implementation character set.

2) The charactespaces required to be bound to the "space” member of ISO/IEC 10646-1: 1993, but it only has meaning witt
in character-literals and string-literals.

3) Abound-characteis required to be associated with the member having the corresponding symbol, if any, in any impleme
tation character-set derived from ISO/IEC 10646-1:1993, except that no significance is attached to the "case" of letter

4) Anadded-characteis any other member of the implementation character-set which is bound to the member having the c
responding symbol in an ISO/IEC 10646-1 character-set.

7.2 Whitespace

A sequence of one or mopacecharacters, except within a character-literal or string-literal (see 7.3), shall be considere
whitespace.Any use of this International Standard may define any other characters or sequences of characters not in the al
character set to be whitespace as well, such as horizontal and vertical tabulators, end of line and end of page indicators, €

A commentis any sequence of characters beginning with the sequence "/*" and terminating with the first occurrence therea
of the sequence "*/". Every character of a comment shall be considered whitespace.

With respect to interpretation of a syntactic object under this International Standard, any annotation (see 7.4) is consids
whitespace.

Any two lexical objects which occur consecutively may be separated by whitespace, without effect on the interpretation of
syntactic construction. Whitespace shall not appéin lexical objects.

Any two consecutive keywords or identifiers, or a keyword preceded or followed by an identifier, shall be separated
whitespace.

7.3 Lexical objects

The lexical objects are all terminal symbols except those defined in 7.1, and the adbgedifer, digit-string, character-literal,
string-literal.

7.3.1 Identifiers

An identifier is a terminal symbol used to name a datatype or datatype generator, a component of a generated datatype, or a
of some datatype.

identifier = letter { pseudo-letter } .
pseudo-letter = letter | digit | underscore .

13

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Table 7-2 — Reserved Keywords

array choice default excluding from in inout
new of out plus pointer procedure raises
range record returns selecting size subtype table
termination to type value

Multiple identifiers with the same spelling are permitted, as long as the object to which the identifier refers can be determined by
the following rules:

1) Anidentifier X declared by &ype-declaratioror value-declaratiorshall not be declared in any other declaration.

2) Theidentifier X in a component oftgpe-specifie(Y) refers to that component of Y which Y declares X to identify, if any,
or whatever X refers to in thigype-specifiewhich immediately contains Y, if any, or else the datatype or value which X is
declared to identify by a declaration.

7.3.2 Digit-string

A digit-string is a terminal-symbol consisting entirely of digits. It is used to designate a value of some datatype, with the inter-
pretation specified by that datatype definition.

digit-string = digit { digit } .
7.3.3 Character-literal and string-literal

A character-literal is a terminal-symbol delimited bgpostrophecharacters. It is used to designate a value of a character
datatype, as specified in 8.1.4.

character-literal = any-character
any-character = bound-character | added-character | escape-character .
escape-character = escape character-name escape .

character-name = identifier { "" identifier } .

A string-literal is a terminal-symbol delimited bguotecharacters. It is used to designate values of time datatypes (8.1.6),
bitstring datatypes (10.1.4), and characterstring datatypes (10.1.5), with the interpretation specified for each ofypese datat

string-literal = quote { string-character } quote .
string-character = non-quote-character | added-character | escape-character .

Every character appearing ircharacter-literalor string-literal shall be a part of the literal, even when that character would oth-
erwise be whitespace.

7.3.4 Keywords

The termkeyword refers to any terminal symbol which also satisfies the productioiémntifier, i.e. is not composed of special
characters. The keywords appearing in Table 7-2 are "reserved", in the sense that none of them shall be interpreted as an identi-
fier. All other keywords appearing in this International Standard shall be interpreted as predefined identifiers for the datatype or
type-generator to which this International Standard defines them to refer.

NOTE — All of the above keywords are reserved because they introduce (or are part of) syntax which cannot validly foléowiféer for a
datatype or type-generator. Most datatype identifiers defined in Clause 8 are syntactically equivatgpetoegerencésee 8.5), except for
their appearance in Clause 8.

7.4 Annotations

An annotation or extensionis a syntactic object defined by a standard or information processing entity which uses this Interna-
tional Standard. All annotations shall have the form:

14

0 ISO/IEC ISO/IEC 11404:1996 (E)

annotation = "[* annotation-label ":" annotation-text "]" .
annotation-label = objectidentifiercomponent-list .
annotation-text = not defined by this International Standard

The annotation-labekhall identify the standard or information processing entity which defines the meaningafrib&ation-

text The entity identified by thannotation-labekhall also define the allowable syntactic placement of a given type of annota-
tion and the syntactic object(s), if any, to which the annotation applies.objeetidentifiercomponent-lishall have the struc-
ture and meaning prescribed by clause 10.1.10.

NOTE — Of the several forms afbjectidentifiercomponent-valgpecified in 10.1.10, theameforris the most convenient for labelling an-
notations. Following ISO/IEC 8824:1990, every value of the objectidentifier datatype must have as its first component one of "iso", “ccitt",
"joint-iso-ccitt", but an implementation or use is permitted to specify an identifier which represents a sequence of component values begin
with one of the above, as:

value rpc : objectidentifier = { iso(1) standard(0) 11578 };
and that identifier may then be used as the first (or only) componentohatation-labelas in:

[rpc: discriminant = n].
(This example is fictitious. ISO/IEC 11578:1995 does not define any annotations.)
Non-standard annotations, defined by vendors or user organizations, for example, can acquire such labels through one of the { iso mer
body <nation> ... } or {iso identified-organization <organization> ... } paths, using the appropriate national or international registraiien auth
ity.

7.5 Values

The identification of members of a datatype family, subtypes of a datatype, and the resulting datatypes of datatype gener:
may require the syntactic designation of specific values of a datatype. For this reason, this International Standard provides :
tation for values of every datatype that is defined herein or can be defined using the features provided by clause 10, excey
datatypes for which designation of specific values is not appropriate.

A value-expressiodesignates a value of a datatype. Syntax:
value-expression = independent-value | dependent-value | formal-parametric-value .

An independent-values a syntactic construction which resolves to a fixed value of some LI datatypiepAndent-valuss a
syntactic construction which refers to the value possessed by another component of the same datfaypel-parametric-
valuerefers to the value offarmal-type-parametein atype-declarationas provided in 9.1.

7.5.1 Independent values

An independent-valudesignates a specific fixed value of a datatype. Syntax:

independent-value = explicit-value | value-reference .

explicit-value = boolean-literal | state-literal | enumerated-literal | character-literal

| ordinal-literal | time-literal | integer-literal | rational-literal

| scaled-literal | real-literal | complex-literal | void-literal

| extended-literal | pointer-literal | procedure-reference | string-literal
| bitstring-literal | objectidentifier-value | choice-value | record-value

| set-value | sequence-value | bag-value | array-value | table-value .
value-reference = value-identifier .

procedure-reference = procedure-identifier .

An explicit-valueuses an explicit syntax for values of the datatype, as defined in clauses 8 andralieAeferenceesignates
the value associated with thalue-identifierby avalue-declarationas provided in 9.2. Arocedure-referencdesignates the
value of a procedure datatype associated witftoaedure-identifieras described in 8.3.3.

NOTES

1. Two syntactically differengxplicit-values may designate the same value, suctaienal-literals 3/4 and6/8, or set of (integer) values
(1,3,4) and (4,3,1).

2. The samexplicit-valuesyntax may designate values of two different datatype$9840101 can be an Integer value, or an Ordinal val-
ue. In general, the syntax requires that the intended datatypeatifie-expressionan be determined from context when ttzue-expression

15

ISO/IEC 11404:1996 (E) [0 ISO/IEC

is encountered.

3. The IDN productions fovalue-referenc@ndprocedure-referencappearing in Annex D are more general. The above productions are
sufficient for the purposes of this International Standard.

7.5.2 Dependent values

When a parameterized datatype appears within a procedure parameter (see 8.3.3) or a record datatype (see 8.4.1), it is possible
to specify that the parametric value is always identical to the value of another parameter to the procedure or another component
within the record. Such a value is referred to de@endent-value Syntax:

dependent-value = primary-dependency { "." component-reference } .
primary-dependency = field-identifier | parameter-name .
component-reference = field-identifier | ™" .

A type-specifier xs said toinvolve adependent-valué x contains thelependent-valuand no component ofcontains thele-
pendent-valueThus, exactly ong/pe-specifiemvolves a giverdependent-valueA type-specifiewhich involves alependent-
valueis said to be alata-dependent type Every data-dependent type shall be the datatype of a component of some generated
datatype.

Theprimary-dependencshall be the identifier of a (different) component of a procedure or record datatype which (also) contains
the data-dependent type. The component so identified will be referred to in the followingmsihey component; the gen-

erated datatype of which it is a component will be referred to asubgect datatype That is, the subject datatype shall have

an immediate component to which themary-dependencsefers, and a different immediate component whatirsome level,
contains the data-dependent type.

When the subject datatype is a procedure datatypegrihery-dependencghall be gparameter-namand shall identify a pa-
rameter of the subject datatype. If thieectionof the parameter (component) which contains the data-dependent typtas
"inout", then thedirectionof the parameter designated by fiwémary-dependencghall also bein" or "inout". If the parameter
which contains the data-dependent type isrétarn-parametenr hasdirection"out", then theprimary-dependencmay desig-
nate any parameter in thiparameter-list If the parameter which contains the data-dependent typéeisyanationparameter,
then theprimary-dependencshall designate another parameter in the denmeination-parameter-list

When the subject datatype is a record datatypeptimary-dependencghall be dield-identifierand shall identify a field of the
subject datatype.

When thedependent-valueontains nacomponent-references refers to the value of the primary component. Otherwise, the
primary component shall be considered tbin'component-referenteand the following rules shall apply:

1) If thenth component-referends the lastcomponent-referenaef thedependent-valughedependent-valushall refer to
the value to which theth component-referenaefers.

2) Ifthenth component-referends not the lastomponent-referencéhen the datatype of thegh component-referencghall
be a record datatype or a pointer datatype.

3) If thenth component-referends not the lastomponent-referencand the datatype of timth component-referends a
record datatype, then ti@e+1)th component-referencghall be dield-identifierwhich identifies a field of that record
datatype; and th@+1)th component-referencghall refer to the value of that field of the value referred to bpttheom-
ponent-reference

4) If thenth component-referends not the lastomponent-referencand the datatype of tith component-referends a
pointer datatype, then ti{a+1)th component-referenchall be "*"; and thgn+1)th component-referencghall refer to the
value resulting from Dereference applied to the value referred to lghthemponent-reference

NOTES

1. The datatype which involvestiependent-valumust be a component of some generated datatype, but that generated datatype may itself
be a component of another generated datatype, and so on. The subject datatype may be several levels up this hierarchy.

2. The primary component, and thus the subject datatype, cannot be ambiguous, even pwtigratigedependendgentifier appears more
than once in such a hierarchy, according to the scope rules specified in 7.3.1.

3. Inthe same wise, an identifier which may be eithealue-identifieror adependent-valuean be resolved by application of the same

scope rules. If the identifier X is found to have a "declaration” anywhere within the outetypesspecifiewvhich contains the reference to
X, then that declaration is used. If no such declaration is found, then a declaration of X in a "global" context, eajuesdentifier applies.

16

0 ISO/IEC ISO/IEC 11404:1996 (E)

8 Datatypes

This clause defines the collection of LI datatypes. A LI datatype is either:
 a datatype defined in this clause, or
 a datatype defined by a datatype declaration, as defined in 9.1.

Since this collection is unbounded, there are four formal methods used in the definition of the datatypes:

« explicit specification oprimitive datatypes, which have universal well-defined abstract notions, each independent of an
other datatype.

« implicit specification ofgenerateddatatypes, which are syntactically and in some ways semantically dependent on othe
datatypes used in their specification. Generated datatypes are specified implicitly by means of explicit specification
datatype generators, which themselves embody independent abstract notions.

« specification of the means détatype declaration which permits the association of additional identifiers and refine-
ments to primitive and generated datatypes and to datatype generators.

« specification of the means of definiagbtypesof the datatypes defined by any of the foregoing methods.

A reference to a LI datatype igype-specifierwith the following syntax:
type-specifier = primitive-type | subtype | generated-type | type-reference | formal-parametric-type .

A type-specifieshall not be dormal-parametric-typgexcept in some casestype-declarationsas provided by clause 9.1.3.

This clause also provides syntax for the identification of values of LI datatypes. Notations for values of datatypes are requi
in the syntactic designations for subtypes and for some primitive datatypes.

NOTES

1. For convenience, or correctness, some datatypes and characterizing operations are defined in terms of other LI datatypes. The us
LI datatype defined in this clause always refers to the datatype so defined.

2. The names used in this International Standard to identify the datatypes are derived in many cases from common programming lang
usage, but nevertheless do not necessarily correspond to the names of equivalent datatypes in actual languages. The same applies to th
and symbols for the operations associated with the datatypes, and to the syntax for values of the datatypes.

8.1 Primitive datatypes
A datatype whose value space is defined either axiomatically or by enumeration is saicptirbigize datatype. All primitive
LI datatypes shall be defined by this International Standard.

primitive-type = boolean-type | state-type | enumerated-type | character-type
| ordinal-type | time-type | integer-type | rational-type
| scaled-type | real-type | complex-type | void-type .

Each primitive datatype, or datatype family, is defined by a separate subclause. The title of each such subclause gives the |
mal name for the datatype, and the datatype is defined by a single occurrence of the following template:

Description: prose description of the conceptual datatype.

Syntax: the syntactic productions for the type-specifier for the datatype.

Parametric values: identification of any parametric values which are necessary for the complete identification of a distir
member of a datatype family.

Values: enumerated or axiomatic definition of the value space.

Value-syntax: the syntactic productions for denotation of a value of the datatype, and the identification of the valu
denoted.

Properties: properties of the datatype which indicate its admissibility as a component datatype of certain datat

generators: numeric or non-numeric, approximate or exact, unordered or ordered and, if ordered,
bounded or unbounded.

17

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Operations: definitions of characterizing operations.

The definition of an operation herein has one of the forms:
operation-name (parameters) : result-datatype = formal-definition; or
operation-name (parameters) : result-datatggpeose-definition.

In either case, "parameters” may be empty, or be a list, separated by commas, of one or more formal parameters of the operation
in the form:

parameter-name : parameter-datatype, or

parameter-name parameter-name parameter-datatype.

Theoperation-namés an identifier unique only within the datatype being defined. pammeter-nameare formal identifiers

appearing in théormal- or prose-definition Each is understood to represent an arbitrary value of the datatype designated by
parameter-datatypeand all occurrences of the formal identifier represent the same value in any application of the operation. The
result-datatypéndicates the datatype of the value resulting from an application of the operatifommaAl-definitiondefines the

operation in terms of other operations and constantfrose-definitiondefines the operation in somewhat formalized natural
language. When there are constraints on the parameter values, they are expressed by a phrase beginning "where" immediately
before the = ois.

In some operation definitions, characterizing operations of a previously defined datatype are referenced with the form:
datatypeoperatior{parametery wheredatatypeis thetype-specifiefor the referenced datatype aogderationis the name of a
characterizing operation defined for that datatype.

8.1.1 Boolean

Description: Boolean is the mathematical datatype associated with two-valued logic.

Syntax:
boolean-type = "boolean" .

Parametric Values: none.

Values: "true", "false", such that tredalse.

Value-syntax:
boolean-literal = "true" | "false" .

Properties: unordered, exact, non-numeric.
Operations: Equal, Not, And, Or.

Equal(x, y: boolean): boolean is defined by tabulation:
X y Equal(x,y)
true true true
true false false
false true false
false false true

Not(x: boolean): boolean is defined by tabulation:

X Not(x)
true false
false true

Or(x,y: boolean): boolean is defined by tabulation:
X y Or(x,y)
true true true
true false true
false true true
false false false

And(x, y: boolean): boolean = Not(Or(Not(x), Not(y))).

NOTE — Either And or Or is sufficient to characterize the boolean datatype, and given one, the other can be defined in terms of it. They are
both defined here because both of them are used in the definitions of operations on other datatypes.

18

0 ISO/IEC ISO/IEC 11404:1996 (E)

8.1.2 State

Description: State is a family of datatypes, each of which comprises a finite number of distinguished but unordered values

Syntax:
state-type = "state" "(" state-value-list ")" .
state-value-list = state-literal { "," state-literal } .
state-literal = identifier .
Parametric Values: Eadhate-literalidentifier shall be distinct from all othstate-literalidentifiers of the samstate-type

Values: The value space of a state datatype is the set comprising exactly the named valugtaie-tradue-listeach of which
is designated by a uniqetate-literal

Value-syntax:
state-literal = identifier .

A state-literaldenotes that value of the state datatype which has the same identifier.
Properties: unordered, exact, non-numeric.
Operations: Equal.

Equal(x, y: stategtate-value-lig): boolearnis true if x and y designate the same value irsthe-value-list
and false otherwise.

NOTE — Other uses of the IDN syntax make stronger requirements on the uniquestats|déralidentifiers.

EXAMPLE — The declaration:
type switch = new state (on, off);

defines a state datatype comprising two distinguished but unordered values, which supports the characterizing operation:
Invert(x: switch): switchs if x = off then on, else off.

8.1.3 Enumerated
Description: Enumerated is a family of datatypes, each of which comprises a finite number of distinguished values having
intrinsic order.

Syntax:
enumerated-type = "enumerated" "(" enumerated-value-list ")" .
enumerated-value-list = enumerated-literal { "," enumerated-literal } .
enumerated-literal = identifier .
Parametric Values: Ea@dnumerated-literaidentifier shall be distinct from all othemumerated-literaidentifiers of the same
enumerated-type

Values: The value space of an enumerated datatype is the set comprising exactly the named valeesrindtaded-value-list
each of which is designated by a unigmeimerated-literal. The order of these values is given by the sequence of their
occurrence in thenumerated-value-listesignated theaming sequence

Value-syntax:
enumerated-literal = identifier .

An enumerated-literatienotes that value of the enumerated datatype which has the same identifier.
Properties: ordered, exact, non-numeric, bounded.
Operations: Equal, InOrder, Successor

Equal(x, y: enumerateeiium-value-lig): boolearnis true if x and y designate the same value iretinem-value-listand
false otherwise.

InOrder(x, y: enumerateeiium-value-li9): boolean, denotedxy, istrue if x =y or if x precedes y in the naming
sequence, else false.

Successor(x: enumerated(im-value-lig): enumeratednum-value-ligtis
if for all y: enumeratedinum-value-ligt x <y implies x =y, then undefined;
else the value y: enumerated(gm-value-ligt such that x y and for all z£ x, x< z implies y< z.

19

ISO/IEC 11404:1996 (E) [0 ISO/IEC

NOTE — Other uses of the IDN syntax make stronger requirements on the uniquesTesnerfated-literaidentifiers.
8.1.4 Character

Description: Character is a family of datatypes whose value spaces are character-sets.

Syntax:
character-type = "character" ["(" repertoire-list ")"] .
repertoire-list = repertoire-identifier { "," repertoire-identifier } .
repertoire-identifier = value-expression .

Parametric Values: Thealue-expressiofor arepertoire-identifiershall designate a value of the objectidentifier datatype (see
10.1.10), and that value shall refer to a character-setp&rtoire-identifiershall not be dormal-parametric-valugexcept
in some cases in declarations (see 9.1). refértoire-identifieran a givenrepertoire-listshall designate subsets of the
same reference character-set. Whegertoire-listis not specified, it shall have a default value. The means for specification
of the default is outside the scope of this International Standard.

Values: The value space of a character datatype comprises exactly the members of the character-sets identiBpé tgitbe
list. In cases where the character-sets identified by the indivieépaktoire-identifierdhvave members in common, the value
space of the character datatype is the (set) union of the character-sets (without duplication).

Value-syntax:
character-literal = any-character
any-character = bound-character | added-character | escape-character .
bound-character = non-quote-character | quote .
non-quote-character = letter | digit | underscore | special | apostrophe | space .
added-character = not defined by this International Standard
escape-character = escape character-name escape .
character-name = identifier { "" identifier } .

Everycharacter-literaldenotes a single member of the character-set identifieed@ytoire-list A bound-charactede-
notes that member which is associated with the symbol fobthumd-characteper 7.1. Anadded-charactedenotes that
member which is associated with the symbol forddded-characteby the implementation, as provided in 7.1. Ascape-
characterdenotes that member whose "character name" in the (reference) character-set ideméfieddiye-listis the
same asharacter-name

Properties: unordered, exact, non-numeric.
Operations: Equal.

Equal(x, y: charactemépertoire-lis)): boolearnis true if x and y designate the same member of the character-set given by
repertoire-list and false otherwise.

NOTES

1. The Character datatypes are distinct from the State datatypes in that the values of the datatype are defined by other standards rather than
by this International Standard or by the application. This distinction is semantically unimportant, but it is of great significance in any use of
these standards.

2. The standardization oépertoire-identifievalues will be necessary for any use of this International Standard and will of necessity extend
to character sets which are defined by other than international standards. Such standardization is beyond the scope of this International Stan-
dard. A partial list of the international standards defining such character-sets is included, for informative purposesnory,A.

3. While an order relationship is important in many applications of character datatypes, there is no standard order for any of the International
Standard character sets, and many applications require the order relationship to conform to rules which are particular to the application itself
or its language environment. There will also be applications in which the order is unimportant. Since no standard order of character-sets can
be defined by this International Standard, character datatypes are said to be "unordered", meaning, in this case, that the order relationship is an
application-defined addition to the semantics of the datatype.

4. Thetermgharacter-setmembersymbolandcharacter-namare those of ISO/IEC 10646-1:1993, but there should be analogous notions
in any character set referenceable bg@ertoire-identifier.

5. Thevalue space of a Character datatype is the chassttaot the characterodes as those terms are defined by ISO/IEC 10646-1:1993.

The encoding of a character set is a representation issue and therefore out of the scope of this International Standard. Many uses of this Inter-
national Standard, however, may require the association to codes impliedd&yetieire-identifier

20

0 ISO/IEC ISO/IEC 11404:1996 (E)

6. An occurrence of three consecutive APOSTROPHE characters (') is achalidcter-literaldenoting the APOSTROPHE character.

EXAMPLE — character({ iso standard 8859 part 1 }) denotes a character datatype whose values are the members of the character-set sp
ified by ISO 8859-1 (Latin alphabet No. 1). Itis possible to give this datatype a convenient name, by megps-afeclaratior(see 9.1), e.g.:

type Latinl = character({ iso standard 8859 1 });
or by means of malue-declaratior(see 9.2):

value latin : objectidentifier = { iso(1) standard(0) 8859 part(1) };.
Now, the colon mark (:) is @ member of the ISO 8859-1 character set and therefore a value of datatype Latinl1, or equivalently, of data
character(latin). Thus, "’ and '!colon!’, among others, are \atidracter-literalsdenoting that value.

8.1.5 Ordinal

Description: Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Integer). Ordi
is the infinite enumerated datatype.

Syntax:
ordinal-type = "ordinal" .

Parametric Values: none.

Values: the mathematical ordinal numbers: "first", "second"”, "third", etc., (a denumerably infinite list).

Value-syntax:
ordinal-literal = number .
number = digit-string .

An ordinal-literal denotes that ordinal value which corresponds to the cardinal number identifieddiyitts&ring, inter-
preted as a decimal number. @mlinal-literal shall not be zero.

Properties: ordered, exact, non-numeric, unbounded above, bounded below.

Operations: Equal, InOrder, Successor
Equal(x, y: ordinal): booleais true if x and y designate the same ordinal number, and false otherwise.
InOrder(x,y: ordinal): boolean, denotecy, is true if x =y or if x precedes y in the ordinal numbers, else false.
Successor(x: ordinal): ordinil the value y: ordinal, such that x <y and for a#x, x< z implies y< z.

8.1.6 Date-and-Time

Description: Date-and-Time is a family of datatypes whose values are points in time to various common resolutions: year
month, day, hour, minute, second, and fractions thereof.
Syntax:
time-type = "time" "(" time-unit [", radix "," factor 1")" .
time-unit = "year" | "month” | "day" | "hour" | "minute"” | "second" | formal-parametric-value .
radix = value-expression .
factor = value-expression .
Parametric ValuesTime-unitshall be a value of the datatyptate(year, month, day, hour, minute, second), designating the

unit to which the point in time is resolved. ididix andfactorare omitted, the resolution is to one of the specifiete-unit
If presentradix shall have an integer value greater than 1 facir shall have an integer value. Whrawlix andfactor
are present, the resolution is to araelix(8%°") of the specifiedime-unit Time-unit andradix andfactorif present, shall
not beformal-parametric-valuegxcept in some occurrences in declarations (see 9.1).

Values: The value-space of a date-and-time datatype is the denumerably infinite set of all possible points in timesaith the
lution (time-unit, radix, factoy.

Value-syntax:
time-literal = string-literal .

A time-literal denotes a date-and-time value. The characterstring value representedtbgdHeeral shall conform to
ISO 8601:1988Representation of dates and timekhetime-literal denotes the date-and-time value specified by the char-
acterstring as interpreted under 1SO 8601:1988.

21

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Properties: ordered, exact, non-numeric, unbounded.
Operations: Equal, InOrder, Difference, Round, Extend.

Equal(x, y: timetime-unit radix, facton): boolearis true if x and y designate the same point in time to the resolutioref
unit, radix, factop, and false otherwise.

InOrder(x, y: timetime-unit radix, factor): boolearis true if the point in time designated by x precedes that designated by
y; else false.

Difference(X, y: timeffme-unit, radix, factop): timeinterval{ime-unit, radix, factoris:
if InOrder(x,y), then the number of time-units of the specified resolution elapsing between the time x and the time y;
else, let z be the number of time-units elapsing between the time y and the time x, then Negate(z).

Extendrestoresx: time(unitl, radix1, factor)): time(unit2, radix2, factor®, where the resolutiongs? specified by
(unit2, radix2, factor2is more precise than the resolutioegl) specified by @nit1, radix1, factorl)js that value of
time(unit2, radix2, factor2 which designates the first instant of time occurring within the span ofuimt2(radix2,
factor?) identified by the instant.x

RoundresltoresZx: time(unitl, radix1, factor)): timeunit2, radix2, factor?, where the resolutionds? specified by
(unit2, radix2, factor2is less precise than the resolutisag?) specified by (nit1, radix1, factorl)isthe largest value
y of time(unit2, radix2, factor? such that InOrder(Extermgs2toresty), x).

NOTE — The operations yielding specific time-unit elements frotmee(unit, radix, factor) value, e.g. Year, Month, DayofYear, Dayof-
Month, TimeofDay, Hour, Minute, Second, can be derived from Round, Extend, and Difference.

EXAMPLE — time(second, 10, 0) designates a date-and-time datatype whose values are points in time with accuracy to the second.
"19910401T120000" specifies the value of that datatype which is exactly noon on April 1, 1991, universal time.

8.1.7 Integer

Description: Integer is the mathematical datatype comprising the exact integral values.
Syntax:

integer-type = "integer" .
Parametric Values: none.

Values: Mathematically, the infinite ring produced from the additive identity (0) and the multiplicative identity (1) by requiring
0<1 and Add(x,1¢ y for any y< x. Thatis: ..., -2, -1, 0, 1, 2, ... (a denumerably infinite list).

Value-syntax:
integer-literal = signed-number .
signed-number = ["-"] number .
number = digit-string .

An integer-literaldenotes an integer value. If the negative-sign ("-") is not present, the value denoted is thdigitf the
string interpreted as a decimal number. If the negative-sign is present, the value denoted is the negative of that value.

Properties: ordered, exact, numeric, unbounded.
Operations: Equal, InOrder, NonNegative, Negate, Add, Multiply.
Equal(x, y: integer): booledn true if x and y designate the same integer value, and false otherwise.
Add(x,y: integer): integeiis the mathematical additive operation.
Multiply(x, y: integer): integeris the mathematical multiplicative operation.
Negate(x: integer): integés the value y: integer such that Add(x, y) = 0.

NonNegative(x: integer): booleds
true if x = 0 or x can be developed by one or more iterations of adding 1,
i.e.if x = Add(1, Add(1, ... Add(1, Add(1,0)) ...));
else false.

InOrder(x,y: integer): boolean = NonNegative(Add(x, Negate(y))).

The following operations are defined solely in order to facilitate other datatype definitions:

22

0 ISO/IEC ISO/IEC 11404:1996 (E)

Quotient(x, y: integer): integer, where<@, is the upperbound of the set of all integers z such that Multiply€yxz)
Remainder(x, y: integer): integer, wherg 8 and 0<y, = Add(x, Negate(Multiply(y, Quotient(x,y))));

8.1.8 Rational

Description: Rational is the mathematical datatype comprising the "rational numbers".

Syntax:
rational-type = "rational" .

Parametric Values: none.
Values: Mathematically, the infinite field produced by closing the Integer ring under multiplicative-inverse.

Value-syntax:
rational-literal = signed-number [/" number] .

Signed-numbeandnumbershall denote the corresponding integer valldsmbershall not designate the value 0. The
rational value denoted by the fosigned-numbeis:

Promotegigned-numbér
and the rational value denoted by the faigned-number/numbés:

Multiply(Promotegigned-numbgr Reciprocal(Promota(mbey)).

Properties: ordered, exact, numeric, unbounded.

Operations: Equal, NonNegative, InOrder, Negate, Add, Multiply, Reciprocal, Promote.
Equal(x, y: rational): booleais true if x and y designate the same rational number, and false otherwise.
Promote(x: integer): rationé the embedding isomorphism between the integers and the integral rational values.
Add(x,y: rational): rationalis the mathematical additive operation.
Multiply(x, y: rational): rationalis the mathematical multiplicative operation.
Negate(x: rational): rationad the value y: rational such that Add(x, y) = 0.
Reciprocal(x: rational): rational, where®(, is the value y: rational such that Multiply(x, y) = 1.

NonNegative(k: rational): booleamdefined by:
For every rational valuk, there is a hon-negative integgrsuch that Multiplyg,K) is an integral value, and:
NonNegativek) = integer.NonNegative(Multiply(K)).

InOrder(x,y: rational): boolean = NonNegative(Add(x, Negate(y)))
8.1.9 Scaled

Description: Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual dat
having a fixed denominator, but the scaled datatypes possess the concept of approximate value.
Syntax:
scaled-type ="scaled" "(" radix "," factor ")" .
radix = value-expression .
factor = value-expression .

Parametric ValuesRadixshall have an integer value greater than 1 facir shall have an integer valu®adixandfactor
shall not bdormal-parametric-valuesxcept in some occurrences in declarations (see 9.1).

Values: The value space of a scaled datatype is that set of values of the rational datatype which are expressibld as a valu
datatype Integer divided bdix raised to the powdactar.
Value-syntax:
scaled-literal = integer-literal [™" scale-factor] .
scale-factor = number "' signed-number .
A scaled-literaldenotes a value of a scaled datatype. ifiteger-literalis interpreted as a decimal integer value, and the

scale-factorif present, is interpreted amimberraised to the powesigned-numbemvherenumberandsigned-numbeare
expressed as decimal integeMumbershould be the same as tiaglix of the datatype. If thecale-factoris not present,

23

ISO/IEC 11404:1996 (E) [0 ISO/IEC

the value is that denoted liyteger-literal. If the scale-factoiis present, the value denoted is the rational value Multiply (
teger-literal, scale-factor).

Properties: ordered, exact, numeric, unbounded.
Operations: Equal, InOrder, Negate, Add, Round, Multiply, Divide
Equal(x, y: scaled(r,f)): booleastrue if x and y designate the same rational number, and false otherwise.
InOrder(x,y: scaled (r,f)): boolean = rational.InOrder(x,y)
Negate(x: scaled (r,f)): scaled (r,f) = rational.Negate(x)
Add(x,y: scaled (r,f)): scaled (r,f) = rational. Add(Xx,y)

Round(x: rational): scaled(r,B the value y: scaled(r,f) such that rational.InOrder(y, x) and for all z: scaled(r,f),
rational.InOrder(z,x) implies rational.InOrder(z,y).

Multiply(x,y: scaled(r,f)): scaled(r,f) = Round(rational.Multiply(x,y))
Divide(x,y: scaled(r,f)): scaled(r,f) = Round(rational.Multiply(x, Reciprocal(y)))

EXAMPLES

1. A datatype representing monetary values exact to two decimal places can be defined by:
type currency = new scaled(10, 2);
where the keyword "new" is used because currency does not support the Multiply and Divide operations characterizing scaled(10,2

2. The value 39.50 (or 39,50), i.e.thirty-nine and fifty one-hundredths, is represent@®59:* 10 ~ -2, while the value 10.00 (or 10,00)
may be represented hi0.

NOTES

1. The case factor = 0, i.scaled(r, 0) for anyr, has the same value-space as Integer, and is isomorphic to Integer under all operations
except Divide, which is not defined on Integer in this International Standard, but could be defined consistent with the Divide operation for
scaled(r, 0). It is recommended that the datatgealed(r, 0) not be used explicitly.

2. Anyreasonable rounding algorithm is equally acceptable. What is required is that any rationalwhicke is not a value of the scaled
datatype is mapped into one of the two scaled valu€8 asrd (n+1)+f?, such that in the Rational value space (e v < (n+1)f7 .

3. The proper definition of scaled arithmetic is complicated by the fact that scaled datatypes with the same radix can be combined arbitrarily
in an arithmetic expression and the arithmetic is effectively Rationgl a final result must be produced. At this point, rounding to the proper

scale for the result operand occurs. Consequently, the given definition of arithmetic, for operands with a common scale factor, should not be
considered a specification for arithmetic on the scaled datatype.

4. The values in any scaled value space are taken from the value space of the Rational datatype, and for that reason Scaled may appear to
be a "subtype" of both Rational and Real (see 8.2). But scaled datatypes do not "inherit" the Rational or Real Multiply and Reciprocal opera-
tions. Therefore scaled datatypes are not proper subtypes of datatype Real or Rational. The concept of Round, and special Multiply and Divide
operations, characterize the scaled datatypes. Unlike Rational, Real and Complex, however, Scaled is not a mathematical group under this def-
inition of Multiply, although the results are intuitively acceptable.

5. The value space of a scaled datatype contains the multiplicative identity (1) if and only & factor

6. Every scaled datatype is exact, because every value in its value space can be distinguished in the computational model. (The value space
can be mapped 1-to-1 onto the integers.) It is onlppeeationson scaled datatypes which are approximate.

7. Scaled-literalsare interpreted as decimal values regardless ofatix of the scaled datatype to which they belong. It was not found
necessary for this International Standard to provide for representation of values in other radices, particularly since representation of values in
radices greater than 10 introduces additional syntactic complexity.

8.1.10 Real

Description: Real is a family of datatypes which are computational approximations to the mathematical datatype comprising the
"real numbers". Specifically, each real datatype designates a collection of mathematical real values which are known to
certain applications to some finite precision and must be distinguishable to at least that precision in those applications.

Syntax:
real-type ="real" ["(" radix "," factor ")"] .

24

0 ISO/IEC ISO/IEC 11404:1996 (E)

radix = value-expression .
factor = value-expression .

Parametric ValuesRadixshall have an integer value greater than 1 facir shall have an integer valu®adixandfactor
shall not beformal-parametric-valuesxcept in some occurrences in declarations (see 9.1). \Wdinandfactorare not
specified, they shall have default values. The means for specification of these defaults is outside the scope of this Int
tional Standard.

Values: The value space of the mathematical real type comprises all values which are the limits of convergent sequences
tional numbers. The value space of a computational real datatype shall be a subset of the mathematical real type, char:
ized by two parametric valuesadix andfactor, which, taken together, describe the precision to which values of the datatype
are distinguishable, in the following sense:

Let O denote the mathematical real value space andifofl, let | v | denote the absolute valuewfLetV denote the value
space of datatypeal(radix, factor), and lete = radix("2¢°"), ThenV shall be a subset @f with the following properties:
—0isinV; B B
— for eachr in O such that | | = €, there exists at least onén V such thatf-r |<|r | *€;
— for eachr in O such that t | <€, there exists at least onén V such that { - | < €.

Value-syntax:
real-literal = integer-literal [™" scale-factor] .
scale-factor = number "' signed-number .

A real-literal denotes a value of a real datatype. Titeger-literalis interpreted as a decimal integer value, andsttede-
factor, if present, is interpreted asmberraised to the powesigned-numbemwherenumberandsigned-numbeare ex-
pressed as decimal integers. If #wmle-factoiis not present, the value is that denotedrizgger-literal. If the scale-factor
is present, the value denoted is the rational value Muliipgder-literal, scale-factor).

Properties: ordered, approximate, numeric, unbounded.
Operations: Equal, InOrder, Promote, Negate, Add, Multiply, Reciprocal.

In the following operation definitions, Ié#l designate an approximation function which maps eaich] into a corresponding
r in V with the properties given above and the further requirement that fov @avhM(v) = v.

Equal(x, y: realfadix, factol): boolearnis true if x and y designate the same value, and false otherwise.
InOrder(x,y: real(adix, facton): booleanstrue if x<y, where< designates the order relationshipldnand false otherwise.
Promote(x: rational): reak{dix, facto) = M(x).

Add(x,y: realtadix, facton): realfadix, facto) = M(x +y), where + designates the additive operation on the mathematical
reals.

Multiply(x, y: real(adix, factop): realfadix, facto) = M(x « y), where « designates the multiplicative operation on the
mathematical reals.

Negate(x: reat@dix, factop): realfadix, facto)) = M(-x), where -x is the real additive inverse of x.

Reciprocal(x: reat@dix, facton): realtadix, factol), where x£ 0, =M(x’) where X’ is the real multiplicative inverse of x.
NOTES

1. The Ll datatype Real is not the abstract mathematical real datatype, nor is it an abstraction of floating-point implementations. Itisac
putational model of the mathematical reals which is similar to the "scientific number" model used in many sciences. Details of the relations
of a real datatype to floating-point implementations may be specified by the use of annotations (see 7.4). For languages whose semant
some way assumes a floating-point representation, the use of such annotations in the datatype mappings may be necessary. On the othe
for some applications, the representation of a real datatype may be something other than floating-point, which the application would specif
different annotations.

2. Detailed requirements for the approximation function, its relationship to the characterizing operations, and the implementation of the ¢
acterizing operations in languages are provided by ISO/IEC 10967-1:1994, Information technology — Programming languages, their envi
ements and system software interfaces — Language-Independent arithmetic — Part 1: Integer and real arithmetic. IEC 559:1988 Floz
Point Arithmetic for Microprocessors specifies the requirements for floating-point implementations thereof.

EXAMPLES

real(10, 7) denotes a real datatype with values which are accurate to 7 significant decimal figures.

25

ISO/IEC 11404:1996 (E) [0 ISO/IEC

real(2, 48) denotes a real datatype whose values have at least 48 bits of precision.

1*10 "9 denotes the value 1 000 000 000, i.e. 10 raised to the ninth power.
15 * 10 ~ -4 denotes the value 0,0015, i.e. fifteen ten-thousandths.
3 * 2" -1denotes the value 1.5, i.e. 3/2.

8.1.11 Complex

Description: Complex is a family of datatypes, each of which is a computational approximation to the mathematical datatype
comprising the "complex numbers". Specifically, each complex datatype designates a collection of mathematical complex
values which are known to certain applications to some finite precision and must be distinguishable to at least that precision
in those applications.

Syntax:
complex-type = "complex" ["(* radix "," factor ")"] .
radix = value-expression .
factor = value-expression .

Parametric ValuesRadixshall have an integer value greater than 1 factr shall have an integer valuRadixandfactor
shall not bformal-parametric-valuesxcept in some occurrences in declarations (see 9.1). \Wigenandfactorare not

specified, they shall have default values. The means for specification of these defaults is outside the scope of this Interna-
tional Standard.

Values: The value space of the mathematical complex type is the field which is the solution space of all polynomial equations
having real coefficients. The value space of a computational complex datatype shall be a subset of the mathematical com-
plex type, characterized by two parametric valuadjx andfactor, which, taken together, describe the precision to which
values of the datatype are distinguishable, in the following sense:

Let C denote the mathematical complex value space andifoC, let |v | denote the absolute valuewfLetV denote the
value space of datatymemplex(radix, factor), and lete = radix(2°1°), ThenV shall be a subset & with the following
properties:

—0isinV; 3 3

— for eachvin C such that V| = €, there exists at least omén V such thaty-v |<|v| g

— for eachvin C such that Y/ | < €, there exists at least ondn V such thaty - v | < 2.

Value-syntax:
complex-literal = "(" real-part "," imaginary-part ")" .
real-part = real-literal .
imaginary-part = real-literal .

A complex-literaldenotes a value of a complex datatype. rBaépart and thémaginary-partare interpreted as real val-
ues, and the complex value denoted\Kreal-part + (imaginary-parte i)), where + is the additive operation on the math-
ematical complex numbers and « is the multiplicative operation on the mathematical complex numhessherigrincipal

square root" of -1 (one of the two solutions ford = 0).
Properties: approximate, numeric, unordered.
Operations: Equal, Promote, Negate, Add, Multiply, Reciprocal, SquareRoot.

In the following operation definitions, Ié¢l designate an approximation function which maps eaichC into a corresponding
v in V with the properties given above and the further requirement that fov @avhM(v) = v.

Equal(x, y: complex@dix, factop): boolearis true if x and y designate the same value, and false otherwise.
Promote(x: reaftdix, factop): complex(adix, facto) = M(x), considering x as a mathematical real value.

Add(x,y: complex(adix, factop): complex(adix, facto) = M(x + y), where + designates the additive operation on the
mathematical complex numbers.

Multiply(x, y: complexfadix, factop): complex(adix, facto) = M(x ¢ y), where « designates the multiplicative operation
on the mathematical complex numbers.

Negate(x: complex&adix, facto)): complexfadix, facto) = M(-x), where -x is the complex additive inverse of x.

Reciprocal(x: complexédix, facton): complex¢adix, factor), where x£ 0, =M(x’) where X’ is the complex multiplicative
inverse of x.

26

0 ISO/IEC ISO/IEC 11404:1996 (E)

SquareRoot(x: complesddix, facton): complex(adix, facto) = M(y), where y is one of the two mathematical complex
values such thaty « y = x. Every complex number can be uniquely represented in the forr ahdpei is the
"principal square root" of -1, in which a is designatediteal partand b is designated thmaginary part The y value
used is that in which the real part of y is positive, if any, else that in which the real part of y is zero and the imaginar
part is non-negative.

NOTE — Detailed requirements for the approximation function, its relationship to the characterizing operations, and the implementation of
characterizing operations in languages are to be provided by (future) Parts of ISO/IEC 10967 Language-Independent Arithmetic.

8.1.12 Void

Description: Void is the datatype representing an object whose presence is syntactically or semantically required, but carrie
information in a given instance.

Syntax:
void-type = "void" .

Parametric Values: none.

Values: Conceptually, the value space of the void datatype is empty, but a single nominal value is necessary to perform the "|
ence required" function.

Value-syntax:
void-literal =

"nil" .
"nil" is the syntactic representation of an occurrence of void as a value.
Properties: none.
Operations: Equal.
Equal(x, y: void) = true;
NOTES

1. The void datatype is used as the implicit type of the result parameter of a procedure datatype (8.3.3) which returns no value, or as ¢
ternative of a choice datatype (8.3.1) when that alternative has no content.

2. The void datatype is represented in some languages as a record datatype (see 8.4.1) which has no fields. In this International Stal
the void datatype is not a record datatype, because it has none of the properties or operations of a record datatype.

3. Like the motivation for the void datatype itself, Equal is required in order to support the comparison of aggregate values containing v
and it must yield "true".

4. The "empty set" is not a value of datatype Void, but rather a value of the appropriate set datatype (see 8.4.2).

8.2 Subtypes and extended types

A subtypeis a datatype derived from an existing datatype, designatdubtezlatatype, by restricting the value space to a subset
of that of the base datatype whilst maintaining all characterizing operations. Subtypes are created by a kind of datatype gene
which is unusual in that its only function is to define the relationship between the value spaces of the base datatype and the
type.

subtype = range-subtype | selecting-subtype | excluding-subtype
| size-subtype | explicit-subtype | extended-type .

Each subtype generator is defined by a separate subclause. The title of each such subclause gives the informal name for th
type generator, and the subtype generator is defined by a single occurrence of the following template:

Description: prose description of the subtype value space.

Syntax: the syntactic production for a subtype resulting from the subtype generator, including identification «
all parametric values which are necessary for the complete identification of a distinct subtype.

Components: constraints on the base datatype and parametric values.

Values: formal definition of resulting value space.

27

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Properties: all datatype properties are the same in the subtype as in the base datatype, except possibly the presence
and values of the bounds. This entry therefore defines only the effects of the subtype generator on the
bounds.

All characterizing operations are the same in the subtype as in the base datatype, but the domain of a characterizing operation in

the subtype may not be identical to the domain in the base datatype. Those values from the value space of the subtype which,

under the operation on the base datatype, produce result values which lie outside the value space of the subtype, are deleted from
the domain of the operation in the subtype.

8.2.1 Range

Description: Range creates a subtype of any ordered datatype by placing new upper and/or lower bounds on the value space.

Syntax:
range-subtype = base "range" "(" select-range ")" .
select-range = lowerbound ".." upperbound .

lowerbound = value-expression | "*" .
upperbound = value-expression | "*" .
base = type-specifier .
Components:Baseshall designate an ordered datatype. Wheerboundandupperboundarevalue-expressionshey shall
have values of the base datatype such that InOmee¢bound, upperbound Whenlowerbounds "*", it indicates that no

lower bound is being specified, and whesperbounds "*", it indicates that no upper bound is being specifiedwer-
boundandupperboundhall not bdormal-parametric-valugsexcept in some occurrences in declarations (see 9.1).

Values: all values from the base datatype such thaterbounds v, if lowerbounds specified, anda < upperboundif upper-
boundis specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so boundedeleift-tamgespecifies the
corresponding bounds.

8.2.2 Selecting

Description: Selecting creates a subtype of any exact datatype by enumerating the values in the subtype value-space.

Syntax:
selecting-subtype = base "selecting" "(" select-list ")" .
select-list = select-item { "," select-item } .
select-item = value-expression | select-range .
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | "*" .
upperbound = value-expression | "*" .

base = type-specifier .

ComponentsBaseshall designate an exact datatype. Whersttlect-itemarevalue-expressionshey shall have values of the
base datatype, and each value shall be distinct from all others in the selectskéctAtenshall not be aelect-range
unless the base datatype is ordered. Whbererboundandupperboundarevalue-expressionshey shall have values of the
base datatype such that InOrd@nerbound, upperbound Whenlowerboundis "*", it indicates that no lower bound is
being specified, and wherpperbounds "*", it indicates that no upper bound is being specified.v&loe-expressionc-
curring in theselect-listshall be gormal-parametric-valugexcept in some occurrences in declarations (see 9.1).

Values: The values specified by thelect-listdesignate those values from the value-space of the base datatype which comprise
the value-space of the selecting subtypesefect-itenwhich is avalue-expressiospecifies the single value designated by
thatvalue-expressianA select-itemwhich is aselect-rangespecifies all valueg of the base datatype such that
lowerbound< v, if lowerboundis specified, and < upperboundif upperbounds specified

Properties: The subtype is bounded (above, below, both) if the base datatype is so boundede@leitrangeppears in the
select-listor if all select-range# theselect-listspecify the corresponding bounds.

8.2.3 Excluding

Description: Excluding creates a subtype of any exact datatype by enumerating the values which are to be excluded in construct-

28

0 ISO/IEC ISO/IEC 11404:1996 (E)

ing the subtype value-space.

Syntax:
excluding-subtype = base "excluding" "(* select-list ")" .
select-list = select-item { "," select-item } .
select-item = value-expression | select-range .
select-range = lowerbound ".." upperbound .
lowerbound = value-expression | "*" .
upperbound = value-expression | "*" .
base = type-specifier .

ComponentsBaseshall designate an exact datatypeselect-itenshall not be aelect-rangeinless the base datatype is ordered.
Whenlowerboundandupperboundirevalue-expressionghey shall have values of the base datatype such that In@nder(
erbound, upperboun)d Whenlowerbounds "*", it indicates that no lower bound is being specified, and wheperbound
is "*", it indicates that no upper bound is being specified. étue-expressionccurring in theselect-listshall be gormal-
parametric-valugexcept in some occurrences in declarations (see 9.1).

Values: The value space of the Excluding subtype comprises all values of the base datatype except for those specified by
select-list A select-itenwhich is avalue-expressioapecifies the single value designated by tratie-expressianA se-
lect-itemwhich is aselect-rangespecifies all valueg of the base datatype such tHatverbound< v, if a lower bound is
specified, and < upperboundif an upper bound is specified

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded selésbraageappears in
theselect-listand does not specify the corresponding bound.

8.2.4 Size

Description: Size creates a subtype of any Sequence, Set, Bag or Table datatype by specifying bounds on the number of eler
any value of the base datatype may contain.

Syntax:
size-subtype = base "size" "(" minimum-size [".." maximum-size] ")" .
maximum-size = value-expression | "*" .
minimum-size = value-expression .
base = type-specifier .

Components:Baseshall designate a generated datatype resulting from the Sequence, Set, Bag or Table generator, or from
"new" datatype generator whose value space is constructed by such a generator (sé¢iSirhidn-sizeshall have an
integer value greater than or equal to zero,maagimum-sizef it is avalue-expressiarshall have an integer value such
that minimum-sizes maximume-size If maximum-sizés omitted, the maximum size is taken to be equal tonihénum-

size and ifmaximum-sizes "*", the maximum size is taken to be unlimiteMinimum-sizeandmaximum-sizehall not be
formal-parametric-valugsexcept in some occurrences in declarations (see 9.1).

Values: The value space of the subtype consists of all values of the base datatype which contaimnriteassizezalues
and at mosmaximume-sizealues of the element datatype.

Subtypes: Any size subtype of the same base datatype, such that base-mininzususigge-minimum-size, and
subtype-maximum-size base-maximum-size.

Properties: those of the base datatype; the aggregate subtype has fixed size if the maximum size is (explicitly or implicitly) ec
to the minimum size.

8.25 Explicit subtypes

Description: Explicit subtyping identifies a datatype as a subtype of the base datatype and defines the construction procedur
the subset value space in terms of LI datatypes or datatype generators.

Syntax:
explicit-subtype = base "subtype" "(" subtype-definition ")" .
base = type-specifier .
subtype-definition = type-specifier .

ComponentsBasemay designate any datatype. Tubtype-definitioishall designate a datatype whose value space is (isomor-

29

ISO/IEC 11404:1996 (E) [0 ISO/IEC

phic to) a subset of the value space of the base datatype.
Values: The subtype value space is identical to the value space of the datatype designattypthrdefinition

Properties: exactly those of thebtype-definitiomatatype.
NOTES

1. When the base datatype is generated by a datatype generator, the ways in which a subset value space can be constructed are complex anc
dependent on the nature of the base datatype itself. Clause 8.3 specifies the subtyping possibilities associated @ijpeasndedtor.

2. ltis redundant, but syntactically acceptable, forstitetype-definitioto be an occurrence of a subtype-generator, e.g.
integer subtype (integer selecting(0..5)).

8.2.6 Extended

Description: Extended creates a datatype whose value-space contains the value-space of the base datatype as a proper subse

Syntax:
extended-type = base "plus" "(" extended-value-list ")" .
extended-value-list = extended-value { "," extended-value } .
extended-value = extended-literal | formal-parametric-value .
extended-literal = identifier .

base = type-specifier .

ComponentsBasemay designate any datatype. Artended-valushall be arextended-literglexcept in some occurrences in
declarations (see 9.1). Eaektended-literashall be distinct from aNalue-literalsandvalue-identifiersif any, of the base
datatype and distinct from all others in th@éended-value-list

Values: The value space of the extended datatype comprises all values in the value-space of the base datatype plus those addi
tional values specified in thextended-value-list

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the additional values are upper
or lower bounds.

The definition of an extended datatype shall include specification of the characterizing operations on the base datatype as applied
to, or yielding, the added values in tegtended-value-listin particular, when the base datatype is ordered, the behavior of the
InOrder operation on the added values shall be specified.

NOTES
1. Extended produces a subtype relationship in which the base datatype is the subtype and the extended datatype has the larger value space.

2. Other uses of the IDN syntax make stronger requirements on the uniquesdssdéd-literaldentifiers.

8.3 Generated datatypes

A generated datatypes a datatype resulting from an application of a datatype generatdatatype generatoris a conceptual

operation on one or more datatypes which yields a datatype. A datatype generator operates on datatypes to generate a datatype.
rather than on values to generate a value. The datatypes on which a datatype generator operates are spataorsdritsor

component datatypes The generated datatype is semantically dependent on the parametric datatypes, but has its own charac-
terizing operations. An important characteristic of all datatype generators is that the generator can be applied to many different
parametric datatypes. The Pointer and Procedure generators generate datatypes whose values are atomic, while Choice and the
generators of aggregate datatypes generate datatypes whose values admit of decompagtienatéd-typeesignates a gen-

erated datatype.

generated-type = pointer-type | procedure-type | choice-type | aggregate-type .
This International Standard defines common datatype generators by which an application of this International Standard may de-
fine generated datatypes. (An application may also define "new" generators, as provided in clause 9.1.3.) Each datatype gener-

ator is defined by a separate subclause. The title of each such subclause gives the informal name for the datatype generator, and
the datatype generator is defined by a single occurrence of the following template:

Description: prose description of the datatypes resulting from the generator.

30

0 ISO/IEC ISO/IEC 11404:1996 (E)

Syntax: the syntactic production for a generated datatype resulting from the datatype generator, including
identification of all parametric datatypes which are necessary for the complete identification of a distinc
datatype.

Components: number of and constraints on the parametric datatypes and parametric values used by the general

Values: formal definition of resulting value space.

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype of cert

datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered, and if
ordered, bounded or unbounded.

Subtypes: generators, subtype-generators and parametric values which produce subset value spaces.

Operations: characterizing operations for the resulting datatype which associate to the datatype generator. Thi
definitions of operations have the form described in 8.1.

NOTE — Unlike subtype generators, datatype generators yield resulting datatypes whose value spaces are entirely distinct from those «
component datatypes of the datatype generator.

8.3.1 Choice

Description: Choice generates a datatype calldtbace datatype each of whose values is a single value from any of a set of
alternative datatypes. The alternative datatypes of a choice datatype are logically distinguished by their correspondenc
values of another datatype, called the tag datatype.

Syntax:
choice-type = "choice" "(" [field-identifier ":"] tag-type ["=" discriminant] ")"
"of* "(" alternative-list ")" .
field-identifier = identifier .
tag-type = type-specifier .
discriminant = value-expression .

alternative-list = alternative { "," alternative } [default-alternative | .
alternative = tag-value-list [field-identifier] ™" alternative-type .
default-alternative = "default" ":" alternative-type .

alternative-type = type-specifier .

tag-value-list = "(" select-list ")"

select-list = select-item { "," select-item } .
select-item = value-expression | select-range .

select-range = lowerbound ".." upperbound .
lowerbound = value-expression | "*" .
upperbound = value-expression | "*" .

Components: Eadhternative-typdn thealternative-listmay be any datatype. Thkag-typeshall be an exact datatype. The
tag-value-listof eachalternativeshall specify values in the value space of the (tag) datatype designatag-type A se-
lect-itemshall not be aelect-rangainless the tag datatype is ordered. Whearerboundandupperboundare value-ex-
pressions, they shall have values of the tag datatype such that InGwdt{iound, upperbound Whenlowerbounds "*",
it indicates that no lowerbound is being specified, and wipperbounds "*", it indicates that no upperbound is being
specified. Novalue-expressioim the select-list shall be a parametric value, except in some occurrences in declarations (se
9.1).

A choice datatype defines an association from the value space of the tag datatype to the set of alternative datatypes i
alternative-list such that each value of the tag datatype associates with exactly one alternative datatypg-vahee-list

of analternativespecifies those values of the tag datatype which are associated with the alternative datatype designatec
thealternative-typén thealternative A select-itemwhich is avalue-expressiospecifies the single value of the tag
datatype designated by thatlue-expressianA select-itenwhich is aselect-rangepecifies all values of the tag datatype
such thatlowerbounc< v, if lowerbound is specified, and< upperboundif upperbound is specifiedT hedefault-alter-
native if present, specifies that all values of the tag datatype which do not appear in anglt#h®ativeare associated with

the alternative datatype designated bylternative-type

No value of the tag datatype shall appear irtdigevalue-listof more than onalternative

31

ISO/IEC 11404:1996 (E) [0 ISO/IEC

The occurrence of field-identifierbefore thetag-typeor in analternativehas no meaning in the resulting choice-type. Its
purpose is to facilitate mappings to programming languages.

Thediscriminant if present, shall designate a value of the tag datatype. It identifies the tag value, or the source of the tag
value, to be used in a particular occurrence of the choice datatype.

Values: all values having the conceptual fotag-value, alternative-valyewheretag-values a value of the tag datatype which
occurs (explicitly or implicitly) in somelternativein thealternative-listand is uniquely mapped to an alternative datatype
thereby, andilternative-valugs any value of that alternative datatype.

Value-syntax:
choice-value = "(" tag-value ™" alternative-value ")" .
tag-value = independent-value .
alternative-value = independent-value .

A choice-value denotes a value of a choice datatype.tadralueof achoice-valueshall be a value of the tag datatype of
the choice datatype, and th#ernative-valueshall designate a value of the corresponding alternative datatype. The value
denoted shall be that value having the conceptual fagav@alue, alternative-valje

Properties: unordered, exact if and only if all alternative datatypes are exact, non-numeric.

Subtypes: any choice datatype in which the tag datatype is the same as, or a subtype of, the tag datatype of the base datatype
and the alternative datatype corresponding to each value of the tag datatype in the subtype is the same as, or a subtype of,
the alternative datatype corresponding to that value in the base datatype.

Operations: Equal, Tag, Cast, Discriminant.
Discriminant(x: choicetég-typ¢ of (alternative-list): tag-typeis the tag-value of the value x.

TagtypgXx: type,s:tag-typg: choice ag-typé of (alternative-lis}, wheretypeis that alternative datatype @lternative-list
which corresponds to the valugssthat value of the choice datatype which has tag-value s and alternative-value x.

CasttypgXx: choice {ag-typg of (alternative-lis)): type wheretypeis an alternative datatype afternative-list is:
if the tag value of x selects an alternative whakernative-typas type,then that value dfypewhich is the (alternative)
value of x, else undefined.

Equal(x, y: choicetég-typg of (alternative-lis}): booleans:
if Discriminant(x) and Discrminant(y) select the same alternative, then
typeEqual(Castypgx), Casttype(y)),
wheretypeis the alternative datatype of the selected alternativeygreEqual is the Equal operation on the datatype
type else false.

NOTES

1. The Choice datatype generator is referred to in some programming languages as a "(discriminated) union" datatype, and in others as a
datatype with "variants". The generator defined here represents the Pascal/Ada "variant-record" concept, but it allows the C-language "union”,
and similar discriminated union concepts, to be supported by a slight subterfuge. E.g. the C datatype:
union {
float a1,
int a2;
char* a3; }
may be represented by:
choice (state(al, a2, a3)) of (
(al): real,
(a2): integer,
(a3): characterstring).

2. The actual value space of the tag datatype from which tag-values may be drawn is actually a subtype of the value space of the designated
tag datatype, namely that subtype consisting exactly of the values which are mapped into alternative datatypdtebytdhe-list The set
of tag values appearing explictly or implicitly in takernative-listis not required to cover the value space of the tag datatype.

3. The subtypes of a choice datatype are typically choice datatypes with a smaller list of alternatives, and in the simplest case, the list is
reduced to a single datatype.

4. The operation Discriminant is a conceptual operation which reflects the ability to determine which alternative of a choice-type is selected

in a given value. When a choice-value is moved between two contexts, as between a program and a data repository, representation of the chosen
alternative is required, and most implemenations explicitly incorporate the tag-value.

32

0 ISO/IEC ISO/IEC 11404:1996 (E)

5. Another useful model of Choice is choide(d-list), where exactly one field is present in any given value, and the means of discrimination
is not specified. In this model, the operation:

IsFieldfield(x: choice field-list)): boolean = true if the designatield is present in the value X, otherwise false;
replaces Discriminant, with corresponding changes to the other characterizing operatoins. It is recognized that this model is mathemati
more elegant (the Or-graph to match the And-graph of the fields in Record), but in parctice, either IsField is not provided (which makes
operations user-defined) or IsField is implemented by tag-value (which makes IsField equivalent to Discriminant).

EXAMPLES — see 10.2.2 and 10.2.4.
8.3.2 Pointer

Description: Pointer generates a datatype, callpdiater datatype, each of whose values constitutes a means of reference to
values of another datatype, designatecetbenentatatype. The values of a pointer datatype are atomic.

Syntax:
pointer-type = "pointer" "to" "(" element-type ")" .
element-type = type-specifier .

Components: Any single datatype, designateckment-type

Values: The value space is that of an unspecified state datatype, each of whose values, save one, is associated with a value
element datatype. The single vafuél may belong to the value space but it is never associated with any value of the ele
ment datatype.

Value-syntax:
pointer-literal ="null" .

"Null" denotes thenull value. There is no denotation for any other value of a pointer datatype.
Properties: unordered, exact, non-numeric.
Subtypes: any pointer datatype for which the element datatype is a subtype of the element datatype of the base pointer dat:
Operations: Equal, Dereference.

Equal(x, y: pointeréglemen)): boolearis true if the values x and y are identical values of the unspecified state datatype, els¢
false;

Dereference(x: pointez{emen)): elementwhere x£ null, is the value of the element datatype associated with the value x.
NOTES

1. A pointer datatype defines an association from the "unspecified state datatype" into the element datatype. There may be many valu
the pointer datatype which are associated with the same value of the element datatype; and there may be members of the element datatype
are not associated with any value of the pointer datatype. The notion that there may be values of the "unspecified state datatype" to whi
element value is associated, however, is an artifact of implementations — conceptually, exaajptttoose values of the (universal) "unspec-
ified state datatype" which are not associated with values of the element datatypeiratbe value spaaef the pointer datatype.

2. Two pointer values are equal only if they are identical; it does not suffice that they are associated with the same value of the eler
datatype The operation which compares the associated values is

EqualelemeniDereference(x), Dereference(y)),
where Equaklemenis the Equal operation on the element datatype.

3. The computational model of the pointer datatype often allows the association to vary over time. xHsga, ¥alue of datatyppointer

to (integer) thenx may be associated with the value 0 at one time and with the value 1 at another. This implies that such pointer datatypes
support an operation, callegsignmentwhich associates a (new) value of datatgpe a value of datatyppointer(e), thus changing the value
returned by the Dereference operation on the value of datatyipeéer to e This assignment operation was not found t;mbeessaryo char-
acterize the pointer datatype, and listing it as a characterizing operation would imply that support of the pointer idafaingsit, which is

not the intention.

4. The termvalueappears in some language standards, meaning "a value which refers to a storage object or area". Since the storage c
is a means of association, bralueis therefore a value of some pointer datatype. Similarly, the implementation moiohine-addresgo
the extent that it can be manipulated by a programming language, is often a value of some pointer datatype.

5. The hardware implementation of the "means of reference to" a value of the element-type is usually a memory cell or cells which con
a value of the element-type. The memory cell has an "address", which is the "value of the unspecified state datatype". The memory cell ¢
ically maintains the association between the address (pointer-value) and the element-value which is stored in the cell. The Dereference c
tion is conceptually applied to the "address", but is implemented by a "fetch" from the memory cell. Thus in the computational model u:
here, the "address" and the "memory cell" are not distinguished: a pointer-value is both the cell and its address, because the cell can or

33

ISO/IEC 11404:1996 (E) [0 ISO/IEC

manipulated through its address. The cell, which is the pointer-vallistinguished from its contents, which is the element-value.

The notion "variable of datatype T" appears in programming languages and is usually implemented as a cell which contains a value of
type T. Language standards often distinguish between the "address of the variable" and the "value of the variable" and the "name of the vari-
able", and one might conclude that the "variable" is the cell itself.autperations on such a "variable" actually operate on either the "address
of the variable" — the value of LI datatype "pointer to (T)" — or the "value of the variable" — the value of LI datatype T. And thus those are
the only objects which are needed in the datatype model. This notion is further elaborated in ISO/IEC 1388bat@@ge-independent
procedure callingwhich relates pointer-values to the "boxes" (or "cells") which are elementssihtbef a running program.

8.3.3 Procedure

Description: Procedure generates a datatype, cafleacadure datatype each of whose values is an operation on values of
other datatypes, designated fa@ameter datatypes. That is, a procedure datatype comprises the set of all operations on
values of a particular collection of datatypes. All values of a procedure datatype are conceptually atomic.

Syntax:
procedure-type = "procedure" "(" [parameter-list] ")" ["returns" "(" return-parameter ")"]
["raises" "(" termination-list ")"] .
parameter-list = parameter-declaration { "," parameter-declaration } .
parameter-declaration = direction parameter .
direction = "in" | "out" | "inout" .
parameter = [parameter-name ™"] parameter-type .
parameter-type = type-specifier .
parameter-name = identifier .
return-parameter = [parameter-name ":"] parameter-type .

termination-list = termination-reference { "," termination-reference } .
termination-reference = termination-identifier .

Components: Aarameter-typenay designate any datatype. Tperameter-namesf parametersn theparameter-lisshall be
distinct from each other and from tharameter-namef thereturn-parameterif any. Thetermination-referenceim the
termination-list if any, shall be distinct.

Values: Conceptually, a value of a procedure datatype is a function which maps an input space to a resulpafaneteA
in theparameter-lists said to be amput parameter if its parameter-declaratiorwontains the directiofin” or "inout".
The input space is the cross-product of the value spaces of the datatypes designatqitantieter-typesf all the input
parameters. A parameter is said to besalt parameter if it is thereturn-parameteor it appears in thparameter-list
and itsparameter-declaratioontains the directiofout” or "inout". Thenormal result spaceis the cross-product of the
value spaces of the datatypes designated bpan@meter-typesf all the result parameters, if any, and otherwise the value
space of the void datatype. When there igermination-list the result space of the procedure datatype is the normal result
space, and every valpef the procedure datatype is a function of the mathematical form:

pr i xbhXx... Xl - ReXxR xRy x ... xRy

where | is the value space of the parameter datatype dttheput parameter, Rs the value space of the parameter
datatype of théth result parameter, ang:i the value space of the return-parameter.

When atermination-listis present, eadermination-referencshall be associated, by soteemination-declaratior(see
9.3), with analternative result spacewhich is the cross-product of the value spaces of the datatypes designateghy the

rameter-type®f the parametersn thetermination-parameter-listLet Al be the alternative result space of jtietermina-
tion. Then:

Al = B X EJ X ... x By,
where E(j is the value space of the parameter datatype dtthgarameter in thieermination-parameter-lisof thejth ter-

mination. The normal result space then becomes the alternative result space associatechalitermination (A°),
modelled as havintgrmination-identifief*normal”. Consider théermination-referencesnd "*normal”, to represent val-
ues of an unspecified state datatyge $hen the result space of the procedure datatype is:

Srx (A0 AL AZ| .| AY,

where A is the normal result space and i the alternative result space of tkth termination; and every value of the pro-
cedure datatype is a function of the form:

Pl X IoX .. Xk - Spx (AO| AL AZ| ... | AY.

Any of the input space, the normal result space and the alternative result space corresponding teraigiggon-iden-

34

0 ISO/IEC ISO/IEC 11404:1996 (E)

tifier may be empty. An empty space can be modelled mathematically by substituting for the empty space the value sp
of the datatype Void (see 8.1.12).

The value space of a procedure datatype conceptually comprises all operations which conform to the above model, i.e. ti
which operate on a collection of values whose datatypes correspond to the input parameter datatypes and yield a collec
of values whose datatypes correspond to the parameter datatypes of the normal result space or the appropriate alterr
result space. The teroorrespondingin this regard means that to each parameter datatype in the respective product spa
the "collection of values" shall associate exactly one value of that datatype. When the input space is empty, the value sy
of the procedure datatype comprises all niladic operations yielding values in the result space. When the result space is ¢
ty, the mathematical value space contains only one value, but the value space of the computational procedure datatype r
contain many distinct values which differ in their effects on the "real world", i.e. physical operations outside of the infor
mation space.

Value-syntax:
procedure-declaration = "procedure" procedure-identifier "(* [parameter-list] ")"
["returns" "(" return-parameter ")"] ["raises" "(" termination-list)"] .

procedure-identifier = identifier .

A procedure-declaratiomeclares therocedure-identifieto refer to a (specific) value of the procedure datatype whose
type-specifiers identical to theorocedure-declaratioafter deletion of th@rocedure-identifier The means of association

of theprocedure-identifiewith a particular value of the procedure datatype is outside the scope of this International Sta
dard.

Properties: unordered, exact, non-numeric.

Subtypes: For two procedure datatyPemdQ:

» Pis said to bdormally compatible with Q if their parameter-lis$ are of the same length, tbeectionof eachparameter
in theparameter-listof P is the same as the correspondiagameterin theparameter-listof Q, both have aeturn-pa-
rameteror neither does, and thermination-listsof P andQ, if present, contain the sartermination-references

« If Pis formally compatible withQ, and for every result parameter@f, the parameter datatype of the corresponding pa-
rameter o is a (not necessarily proper) subtype of the parameter datatype of the para@etbeoP is said to be a
result-subtypeof Q. If the return parameter datatype and all of the parameter datatypesiardmaeter-lisof P andQ
are identical (none are proper subtypes), then each is a result-subtype of the other.

« If Pis formally compatible witlQ, and for every input parameter@f, the parameter datatype of the corresponding pa-
rameter ofP is a (not necessarily proper) subtype of the parameter datatype of the paran@téresfQ is said to be an
input-subtype of P. If all of the input parameter datatypes in therameter-listof P andQ are identical (none are proper
subtypes), then each is an input-subtype of the other.

Every subtype of a procedure datatype shall be both an input-subtype of that procedure datatype and a result-subtype o
procedure datatype.

Operations: Equal, Invoke.

The definitions of Invoke and Equals below are templates for the definition of specific Invoke and Equals operators for each
dividual procedure datatype. Each procedure datatype has its own Invoke operator whose first parameter is a value of the p
dure datatype, and whose remaining input parameters, if any, have the datatypes in the input space of that procedure dat:
and whose result-list has the datatypes of the result space of the procedure datatype.

Invoke(x: procedurgarameter-lis, vi: 14, ..., W: 1): record (§: Ry, ..., ty Ry) is that value in the result space which is
produced by the procedure x operating on the value of the input space which corresponds to;valugg.(v

Equal(x, y: procedurp@rameter-lis)): boolearis:
trueif for each collection of values {vl4, ..., : I,), corresponding to a value in the input space of x and y, either:

neither x nor y is defined on{y..., %), or

Invoke(X, \, ..., W) = Invoke(y, M, ...,);
andfalseotherwise.

NOTES
1. The definition of Invoke above is simplistic and ignores the concept of alternative terminations, the implications of procedure and poir
datatypes appearing in the parameter-list, etc. The true definition of Invoke is beyond the scope of this International Standard and for

principal part of ISO/IEC 13886:1996anguage-independent procedure calling

2. Considered as a function, a given value of a procedure datatype may not be defined on the entire input space, that is, it may not yi

35

ISO/IEC 11404:1996 (E) [0 ISO/IEC

value for every possible input. In describing a specific value of the procedure datatype it is necessary to specify limitations on the input domain
on which the procedure value is defined. Inthe general case, these limitations are on combinations of values which go beyond specifying proper
subtypes of the individual parameter datatypes. Such limitations are therefore not considered to affect the admissibility of a given procedure
as a value of the procedure datatype.

3. The subtyping of procedure datatypes may be counterintuitive. Assume the declarations:
type P = procedure (in a: integer range (0..100), out b: typeX);
type Q = procedure (in a: integer range (0..100), out b: typeY);
type R = procedure(in a: integer, out b: typeX);
If typeX is a subtype ofypeY then P is a subtype of Q, as one might expect. iBeiger range (0..100) is a subtype ointeger, which makes
R a subtype of P, and not the reverse! In general, the collection of procedures which can accept an arbitrary input from the larger input datatype
(integer) is a subset of the collection of procedures which can accept an input from the more restricted input dataggraénge (0..100)).
If a procedure is required to be of type P, then it is presumed to be applicable to vaiiegar range (0..100). If a procedure of type R is
actually used, it can indeed be safely applied to any valuetéyer range (0..100), becausénteger range (0..100) is a subtype of the do-
main of the procedures in R. But the converse is not true. If a procedure is required to be of type R, then it is presumed to be applicable to an
arbitraryinteger value, for example, -1, and therefore a procedure of type P, which is not necessarily defined at -1, cannot be used.

4. Indescribing individual values of a procedure datatype, itis common in programming languages to specify parameter-names, in addition
to parameter datatypes, for the parameters. These identifiers provide a means of distinguishing the functionality of the individual parameter
values. But while this functionality is important in distinguishing aa¢ueof a procedure datatype from another, it has no meaning at all for

the procedure datatype itself. For exam@abtract(in a:real, in b:real, out diff: real) andMultiply(in a:real, in b:real, out prod: real) are

both values of the procedure datatygecedure(in real, in real, out real), but the functionality of the parameters a and b in the two procedure
values is unrelated.

5. Indescribing procedures in programming languages, it is common to distinguish paramiteus, asitput andinput/output to import

information fromcommoninterchange areas, and to distinguish returning a single result value from returning values through the parameters
and/or the interchange areas. These distinctions are supported by the syntax, but conceptually, a procedure operates on an set of input values
to produce a set of output values. The syntactic distinctions relate to the methods of moving values between program elements, which are out-
side the scope of this International Standard. This syntax is used in other international standards which define such mechanisms. Itis used here
to facilitate the mapping to programming language constructs.

6. As may be apparent from the definition of Invoke above, there is a natural isomorphism between the normal result space of a procedure
datatype and the value space of some record datatype (see 8.4.1). Similarly, there is an isomorphism between the general form of the result
space and the value space of a choice datatype (see 8.3.1) in which the tag datatype is the unspecified state datatype and each alternative, in-
cluding "normal”, has the form:

termination-namealternative-result-spacéecord-typg.

8.4 Aggregate Datatypes

An aggregate datatypeis a generated datatype each of whose values is, in principle, made up of values of the component
datatypes. An aggregate datatype generator generates a datatype by

« applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space of the aggregate
datatype, and

* providing a set of characterizing operations specific to the generator.

Thus, many of the properties of aggregate datatypes are those of the generator, independent of the datatypes of the components.
Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of an aggregate value are
accessible through characterizing operations.

This clause describes commonly encountered aggregate datatype generators, attaching to them only the semantics which derive
from the construction procedure.

aggregate-type = record-type | set-type | sequence-type | bag-type | array-type | table-type .

The definition template for an aggregate datatype is that used for all datatype generators (see 8.3), with an addition of the Prop-
erties paragraph to describe which of the aggregate properties described in clause 6.8 are possessed by that generator.

NOTES

1. Ingeneral, an aggregate-value contains more than one component value. This does not, however, preclude degenerate cases where the
“aggregate” value has only one component, or even none at all.

2. Many characterizing operations on aggregate datatypes are "constructors", which construct a value of the aggregate datatype from a col-
lection of values of the component datatypes, or "selectors”, which select a value of a component datatype from a value of the aggregate

36

0 ISO/IEC ISO/IEC 11404:1996 (E)

datatype. Since composition is inherent in the concept of aggregate, the existence of construction and selection operations is not in itself
acterizing. However, the nature of such operations, together with other operations on the aggregate as a whole, i;gharacteriz

3. In principle, from each aggregate it is possible to extract a single component, using selection operations of some form. But some
guages may specify that particular (logical) aggregates must be treated as atomic values, and hence not provide such operations for ther
example, a character string may be regarded as an atomic value or as an aggregrate of Character components. This international standa
els characterstring (10.1.5) as an aggregate, in order to support languages whose fundamental datatype is (single) Character. But Bas
example, sees the characterstring as the primitive type, and defines operations on it which yield other characterstring values, wherein 1-
acter strings are not even a special case. This difference in viewpoint does not prevent a meaningful mapping between the character
datatype and Basic strings.

4. Some characterizations of aggregate datatypes are essentially implementations, whereas others convey essential semantics of the d
For example, an object which is conceptually a tree may be defined by either:
type tree = record (
label: character_string ({ iso standard 8859 1 }),
branches: set of (tree));
or:
type tree = record (
label: character_string ({ iso standard 8859 1}),
son: pointer to (tree),
sibling: pointer to (tree)).
The first is a proper conceptual definition, while the second is clearly the definition of a particular implementation of a tree. Which of the
datatype definitions is appropriate to a given usage, however, depends on the purpose to which this International Standard is being emp
in that usage.

5. There is no "generic" aggregate datatype. There is no "generic" construction algorithm, and the "generic" form of aggregate has no «
acterising operations on the aggregate values. Every aggregate is, in a purely mathematical sense, at least a "bag" (see 8.4.3). And tt
ability to “select one” from any aggregate value is a mathematical requirement given by the axiom of choice. The ability to perform any p
ticular operation on each element of an aggregate is sometimes cited as characterizing. But in this International Standard, this capabil
modelled as a composition of more primitive functions, viz.:
Applytoall(A: aggregate-typeP: procedure-typgis:
if not ISsEmpty(A) begin

e := Select(A);

Invoke (P, e);
Applytoall (Delete(A, e), P);
end;
and the particular “Select” operations availabewell as the need for ISEmpty and Delatecharacterizing.

8.4.1 Record

Description: Record generates a datatype, calletard datatype, whose values are heterogeneous aggregations of values of

component datatypes, each aggregation having one value for each component datatype, keyed by a fixed "field-identi
Syntax:

record-type = "record" "(" field-list ")" .

field-list = field { "," field } .

field = field-identifier ":" field-type .

field-identifier = identifier .

field-type = type-specifier .

Components: A list ofields, each of which associategiald-identifierwith a singlefield datatype, designated by thigeld-type
which may be any datatype. Aiéld-identifiersof fieldsin thefield-list shall be distinct.

Values: all collections of named values, one figld in thefield-list, such that the datatype of each value is the field datatype of
thefield to which it corresponds.

Value-syntax:
record-value = field-value-list | value-list .

field-value-list = "(" field-value { "," field-value } ")" .
field-value = field-identifier ":" independent-value .
value-list = "(* independent-value { "," independent-value } ")" .

A record-valuedenotes a value of a record datatype. Whendcerd-values afield-value-list eachfield-identifierin the

37

ISO/IEC 11404:1996 (E) [0 ISO/IEC

field-list of the record datatype to which tinecord-valuebelongs shall occur exactly once in theld-value-list eachfield-
identifier in therecord-valueshall be one of thigeld-identifiersin thefield-list of therecord-type and the corresponding
independent-valushall designate a value of the corresponding field datatype. Whestthd-valueis avalue-list the
number ofindependent-valuds thevalue-listshall be equal to the number of fields in theld-list of the record datatype

to which the value belongs, eaittdependent-valughall be associated with the field in the corresponding position, and each
independent-valushall designate a value of the field datatype of the associated field.

Properties: non-numeric, unordered, exact if and only if all component datatypes are exact.
Aggregate properties: heterogeneous, fixed size, no ordering, no uniqueness, access isfiegeidentifier, one dimensional.

Subtypes: any record datatype with exactly the dattkidentifiersas the base datatype, such that the field datatype of each
field of the subtype is the same as, or is a subtype of, the corresponding field datatype of the base datatype.

Operations: Equal, FieldSelect, Aggregate.

Equal(x, y: recordfield-list)): booleans true if for everyfield-identifierf of the record datatype,
field-typeEqual(FieldSelect.f(x), FieldSelect.f(y)), else false
(wherefield-typeEqual is the equality relationship on the field datatype corresponding to f).

There is one FieldSelect and one FieldReplace operation for each field in the record datatype, of the forms:

FieldSelecfield-identifier(x: record field-list)): field-typeis
the value of the field of record x whose field-identifiefiédd-identifier.

FieldReplacdield-identifierx: record {ield-list), y: field-typg: record {ield-list) is
that value z: recordigld-list) such that FieldSeledield-identifie(z) =y, and for all other field§in record(ield-list),
FieldSelecf(x) = FieldSelecf(z)
i.e. FieldReplace yields the record value in which the value of the desidieddext x has been replaced by vy.

NOTES

1. The sequence of fields in a Record datatype is not semantically significant in the definition of the Record datatype generator. Animple-
mentation of a Record datatype may define a representation convention which is an ordering of physically distinct fields, but that is a pragmatic
consideration and not a part of the conceptual notion of the datatype. Indeed, the optimal representation for certain Record values might be a
bit string, and then FieldReplace would be an encoding operation and FieldSelect would be a decoding operation. Notetoatinadue

which is avalue-list however, the physical sequence of fielslsignificant: it is the convention used to associate the component values in the
value-listwith the fields of the Record value.

2. Arecord datatype can be modelled as a heterogeneous aggregate of fixed size which is accessed by key, where the key datatype is a state
datatype whose values are the field identifiers. But in a value of a record datatype, totality of the mapping is required: no field (keyed value)
can be missing.

3. Arecord datatype with a subset of the fields of a base record datatype (a "sub-record" or "projection” of the record datatgoa)hs

type of the base record datatype: none of the values in the sub-record value space appears in the base value-space. And there are, in general
a great many different "embeddings" which map the sub-record datatype into the base datatype, each of which supplies different values for the
missing fields. Supplyingoid values for the missing fields is only possible if the datatypes of those fields are of the form ahgiteng of

(..., v: void).

4. "Subtypes" of a "record" datatype which hadditionalfields is an object-oriented notion which goes beyond the scope of this Interna-
tional Standard.

8.4.2 Set

Description: Set generates a datatype, calleetalatatype whose value-space is the set of all subsets of the value space of the
element datatype, with operations appropriate to the mathenssical

Syntax:
set-type = "set" "of" "(" element-type ")" .
element-type = type-specifier .

Components: Thelement-typshall designate an exact datatype, callecctbment datatype

Values: every set of distinct values from the value space of the element datatype, including the set of no values, @alpety-the
set A value of a set datatype can be modelled as a mathematical function whose domain is the value space of the element
datatype and whose range is the value space of the boolean datatype (true, falsg)s icevaifue of datatype set @)(
thens: E - B, and for any valuein the value space &, s(e)= true meang"is a member of" the set-valseands(e)=
false meang"is not a member of" the set-valge The value-space of the set datatype then comprises all funstiaiish

38

0 ISO/IEC ISO/IEC 11404:1996 (E)

are distinct (different at some valaef the element datatype).

Value-syntax:
set-value = empty-value | value-list .
empty-value = "(* ")"
value-list = "(" independent-value { "," independent-value } ")" .
Eachindependent-valum thevalue-listshall designate a value of the element datatypsetAaluedenotes a value of a
set datatype, namely the set containing exactly the distinct values of the element datatype which appealue-tis¢ or

equivalently the functioswhich yields true at every value in thvalue-listand false at all other values in the element value
space.

Properties: non-numeric, unordered, exact.
Aggregate properties: homogeneous, variable size, uniqueness, no ordering, access indirect (by value).

Subtypes:
a) any set datatype in which the element datatype of the subtype is the same as, or a subtype of, the element datat
the base set datatype; or
b) any datatype derived from a base set datatype conforming to (a) by use of the Size subtype-generator (see 8.2.4

Operations: IsIn, Subset, Equal, Difference, Union, Intersection, Empty, Setof, Select

IsIn(x: element-typey: set of €élement-typg: boolean = y(x), i.e.
true if the value x is a member of the set y, else false;

Subset(x,y: set ok{ement-typp: boolearis true if for every value of the element datatype
Or(Not(IsIn(v,x)), IsIn(v,y)) = true, else false; i.e. true if and only if every member of x is a member of y;

Equal(x, y: set ofdlement-typp: boolean = And(Subset(x,y), Subset(y,x));

Difference(x, y: set of¢lement-typg: set of €lement-typkis the set consisting of all values v of the element datatype such
that And(IsIn(v, x), Not(IsIn(v,y)));

Union(x, y: set of élement-typp: set of element-typgis the set consisting of all values v of the element datatype such that
Or(IsIn(v,x), IsIin(v,y));

Intersection(x, y: set oflement-typg: set of €lement-typgs the set consisting of all values v of the element datatype such
that And(IsIn(v,x), IsIn(v,y));

Empty(): set of ¢lement-typkis the functions such that for all valuegof the element datatype(v)= false; i.e. the set
which consists of no values of the element datatype

Setof(y:element-type)set of glement-typkgis the functions such thas(y) = true and for all values z y, s(v)= false; i.e.
the set consisting of the single value y;

Select(x: set ofglement-typp: element-typewhere Not(Equal(x, Empty()is some one value from the value space of
element datatype which appears in the set x.

NOTE — Set is modelled as having only the (undefined) Select operation derived from the axiom of choice. In another sense, the access mi
for an element of a set value is “find the element (if any) with vatyevhich actually uses the characterizing “IsIn” operation, and the unique-
ness property.

8.4.3 Bag

Description: Bag generates a datatype, calle@gadatatype whose values are collections of instances of values from the ele-
ment datatype. Multiple instances of the same value may occur in a given collection; and the ordering of the value instan
is not significant.

Syntax:
bag-type ="bag" "of" "(" element-type ")" .
element-type = type-specifier .
Components: Thelement-typshall designate an exact datatype, callecctement datatype

Values: all finite collections of instances of values from the element datatype, including the empty collection. A value of a b:
datatype can be modelled as a mathematical function whose domain is the value space of the element datatype and \
range is the nonnegative integers, i.eh i§ a value of datatype bag dt), thenb: E - Z, and for any valuein the value

39

ISO/IEC 11404:1996 (E) [0 ISO/IEC

space o, b(e)= 0 mean® "does not occur in" the bag-valleandb(e)=n, wherenis a positive integer, meaesoccurs

ntimes in" the bag-valub. The value-space of the bag datatype then comprises all funiotidmish are distinct.
Value-syntax:

bag-value = empty-value | value-list .

empty-value = "(" ")"

value-list = "(* independent-value { "," independent-value } ")" .

Eachindependent-valum thevalue-listshall designate a value of the element datatypéad-valuedenotes a value of a

bag datatype, namely that function which at each vabfehe element datatype yields the number of occurrencemof
thevalue-list .

Properties: non-numeric, unordered, exact.
Aggregate properties: homogeneous, variable size, no uniqueness, no ordering, access indirect.

Subtypes:
a) any bag datatype in which the element datatype of the subtype is the same as, or a subtype of, the element datatype of
the base bag datatype; or
b) any datatype derived from a base bag datatype conforming to (a) by use of the Size subtype-generator (see 8.2.4).

Operations: IsEmpty, Equal, Empty, Serialize, Select, Delete, Insert
IsEmpty(x: bag ofélement-typp: booleanis true if for allein the element value spacegk€ 0, else false;
Equal(x, y: bag ofdlement-typg: boolearis true if for allein the element value spaceekg y(e), else false;
Empty(): bag of ¢lement-typgis that function x such that for adlin the element value spaceekt O;

Serialize(x: bag ofglement-typg: sequence ofe{ement-typgis:
if ISEmpty(x), then (),
else any sequence value s such that for eatlthe element value spa@gpccurs exactly xd) times in s;

Select(x: bag ofdlement-typp: element-type Sequence.Head(Serialize(x));
Delete(x: bag ofélement-typk y: element-type bag of €lement-typgis that function z in bag ofglement-typesuch that:
foralle#y, z(e) = x(e), and
if x(y) > 0 then z(y) = x(y) - 1 and if x(y) = 0 then z(y) = 0;
i.e. the collection formed by deleting one instance of the value vy, if any, from the collection x;

Insert(x: bag of ¢lement-typg y: element-type bag of €lement-typgis that function z in bag ofdlement-typesuch that:
foralle#y, z(e) = x(e), and z(y) = x(y) + 1;
i.e. the collection formed by adding one instance of the value y to the collection x;

8.44 Sequence

Description: Sequence generates a datatype, cadlegunce datatypewhose values are ordered sequences of values from
the element datatype. The ordering is imposed on the values and not intrinsic in the underlying datatype; the same value
may occur more than once in a given sequence.

Syntax:
sequence-type = "sequence
element-type = type-specifier .

of' "(" element-type ")" .

Components: Thelement-typshall designate any datatype, calledetement datatype
Values: all finite sequences of values from the element datatype, including the empty sequence.

Value-syntax:
sequence-value = empty-value | value-list .
empty-value = "(* ")"
value-list = "(" independent-value { "," independent-value } ")" .
Eachindependent-valuia thevalue-listshall designate a value of the element datatypseduence-valugenotes a value

of a sequence datatype, hamely the sequence containing exactly the valuesin¢hiést in the order of their occurrence
in thevalue-list .

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

40

0 ISO/IEC ISO/IEC 11404:1996 (E)

Aggregate properties: homogeneous, variable size, no unigueness, imposed ordering, access indirect (by position).

Subtypes:
a) anysequence datatype in which the element datatype of the subtype is the same as, or a subtype of, the element dat
of the base sequence datatype; or
b) any datatype derived from a base sequence datatype conforming to (a) by use of the Size subtype-generator (see ¢

Operations: ISsEmpty, Head, Tail, Equal, Empty, Append.
ISEmpty(x: sequence oklement-typp: booleans true if the sequence x contains no values, else false;
Head(x: sequence oflement-typp: element-typewhere Not(IsEmpty(x))is the first value in the sequence x;

Tail(x: sequence ofglement-typp: sequence ofdlement-typgs the sequence of values formed by deleting the first value,
if any, from the sequence x;

Equal(x, y: sequence oflement-typg: boolearis:
if ISEmpty(x), then ISEmpty(y);
else if Head(x) = Head(y), then Equal(Tail(x), Tail(y));
else, false;

Empty(): sequence oélement-typgis the sequence containing no values;

Append(x: sequence oflement-typg y: element-type sequence of{ement-typeis
the sequence formed by adding the single value y to the end of the sequence x.

NOTES

1. Sequence differs from Bag in that the ordering of the values is significant and therefore the operations Head, Tail, and Append, wi
depend on position, are provided instead of Select, Delete and Insert, which depend on value.

2. The extended operation Concatenate(x, y: sequen&g)n¢quence off) is:
if ISEmpty(y) then x; else Concatenate(Append(x, Head(y)), Tail(y));

3. The notiorsequential filemeaning "a sequence of values of a given datatype, usually stored on some external medium®”, is an implem
tation of datatype Sequence.

8.45 Array

Description: Array generates a datatype, calledmay datatype, whose values are associations between the product space of
one or more finite datatypes, designatedititex datatypes and the value space of teéementdatatype, such that every
value in the product space of the index datatypes associates to exactly one value of the element datatype.

Syntax:
array-type = "array" "(" index-type-list ")" "of" "(" element-type ")" .
index-type-list = index-type { ", index-type } .
index-type = type-specifier | index-lowerbound ".." index-upperbound .
index-lowerbound = value-expression .
index-upperbound = value-expression .

element-type = type-specifier .

Components: Thelement-typshall designate any datatype, calledelenent datatype Eachindex-typeshall designate an
ordered and finite exact datatype, calledratex datatype When thandex-typehas the form:
index-lowerbound .. index-upperbouynd
the implied index datatype is:
integer rangefdex-lowerbound. index-upperbounyl
andindex-lowerbounéndindex-upperbounghall have integer values, such timatex-lowerbound: index-upperbound

Thevalue-expression®r index-lowerboundndindex-upperboundhay bedependent-valueshen the array datatype ap-
pears as parameter-typeor in a component of @arameter-typeof a procedure datatype, or in a component of a record
datatype. Neithendex-lowerbounaior index-upperboundhall bedependent-values any other case. Neithedex-
lowerboundnorindex-upperbounghall beformal-parametric-valugsexcept in certain cases in declarations (see 9.1).

Values: all functions from the cross-product of the value spaces of the index datatypes appearimglgxtiype-listdesignat-
ed theindex product space into the value space of the element datatype, such that each value in the index product spe
associates to exactly one value of the element datatype.

41

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Value-syntax:
array-value = value-list .
value-list = "(* independent-value { "," independent-value } ")" .

An array-valuedenotes a value of an array datatype. The numbard#fpendent-valuds the value-listshall be equal to

the cardinality of the index product space, and dadependent-valughall designate a value of the element datatype. To
define the associations, the index product space is first ordered lexically, with the last-occurring index datatype varying most
rapidly, then the second-last, etc., with the first-occurring index datatype varying least rapidly. Timelépstndent-value

in thearray-valueassociates to the first value in the product space thus ordered, the second to the secondarty- The
valuedenotes that value of the array datatype which makes exactly those associations.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, fixed size, no uniqueness, no ordering, access is indexed, dimensionality is equal to the
number ofindex-typesn theindex-type-list

Subtypes: any array datatype having the same index datatypes as the base datatype and an element datatype which is a subtype
of the base element datatype.

Operations: Equal, Select, Replace.

Select(x: arrayifidex, ...,index,) of (element-type y;: index, ..., y,: index,): element-typés that value of the element
datatype which x associates with the valug (y, ¥, in the index product space;

Equal(x, y: arrayifidex, ...,index,) of (element-typp: booleanis true if for every valuew, ...,) in the index product
space, Select(¥y, ...,) = Select(yyy, ...,), else false;

Replace(x: arrayiideX, ...,index,) of (element-typg y;: index, ..., y,: index,, z: element-type array {ndex, ...,index,)
of (element-typgis that valuew of the array datatype such that(y, ..., ¥) - Z,
and for all valuep of the index product space excepf, (y., %), W: p —» X(p);
i.e. Replace yields the function which associate#th the value (y, ..., y,) and is otherwise identical to x.

NOTES

1. The general array datatype is "multidimensional”, where the number of dimensions and the index datatypes themselves are part of the
conceptual datatype. The index space is an unordered product space, although it is necessarily ordered in each "dimension”, that is, within each
index datatype. This model was chosen in lieu of the "array of array” model, in which an array has a single ordered index datatype, in the belief
that it facilitates the mappings to programming languages. Note that:

type arrayA = array (1..m, 1..n) of (integer);
definesarrayA to be a 2-dimensional datatype, whereas

type arrayB = array (1..m) of (array [1..n] of (integer));
definesarrayB to be a 1-dimensional (with element datatygreay (1..n) of (integer), rather tharinteger). This allows languages in which
Al[i][j] is distinguished from A[i, j] to maintain the distinction in mappings to the LI Datatypes. Similarly, languages which disallow the A[i][j]
construct can properly state the limitation in the mapping or treat it as the same as AJj, j], as appropriate.

2. The array of a single dimension is simply the case in which the number of index datatypes is 1 and the index product space is the value
space of that datatype. The order of the index datatype then determines the association to the independent-values in a corresponding array-
value.

3. Support for index datatypes other than integer is necessary to model certain Pascal and Ada datatypes (and possibly others) with equivalent
semantics.

4. Itis not required that the specific index values be preserved in any mapping of an array datatype, but rather that each index datatype be
mapped 1-to-1 onto a corresponding index datatype and the corresponding indexing functions be preserved.

5. Since the values of an array datatype are functions, the array datatype is conceptually a special case of the procedure datatype (see 8.3.3).
In most programming languages, however, arrays are conceptually aggregates, not procedures, and have such constraints as to ensure that the
function can be represented by a sequence of values of the element datatype, where the size of the sequence is fixed and equal to the cardinality
of the index product space.

6. Inorderto define an interchangeable representation of the Array as a sequence of element values, it is first necessary to define the function
which maps the index product space to the ordinal datatype. There are many such functions. The one used in interpresipegy ahee
construct is as follows:

Let A be a value of datatype array(arragde, ..., index,) of (element-type For each index datatypedex, let lowerboung andup-
perboungbe the lower and upper bounds on its value space. Define the operatigitovizgmp the index datatypedex into a range of integer

by:

42

0 ISO/IEC ISO/IEC 11404:1996 (E)

Map(x: index): integer is:
Map(lowerboung) = G; and
Map;(Successgfx)) = Map(x) + 1, for all x# upperbound

And define the constansizg = Map(upperboung - Map,(lowerboung) + 1. Then Ord(x: index, ..., X,: index,): ordinal is the ordinal value
corresponding to the integer value:

n n
1+2 Map(x) -(I sizeyq)
i=1 =1
where the non-existestize,, is taken to be 1. And the Ord(x.., x,)th position in the sequence representation is occupied by A(x,).

EXAMPLE — The Fortran declaration:
CHARACTER*1 SCREEN (80, 24)
declares the variable "screen" to have the LI datatype:
array (1..80, 1..24) of character (unspecified).
And the Fortran subscript operation:
S = SCREEN (COLUMN, ROW)

is equivalent to the characterizing operation:
Select (screen, column, row);
while

SCREEN(COLUMN, ROW) = S

is equivalent to the characterizing operation:

Replace(screen, column, row, S).
The Fortran standard (ISO/IEC 1539:199hformation technology — Programming languages — Fortrdmowever, requires a mapping
function which gives a different sequence representation from that given in Note 6.

8.4.6 Table

Description: Table generates a datatype, callibke datatype, whose values are collections of values in the product space of
one or mordield datatypes, such that each value in the product space represents an association among the values of its fie
Although the field datatypes may be infinite, any given value of a table datatype contains a finite number of associatio

Syntax:
table-type = "table" "(" field-list ")" .
field-list = field { "," field } .
field = field-identifier ":" field-type .
field-identifier = identifier .
field-type = type-specifier .

Components: A list ofields each of which associategiald-identifierwith a singlefield datatype, designated by thigeld-type
which may be any datatype. Aikld-identifiersof fieldsin thefield-list shall be distinct..

Values: The value space of talffeeld-list) is isomorphic to the value spacelmdg of (record(field-list)), that is, all finite col-
lections of associations represented by values from the cross-product of the value spaces of all the field datatypes in
field-list.

Value-syntax:
table-value = empty-value | "(" table-entry { "," table-entry } ")" .
table-entry = field-value-list | value-list .

field-value-list = "(* field-value { "," field-value } ")" .
field-value = field-identifier ":" independent-value .
value-list = "(" independent-value { "," independent-value } ")" .

A table-valuedenotes a value of a table datatype, hamely the collection comprising exactly the associations designated
thetable-entng appearing in thiable-value A table-entrydenotes a value in the product space of the field datatypes in the
field-list of thetable-type When thdable-entryis afield-value-list eacHfield-identifierin thefield-list of the table datatype

to which thetable-valuebelongs shall occur exactly once in tleld-value-list eachfield-identifierin thetable-entryshall

be one of théield-identifiersin thefield-list of thetable-type and the correspondinigdependent-valushall designate a
value of the corresponding field datatype. Whenttide-entryis avalue-list the number oindependent-valuaa theval-
ue-listshall be equal to the number of fields in thield-list of the table datatype to which the value belongs, éadbapen-
dent-valueshall be associated with the field in the corresponding position, andr@ebendent-valughall designate a val-

43

ISO/IEC 11404:1996 (E) [0 ISO/IEC

ue of the field datatype of the associated field.
Properties: non-numeric, unordered, exact if and only if all field datatypes are exact.
Aggregate properties: heterogeneous, variable size, no uniqueness, no ordering, dimensionality is two.

Subtypes:
a) any table datatype which has exactly the sifeidentifiersin thefield-list, and the field datatype of each field of
the subtype is the same as, or is a subtype of, the corresponding field datatype of the base datatype; or
b) anytable datatype derived from a base table datatype conforming to (a) by use of the Size subtype-generator (see 8.2.4).

Operations: MaptoBag, MaptoTable, Serialize, ISsEmpty, Equal, Empty, Delete, Insert, Select, Fetch.
MaptoBag(x: tabldield-list)): bag of (recordield-list)) is the isomorphism which maps the table to a bag of records.
MaptoTable(x: bag of (recorfigld-list))): tablefield-list) is the inverse of the MaptoBag isomorphism.
Serialize(x: tabldield-list)): sequence of (recoriiéld-list)) = Bag.Serialize(MaptoBag(x));
ISsEmpty(x: tableffeld-list)): boolean = Bag.IsEmpty(MaptoBag(x));
Equal(x, y: tableffeld-list)): boolean = Bag.Equal(MaptoBag(x), MaptoBag(y));
Empty(): tablefield-list) = ();
Delete(x: tabldield-list), y: recordfield-list)): tablefield-list) = MaptoTable(Bag.Delete(MaptoBag(x), Y));
Insert(x: tablefjeld-list), y: recordfield-list)): tablefield-list) = MaptoTable(Bag.Insert(MaptoBag(x), y));

Select(x: tablef{eld-list), criterion: procedure(in row: recorfild-list)): boolean): tabldield-list) = MaptoTable(z), where
z is the bag value whose elements are exactly those record values r in MaptoBag(x) for which criterion(r) = true.

Fetch(x: tableffeld-list)): recordfield-list), where Not(ISEmpty(x)), = Sequence.Head(Serialize(x));
NOTES

1. Table would be a defined-generator (as in 10.2), but the type (generator) declaration syntax (see 9.1) does not permit the parametric ele-
ment list to be a variable length list of field-specifiers.

2. This definition of Table is aligned with the notion of Table specified by ISO 9075:1990, Structured Query Language (SQL) . In SQL, the
"select procedure" may take as input rows from more than one table, but this is a generalization of the characterizing operation Select, rather
than an extention to the Table datatype concept.

3. Ingeneral, access to a Table is indirect, via Fetch or MaptoBag. Access to a Table is sometimes said to be "keyed" because the common
utilization of this data structure represents "relationships" in which some field or fields are designated "keys" on which the values of all other
fields are said to be "dependent”, thus creating a mapping between the product space of the key value spaces and the value spaces of the other
fields. (In database terminology, such a relationship is said to be of the "third normal form".) The specification of this mapping, when present,

is a complex part of the SQL language standard and goes beyond the scope of this International Standard.

8.5 Defined Datatypes

A defined datatypeis a datatype defined bytgpe-declaratior(see 9.1). It is denoted syntactically byyame-referencewith
the following syntax:

type-reference = type-identifier ["(" actual-type-parameter-list ")"] .

type-identifier = identifier .

actual-type-parameter-list = actual-type-parameter { "," actual-type-parameter } .

actual-type-parameter = value-expression | type-specifier .

Thetype-identifiershall be theype-identifierof sometype-declaratiorand shall refer to the datatype or datatype generator there-
by defined. Theactual-type-parameteysf any, shall correspond in number and in type to themal-type-parametersf the
type-declaration That is, eactactual-type-parameterorresponds to thiormal-type-parametein the corresponding position

in theformal-type-parameter-listlf the formal-parameter-types atype-specifierthen theactual-type-parameteshall be aval-
ue-expressiomesignating a value of the datatype specified by fihrenal-parameter-type.If the formal-parameter-typés
"type", then theactual-type-parameteshall be aype-specifieand shall have the properties required of that parametric datatype
in the generator-declaration.

Thetype-declarationdentifies thatype-identifierin thetype-referencavith a single datatype, a family of datatypes, or a datatype

44

0 ISO/IEC ISO/IEC 11404:1996 (E)

generator. If theype-identifierdesignates a single datatype, thentthpe-referenceefers to that datatype. If thgpe-identifier
designates a datatype family, then tiipe-referenceefers to that member of the family whose value space is identified by the
type-definitionafter substitution of eacactual-type-parameteralue for all occurrences of the correspondingnal-paramet-
ric-value. If the type-identifierdesignates a datatype generator, thertype-referencelesignates the datatype resulting from
application of the datatype generator to the actual parametric datatypes, that is, the datatype whose value space is identifi
the type-definitionafter substitution of eachctual-type-parametedatatype for all occurrences of the correspondimgnal-
parametric-type.In all cases, the defined datatype has the values, properties and characterizing operations defined, explicitl
implicitly, by thetype-declaration

When atype-referenceccurs in aype-declarationthe requirements for itactual-type-parameterare as specified by clause
9.1. Inany other occurrence ofype-referencenoactual-type-parameteshall be dormal-parametric-valuer aformal-para-
metric-type

9 Declarations

This International Standard specifies an indefinite number of generated datatypes, implicitly, as recursive applications of
datatype generators to the primitive datatypes. This clause defines declaration mechanisms by which new datatypes and ¢
ators can be derived from the datatypes and generators of Clause 8, named and constrained. It also specifies a declaration
anism for naming values and a mechanism for declaring alternative terminations of procedure datatypes (see 8.3.3).

declaration = type-declaration | value-declaration | procedure-declaration | termination-declaration .

NOTE — This clause provides the mechanisms by which the facilities of this International Standard can be extended to meet the needs
particular application. These mechanisms are intended to facilitate mappings by allowing for definition of datatypes and subtypes approp
to a particular language, and to facilitate definition of application services by allowing the definition of more abstyaetsdata

9.1 Type Declarations

A type-declaratiordefines a newtype-identifierto refer to a datatype or a datatype generator. A datatype declaration may b
used to accomplish any of the following:

* to rename an existing datatype or name an existing datatype which has a complex syntax, or
* as the syntactic component of the definition of a new datatype, or
* as the syntactic component of the definition of a new datatype generator.

Syntax:
type-declaration = "type" type-identifier ["(" formal-type-parameter-list ")"]
"=" ["new"] type-definition .
type-identifier = identifier .
formal-type-parameter-list = formal-type-parameter { "," formal-type-parameter } .
formal-type-parameter = formal-parameter-name ":" formal-parameter-type .
formal-parameter-name = identifier .
formal-parameter-type = type-specifier | "type" .
type-definition = type-specifier .
formal-parametric-value = formal-parameter-name .
formal-parametric-type = formal-parameter-name .

Everyformal-parameter-namappearing in théormal-type-parameter-lighall appear at least once in tlype-definition Each
formal-parameter-namehoseformal-parameter-types atype-specifieshall appear asfarmal-parametric-valuand eaclfor-
mal-parameter-namehoseformal-parameter-typés "type" shall appear as @rmal-parametric-type Except for such occur-
rences, nvalue-expressioappearing in théype-definitiorshall be &ormal-parametric-valuand notype-specifieappearing
in thetype-definitionshall be dormal-parametric-type

Thetype-identifierdeclared in dype-declaratiormay be referenced in a subsequent usetgpa-referencésee 8.5). Théor-
mal-type-parameter-lisieclares the number and required nature obitteal-type-parametenshich must appear in type-ref-
erencewhich references thiype-identifier A type-referencavhich references thitype-identifiermay appear in aalternative-
typeof achoice-typeor in theelement-typef a pointer-type in théype-definitionof this or any precedingype-declaration In

45

ISO/IEC 11404:1996 (E) [0 ISO/IEC

any other case, thgpe-declaratiorfor thetype-identifiershall appear before the first reference to it ippee-reference
No type-identifiershall be declared more than once in a given context.

What thetype-identifieris actually declared to refer to depends on whether the keyimend" is present and whether tf@mal-
parameter-typétype" is present.

9.1.1 Renaming declarations

A type-declaratiowhich does not contain the keywdhdew" declares théype-identifierto be a synonym for thigpe-definition
A type-referenceeferencing theype-identifierrefers to the LI datatype identified by thgpe-definition after substitution of the
actual datatype parameters for the corresponding formal datatype parameters.

9.1.2 New datatype declarations

A type-declaratiorwhich contains the keyworthew" and does not contain tifermal-parameter-typétype" is said to be a
datatype declaration It defines the value-space of a new LI datatype, which is distinct from any other LI datatype.fdfthe
mal-type-parameter-lisis not present, then thgpe-identifieris declared to identify a single LI datatype. If tfreemal-type-
parameter-listis present, then thiype-identifieris declared to identify a family of datatypes parametrized byfohmal-type-
parameters.

Thetype-definitiondefines the value space of the new datatype (family) — there is a one-to-one correspondence between values
of the new datatype and values of the datatype described Rypkedefinition The characterizing operations, and any other
property of the new datatype which cannot be deduced from the value space, shall be provided alongyp#idbelaration

to complete the definition of the new datatype (family). The characterizing operations may be taken from those of the datatype
(family) described by thgype-definitiondirectly, or defined by some algorithmic means using those operations.

NOTE — The purpose of the "new" declaration is to allow both syntactic and semantic distinction between datatypes with identical value spac-
es. Itis not required that the characterizing operations on the new datatype be different from thoggetthedinition A semantic distinction

based on application concerns too complex to appear in the basic characterizing operations is possible. For example, acceleration and velocity
may have identical computational value spaces and operations (datatype "real") but quite different physical ones.

9.1.3 New generator declarations

A type-declaratiorwhich contains the keyworthew" and at least onformal-type-parametewhoseformal-parameter-typés

"type" is said to be @enerator declaration A generator declaration declares tiipe-identifierto be a new datatype generator
parametrized by théormal-type-parameterand the associated value space construction algorithm to be that specified by the
type-definition The characterizing operations, and other properties of the datatypes resulting from the generator which cannot
be deduced from the value space, shall be provided along with the generator declaration to complete the definition of the new
datatype generator.

Theformal-type-parametershoseformal-parameter-typés "type" are said to b@arametric datatypes A generator declara-
tion shall be accompanied by a statement of the constraints on the parametric datatypes and on the values dbtimeabther
type-parametersf any.

9.2 Value Declarations

A value-declaratiordeclares an identifier to refer to a specific value of a specific datatype. Syntax:

value-declaration = "value" value-identifier ":" type-specifier "=" independent-value .
value-identifier = identifier .

Thevalue-declaratiordeclares the identifieralue-identifierto denote that value of the datatype designated biyihespecifier
which is denoted by the givendependent-valugsee 7.5.1). Theéndependent-valushall (be interpreted to) designate a value
of the designated LI datatype, as specified by Clause 8 or Clause 10.

No independent-valuappearing in aalue-declaratiorshall be &ormal-parametric-valu@and notype-specifieappearing in a
value-declaratiorshall be gormal-parametric-type

46

0 ISO/IEC ISO/IEC 11404:1996 (E)

9.3 Termination Declarations
A termination-declaratiordeclares @ermination-identifierto refer to an alternate termination common to multiple procedures
or procedure datatypes (see 8.3.3) and declares the collection of procedure parameters returned by that termination.

termination-declaration = "termination" termination-identifier ["(" termination-parameter-list)"] .
termination-identifier = identifier .

termination-parameter-list = parameter { "," parameter } .

parameter = [parameter-name "] parameter-type .

parameter-type = type-specifier .

parameter-name = identifier .

The parameter-namesf theparametersn atermination-parameter-listhall be distinct. Ndermination-identifiershall be de-
clared more than once, nor shall it be the same atypasidentifier

Thetermination-declaratioris a purely syntactic object. All semantics are derived from the use @éth@nation-identifieras
atermination-referencen a procedure or procedure datatype (see 8.3.3).

10 Defined Datatypes and Generators

This clause specifies the declarations for commonly occurring datatypes and generators which can be derived from the data
and generators defined in Clause 8 using the declaration mechanisms defined in Clause 9. They are included in this Internat
Standard in order to standardize their designations and definitions for interchange purposes.

10.1 Defined datatypes

This clause specifies the declarations for a collection of commonly occurring datatypes which are treated as primitive dataty
by some common programming languages, but can be derived from the datatypes and generators defined in Clause 8.

The template for definition of such a datatype is:
Description: prose description of the datatype.
Declaration: aype-declaratiorfor the datatype.

Parametric values: when the defined datatype is a family of datatypes, identification of and constraints on the parame
values of the family.

Values: formal definition of the value space.

Value-syntax: when there is a special notation for values of this datatype, the requisite syntactic productions, and
identification of the values denoted thereby.

Properties: properties of the datatype which indicate its admissibility as a component datatype of certain datat
generators: numeric or non-numeric, approximate or exact, ordered or unordered, and if ordered,
bounded or unbounded.

Operations: characterizing operations for the datatype.

The notation for values of a defined datatype may be of two kinds:

1) Ifthe datatype is declared to have a specific value syntax, then that value syntax is a valid notation for values of the dataty
and has the interpretation given in this clause.

2) If the datatype is not declared to have a specific value syntax, then the syetgitit-valuesof the datatype identified
by thetype-definitionis a valid notation for values of the defined datatype.

10.1.1 Natural number
Description: Naturalnumber is the datatype of the cardinal or natural numbers.

Declaration:

a7

ISO/IEC 11404:1996 (E) [0 ISO/IEC

type naturalnumber = integer range (0..%);
Parametric Values: none.
Values: the non-negative subset of the value-space of datatype Integer.
Properties: ordered, exact, numeric, unbounded above, bounded below.
Operations: all those of datatype Integer, except Negate (which is undefined everywhere).

10.1.2 Modulo
Description: Modulo is a family of dataypes derived from Integer by replacing the operations with arithmetic operations using
the modulus characteristic.

Declaration:
type modulo (modulus: integer) = new integer range(0..modulus) excluding(modulus);

Parametric Valuesmodulusis an integer value, such that Inodulus designated themodulusof the Modulo datatype
Values: all Integer valuessuch that & v andv < modulus

Properties: ordered, exact, numeric.

Operations: Equal, InOrder from Integer; Add, Multiply, Negate.

Add(x,y: modulo fnodulu3): modulofodulu3 =
integer.Remainder(integer.Add(x,yhodulus.

Negate(x: modulonfodulug): modulo fnodulu$ is the (unique) value y in the value space of modntmulud such that
Add(x, y) = 0.

Multiply(x,y: modulo (nodulug): modulofnodulu$ =
integer.Remainder(integer.Multiply(x,ynodulus.

10.1.3 Bit

Description: Bit is the datatype representing the finite field of two symbols designated "0", the additive identity,taad "1",
multiplicative identity.

Declaration:
type bit = modulo(2);

Parametric Values: none.

Values: 0, 1

Properties: ordered, exact, numeric, bounded.
Operations: (Equal, InOrder, Add, Multiply) from Modulo.

10.1.4 Bit string

Description: Bitstring is the datatype of variable-length strings of binary digits.

Declaration:
type bitstring = new sequence of (bit);

Parametric Values: none.
Values: Each value of datatype bitstring is a finite sequence of values of datatype bit. The value-space comprises all such values.

Value-syntax:
bitstring-literal = quote { bit-literal } quote .
bit-literal = "0" | "1" .
Thebitstring-literal denotes that value in which the first value in the sequence is that denoted by the |&ftrfitestal, the

second value in the sequence is that denoted by théitdiktral, etc. If there are nbit-literals in thebitstring-literal,
then the value denoted is the sequence of length zero.

48

0 ISO/IEC ISO/IEC 11404:1996 (E)

Properties: unordered, exact, non-numeric.
Operations: (Head, Tail, Append, Equal, Empty, ISEmpty) from Sequence (8.4.4).

NOTES
1. Bitstring is assumed to be a Sequence, rather than an Array, in that the values may be of different lengths.

2. The description and properties of bitstring are identical to those of sequence of (bit). Bitstring is said to be "new" in order to facilite
mappings. Entities may need to attach special properties to the bitstring datatype.

10.1.5 Character string

Description: Characterstring is a family of datatypes which represent strings of symbols from standard character-sets.

Declaration:
type characterstring (repertoire: objectidentifier) = new sequence of (character (repertoire));

Parametric Valuesrepertoireis a "repertoire-identifier" (see 8.1.4).

Values: Each value of a characterstring datatype is a finite sequence of members of the character-set idepEicuray
The value-space comprises the collection of all such values.

Value syntax:
string-literal = quote { string-character } quote .
string-character = non-quote-character | added-character | escape-character .
non-quote-character = letter | digit | underscore | special | apostrophe | space .
added-character = not defined by this International Standard
escape-character = escape character-name escape .
character-name = identifier { "" identifier } .

Eachstring-characteiin thestring-literal denotes a single member of the character-set identifiedfgrtoire as provided

in 8.1.4. Thestring-literal denotes that value of the characterstring datatype in which the first value in the sequence is th
denoted by the leftmostring-characterthe second value in the sequence is that denoted by thetniexf-character etc.

If there are natring-charactersn thestring-literal, then the value denoted is the sequence of length zero.

Properties: unordered, exact, non-numeric, denumerable.

Operations: (Head, Tail, Append, Equal, Empty, ISEmpty) from Sequence (8.4.4).
NOTES

1. Thereis no general international standard for collating sequences, although certain international character-set standards require sy
collating sequences. Applications which need the order relationship on characterstring, and which share a character-set for which there
standard collating sequence, need to create a defined datatype or a repertoire-identifier which refers to the character-set and the agree
collating sequence.

2. Characterstring is defined to be a Sequence, rather than an Array, to permit values to be of different lengths.

3. The description and properties of the characterstring(r) datatype are identical to those of sequence of (character(r)). Character:
datatypes are said to be "new" in order to facilitate mappings. Entities may need to attach special properties to 1thgdatetypies.

4. Many languages distinguish as separate datatypes objects represented by character strings with specific syntactic requirements. F
ample, LISP has dynamic evaluation of "s-expressions"; Prolog has a similar construct; COBOL represents currency as a "numeric e
string"; and several languages have an "identifier" datatype whose values are treated as user-defined objects to which properties will k
tached. In a multi-language environment, such objects can probably be manipulated only as datatype characterstring, except in the langu
which the special properties were intended to be interpreted. Thus, such datatypes should be declared as LI datatypes "derived from chal
string", e.g.:

type identifier = new characterstring(repertoire) size(1..maxidsize);
or:

type editcharacter = character({iso standard 646}) selecting ('0"..’9",".", ')", '+, "=, '$", '#, '*");

type numericedited = new sequence of (editcharacter);
In each case, the keyword "new" should be used to indicate the presence of unusual characterizing operations, formation rules and inter
tions (see 9.1.2).

49

ISO/IEC 11404:1996 (E) [0 ISO/IEC

10.1.6 Time interval

Description: Timeinterval is a family of datatypes representing elapsed time in seconds or fractions of a second (as opposed t
Date-and-time, which represents a point in time, see 8.1.6). It is a generated datatype derived from a scaled datatype by
limiting the operations.

Declaration:
type timeinterval(unit. timeunit, radix: integer, factor. integer) = new scaled (radix, factor);
type timeunit = state(year, month, day, hour, minute, second);

Parametric ValuesRadixis a positive integer value, afactoris an integer value.

Values: all values which are integral multiples of caix("°") unit of the specified timeunit.

Properties: ordered, exact, numeric, unbounded.

Operations: (Equal, Add, Negate) from Scaled; ScalarMultiply.

Let scaled.Multiply() be the Multiply operation defined on scaled datatypes. Then:
ScalarMultiply(x: scaled(f), y: timeintervalQ,r,f)): timeinterval(i,r,f) = scaled.Multiply(x,y).

EXAMPLE — timeinterval(second, 10, 3) is the datatype of elapsed time in milliseconds.
10.1.7 Octet

Description: Octet is the datatype of 8-bit codes, as used for character-sets and private encodings.

Declaration:
type octet = new integer range (0..255);

Parametric Values: none.

Values: Each value of datatype Octet is a code, represented by a non-negative integer value in the range [0, 255].
Properties: ordered, bounded, exact, non-numeric, finite.

Operations: (Equal, InOrder) from Integer.

NOTES
1. Octetis a common datatype in communications protocols.

2. Itis common to define "characterizing operations" that conveocet value to abitstring value or ararray of bit value, but there is no
agreement on which bit of the octet is first in the bit string, or equivalently, how the array indices map to the bits.

10.1.8 Octet string

Description: Octetstring is the datatype of variable-length encodings using 8-bit codes.

Declaration:
type octetstring = sequence of (octet);

Parametric Values: none.

Values: Each value of the octetstring datatype is a finite sequence of codes represented by octet values. The value-space com
prises the collection of all such values, including the empty sequence.

Properties: unordered, exact, non-numeric, denumerable.

Operations: (Head, Tail, Append, Equal, Empty, ISEmpty) from Sequence (8.4.4).

NOTE — Among other uses, an octetstring value is the representation of a characterstring value, and is used when the characterstring is to be
manipulated as codes. In particulactetstring should be preferred when the values may contain codes which are not associated with charac-
ters in the repertoire.

10.1.9 Private

Description: A Private datatype represents an application-defined value-space and operation set which are intentionally con-

50

0 ISO/IEC ISO/IEC 11404:1996 (E)

cealed from certain processing entities.

Declaration:
type private(length: NaturalNumber) = new array (1../ength) of (bit);

Parametric Valuest.engthshall have a positive integer value.
Values: application-defined.
Properties: unordered, exact, non-numeric.

Operations: none.
NOTES
1. There is no denotation for a value of a Private datatype.

2. The purpose of the Private datatype is to provide a means by which:
a) anobject of a non-standard datatype, having a complex internal structure, can be passed between two parties which understar
type through a standard-conforming service without the service having to interpret the internal structure, or
b) values of a datatype which is meaningless to all parties but one, such as "handles", can be provided to an end-usss by later
the knowledgeable service, for example, as part of a package interface.
In either case, the length and ordering of the bits must be properly maintained by all intermediaries. In the former case, the Private date
may be encoded by the provider (or his marshalling agent) and decoded by the recipient (or his marshalling agent). In the latter case the P
datatype will be encoded and decoded only by the knowledgeable agent, and all others, including end-users, will hantkriags a

10.1.10 Object identifier

Description: Objectidentifier is the datatype of "object identifiers", i.e. values which uniquely identify objects in &{®pen
tems Interconnection) communications protocol, using the formal structure defined by Abstract Syntax Notation One
(ISO/IEC 8824:1990).

Declaration:
type objectidentifier = new sequence of (objectidentifiercomponent) size(1..*);
type objectidentifiercomponent = new integer range(0..*);

Parametric Values: none.

Values: The value space of datatype objectidentifiercomponent is isomorphic to the cardinal numbers (10.1.1), but the mea
of each value is determined by its position in an objectidentifier value.

The value-space of datatype objectidentifier comprises all non-empty finite sequences of objectidentifiercomponent valu
The meaning of each objectidentifiercomponent value within the objectidentifier value is determined by the sequence of \
ues preceding it, as provided by ISO/IEC 8824:1990. The sequence constituting a single value of datatype objectidenti
uniquely identifies an object.

Value syntax:
objectidentifier-value = ASN-object-identifier | collection-identifier .
ASN-object-identifier = “{* objectidentifiercomponent-list “}" .
objectidentifiercomponent-list = objectidentifiercomponent-value { objectidentifiercomponent-value } .
objectidentifiercomponent-value = nameform | numberform | nameandnumberform .
nameform = identifier .
numberform = number .
nameandnumberform = identifier “(* numberform “)” .
collection-identifier = registry-name registry-index .
registry-name = "ISO_10646" | "ISO_2375" | "ISO_7350" | "ISO_10036" .
registry-index = number .

An objectidentifier-valualenotes a value of datatype objectidentifier. ghjectidentifiercomponent-valukenotes a value

of datatype objectidentifiercomponent.vAlue-identifierappearing in theumberforrmshall refer to a non-negative integer
value. In all cases, the value denoted byA&N-object-identifieis that prescribed by ISO/IEC 8824:1990 Abstract Syntax
Notation One.

A collection-identifierdenotes a value of datatype objectidentifier which refers to a registered character-set.

51

ISO/IEC 11404:1996 (E) [0 ISO/IEC

The keyword'ISO_10646" refers to the collections defined in Annex A of ISO/IEC 10646-1:1993 and the collection des-

ignated is that collection whose "collection-number" is the valuegikstry-index The form of the object identifier value is:
{iso(1) standard(0) 10646 part1(Bgistry-index}.

A collection-identifierbeginning with the keywordSO_2375" designates the collection registered under the provisions

of ISO 2375:1985 whose registration-number is the valuegi$try-index The form of the object identifier value is:
{iso(1) standard(0) 237&egistry-index.

A collection-identifierbeginning with the keywordSO_7350" designates the collection registered under the provisions

of ISO 7350:1991 whose registration-number is the valuegi$try-index The form of the object identifier value is:
{iso(1) standard(0) 735fkgistry-index.

A collection-identifietbeginning with the keywortdlSO_10036" designates the collection registered under the provisions

of ISO 10036:1991 whose registration-number is the valuegistry-index The form of the object identifier value is:
{iso(1) standard(0) 1003&gistry-index.

Properties: unordered, exact, non-numeric.
Operations on objectidentifiercomponent: Equal from Integer;
Operations on objectidentifier: Append from Sequence; Equal, Length, Detach, Last.
Length(x: objectidentifier): integes the number of objectidentifiercomponent values in the sequence x;

Detach(x: objectidentifier): objectidentifier, where Length(x) isihe objectidentifier formed by removing the last
objectidentifiercomponent value from the sequence x;

Last(x: objectidentifier): objectidentifiercomponéasthe objectidentifiercomponent value which is the last element of the
sequence Xx;

Equal(x,y: objectidentifier): boolean =
if Not(Length(x) = Length(y)) then false,
else if Not(objectidentifiercomponent.Equal(Last(x), Last(y))) then false,
else if Length(x) = 1 then true,
else Equal(Detach(x), Detach(y));

NOTES

1. IsEmpty, Head and Tail from Sequence are not meaningful on datatype objectidentifier. Therefore, Length and Equal are defined here,
although they could be derived by using the Sequence operations.

2. Objectldentifier is treated as a primitive type by many applications, but the mechanism of definition of its value space, and the use of that

mechanism by some applications, such as Directory Services for OSI, requires the values to be lists of an accessible element datatype
(objectidentifiercomponent).

10.2 Defined generators

This clause specifies the declarations for a collection of commonly occurring datatype generators which can be derived from the
datatypes and generators appearing in Clause 8.

The template for definition of such a datatype generator is:

Description: prose description of the datatype generator.

Declaration: a type-declaration for the datatype generator.

Components: number of, and constraints on, the parametric datatypes and parametric values used by the generation
procedure.

Values: formal definition of the resulting value space.

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype of certain

datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered, and if
ordered, bounded or unbounded.

When the generator generates an aggregate datatype, the aggregate properties described in clause 6.8 are
also specified.

Operations: characterizing operations for the resulting datatype which associate to the datatype generator. The
definitions of operations have the form described in 8.1.

52

0 ISO/IEC ISO/IEC 11404:1996 (E)

10.2.1 Stack

Description: Stack is a generator derived from Sequence by replacing the characterizing operation Append with the charact
ing operation Push. That is, the insertion operation (Push) puts the values on the beginning of the sequence rather tha
end of the sequence (Append).

Declaration:
type stack (element. type) = new sequence of (element);

Componentsielemenimay be any datatype.
Values: all finite sequences of values fromelamendatatype.
Properties: non-numeric, unordered, exact if and only iEkbmentdatatype is exact.
Aggregate properties: homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by position).
Operations: (IsEmpty, Equal, Empty) from Sequence; Top, Pop, Push.
Top(x: stack ¢lemen)): element= sequence.Head(x).
Pop(x: stackdlemen)): stack élement= sequence.Tail(x).
Push(x: stackglemen), y: elemenk stack €lementis the sequence formed by adding the single value y to the beginning
of the sequence x.
10.2.2 Tree

Description: Tree is a generator which generates recursive list structures.

Declaration:
type tree (leaf. type) = new sequence of (choice(state(atom, list)) of (
(atom): leaf,
(list): tree(leal)));

Componentsleafshall be any datatype.

Values: all finite recursive sequences in which every value is either a valueletftatatype, or a (sultreeitself. Ultimately,
every "terminal" value is of thieaf datatype.

Properties: unordered, non-numeric, exact if and only ifetiitype is exact, denumerable.
Aggregate properties: homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by position).
Operations: (IsEmpty, Equal, Empty, Head, Tail) from Sequence; Join.

To facilitate definition of the operations, the datatype tree_member is introduced, with the declaration:
type tree_member(leaf. type) = choice(state(atom, list)) of ((atom): leaf, (list): tree(leaf));

tree_membel¢al) is then the element datatype of the sequence datatype underlying the tree datatype.

Join(x: treeleaf), y: tree_membelgaf)): tree(eaf) isthe sequence whose Head (first member) is the value y, and whose Tail
is all members of the sequence x.

NOTE — Tree is an aggregate datatype which is formally an aggregate (sequence) of tree_members. Conceptually, tree is an aggr
datatype whose values are aggregatésadf/alues. In either case, it is proper to consider Tree a homogeneous aggregate.

10.2.3 Cyclic enumerated

Description: Cyclic (enumerated) is a generator which redefines the successor operation on an enumerated datatype, so th
successor of the last value is the first value.

Declaration:
type cyclic of (base: type) = new base;

Components:baseshall designate an enumerated datatype.
Values: all values of the base datatype.
Properties: ordered, exact, non-numeric.

53

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Operations: (Equal, InOrder) from the base datatype; Successor.
Let baseSuccessor denote the Successor operation defined basegatatype; then:

Successor(x: cyclic dbase): cyclic of (base)is
if for all y in the value space @iase Or(Not(InOrder(x,y)), Equal(x,y)), then that value z in the value spacasaf
such that for all y in the value spacebake Or(Not(InOrder(y,z)), Equal(y,z));eldmseSuccessor(x).

10.2.4 Optional

Description: Optional is a generator which effectively adds the "nil" value to the value space of a base datatype.

Declaration:
type optional(base: type) = new choice (boolean) of ((true): base, (false): void);

Componentsbaseshall designate any datatype.

Values: all values of the base datatype plus the "nil value" of void. This type is isomorphic to the set of pairs:
{ (true, v) | v inbase} union { (false, nil) },
which is the modelled value space of the choice-type.

Properties: all properties of the base datatype, except for the value "nil".
Operations: IsPresent (= Discriminant from Choice); all operations on the base datatype, modified as indicated below.

IsPresent(x: optiond¥asg): boolean = Discriminant(x);

All unary operations of the form: Unary-oppase: result-type are defined on optiortzé&e by:
Unary-op(x: optionalfasg): result-typeis if IsPresent(x) then Unary-op(Cdsds€x)), else undefined.

All binary operations of the form: Binary-op(x, lyasg: result-type are defined on optiorizdé&e by:

Binary-op(x, y: optional§asg): result-types:
if And(IsPresent(x), IsPresent(y)), then Binary-op(Gest€x), Castbasdy)),
else undefined.

Other operations are defined similarly.

NOTE — An optional datatype is the proper type of an object, such as a parameter to a procedure or a field of a record, which in some instances
may have no value.

EXAMPLES

1. Arecord-type containing optional (sometimes not present or "undefined") values can be declared:
record (
required_name: characterstring,
optional_value: optional(integer));

2. A procedure parameter which may only sometimes be provided can be declared:
procedure search(in t: T, in tableT: sequence of (T), in index: optional(procedure(in i: integer, in j: integer): integer)):
boolean;
The parametendex, which is an indexing function faableT, need not always be provided. That is, it may have value "nil".

11 Mappings

This clause defines the general form of and requirements for mappings between the datatypes of a programming or specification
language and the LI datatypes.

The internal datatypes of a language are considered to include the information type and structure notions which can be expressed
in that language, particularly those which describe the nature of objects manipulated by the language primitives. Like the LI
datatypes, the datatype notions of a language can be divided into primitive datatypes and datatype generators. The primitive
datatypes of a language are those object types which are considered in the language semantics to be primitive, that is, not to be
generated from other internal datatypes. The datatype generators of a language are those language constructs which can be usec
to produce new datatypes, objects with new datatypes, more elaborate information structures or static inter-object selationship

54

0 ISO/IEC ISO/IEC 11404:1996 (E)

This International Standard defines a neutral language for the formal identification of precise semantic datatype notions — th
datatypes. The notion ofraappingbetween the internal datatypes of a language and the LI datatypes is the conceptual identi
cation of semantically equivalent notions in the two languages. There are then two kinds of mappings between the inte
datatypes of a language and the LI datatypes:

< a mapping from the internal datatypes of the language into the LI datatypes, referreddatasechmappingand
« a mapping from the LI datatypes to the internal datatypes of the language, referreditmvascamapping

This International Standard does not specify the precise form of a mapping, because many details of the form of a mappinc
language-dependent. This clause specifies requirements for the information content of inward and outward mappings and
ditions for the acceptability of such mappings.

NOTES

1. Mapping, in this sense, does not apply to program modules or service specifications directly, because they manipulate specific ob
types, which have specific datatypes expressed in a specific language or languages. The datatypes of a program module or service specif
can therefore be described in the LI datatypes language directly, or inferred from the inward and outward mappings of the language in w
the module or specification is written.

2. The companion notion @onversion of valueBom an internal representation to a neutral representation associated with LI datatypes i
not a part of this International Standard, but may be a part of standards which refer to this International Standard.

11.1 Outward Mappings

An outward mapping for a primitive internal datatype shall identify the syntactic and semantic constructs and relationships in
language which together uniquely represent that internal datatype and associate the internal datatype with a correspondil
datatype expressed in the formal language defined by Clauses 7 through 10.

An outward mapping for an internal datatype generator shall identify the syntactic and semantic constructs and relationshiy
the language which together uniquely represent that internal datatype generator and associate the internal datatype generat
a corresponding LI datatype generator expressed in the formal language defined in this International Standard.

The collection of outward mappings for the datatypes and datatype generators of a language shall be said to coostitaethe
mapping of the languagend shall have the following properties:

i) to each primitive or generated internal datatype, the mapping shall associate a single corresponding LI datatype;

i) for each internal datatype, the mapping shall specify the relationship between each allowed value of the inter
datatype and the equivalent value of the corresponding LI datatype; and

iii) for each value of each LI datatype appearing in the mapping, the mapping shall specify whether any value of any
ternal datatype is mapped onto it, and if so, which values of the internal datatypes are mapped onto it.

NOTES

1. Thereis no requirement for a primitive internal datatype to be mapped to a primitive LI datatype. This International Standard provide
variety of conceptual mechanisms for creating generated LI datatypes from primitive or previously-created datatypes, which are, inter aliz
tended to facilitate mappings.

2. Aninternal datatype constructed by application of an internal datatype generator to a collection of internal parametric datatypes wil
implicitly mapped to the LI datatype generated by application of the mapped datatype generator to the mapped parametric datatypes. I
way, property(i) above may be satisfied for internal generated datatypes.

3. The conceptual mapping to LI datatypes may not be either 1-to-1 or onto. A mapping must document the anomalies in the identifica
of internal datatypes with LI datatypes, specifically those values which are distinct in the language, but not distinct in the LI datatype, and tf
values of the LI datatype which are not accessible in the language.

4. Among other uses, an outward mapping may be used to identify an internal datatype with a particular LI datatype in order to require
eration or representation definitions specified for LI datatypes by another standard to be properly applied to the tgpeal dat

5. Anoutward mapping may be used to ensure that interfaces between two program units using a common programming language are
erly provided by a third-party service which is ignorant of the language involved.

55

ISO/IEC 11404:1996 (E) [0 ISO/IEC

11.2 Inward Mappings

An inward mapping for a primitive LI datatype, or a single generated LI datatype, shall associate the LI datatype with a single
internal datatype, defined by the syntactic and semantic constructs and relationships in the language which together uniquely rep-
resent that internal datatype. Such a mapping shall specify limitations on the parametric values of any LI datatype family which
exclude members of that family from the mapping. Different members of a single LI datatype family may be mapped onto dis-
similar internal datatypes.

An inward mapping for a LI datatype generator shall associate the LI datatype generator with an internal datatype generator, de-
fined by the syntactic and semantic constructs and relationships in the language which together uniquely represent that internal
datatype generator. Such a mapping shall specify limitations on the parametric datatypes of any LI datatype generator which
exclude corresponding classes of generated datatypes from the mapping. The same LI datatype generator with different paramet-
ric datatypes may be mapped onto dissimilar internal datatype generators.

An inward mapping for a LI datatype shall associate the LI datatype with an internal datatype on which it is possible to implement
all of the characterizing operations specified for that LI datatype.

The collection of inward mappings for the LI datatypes and datatype generators onto the internal datatypes and datatype gener-
ators of a language shall be said to constituténthard mapping of the languagad shall have the following properties:

i) for each LI datatype (primitive or generated), the mapping shall specify whether the LI datatype is supported by the
language (as specified in 11.4), and if so, identify a single corresponding internal datatype; and

ii) for each LI datatype which is supported, the mapping shall specify the relationship between each allowed value of the
LI datatype and the equivalent value of the corresponding internal datatype; and

iii) for each value of an internal datatype, the mapping shall specify whether that value is the image (under the mapping)
of any value of any LI datatype, and if so, which values of which LI datatypes are mapped onto it.

NOTES

1. A Ll generated datatype which is not specifically mapped by a primitive datatype mapping, and whose parametric datatypes are admis-
sible under the constraints on the datatype generator mapping, will be implicitly mapped onto an internal datatype constructed by application
of the mapped internal datatype generator to the mapped internal parametric datatypes.

2. When a LI datatype, primitive or generated, is mapped onto a language datatype, whether explicitly or implicitly by mapping the gener-
ators, the associated internal datatype should support the semantics of the LI datatype. The proof of this support is the ability to perform the
characterizing operations on the internal datatype. It is not necessary for the language to support the characterizing operations directly (by op-
erator or built-in function or anything the like), but it is necessary for the characterizing operations to be conceptually supported by the internal
datatype. Either it should be possible to write procedures in the language which perform the characterizing operations on objects of the associ-
ated internal datatype, or the language standard should require this support in the further mappings of its internal datatypes, whether into rep-
resentations or into programming languages.

3. The conceptual mapping onto internal datatypes may not be either 1-to-1 or onto. A mapping must document the anomalies in the asso-
ciation of internal datatypes with LI datatypes, specifically those values which are distinct in the LI datatype, but not distinct in the language,
and those values of the internal datatype which are not accessible through interfaces using LI datatypes.

4. Aninward mapping to a programming language may be used to ensure that an interface between two program units specified in terms of
LI datatypes can be properly used by programs written in that language, with language-specifat,apglication-specific, software tools
providing conversions of information units.

11.3 Reverse Inward Mapping

An inward mapping from a LI datatype into the internal datatypes of a language defines a particular set of values of internal
datatypes to be thiemageof the LI datatype in the language. Theverse inward mappinfpr a LI datatype maps those values

of the internal datatypes which constitute its image to the corresponding values of that LI datatype using the correspondence
which is established by the inward mapping. For the reverse inward mapping to be unambiguous, the inward mapping of each
LI datatype must be 1-to-1. This is formalized as follows:

i) if ais avalue of the LI datatype and the inward mapping naspsa valuea’ of some internal datatype, then the inward
mapping shall not map any valbef the same LI datatype in&, unlessb = a; and

56

0 ISO/IEC ISO/IEC 11404:1996 (E)

i) if aisavalue of a LI datatype and the inward mapping neafusa valuea’ of some internal datatype, then the reverse
inward mapping mapa' to a; and

iii) if cis a value of a LI datatype which is excepted from the domain of the inward mapping, i.e. maps to no value of tl
corresponding internal datatype, then there is no velleéany internal datatype such that the reverse inward mapping
mapsc’ to c.

The reverse inward mapping for a language is the collection of the reverse inward mappings for the LI Datatypes.
NOTES

1. When aninterface between two program units is specified in terms of LI datatypes, it is possible for the interface to be utilized by progt
units written in different languages and supported by a service which is ignorant of the languages involved. The inward mapping for each
guage is used by the programmer for that program unit to select appropriate internal datatypes and values to represent the information wt
used in the interface. Information is then sent by one program unit, using the reverse inward mapping for its language to map the internal ve
to the intended values of the LI datatypes, and received by the other program unit, using the inward mapping to map the LI datatype ve
passed into suitable internal values. The actual transmission of the information may involve three software tools: one to perform the convel
between the sender form and the interchange form, automating the reverse inward mapping, one to transmit the interchange form based
datatypes, and one to perform the conversion between the interchange form and the receiving internal form, automating the inward map
None of these intermediate tools depends on the particular interface being used. Thus, it is possible to implement an arbitrary interface
LI datatypes, in any programming language which supports those datatypes without interface-specific tools.

2. The reverse inward mapping for a language does not have useful formal properties. The same internal value can be mapped to st
different values, as long as the different values belong to different LI datatypes. Itis the per-datatype reverse inward mapping which is us

11.4 Support of Datatypes

An information processing entity is said$apporta LI datatype if its mapping of that datatype into some internal datatype (see
11.2) preserves the properties of that datatype (see 6.3) as defined in this subclause.

NOTE — For aggregate datatypes, preservation of the "aggregate properties" definednnt6edyisred.
11.4.1 Support of equality

For a mapping to preserve the equality property, any two instances a, b of values of the internal datatype shall be considered
if and only if the corresponding values a’, b’ of the LI datatype are equal.

11.4.2 Support of order

For a mapping to preserve the order property, the order relationship defined on the internal datatype shall be consistent wit
order relationship defined on the LI datatype. That is, for any two instances a, b of values of the internal databypleathbe
true if and only if, for the corresponding values a’, b’ of the LI datatypeba’

11.4.3 Support of bounds

For a mapping to preserve the bounds, the internal datatype shall be bounded above if and only if the LI datatype is bour
above, and the internal datatype shall be bounded below if and only if the LI datatype is bounded below.

NOTE — It follows that the values of the bounds must correspond.
11.4.4 Support of cardinality

For a mapping to preserve the cardinality of a finite datatype, the internal datatype shall have exactly the same number of ve
as the LI datatype. For a mapping to preserve the cardinality of an exact, denumerably infinite datatype, there shall be ex:
one internal value for every value of the LI datatype and there shall lzepnimri limitation on the values which can be repre-
sented. For a mapping to preserve the cardinality of an approximate datatype, it suffices that it preserve the approximate proy
as provided in 6.3.5.

NOTES
1. There may be accidental limitations on the values of exact, denumerably infinite datatypes which can be represented, such as the

amount of storage available to a particular user, or the physical size of the machine. Such a limitation is not an intentional limitation on
datatype as implemented by a particular information processing entity, and is thus not considered to affect support.

57

ISO/IEC 11404:1996 (E) [0 ISO/IEC

2. Anentity whicha priori limits integer values to those which can be represented in 32 bits or characterstrings to a length of 256 characters,
however, isnot considered to support the mathematically infinite Integer and CharacterString datatypes. Rather such an entity supports de-
scribable subtypes of those datatypes (see 8.2).

11.4.5 Support for the exact or approximate property

To preserve the exact property, the mapping between values of the LI datatype and values of the internal datatype shall be 1-to-1.

For an inward mapping to preserve the approximate property, every value which is distinguishable in the LI datatype must be
distinguishable in the internal datatype.

NOTE — The internal datatype may hawere valueshan the LI datatype, i.e. a finer degree of approximation.

For an outward mapping to preserve the approximate property, every value which is distinguishable in the internal datatype must
be distinguishable in the LI datatype.

11.4.6 Support for the numeric property

There are no requirements for support of the numeric property. Support for the numeric property is a requirement on represen-
tations of the values of the datatype, which is outside the scope of this International Standard.

58

0 ISO/IEC ISO/IEC 11404:1996 (E)

Annex A
(informative)

Character-Set Standards

The following is a partial list of International Standards which define character-sets. Character sets defined by such stand
are suitable for reference by a “repertoire-identifier” in the Character and CharacterString datatypes.

These standards define character-sets, in the sense of repertoires of characters. Most of them also define “character cod
integer values used to represent the character values for certain computational purposes. Whether ‘retpendotedy is in-
terpreted as requiring the characters to be represented by the codes defineckpgttuéreis outside of the scope of this Inter-
national Standard.

None of these standards defines a collating sequence or order relationship on the character-sets. The definition of such an
relationship requires additional standards or application agreements. Order relationships commonly supported by programi
languages are based on the integer ordering of the code values used in a particular implementation of the language. Such |
ings have no semantics with respect to the character-set itself and are outside the scope of this International Standard.
ISO/IEC 646:1991 Information technology — ISO 7-bit coded character set for information interchange

ISO 2047:1975 Information processing — Graphical representations for the control characters of the 7-bit codec
character set

ISO 9036:1987 Information processing — Arabic 7-bit coded character set for information interchange
ISO/IEC 2022:1994 Information technology — Character code structure and extension techniques
ISO/IEC 6937:1994 Information technology — Coded graphic character set for text communication — Latin alphabet

ISO/IEC 4873:1991 Information technology — ISO 8-bit code for information interchange —
Structure and rules for implementation

ISO 8859-1:1987 Information processing — 8-bit single byte coded graphic character sets —
Part 1: Latin alphabet No. 1

ISO 8859-2:1987 Information processing — 8-bit single byte coded graphic character sets —
Part 2: Latin alphabet No. 2

ISO 8859-3:1988 Information processing — 8-bit single byte coded graphic character sets —
Part 3: Latin alphabet No. 3

ISO 8859-4:1988 Information processing — 8-bit single byte coded graphic character sets —
Part 4: Latin alphabet No. 4

ISO/IEC 8859-5:1988 Information processing — 8-bit single byte coded graphic character sets —
Part 5: Latin/Cyrillic alphabet

ISO 8859-6:1987 Information processing — 8-bit single byte coded graphic character sets —
Part 6: Latin/Arabic alphabet

ISO 8859-7:1987 Information processing — 8-bit single byte coded graphic character sets —
Part 7: Latin/Greek alphabet

ISO 8859-8:1988 Information processing — 8-bit single byte coded graphic character sets —
Part 8: Latin/Hebrew alphabet

ISO/IEC 8859-9:1989 Information processing — 8-bit single byte coded graphic character sets —
Part 9: Latin alphabet No. 5

59

ISO/IEC 11404:1996 (E) [0 ISO/IEC

ISO/IEC 8859-10:1992nformation technology — 8-bit single byte coded graphic character sets —

ISO/IEC 10367:1991

Part 10: Latin alphabet No. 6

Information technology — Standardized coded graphic character sets for use in 8-bit codes

ISO/IEC 10646-1:1993nformation technology — Universal Multiple-Octet Coded Character Set (UCS) —

ISO/IEC 6429:1992
ISO 6630: 1986
ISO/IEC 10538:1991
ISO 5426:1983

ISO 5427:1984

ISO 5428:1984

ISO 6438:1983

ISO 6861: —L

ISO 6862: -1

ISO 8957: -1

ISO 10585; -1

ISO 10586: -1

ISO 10754: -1

Part 1: Architecture and Basic Multilingual Plane

Information technology — Control functions for coded character sets

Documentation — Bibliographic control characters

Information technology — Control functions for text communication

Extension of the Latin alphabet coded character set for bibliographic information interchange
Extension of the Cyrillic alphabet coded character set for bibliographic information interchange
Greek alphabet coded character set for bibliographic information interchange

Documentation — African coded character set for bibliographic information interchange

Information and documentation — Cyrillic alphabet coded character sets for historic Slavonic
languages and European non-Slavonic languages written in a Cyrillic script, for bibliographic

information interchange

Information and documentation — Mathematical coded character set for bibliographic information
interchange

Information and documentation — Hebrew alphabet coded character sets for bibliographic information
interchange

Information and documentation — Armenian alphabet coded character set for bibliographic
information interchange

Information and documentation — Georgian alphabet coded character set for bibliographic
information interchange

Information and documentation — Extension of the Cyrillic alphabet coded character set for non-Slavic
languages for bibliographic information interchange

ISO/IEC 9541-1:1991 Information technology — Font information interchange — Part 1: Architecture

ISO/IEC 9541-2:1991 Information technology — Font information interchange — Part 2: Interchange Format

ISO/IEC 9541-3:1994 Information technology — Font information interchange — Part 3: Glyph Shape Representation

ISO/IEC 9541-4: X

ISO 6093:1985

ISO/IEC 8824:1990

Information technology — Font information interchange — Part 4: Application-specific requirements

Information processing — Representation of numeric values in character strings for information
interchange
(defines character sets and syntax for numeric strings)

Information technology — Open Systems Interconnection — Abstract Syntax Notation One (ASN.1)
(defines interchange character sets both directly and by reference to sets registered under 1ISO 2375)

1. To be published

60

0 ISO/IEC ISO/IEC 11404:1996 (E)

The following are International Standards for character-set registration. Character sets registered under the provisions of
standards are suitable for reference by a "repertoire-identifier" in the Character and CharacterString datatypes.

ISO 2375:1985 Data Processing — Procedure for the registration of escape sequences
ISO/IEC 7350:1991 Information technology — Registration of repertoires of graphic characters from 1ISO 10367

ISO/IEC 10036:1993 Information technology — Font information interchange — Procedure for registration of glyph and
glyph collection identifiers

61

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Annex B
(informative)

Recommended Placement of Annotations

An annotation (see 7.4) is a descriptive information unit attached tgpee-specifieror a component datatype, or a procedure

(value), to characterize some aspect of the representations, variables, or operations associated with values of the datatype, or the
component or procedure, in some particular context. This International Standard does not specify the syntax or semantics of any
specificannotations Common conventions for the placementanihotations however, makes it easier for the reader to deter-

mine the object to which aannotationis intended to apply and the context in which it is intended to apply. This annex contains
guidelines for placement @nnotationdn the syntax and corresponding distinctions in the scope of application ahtihata-

tions as required by clause 7.4

Use of the recommended placement conventions improves the compatibility of usages and implementations of the LI datatypes,
to the extent that they involve such annotations. Use of additional or substitute conventions by other standards and implementa-
tions is consistent with this International Standard.

B.1 Type-attributes

A type-attribute is anannotationattached to &ype-specifierand in particular to théype-specifienf a type-definition which
characterizes some aspect of the values or variables of the datatype specified, or the operations on those values or variables, in
some particular context. Type-attributes may include, among others:

« limitations on, or identification of parameters describing, the value-space of the datatype as implemented, or as used in a
particular context,

« constraints on, or specifications for, representation of the values of the datatype,
« constraints on, or specifications for, the operations which may be performed on values of the datatype,

« identification of procedures or parameters to be used for conversion of values of the datatype for a particular interchange
or external medium.

Type-attributes should immediately follow thgpe-specifiefor the datatype to which they are intended to apply. In particular,
anannotationwhich applies to thelement-typef anaggregate-typshould appeanside the parentheses, while annotation
which applies to thaggregate-typeshould appeasutsidethe parentheses.

B.2 Component-attributes

A component-attribute is anannotationattached to a component ofy@nerated-typavhich characterizes some aspect of the
operations on, or representations of, values in that component of the particular generated datatype (i.e. values used in that role,
as distinct from general limitations on values of the datatype of the component) in some particular context. Component-attributes
may include, among others:

« any of the attribute notions given in B.1, but restricted to the component,
* specification of the ordering, representation or alignment of the component in an aggregate structure,
« limitations on access to the component.

Component-attributes should immediately precede the comptymspecifiefor the component to which they are intended

to apply. Thatis, in aecord-typethey should precede tliield-type in achoice-typethey should precede tladternative-type
and in a homogeneoaggregate-typethey should precede teéement-type

B.3 Procedure-attributes

A procedure-attribute is anannotationattached to @rocedure-declaratiomvhich characterizes some aspect of the invocation
or use of the named procedure, in some particular context. Procedure-attributes may include, among others:

« specification of the location of its instantiations,

62

0 ISO/IEC ISO/IEC 11404:1996 (E)

« specification of the procedure interface.

Procedure-attributes should precede the keyword “procedure” or follow the gmpeespecifier In addition, procedure-at-
tributes should be distinguishable from type- or component- attributes by their text.

B.4 Argument-attributes

An argument-attribute is anannotationattached to amrgumento aprocedure-declaratiomr procedure-typavhich charac-
terizes some aspect of the operations on, or representations of, values passed through that argument of the particular proc
or procedure datatype (as distinct from general limitations on the datatype whiclargtheent-typgin some particular context.
Argument-attributes may include, among others:

« any of the attribute notions given in B.1, but restricted to the use of the datatype in this argument,
« specification of the means of passing the argument.

Argument-attributes should immediately precededigazimenbr return-argumentwhich they are intended to describe (ipra-
cedure-typeaprocedure-declarationor atermination-declaration

63

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Annex C
(informative)

Implementation Notions of Datatypes

This annex defines a collection of datatype notions excluded from this International Standard, because they were deemed to be
notions of implementation or representation of datatypes, rather than conceptual notions.

The values of the datatypes defined by this International Standard are abstract objects conforming to a set of given rules. Each
computer system has its ovimernal datatypes, whose value spaces are (typically fixed-length) sequenceslistinguished

symbols (most commonly, the two symbols "0" and "1"), and whose characterizing operationsiasgértiotions built into the

computer system. Aepresentationof a LI datatype is a mapping from the value space of the LI datatype to a computer system
value space.

In addition tovaluesof datatypes, a computer system has the notioraafble — an object to which a value of some datatype

or datatypes is dynamically associated. (In a certain sense, a variable is an implementation of a value of a pointer datatype

(8.3.2).) The characterizing operations defined by this International Standard are abstract computational notions of functions ap-

plicable to the values of datatypes, used to identify the semantics of the datatypes. In a computer system, the operations on rep-
resentations of those values and variables containing those representations areeaetuaéy

The characteristics of representations, variables, and the execution of operations are beyond the scope of this International Stan-
dard. Nonetheless, because these characteristics are inextricably mixed with the datatype notions in many programming languag-
es, and because these characteristics are important to many applications of this International Standard, this International Standard
provides for their inclusion itype-specifieraind in datatype- and procedure-declarationsawiaotationgsee 7.4). Arannota-

tion is a descriptive information unit attached to a datatype, or a component of a datatype, or a procedure (value), to characterize
some aspect of the representations, variables, or operations associated with values of the datatype, or the component or procedure
in some particular context.

This annex identifies notions for which suahnotationanay be appropriate and even necessary for certain language mappings.
This International Standard does not specify the syntax or semantics of any spenitationgo describe implementation no-
tions. The development of standards for saohotationsmay be appropriate, but is outside the scope of this International Stan-
dard

C.1 StorageSize

StorageSize is a type-attribute specifying the number (and type) of storage units required or allotted to represent values of the
datatype. It may also specify whether the number of storage units is constant over all values of (this instance of) the datatype, or
varies according to the requirements of the particular value to be represented.

StorageSize may apply to any datatype, except procedure datatypes.

NOTE — If there is a limitation on the maximum size of representable values, it implies that there is a limitation on the value space of this
datatype, which may be better documented by appropriate subtype specifications (see 8.2).

C.2 Mode

Mode is a type-attribute which specifies the radix of representation of a numeric datatype, the representation of the digits, the
representation of the decimal-point, if any, and the sign representation and placement conventions. Such notions as “two’s com-

plement binary”, “packed decimal with trailing sign” and the numeric representation formats of ISO 6093nf@8bation pro-
cessing — Representation of numeric values in character strings for information interciiangeamples of “modes”.

Mode applies only to numeric datatypes, principally Integer and Scaled.

64

0 ISO/IEC ISO/IEC 11404:1996 (E)

C.3 Floating-Point

Floating-point is a type-attribute which specifies that a numeric datatype has a floating-point representation and the charact
tics of that representation.

Following ISO/IEC 10967-1:1994nformation technology — Programming languages, their envrionements and system sof
ware interfaces — Language-independent arithmetic — Part 1: Integer and real arithen#itiating-point representation of the
value v has the form:

V=S e M+ R
where

R is theradix of the representation;

E is theexponent and

S is thesign,i.e. either S=1o0r S = -1;

M is themantissaeither zero or a value of the datatype scaladik, precisior) rangefadix ~ - precision 1) excluding(1).

This representation can be characterized by five parameters:
radix andprecision from above;
eminandemax with the requiremenemin< E < emax and

denormwith the requirement thatenorm= “false” impliesd = R anddenorm= “true” impliesd = RPrecision

Floating-point applies only to numeric datatypes, principally Real and Complex.

C.4 Fixed-Point

Fixed-point is a type-attribute which specifies that a numeric datatype has a fixed-point representation and the characteristi
that representation.

A fixed-point representation has the form:

V=S x M x R°
where
R is theradix of the representation;
S is thesign,i.e. eitherS=1o0r S =-1;
M is themantissaa value of the datatype Integer;
P is theprecision

This representation can be characterized byatix andprecisionparameters.
Fixed-point applies only to numeric datatypes, principally Scaled.

C5 Tag

Tag is a type-attribute which specifies whether and how the tag-value of a value of a value of a choice datatype is represe

Tag applies only to choice datatypes or their generators.

C.6 Discriminant

Discriminant specifies the source of the discriminant value of a Choice datatype.

Discriminant applies only to choice datatypes or their generators.

C.7 StorageSequence

StorageSequence attributes describe the order of presentation of the component values of a value of an aggregate datatyp
as Set or Record, whose ordering is not implied by the type properties. Their values and meaning depend on the aggre
datatype involved.

StorageSequence attributes apply only to aggregate datatypes or to their generators.

65

ISO/IEC 11404:1996 (E) [0 ISO/IEC

C.8 Packed

Packed and “unpacked” or “aligned” are type-attributes which characterize the juxtaposition of all components of a value of an
aggregate datatype. They distinguish between the optimization of space and the optimization of access-time.

Packed attributes apply only to aggregate datatypes or to their generators.

C.9 Alignment
Alignment is a component-attribute that characterizes the forced alignment of the representations of values of a given component

datatype on storage-unit boundaries. It implies that "padding"” to achieve the necessary alignment may be inserted in the repre-
sentation of the aggregate datatype which contains the annotated component.

C.10 Form

Form is a type-attribute which specifies that one datatype has the same representation as another. In fari@danits an
implementation to specify that a primitive LI datatype has a visible information structure, or that a particular generated datatype
has a primitive implementation.

Form may apply to any datatype.

66

0 ISO/IEC ISO/IEC 11404:1996 (E)

Annex D
(informative)

Syntax for the Common Interface Definition Notation

The syntax used in this International Standard is a subset of the syntax prescribed for the Interface Definition Notation (IDN
ISO/IEC 13886:1995Information technology — Programming languages — Language-independent procedure. catisg
annex contains the the complete IDN syntax, for reference only. A conforming IDN texirisegface-typewhereas a conform-

ing LI datatype specification istgpe-specifier In addition, a mapping, as provided in Clause 11, may couéaiarations

Character-set productions: Normative text page(s)
digit = "0" | "1 | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" . 13
letter = "a" | "b" | "¢" | "d" ["e" | “f" ["g" | "h" | """ "K"]""] "m"]

I B I B B B I R R I A o 13
special = "(" |)" [t g et Y LT e 13
apostrophe = "" . 13
escape = "I" . 13
quote = " . 13
Space = " " . 13
underscore = " " . 13
added-character = not defined by this International Standard 13, 20, 49
bound-character = non-quote-character | quote . 13, 20
non-quote-character = letter | digit | underscore | special | apostrophe | space . 13, 20, 49

NOTE — Character-set productions are always subject to minor changes from implementation to implementation, in order to handle the
garies of available character-sets.

Productions of the IDN used in this International Standard: Normative text page(s
actual-type-parameter = value-expression | type-specifier . 44
actual-type-parameter-list = actual-type-parameter { "," actual-type-parameter } . 44
aggregate-type = record-type | set-type | sequence-type | bag-type | array-type | table-type . 36
alternative = tag-value-list [field-identifier] ™" alternative-type . 31
alternative-list = alternative { "," alternative } [default-alternative] . 31
alternative-type = type-specifier . 31
alternative-value = independent-value . 32
annotation = "[" annotation-label ":" annotation-text "]" . 14
annotation-label = objectidentifiercomponent-list . 15
annotation-text = not defined by this International Standard 15
any-character = bound-character | added-character | escape-character . 14, 20
array-type = "array" "(" index-type-list ")" "of" "(" element-type ")" . 41
array-value = value-list . 42
ASN-object-identifier = “{* objectidentifiercomponent-list “}" . 51
bag-type ="bag" "of" "(" element-type ")" . 39
bag-value = empty-value | value-list . 40
base = type-specifier . 28, 29, 30
bit-literal = "0" | "1" . 48
bitstring-literal = quote { bit-literal } quote . 48

67

ISO/IEC 11404:1996 (E)

boolean-literal = "true" | "false" .

boolean-type = "boolean” .

character-literal = ™" any-character

character-name = identifier { "" identifier } .

character-type = "character" ["(" repertoire-list)"] .

choice-type = "choice" "(" [field-identifier ":"] tag-type ["=" discriminant])"
"of* "(" alternative-list ")" .

choice-value = "(" tag-value ™" alternative-value ")" .

collection-identifier = registry-name registry-index .

complex-literal = "(" real-part "," imaginary-part ")" .

complex-type = "complex" ["(* radix "," factor ")"] .

component-reference = field-identifier | ™" .

declaration = type-declaration | value-declaration | procedure-declaration
| termination-declaration .
default-alternative = "default" ":" alternative-type .
dependent-value = primary-dependency { "." component-reference } .
digit-string = digit { digit } .
direction = "in" | "out" | "inout" .
discriminant = value-expression .
element-type = type-specifier .
empty-value = "(" ")"
enumerated-literal = identifier .
enumerated-type = "enumerated" "(" enumerated-value-list ")" .
enumerated-value-list = enumerated-literal { "," enumerated-literal } .
escape-character = escape character-name escape .
excluding-subtype = base "excluding" "(" select-list ")" .
explicit-subtype = base "subtype" "(" subtype-definition ")" .
explicit-value = boolean-literal | state-literal | enumerated-literal | character-literal
| ordinal-literal | time-literal | integer-literal | rational-literal
| scaled-literal | real-literal | complex-literal | void-literal
| extended-literal | pointer-literal | procedure-reference | string-literal

| bitstring-literal | objectidentifier-value | choice-value | record-value
| set-value | sequence-value | bag-value | array-value | table-value .

extended-literal = identifier .

extended-type = base "plus" "(* extended-value-list ")" .

extended-value = extended-literal | formal-parametric-value .

extended-value-list = extended-value { "," extended-value } .

factor = value-expression .

field = field-identifier ":" field-type .

field-identifier = identifier .

field-list = field { "," field } .

field-type = type-specifier .

field-value = field-identifier ":" independent-value .

field-value-list = "(" field-value { ", field-value } ")" .

formal-parameter-name = identifier .

formal-parameter-type = type-specifier | "type" .

formal-parametric-type = formal-parameter-name .

formal-parametric-value = formal-parameter-name .

formal-type-parameter = formal-parameter-name ":" formal-parameter-type .

68

O ISO/IEC

14,
14, 20,

33, 38, 39, 40,
39,

14, 20,

21, 23, 25,
37,

31, 37,
37,

37,

37,

37,

18
18
20
49
20

31
32
51
26
26
16

45
31
16
14
34
31
41
40
19
19
19
49
29
29

O ISO/IEC

formal-type-parameter-list = formal-type-parameter { "," formal-type-parameter } .
generated-type = pointer-type | procedure-type | choice-type | aggregate-type .
identifier = letter { pseudo-letter } .

imaginary-part = real-literal .

independent-value = explicit-value | value-reference .

index-lowerbound = value-expression .

index-type = type-specifier | index-lowerbound ".." index-upperbound .
index-type-list = index-type { "," index-type } .

index-upperbound = value-expression .

integer-literal = signed-number .

integer-type = "integer” .

lowerbound = value-expression | "*" .

maximum-size = value-expression | "*" .

minimum-size = value-expression .

nameandnumberform = identifier “(* numberform *)" .

nameform = identifier .

number = digit-string .

numberform = number .

objectidentifiercomponent-list =
objectidentifiercomponent-value { objectidentifiercomponent-value } .

objectidentifiercomponent-value = nameform | numberform | nameandnumberform .

objectidentifier-value = ASN-object-identifier | collection-identifier .
ordinal-literal = number .
ordinal-type = "ordinal" .
parameter = [parameter-name ":"] parameter-type .
parameter-declaration = direction parameter .
parameter-list = parameter-declaration { "," parameter-declaration } .
parameter-name = identifier .
parameter-type = type-specifier .
pointer-literal = "null" .
pointer-type = "pointer" "to" "(" element-type ")" .
primary-dependency = field-identifier | parameter-name .
primitive-type = boolean-type | state-type | enumerated-type | character-type
| ordinal-type | time-type | integer-type | rational-type
| scaled-type | real-type | complex-type | void-type .
procedure-declaration = "procedure" procedure-identifier "(" [parameter-list] ")"
["returns" "(" return-parameter ")"] ["raises" "(" termination-list ")"] .
procedure-identifier = identifier .
procedure-reference = procedure-identifier .

ISO/IEC 11404:1996 (E)

28, 29,

21,

34,

34,
34,

procedure-type = "procedure" "(" [parameter-list])" ["returns" "(" return-parameter ")"]

["raises" "(" termination-list)"] .
pseudo-letter = letter | digit | underscore .
radix = value-expression .
range-subtype = base "range" "(" select-range ")" .
rational-literal = signed-number ["/" number | .
rational-type = "rational” .
real-literal = integer-literal [™" scale-factor] .
real-part = real-literal .
real-type ="real" ["(" radix "," factor ")"] .

21, 23, 25,

45
30
13
26
15
41
41
41
41
22
22
31
29
29
51
51
22
51

51
51
51
21
21
47
34
34
47
a7
33
33
16

17

35
35
15

34
13
26
28
23
23
25
26
24

69

ISO/IEC 11404:1996 (E) [0 ISO/IEC

record-type = "record" "(" field-list ")" . 37
record-value = field-value-list | value-list . 37
registry-index = number . 51
registry-name = "ISO_10646" | "ISO_2375" | "ISO_7350" | "ISO_10036" . 51
repertoire-identifier = value-expression . 20
repertoire-list = repertoire-identifier { "," repertoire-identifier } . 20
return-parameter = [parameter-name ":"] parameter-type . 34
scaled-literal = integer-literal [™" scale-factor | . 23
scaled-type ="scaled" "(" radix "," factor ")" . 23
scale-factor = number "' signed-number . 23,25
select-item = value-expression | select-range . 28, 29,31
select-list = select-item { "," select-item } . 28, 29, 31
select-range = lowerbound ".." upperbound . 28, 29, 31
sequence-type = "sequence" "of" "(" element-type ")" . 40
sequence-value = empty-value | value-list . 40
set-type = "set" "of" "(" element-type ")" . 38
set-value = empty-value | value-list . 39
signed-number = ["-"] number . 22
size-subtype = base "size" "(* minimum-size [".." maximum-size] ")" . 29
state-literal = identifier . 19
state-type = "state" "(" state-value-list ")" . 19
state-value-list = state-literal { "," state-literal } . 19
string-character = non-quote-character | added-character | escape-character . 14, 49
string-literal = quote { string-character } quote . 14, 49
subtype = range-subtype | selecting-subtype | excluding-subtype

| size-subtype | explicit-subtype | extended-type . 27
subtype-definition = type-specifier . 29
table-entry = field-value-list | value-list . 43
table-type = "table" "(" field-list ")" . 43
table-value = empty-value | "(" table-entry { "," table-entry } ™" . 43
tag-type = type-specifier . 31
tag-value = independent-value . 32
tag-value-list = (" select-list ")" . 31
termination-declaration = "termination" termination-identifier ["(" termination-parameter-list)"] . 47
termination-identifier = identifier . 47
termination-list = termination-reference { "," termination-reference } . 34
termination-parameter-list = parameter { "," parameter } . 47
termination-reference = termination-identifier . 34
time-literal = string-literal . 21
time-type = "time" "(" time-unit ["," radix ", factor]1")" . 21
time-unit = "year" | "month" | "day" | "hour" | "minute" | "second" | formal-parametric-value . 21
type-declaration = "type" type-identifier ["(" formal-type-parameter-list ")"]

"=" ["new"] type-definition . 45
type-definition = type-specifier . 45
type-identifier = identifier . 44, 45
type-reference = type-identifier ["(" actual-type-parameter-list ")"] . 44
type-specifier = primitive-type | subtype | generated-type

| type-reference | formal-parametric-type . 17
upperbound = value-expression | "*" . 28, 29, 31

70

O ISO/IEC

value-declaration = "value" value-identifier ":" type-specifier "=" independent-value .
value-expression = independent-value | dependent-value | formal-parametric-value .

value-identifier = identifier .

value-list = "(* independent-value { "," independent-value } ")" .
value-reference = value-identifier .
void-literal = "nil" .

void-type = "void" .

Productions of the common IDN which appear in a more restricted form above:

procedure-reference = [interface-synonym "::"] procedure-identifier .
termination-reference = [interface-synonym "::"] termination-identifier .

ISO/IEC 11404:1996 (E)

46
15
46
37, 39, 40, 42, 43
15
27
27

type-reference = [interface-synonym "::"] type-identifier ["(" actual-type-parameter-list ")"] .

value-reference = [interface-synonym "::"] value-identifier .
Additional productions of the IDN not used in this International Standard:

interface-type = "interface" interface-reference "begin" interface-body "end" .

interface-reference = interface-synonym | [interface-synonym ":"] interface-identifier

interface-identifier = object-identifier-value .

interface-synonym = identifier .

interface-body = { import } { declaration ";" } .

import = "imports" ["(" import-symbol-list *)"] "from" interface-reference .
import-symbol-list = import-symbol { "," import-symbol } .

import-symbol = procedure-identifier | termination-identifier | type-identifier | value-identifier .

71

0 ISO/IEC ISO/IEC 11404:1996 (E)

Annex D
(informative)

Example Mapping to Pascal

This annex contains a draft “inward” mapping from the LI datatypes into the programming language Pascal, as defined
ISO/IEC 7185:1990nformation technology — Programming languages — Pas@éhere appropriate, differences in the map-
ping to the Extended Pascal language (ISO/IEC 10206:18&irmation technology — Programming languages — Extended
Pasca) are noted.

The purpose of this annex is to exemplify the nature and content of an inward mapping, and possibly a mapping standard.
mapping should not be considered a definitive mapping from LI datatypes to the Pascal language.

D.1 LI Primitive Datatypes

D.1.1 Boolean

Boolean maps to the Pascal typeolean. Valuestrue andfalse map to the corresponding values of Pa&@blean. All char-
acterizing operations are preserved, using the Boolean operators of Pascal.

D.1.2 State

A state datatype of the forstate(state-value-list) maps to the Pascal enumeration tygate-value-list). Each state-value is
mapped to the Pascal value with the corresponding identifier. All characterizing operations are preserved.

D.1.3 Enumerated

An enumerated datatype of the foemumerated(enumerated-value-list) maps to the Pascal enumeration typeumerated-
value-list). Each enumerated-value is mapped to the Pascal value with the corresponding identifier. All characterizing ope
tions are preserved.

D.1.4 Character

A single character datatype of the fogharacter or character(repertoire-list) maps to the Pascal typhar. Pascal requires
each implementation to define the character-set associated with therhgipe The default character-set designated by the LI
datatype syntaxharacter is presumed to be that character-set, agykrtoire-list, if present, must identify that character-set,
or a subset of it. Each character-value in that character-set is mapped to the Pascal value having the same character-cod
characterizing operations are preserved.

No other character datatype is mapped into a Pascal datatype, although an implementation may specify a mapping of the ct
ter-codes into the Pascal tyipéeger.

D.1.5 Ordinal

The LI datatypeordinal range(1..maxint) maps to the Pascal subrange typenaxint. Pascal requires each implementation to
define the value ofmaxint. The ordinal datatype with the corresponding maximum value (and any subtype thereof) is mappe
as given above, with each ordinal value being mapped to the corresponding integer value under the mathematical isomorpl
All characterizing operations are preserved.

No ordinal value greater thamaxintcan be mapped, and no datatype containing such a value can be mapped into Pascal.
D.1.6 Date-and-time
The LI datatypdime(unit, radix, factor) range(timel..time2) is mapped to Pascal in the same way that time interval datatypes

are mapped (see D.4.6), with the convention that the Pascal value represents the intervaltivettesnd the designated point
in time, but only if the Pascal value representing the intetina2 — time 1is less than the implementation-defined vatuexint.

67

ISO/IEC 11404:1996 (E) [0 ISO/IEC

No other date-and-time types can be mapped to Pascal.
D.1.7 Integer

The LI datatypenteger range(minint..maxint) maps to the Pascal tyjieteger, whereminintis defined to be Negatetaxint).
Pascal requires each implementation to define the valngaaint. The integer datatype with the corresponding minimum and
maximum values (and any subtype thereof) is mapped to the Pascattyger, with each integer value being mapped into the
identical Pascal integer value. All characterizing operations are preserved.

No integer value greater thamaxint can be mapped, no integer value less tmémint can be mapped, and no datatype containing
such a value can be mapped into Pascal.

D.1.8 Rational

Rational maps to the Pascal type declared by
type rational = array [1..2] of integer;
with the characterizing operations defined as follows:

procedure Reduce(var x: rational); (* reduces a rational value to lowest-terms *)
var t, r, d: integer;
begin
d := abs(x[1]);
r:= abs(x[2]);
while (d mod r) > 0 do begin
t:=dmodr;
d:=r; r:=t
end;
X[1] := x[1] div r;
X[2] :=x[2] div ;
end;

procedure Add(x, y: rational; var t: rational);
begin
if X[2] = y[2] then begin
t[1] := x[1] + y[1];
t[2] := x[2];
end else begin
t[1] == x[1] * y[2] + y[1] * X[2];
t[2] := x[2] * y[2];
end;
Reduce(t);
end;

procedure Multiply(x, y: rational; var t: rational);
begin
t[1] == x[1] * y[1];
t[2] := x[2] * y[2];

Reduce(t);
end;
procedure Negate(x: rational; var t: rational);
begin
t[1] == - x[1];
t[2] := x[2];
end;
procedure Reciprocal(x: rational; var t: rational);
begin
t[1] := x[2];
t[2] := x[1];
if t[2] < 0 then begin
t[1] == -t[1];
t[2] := -t[2];

68

0 ISO/IEC ISO/IEC 11404:1996 (E)

end;
end;

function NonNegative(x: rational): Boolean;
begin NonNegative := (x[1] >= 0) end;

function Equal(x, y: rational): Boolean;
begin Equal := ((x[1] * y[2]) = (x[2] * y[1])) end;

Only rational values whose numerator and denominator are both within the ramggipt, maxirjtare mapped into the Pascal
datatype. (This cannot be stated as a range constraint on the value space of the Rational datatype.)

NOTE — The above procedures are not optimal and a good implementation would require techniques for sign management and overflow a
ance. These procedures are intended only as a demonstration that the characterizing operations can be implemented “conveniently” on tf
as mapped.

D.1.9 Scaled

The LI datatypescaled(r, f) range(minrf..maxrf) maps to the Pascal typeeger, whereminrf has the valuemaxinte rt-?
andmaxrfhas the valuenaxints r. A scaled datatype with the corresponding minimum and maximum values (and any sub

type thereof) is mapped to the Pascaltypteger, with each scaled value N h being mapped into the Pascal integer value N.
In order for the characterizing operations to be preserved, scaled multiply and divide operations have to be defined, as foll

type scaled = integer;
(* const rtothef = r pow f; *)

function scaledMultiply(x, y: scaled): scaled;
var
t: scaled,;
round: Boolean;
negate: Boolean;
begin
t:=x*y;
negate := (t < 0);
if negate then t := -t;
round := (t mod rtothef > rtothef / 2);
t ;= t div rtothef;
if round thent:=t+ 1,
if negate then t := -t;
scaledMultiply :=t;
end;

function scaledDivide(X, y: scaled): scaled;
var
t: scaled;
negate: Boolean;
begin
negate := (x < 0);
if negate then x := -x;
if y < 0 then begin
negate := not negate;
yi=-y,
end;
t:= (x * rtothef) / y;
if (x * rtothef mod y) > rtothef/ 2 thent:=t + 1;
if negate then t := -t;
scaledDivide :=t;
end;

Only those values of the datatypealed(r, f) which are within the above range are mapped and no scaled datatype containin
values outside this range can be mapped into Pascal.

NOTE — A more general version of the scaled datatype can be defined using the Pascal type:
type scaled = record

69

ISO/IEC 11404:1996 (E) [0 ISO/IEC

numerator: integer;
radix: 0..maxint;
factor: integer
end,;
with “characterizing operations” which generalize the arithmetic on scaled datatypes. This model can be further tailored to a fixed radix (like
10) to get improved performance. The integer model is more useful for simple exchanges of information, while the generalized model is pref-
erable for extensive manipulation of scaled values.

D.1.10 Real

The LI datatypeseal range(rmin..rmax) andreal(radix, precision) range(rmin..rmax) map to the Pascal typeal, only if

the given or defaultadix, precision, rmirandrmaxparameters define a subset of the real values which is distinguishable in the
subset of the mathematical real values defined by the Pascal implementation under the following mapping: Each LI Real value
is mapped into the Pasaadal value which is mathematically nearest it and if two values are equidistant then either may be cho-
sen. All characterizing operations are conceptually preserved, although the implementation-defined arithmetic may affect the
correctness of results.

No real value requiring more range or more precision can be mapped, and no datatype containing such a value can be mapped
into Pascal.

D.1.11 Complex

The LI datatypesomplex andcomplex(radix, precision) are mapped into Pascal using the Pascal type:
type complex = record realpart, imagpart: real end,;

This type, however, only maps valuesn C such that | Re&] | <rmaxand | Im€) | < rmax, wherermaxis implementation-

defined, and then only ifmaxand the given or defautadix andprecisionparameters define a subset of the complex values
whose Cartesian representations (y)are distinguishable in the Cartesian product ofréed values defined by the Pascal im-
plementation. (This cannot be stated as a constraint on the value space of the LI complex datatype.) No complex datatype re-
quiring more range or precision can be mapped.

Each LI Complex value is mapped to the Pascal value whosalpart field has the Pascakal value mathematically nearest
Re(c) and whosémagpart field has the Pascaéal value mathematically nearest Ia)((Re and Im are the mathematical pro-
jections onto the real and imaginary axes, respectively.)

The definition of “characterizing operations” appropriate to the Cartesian representation of a complex-number can be defined by
the following Pascal procedures, although the implementation-defined arithmetic may affect the correctness of results.

function Equal(x, y: complex): Boolean;
begin Equal := (x.realpart = y.realpart) and (x.imagpart = y.imagpart) end;

procedure Promote(x: real; var t: complex);
begin t.realpart := x; t.imagpart := 0.0; end;

procedure Add(x, y: complex; var t: complex);
begin
t.realpart := x.realpart + y.realpart;
t.imagpart := x.imagpart + y.imagpart;
end;

procedure Multiply(x, y: complex; var t: complex);
begin
t.realpart := x.realpart * y.realpart - x.imagpart * y.imagpatrt;
t.imagpart := x.realpart * y.imagpart + x.imagpart * y.realpart;
end;

procedure Negate(x: complex; var t: complex);
begin
t.realpart := - x.realpart
t.imagpart := - X.imagpart;
end;

procedure Reciprocal(x: complex; var t: complex);
var r: real;
begin

70

0 ISO/IEC ISO/IEC 11404:1996 (E)

r ;= x.realpart * x.realpart + x.imagpart * x.imagpart;
t.realpart := x.realpart / r;
t.imagpart := - x.imagpart / r;

end;
procedure Squareroot(x: complex; var t: complex);
var
r: real;
theta: real,
begin
r := sqrt(x.realpart * x.realpart + x.imagpart * x.imagpart);
if x.realpart = 0.0 then begin
if x.imagpart >= 0.0 then theta := 0.5 * pi;
else theta := - 0.5 * pi;
end else begin
theta := arctan(x.imagpart / x.realpart);
if x.realpart < 0.0 then theta := theta + pi;
end;
t.realpart := sqrt(r) * cos(0.5 * theta);
t.imagpart := sqrt(r) * sin(0.5 * theta);
end;

NOTE — In Extended Pascal , the LI datatymesnplex andcomplex(radix, precision) can be mapped to the tympemplex, only if rmax

and the given or defauladix andprecisionparameters define a subset of the complex values which is distinguishable in the subset of the mat
ematical complex values defined by the Pascal implementation. All characterizing operations are conceptually preserved, although the ir
mentation-defined arithmetic may affect the correctness of results.

D.1.12 Void

The LI datatypevoid is mapped into Pascal only when it appears as an alternative of a choice datatype. In this case, itis map
into an empty-variant “()” of a variant-record (see D.2.1).

D.2 LI Generated Types

D.2.1 Choice

A choice datatype of the form:

choice (tag-type) of (
select-listl : alternative-1,

select-listN : alternative-N)

is mapped into the Pascal variant-record type:

record case tag-variable : mapped-tag-type of
case-constant-listl : mapped-typel;

case-constant-listN : mapped-typeN
end;

only when the following conditions are met:

1

2)

Thetag-typemaps to a Pascal ordinal type, as specified in this Annex. ndgeped-tag-types then the ordinal type which
is the image of the mapping.

Thealternative-typeof eachalternative-ican be mapped into a Pascal type, as specified in this Annex. alfe¢hsative-
typemaps to a Pascal record-type, then the correspomdapgped-typés: (all-fields-of-the-Pascal-record-type). If the
alternative-typas void, then the correspondingapped-typés: (). If thealternative-typedoes not map to a Pascal record-
type then the correspondimgapped-typés: (mapped-field-identifier : mapped-alternative), wheremapped-alternative

is the image of thalternative-typainder the mapping, andapped-field-identifieis thefield-identifier of alternative-i if

it is present and forms a valid Pascal field identifier, otherwise any identifier which does not conflict with any other fiel
identifier in the Pascal record-type.

71

ISO/IEC 11404:1996 (E) [0 ISO/IEC

No other choice datatype can be mapped into Pascal.

Thetag-variableis an invented identifier, used solely to implement the characterizing operations (see below), and is not other-
wise required. Eackelect-itenin theselect-listwhich is a single value is mapped to tbese-constardenoting the correspond-

ing value of thamapped-tag-typeEachselect-iterin the select-listwhich is aselect-ranges mapped into @ase-constant-list
containing the denotations of all corresponding values ofriapped-tag-typeA select-listwhich isdefault is mapped into the
case-constant-listontaining the denotations of all corresponding values ahtqEped-tag-type

NOTE — In Extended Pascal, easblect-itenin theselect-listwhich is aselect-rangés mapped into the analogous abbreviated-list form, and
aselect-listwhich isdefault is mapped into thease-constant-lightherwise.

All values of the choice datatype are mapped to the corresponding valuesnafpibed-typespecified above.

The characterizing operations Tag and Cast are implemented (at least conceptually) in Pascal by referencing a particular field of
the correspondingnapped-typeor assigning to it, respectively. The characterizing operation Discriminant is the value of the
tag-variable. Equal can be implemented in Pascal by a case-statement using the tag-variable and theeteappsidgiven

above to select field-by-field comparison for each alternative.

D.2.2 Pointer

A pointer datatype of the foriointer to (element-type) is mapped into the Pascal typmapped-type, only when theelement-
typemaps to a Pascal type, as specified in this Annex. riipped-typés then the Pascal type which is the image of the mapping.

Only those values of the pointer datatype which refer to objects on the Pascal “heap” are mapped into the corresponding Pascal
pointer-value. Other pointer-values may be supported by dereferencing them and copyétentbaat-valuento the Pascal

heap, thereby generating an “equivalent” Pascal pointer-value, in the sense that Dereference will work correctly, but the unspec-
ified “assignment” operation (see Note 3 to clause 8.3.2) will not.

The Dereference operation is the Pagtahtified-variable i.e. pointer-value”.

D.2.3 Procedure

A procedure datatype of the formprocedure (parameter-list)

is mapped into a Pascal “procedure parameter specification”, only when it appears as the datatype of a procedure parameter, and
only if all of its parameter-typesan be mapped to Pascal types, as specified in this Annex.

A procedure datatype of the fornmprocedure (parameter-list) returns (return-parameter)

can be mapped into a Pascal “procedure parameter specification” or “function parameter specification”, only when it appears as
the datatype of a procedure parameter, and only if all opasameter-typesincluding that of thereturn-parametercan be

mapped to Pascal types, as specified in this Annex. Iféhern-parametemaps to a simple type or a pointer type in Pascal,

then the procedure datatype is mapped to a Pascal “function parameter specification”; otherwise, it is mapped to a “procedure
parameter specification”

Every LI parameter-declaratioof the formin identifier : parameter-type is mapped into a Pascal value-parameter-specifica-

tion of the formidentifier : mapped-type wheremapped-typés the image of thearameter-typeinder the mapping into Pascal.

Every LI parameter-declarationf the formsinout identifier : parameter-type or out identifier : parameter-type is mapped

into a Pascal variable-parameter-specification of the feamidentifier : mapped-type wheremapped-typés the image of the
parameter-typeinder the mapping into Pascal. If the procedure datatype is mapped to a functional parameter specification, the
parameter-typ®f thereturn-parameters mapped into theesult-typeof the Pascal function parameter-specification. If the pro-
cedure datatype hasraturn-parameteiand is mapped to a procedure parameter specificatiomethen-parameteis mapped

as if it were an additionalut parameter.

Conceptually, every value of an LI procedure datatype which satisfies the above constraints could be defined as a Pascal proce-
dure or function and could then appear as an actual parameter satisfying the corresponding formal parameter specification.

The Invoke operation is supported by the Pascal function-designator (call) within an expression or the Pascal procedure (call)
statement, as appropriate to the form. Equal, in the sense defined for the LI datatype, is supported in Pascal by comparing all
results of the invocations, to the extent that this is possible.

Terminations other than normal are not supported by Pascal, and no procedure datatype involving them can be mapped into Pas-
cal.

72

0 ISO/IEC ISO/IEC 11404:1996 (E)

D.2.4 Record

A LI record datatype of the formrecord (field-list) is mapped into a Pascal record-type of the foracord field-list end, only
if all of its field-typescan be mapped to Pascal types, as specified in this Annex. No other record datatype can be mapped
Pascal.

Every LI field of the formidentifier : field-type is mapped into a Pascal field of the foidentifier : mapped-type where
mapped-typés the image of théeld-typeunder the mapping into Pascal.

Every value of an LI record datatype which satisfies the above constraints is mapped to a value of the corresponding Pz
record-type by mapping the value of each field to its corresponding value, as specified in this Annex.

The FieldSelect operation is supported by the Pascal field-selection expression. The Aggregate operation is supported in P
by assignment of the given values to the appropriate fields of the record-variable. Equal is not directly supported by Pasca
can be supported for each individual record-type by constructing a function which compares the corresponding field value:s

D.25 Set

A set datatype of the forreet of (element-type) is mapped into the Pascal typet of mapped-type, only if the element-type
maps to a Pascal ordinal-type, as specified in this Annex, and the cardinality of the ordinal-type does not exceed the impler
tation-defined maximum set cardinality required by Pascal. Mipped-typés then the Pascal ordinal-type which is the image
of the mapping.

Every value of an LI set datatype which satisfies the above constraints is mapped to a value of the corresponding Pascal se
by mapping the value of each member of the set-value to its corresponding value, as specified in this Annex.

All characterizing operations are supported by Pascal set operations.

No other set datatype can be mapped into Pascal directly. It is possible to map some other set datatypes as a variant of Sec
(see D.2.7), by defining the characterizing operations specifically for that structure.

D.2.6 Bag

No bag datatype can be mapped into Pascal directly. Some bag datatypes can be mapped as a variant of Sequence (see
by defining the characterizing operations on that structure.

D.2.7 Sequence

A LI sequence datatype of the foreequence of (element-type) is mapped to the Pascal tydde of mapped-type, only if
the element-typean be mapped to a Pascal type other théiledype, as specified in this Annex. No other sequence datatype
can be mapped into Pascal directly.

Every value of a sequence datatype which satisfies the above constraints is mapped to a value of the corresponding Pasc
type by mapping the value of each element of the sequence-value to its corresponding value, as specified in this Annex.

With the declaration:
type sequenceoftype = file of mapped-type;

the characterizing operations are supported by the required procedures for file types, as follows:

function IsEmpty(var s: sequenceoftype): Boolean;
begin ISEmpty := eof(s) end,;

procedure Head(var s: sequenceoftype; var t: mapped-type);
begin reset(s); read(s, t); reset(s); end;

procedure Tail(var s: sequenceoftype; var t: sequenceoftype);
begin
reset(s); rewrite(t);
if not eof(s) then begin
get(s);
while not eof(s) do begin

73

ISO/IEC 11404:1996 (E) [0 ISO/IEC

th 1= s%; get(s); put(t);
end;
end;
reset(s); reset(t);
end;

function Equal(var s, t: sequenceoftype): Boolean;
var continue: Boolean;
begin
reset(s); reset(t); continue := true;
while continue do begin
continue := not (eof(s) or eof(t));
if continue then begin
get(s); get(t);
continue := mapped-typeEqual(s®, t");
if not continue then Equal := false;
end else
Equal := eof(s) and eof(t);
end;
reset(s); reset(t);
end;

procedure Empty(var s: sequenceoftype);
begin rewrite(s) end;

procedure Append(var s: sequenceoftype; t: mapped-type);
begin write(s, t) end;

Because a Pascfille-type however, cannot be treomponent-typef anothefile-type LI datatypes of the formsequence of
(sequence (...)) or sequence of (record(...)), where the record datatype contains a sequence datatype, cannot be mapped into
Pascal. Moreover, when tiiemponent-typef afile-typeis, or contains, @ointer-typethere may be implementation-dependent
limitations which defeat the purpose of the mapping.

NOTE — Values of a sequence datatype of the fsaquence of (element-type), where theelement-typenaps to some Pascal typgpped-
type as specified in this Annex, can also be mapped into Pascal using the type:
type sequenceofT = “sequenceofTmember;
sequenceofTmember = record
next: sequenceofT;
elementvalue: mapped-type
end;
Each member (value otlement-type of a value of the sequence datatype is mapped to a heap variable of the Pascal type
sequenceofTmember, by mapping its value to the corresponding valuenaipped-typeas specified in this Annex, and placing that value in
the fieldelementvalue. The value of the sequence datatype is then represented by a value of teedqyeaceofT, which is the pointer to
the heap variable representing the first membenilof the sequence is empty. Thext field of the first member is set to point to the heap
variable representing the second member, etc. fiEx¢field of the last member is set tal. All characterizing operations can be defined on
this representation.

D.2.8 Array
An array datatype of the forarray (index-list) of (element-type) is mapped into the Pascal type
array [mapped-index-list] of mapped-element-type, only if the following conditions hold:

1) Theelement-typenaps to some Pascal typapped-element-typas specified in this Annex.

2) Eachindex-typdn theindex-listcan be mapped into some Pascal ordinal-typpped-index-typas specified in this An-
nex. Themapped-index-lis then the list of thenapped-index-type# corresponding order.

No other array datatype can be mapped into Pascal.

Every value of an LI array datatype which satisfies the above constraints is mapped to a value of the corresponding Pascal array-
type by mapping the value of each element of the array-value to its corresponding value, as specified in this Annex.

The Select operation is supported by Pascal indexing. The Replace operation is supported by assignment to the appropriate cell

of an array variable. Equal is not directly supported by Pascal. It can be supported for each individual array-type by constructing
a function which compares the corresponding array element values.

74

0 ISO/IEC ISO/IEC 11404:1996 (E)

D.2.9 Table
No table datatype can be mapped into a Pascal datatype directly.

Values of a table datatype of the fotable (field-list), where eacfiield-typein thefield-list maps to some Pascal typeapped-
field-type as specified in this Annex, can be mapped into Pascal using the type:

type tableentry = record
field1l: mapped-field-type-1;

1.‘i.el.dN: mapped-field-type-N
end;

Eachtableentry value is a Pascal record-value having the corresponding field values assigned to tHeeftds.,fieldN. The
value of the table datatype is then represented as a value of the Pasdiktgieableentry, in the same way as a sequence
datatype (see D.2.7). The characterizing operations for the table datatype can be defined on that structure.

D.3 LI Subtypes

D.3.1 Range

LI range-subtypes map into Pascal subrange types, but only if the base type maps into a Pascal ordinal-type, as specified i
Annex.

D.3.2 Selecting

LI selecting-subtypes do not have equivalents in Pascal. A selecting-subtype of a state type or an enumerated type is mapy
if it were the base type.

D.3.3 Excluding

LI excluding-subtypes do not have equivalents in Pascal. An excluding-subtype of a state type or an enumerated type is ma
as if it were the base type.

D.3.4 Size

LI size-subtypes do not map into native Pascal concepts. Size-subtypes could be supported by the sequence datatype impl
tation in D.2.7, and certain size-subtypes are mapped to specific Pascal types in D.4.

D.3.5 Explicit subtypes
LI explicit-subtypes do not have equivalents in Pascal. An explicit-subtype is mapped as if it were the base type.
D.3.6 Extended

LI extended-types cannot be mapped into Pascal, in general. In the case of enumerated datatypes, definition of an entirely
type with value isomorphisms based on ordinal position may be possible.

D.4 LI Defined Datatypes

D.4.1 Natural number

The LI datatypenaturalnumber range(0..maxint) maps to the Pascal subrange typgnaxint, according to the mapping for

its type-definition No naturalnumber value greater thaaxint can be mapped, and no datatype containing such a value can be
mapped into Pascal.

D.4.2 Modulo

The LI datatypenodulo(modulus) maps to the Pascal subrange t¥penodulus—1, according to the mapping for itgpe-def-

75

ISO/IEC 11404:1996 (E) [0 ISO/IEC

inition, but only if modulus-1 is less than or equal to the implementation-defined vatagint. The characterizing operations
can be derived from those of Pascal typeeger (i.e. those of the subrange type) analogously to the derivation in clause 10.1.2.

No other modulo datatype can be mapped into Pascal.

D.4.3 Bit

The bit datatype maps to the Pascal type declared by
type bit=0..1;

0 and 1 map to the corresponding integer values. All characterizing operations are preserved, although the Add operation must
be defined as:

function Add(x,y: bit): bit;
begin
if (x =y) then Add := 0 else Add := 1,
end;

D.4.4 Bit string

A bitstring datatype all of whose values are of a fixed constant lengthhitsring size(k), is mapped into the Pascal type
packed array [1..k] of Boolean.

NOTE — While bitstring can just as well be mapped inpacked array of bit, packed array of Boolean is often much more efficiently
implemented.

With the definitions:

type bitstringsizek = packed array [1..K] of Boolean;
bitstringsizek1 = packed array [1.. (k-1)] of Boolean;

the characterizing operations Equal, Head and Tail are defined as follows:

function Equal(x,y: bitstringsizek): Boolean;
var i: integer;
begin
Equal := true;
fori:=1to kdo Equal := Equal and (X[i] = y[i]);
end;
function Head(x : bitstringsizek): bit;
begin
if Xx[1] then Head := 1
else Head :=0
end;
procedure Tail(x : bitstringsizek, var y: bitstringsizek1);
var i: integer;
begin
fori:=1to k-1 do y[i] := x[i+1];
end;

Append, Empty, ISEmpty are not meaningful operations on a bit-string of fixed size.

The bitstring datatype can be mapped according ttyfis-definition that is,sequence of (bit) (see D.2.7), although more ef-
ficient structures for bitstring can be developed.

D.4.5 Character string

A characterstring datatype whose underlying character datatype can be mapped to Pascal (see D.1.4) and all of whose values are
of a fixed constant length, i.eharacterstring size(k), is mapped into the Pascal typecked array [1..K] of char.

With the definitions:

76

0 ISO/IEC ISO/IEC 11404:1996 (E)

type charstringsizek = packed array [1..k] of char;
charstringsizekl = packed array [1.. (k-1)] of char;

the characterizing operations Head and Tail are defined as follows:

function Head(x : charstringsizek): char;
begin Head := x[1] end;

procedure Tail(x : charstringsizek; var y: charstringsizek1);

var i: integer,;
begin
fori:=1to k-1 do y[i] := x[i+1];
end;
Equal is Pascal “=". Append, Empty, ISEmpty are not meaningful operations on a character-string of fixed size.

A characterstring datatype whose underlying character datatype can be mapped to Pascal (see D.1.4) can be mapped acc
to its type-definition that is,sequence of (character) (see D.2.7), although more efficient structures for characterstring types
can be developed.

D.4.6 Time interval

Time interval datatypes are mapped according to tlype-definitionsthat is, as specified for scaled datatypes (see D.1.9). The
scalarMultiply operation is mapped to

function scalarMultiply(x: scaled, y: timeinterval): timeinterval;

and the body is exactly the same as for skhaledMultiply operation defined in D.1.9, with the substitutiontimfieinterval for
the type of the temporary restilt

D.4.7 Octet

The octet datatype is mapped into the Pascal type:
type octet = 0..255;
All characterizing operations are preserved.

D.4.8 Octetstring

An octetstring datatype all of whose values are of a fixed constant lengtb¢ietstring size(k), is mapped into the Pascal type
packed array [1..k] of octet, whereoctet is defined as in D.4.7.

With the definitions:

type octetstringsizek = packed array [1..K] of octet;
octetstringsizekl = packed array [1.. (k-1)] of octet;

the characterizing operations Equal, Head and Tail are defined as follows:

function Equal(x,y: octetstringsizek): Boolean;
var i; integer;
begin
Equal := true;
fori:=1to kdo Equal := Equal and (x[i] = y[i]);
end;
function Head(x : octetstringsizek): octet;
begin Head := x[1] end;
procedure Tail(x : octetstringsizek, var y: octetstringsizek1);
var i: integer;
begin
fori:=1to k-1 do y[i] := x[i+1];
end;

Append, Empty, ISEmpty are not meaningful operations on an octetstring of fixed size.

77

ISO/IEC 11404:1996 (E) [0 ISO/IEC

The octetstring datatype can be mapped according tpgtsdefinition that is,sequence of (octet) (see D.2.7), although more
efficient structures for octetstring can be developed.

D.4.9 Private

Private is defined in Pascal essentially as itis in 10.1.9:
type private = packed array [1..size] of bit;
or:
type private = packed array [1..size] of Boolean;
In many cases, only the latter will produce the desired (contiguous bitstring) implementation, although neither is in fact required
to do so.
D.4.10 Object identifier

The objectidentifier datatype can be mapped into Pascal accordingyfmeidefinition that is,
sequence of (objectidentifiercomponent) (see D.2.7), wherebjectidentifiercomponent is mapped to the Pascal type:

type objectidentifiercomponent = 0..maxint;

In many cases, however, the component values of an objectidentifier value are not useful to the application, and it may be more
useful to map thebjectidentifier type into aroctetstring type (see D.4.8).

D.5 Defined Generators

D.5.1 Stack

No stack datatype can be mapped into Pascal directly. Individual stack datatypes can be mapped into a linked structure similar
to the one suggested feequence (see the Note to D.2.7), by defining the characterizing operations on that structure.

D.5.2 Tree

No tree datatype can be mapped into Pascal directly. Individual tree datatypes can be mapped by a linked structure similar to the
one suggested faequence (see the Note to D.2.7), but there are many possible implementation choices, depending on the in-
tended searching strategies, i.e. the true “characterizing operations” of the type.

D.5.3 Cyclic enumerated

LI datatypes of the forneyclic of (T) are mapped into Pascal as provided for the ffjye D.1.3, becaus€ is required to be an
enumerated datatype. The chaacterizing operation Successor does not map teueaécal must be defined as specified in
10.2.3.

D.5.4 Optional

An LI datatype of the fornoptional(T) can only be mapped to Pascal if the typpean be mapped to Pascal, as specified in this
Annex. The datatypeptional(T) is mapped to Pascal as:

record case present: Boolean of
true: (valuegiven: mappedT);
false: ()

end;

wheremappedT is the mapping of LI datatypkinto Pascal. The characterizing operation IsPresent is defined by:

function IsPresent(t: optionalT): Boolean;
begin IsPresent ;= t.present end;

Unary characterizing operations on typef the form Op(t: optional(T)):T are supported by a Pascal procedure of the form:

procedure op(t: optionalT, var result: mappedT);
begin
if IsPresent(t) then result := mappedTOp(t.valuegiven);

78

0 ISO/IEC ISO/IEC 11404:1996 (E)

end;

And binary operations are similarly supported.

NOTE — Alternatively,optional(T) can be mapped tdmappedT, wheremappedT is the mapping of LI datatyp& into Pascal, and the
object of typanappedT, when present, is allocated on the heap.
The characterizing operation IsPresent is defined by:
function IsPresent(t: optionalT): Boolean;
begin IsPresent := t <> nil end;
Unary characterizing operations on typef the form Op(t: optional(T)):T are supported by a Pascal procedure of the form:
procedure op(t: optionalT, var result: mappedT);
begin
if IsPresent(t) then result := mappedTOp(t");
end;
And binary operations are similarly supported.

D.6 Type-Declarations

In Pascal two type-specifiers refer to the same datatype only if they are both identifiers and spelled identically. Type-specif
which are not identifiers always refer to distinct datatypes. Because of this, additional datatype definitions may be needed
mapping Pascal to correctly support the identity of LI datatypes which do not have names.

D.6.1 Renaming declarations

This concept is supported in Pascal only for named datatypes. That is, if a Pasgailstyiemoted by an identifier, then a Pascal
type definition of the form:

type X =y;
is a renaming declaration, equivalent to theyiple-declaration
type X =y;

But if the Pascal typg is a syntactic designation other than an identifier, the Pascal type declaration of the form:

type x = y;
is effectively a “new” datatype declaration in all cases.

D.6.2 Datatype declarations

An LI datatype declaration which declares a single datatype (no parameters) can be mapped to Pascal as a Pascal type-decl;
in which the LItype-definitions mapped into Pascal, as specified in this Annex. Ityipe-definitionrdoes not have a mapping,
then the datatype so declared cannot be mapped into Pascal.

An LI datatype declaration which declares a family of datatypes, using one or more parameters, cannot, in general, be ma
into Pascal. In many cases, however, each member of the family which is to be used in a given context can be mapped il
distinct Pascal type, by inventing a unique name and mappintypieedefinitionafter making lexical substitutions for the pa-
rameter values.

D.6.3 Generator declarations

An LI generator declaration cannot, in general, be mapped into Pascal. In many cases, however, each resulting datatype \
is to be used in a given context can be mapped into a distinct Pascal type, by inventing a unique name and mappéig the
definitionafter making lexical substitutions for the parameter values.

NOTE — In Extended Pascal, many generators can be mapped to schemata.

79

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Annex E
(informative)

Example Mapping to MUMPS

This annex contains a draft “inward” mapping from the LI datatypes into the programming language MUMPS, as defined by
ISO/IEC 11756:1992nformation technology — Programming languages — MUMPS

NOTE — It is anticipated that the prospective revision of ISO 11756:1992 will use the name M, instead of MUMPS, as the primary name for
the language.

The purpose of this annex is to exemplify a mapping to a language whose concept of datatype is significantly different from that
of strongly typed programming languages. This mapping should not be considered a definitive mapping from LI datatypes to the
MUMPS language.

This annex specifies a mapping froraluesof LI datatypes into MUMPS values. In all cases, the MUMPS data being mapped
to is a string and the mapping expresses the form of the resulting string values.

For inward-mappings, the values produced are in a canonic form, as defined in ISO 11756:1992, unless otherwise stated. An
inward-mapping that produces values exceeding the Portability limits defined in section 2 of ISO 11756:1992 is non-portable.
When the result of mapping a value as herein specified would exceed the implementation limits, the result is unspecified.

For the reverse-inward-mappings any necessary coercion from the internal format takes place. Unless otherwise stated the re-
verse-inward-mapping is the inverse of the inward-mapping, using the necessary coercions. If the reverse-inward-mapping would
result in values which are not within the range of the LI datatype, the result is unspecified. For example, a state-value might be
produced from a string which is not one of the permissible state values.

When mapping to or from a numeric format is required, the accuracy of the the conversion is the responsibility of the implemen-
tation.

A further assumption of this binding is that it is an operational one, i.e. that the conversions are handled at run-time with the im-
plementation mapping the interface specification in an automated fashion.

NOTE — An alternative approach would be to extend or “annotate” (see 7.4) the interface specification language — the Common Interface
Definition Notation (IDN) — to include mapping specifications, and then generate a mapping module which would handle the specific interface
essentially external to the process.

In this specification, the MUMPS operation sequences that implement the characterizing operations on the LI datatypes are not
explicitly specified. Except as noted, all characterizing operations are supported on the resulting MUMPS values. Many of these
operations are provided as part of the MUMPS language; others can be implemented as additional extrinsic functions, if required.
Use of the in-built MUMPS operations, such as addition, on data which is mapped to or from certain LI datatypes may cause

these values to be interpreted in ways other than specified in LI characterizing operations. Therefore the use of these within a

MUMPS program for manipulation, as opposed to transfer operations, requires the programmer to perform the appropriate con-
versions. The LI datatypes involved are Date and Time, Rational, Scaled, Complex and all Generated and Defined Types.

E.1 LI Primitive Datatypes

E.1.1 Boolean
This maps to truth-value, true maps to 1 and false to 0.
E.1.2 State

Each state-value is mapped to its string value.

80

0 ISO/IEC ISO/IEC 11404:1996 (E)

E.1.3 Enumerated

Each enumeration value maps to its index in the LI enumerated-type definition, i.e. the first value maps to 1, the second to 2

E.1.4 Character

A character datatype maps to a MUMPS Character Set Profile definition, which has an associated encoding for the charac
E.1.5 Ordinal

Each ordinal value maps to the corresponding positive integer value.

E.1.6 Date and Time

Date and time type values are mapped to the character string representation defined in 1ISO 8601:1988.
NOTE — An alternative is to map date and time values to a character string in $SH{OROLOG] format, which has the form
whereD’gis the numbers of days since December 31, 1840, and S is the number of seconds since midnight.

Since there are no intrinsic operations available on this format, this alternative may not be of greater value.

E.1.7 Integer

Each value maps to its canonic form.

E.1.8 Rational

Each value maps to the character representation of the correspaiitingl-literal.

NOTE — An alternative if the denominator is greater than 0 is to map the value to numerator-value/denominator-value, i.e. the number cre
by performingthe division of the two parts. This would allow normal arithmetic operations, but at a loss of precision. (See the nétg in D.1

E.1.9 Scaled

Each value maps to the character representation of the correspscealidyliteral.
NOTE — A scaled value could also be converted to a numeric value, as for Rational.
E.1.10 Real

Real values are mapped to the nearest numeric values.

E.1.11 Complex

Values are mapped to strings of the form
real-value%imaginary-value

where
real-value is the numeric value of threal-part of the correspondingomplex-literal, and
imaginary-value is the numeric value of thimaginary-part of the correspondingomplex-literal.
E.1.12 Void

There is no mapping for this datatype, since it only appears as a formal part of an interface specification and has no values
does not represent data actually transferred across an interface.

81

ISO/IEC 11404:1996 (E) [0 ISO/IEC

E.2 LI Generated Types

E.2.1 Choice

A value of a LI Choice datatype is mapped according to the specification for the type actually instantiated. In MUMPS only a
variable can actually have the behavior of a Choice datatype. The discriminant of the Choice is provided in V(0), where V is the
variable name of the associated MUMPS variable.

E.2.2 Pointer

A Pointer maps to a MUMPS variable. Access to the element value — the data pointed to — is provided by use of indirection or
some implementation-specific mechanism. That is, indirection (@) is the MUMPS support for the characterizing operation
Dereference.

E.2.3 Procedure

A Procedure value maps tdabel andformallist of aformalline, which defines a subroutine call. Termination parameters are
mapped to additiondbrmallist names.Inout andout parameters are mapped (at run-time) to parameters called by reference.

NOTE — The exact mechanism of the call may be subject to restrictions, such as those specified in ISO/IEC 1388601®@5ion tech-
nology — Programming languages — Language-independent procedure.calling

E.2.4 Record

A Record value maps to a MUMPS array in which the subscripts afeldeidentifiers, and the data is the mapping of the value
of the correspondinfield of the record value.

NOTES

1. Ifthe LI value were represented in one of tieeord-value forms, the data would be the mapping of thdependent-value. In the
value-list form, the subscript is theeld-identifier corresponding to this position in the record type specification.

2. Arecord value could also be modelled with subscripts being the field position numbers, but the Notes to clause 8.4.1 indicate that the field
identifier is significant while the position is not.

E.25 Set

A Set maps to a MUMPS array with the subscripts being an integer, starting at 1, denoting the position of the independent-value
in the value-list.

E.2.6 Bag

A Bag maps in exactly the same way as Set.
E.2.7 Sequence

A Sequence maps in exactly the same way as Set.
E.2.8 Array

An Array maps to a MUMPS array with the first level subscript being the first independent-value in the value-list, the second
level subscript being the second independent-value etc.

E.29 Table
A Table maps to a MUMPS array with the first level subscript being an integer, starting at 1, denoting the position of the table-

entry within the table-value, the second level subscript being the field identifier associated with the independent-value. An empty
value is denoted by no data.

82

0 ISO/IEC ISO/IEC 11404:1996 (E)

E.3 LI Subtypes

In general all the subtypes are treated exactly as if they were the base type.

Extended types can be mapped, provided that the values are within the permissible range.

E.4 LI Defined Datatypes

E.4.1 Natural number

Values of Naturalnumber are mapped as values of the base type — integer (see E.1.7).
E.4.2 Modulo

Values of Modulo types are mapped as values of the base type — integer (see E.1.7).
E.4.3 Bit

Bit maps to the values 0 and 1.

E.4.4 Bitstring

Bitstring maps to a string of Os and 1s.

NOTE — This mapping may have smaller length limitations than expected because it is dependent on the maximum length of strings. (
portability minimum limit for this in ISO 11756:1992 is 255, that for the proposed revision is 510. Many implementations have larger limits
Other possibilities are mapping to an array of Bit values or mapping to a character string whose values are made oftisag)ieght

E.4.5 Character string

Characterstring maps to a MUMPS string.

E.4.6 Time interval

Values of Time interval types are mapped as values of the base type — scaled (see E.1.9).

E.4.7 Octet

An Octet valuex maps to the character value $CHARACTER(

E.4.8 Octet string

Octetstring maps to a string whose individual characters are the mappings of the equivalent Octet values.
E.49 Private

Private maps to an array of strings with numeric subscripts indicating the order of data within the array.
E.4.10 Object identifier

Objectidentifier maps into a string, with the value being the characters abjgaidentifier-value.

E.5 Type-Declarations and Defined Datatypes

Since MUMPS has no declaration facilities the implementation of these facilities is the responsibility of the interface specific
tion interpretation process.

83

ISO/IEC 11404:1996 (E) [0 ISO/IEC

Annex F
(informative)

Resolved Issues

This annex contains a brief discussion of technical problems encountered in the development of this International Standard and
the consensus resolution thereof by the technical committee.

F.1 Scope

Issue 1. Should LI Datatypes be a reference model only?

Consensus is that LI Datatypes has characteristics of a reference model, but its scope goes beyond that. An entity claiming to
use this International Standard as a “reference model” is saidrtply indirectly but indirect compliance places requirements

on the entity for formal statements of the relationships (mappings). These requirements are necessary to meet the original intent
of the standard. Because of the formal syntax for the identification and definition of datatiypescompliances also possible.

Direct compliance is needed so that products such as cross-language or cross-entity utilities can reference, use, and claim con-
formity to, LI Datatypes, especially where no other relevant standards exist. In addition, the possibility of direct compliance may
encourage future software products, including new kinds of products, to use standard LI datatypes directly rather than defining
their own syntax and semantics and then performing the mapping.

Issue 2. What datatypes should be included in the standard?

Consensus is that the standard should include all of the datatypes needed to support ISO programming languages and the expectec
needs of interface specifications. If any language finds the need to distinguish two "possibly equivalent” datatypes or construc-
tors, then the standard should distinguish them; and if it is necessary to insure that datatypes of two different languages could be
mapped into different LI datatypes, then the standard should distinguish them; otherwise the standard should not.

Issue 3. Should the standard specify a minimal collection of common datatypes or a rich collection?

A primary purpose of the standard is to specify datatypes for various forms of interchange and interface. A rich collection of
datatypes encourages interface definitions to use datatypes which may be difficult to map to many programming languages. This
suggests that the set of “common” datatypes should be restricted to those that are readily mapped to most programming languag-
es. On the other hand, a rich collection of datatypes encourages the user to specify the dataitypesvehich may be both

clearer and more efficiently mapped than some work-around based on a small set of “common” datatypes.

The consensus is that the standard should provide a rich collection of conceptually distinct datatypes. As Annex E demonstrates,
most of the LI datatypesanbe mapped to most programming languages, and the work-arounds for particular languages become
a part of the language-specific mapping rather than a part of the interface specification. For example, Sequence is a native
datatype in LISP, and Set is a native datatype in Pascal. Both are common in conceptual interface specifications, but they require
work-arounds to be mapped to C or Fortran. The user should not be forced to characterize a Sequence as a fixed-length Array
(which it is not) just to accommodate the limited type vocabulary of a programming language which may not even be relevant to
the application.

For various reasons, specific applications (and the related standards, if any) may find it useful to constrain the set of LI datatypes
allowed/supported in that application (see Issue 6). Whether a language mapping should provide for all datatypes in this Inter-
national Standard is an unresolved issue, but out of the scope of this International Standard in any case.

Issue 4. Are representation concerns appropriate in the standard?

The scope of the project expressly stated that representatimhaspart of the standard. A number of representation concerns,

such as the characterization of Real as floating-point and the ordering of fields in a Record, clearly need to be addressed by any
use of the LI datatypes in defining “neutral representations”. Moreover, the datatypes of programming languages often have rep-
resentation properties which are important in distinguishing "internal datatypes" and are therefore necessary for mappings. Rep-
resentation attributes, on the other hand, are only a fraction of the datatype annotation capabilities needed by procedure calling
standards and applications. Consensus is that a common mechanism for such annotation is necessary (and provided in clause
7.4), but particular annotations should not be a normative part of this International Standard.

84

0 ISO/IEC ISO/IEC 11404:1996 (E)

Issue 5. What is the relationship between this International Standard and ISO 13886 Language-Independent Procedure Cal

ISO/IEC 13886:1995Information technology — Programming languages — Language-independent procedure, gabing
vides the procedure call model, the requirements for interface specifications and the syntax of the Interface Definition Nota
(IDN), and the requirements for LI procedure calling service implementations. 1SO 13886 makes normative reference to
International Standard (ISO 11404) to define all the datatype-related aspects of the IDN. 1SO 13886 defines in detail the dyne
notions associated with the Procedure and Pointer datatypes as they relate to the procedure calling model.

It was originally expected that 1ISO 13886 would provide the IDN syntax and this International Standard would provide only t
fundamental definitions of datatypes. But the complexities of defining datatypes made it necessary for much of the IDN to
introduced into this International Standard. Thus, the overlap between the two standards is the common IDN.

F.2 Conformance

Issue 6. Should support of certain datatypes be required of complying entities?

The nature of the standard should not be such esoirethe support of any datatype. Rather other standards which incorporate
the LI Datatypes, such as LI Procedure Calling and Remote Procedure Call, should specify what datatypes are required fo
purposes of those standards.

Issue 7. Should implementations be required to support the characterizing operations?

The purpose of considering operations in this International Standard is solely to distinguish semantically distinct datatypes w
have common or similar value spaces. Moreover, where several choices were available, the choices of characterizing opere
included in the standard are arbitrary. Consequently, mappings between language datatypes and LI datatypes should not r
sarily imply express support for the characterizing operations appearing in the standard. However, an internal datatype sk
never be mapped into a LI datatype having characterizing operations which the internal dedatgdpeotsupport. Such a map-
ping violates the notion of semantic equivalence of the datatypes.

F.6 Fundamental Notions

Issue 8. Should the LI datatypes provide axiomatic datatype definitions?

Much of the axiomatic definition work would be replication of well-known mathematical work. There is consensus that math
matical datatypes should be defined by appeal to standard mathematical references. There is also consensus that most "axi
definition" of other datatypes is nothing more than mathematical statement of closure under what is herein called "characteri
operations".

F.6.6 Characterizing operations

Issue 9.Is InOrder necessary? Does the standard need to define an ordering operation?

Order is an important property of a datatype, and when the value space has multiple possible order relationships, the choice
particular order relationship is what makes the datatype ordered. When a datatype has a universally accepted order relatior
it is appropriate to require that order in the standard. When there is no such order relationship, or when everyone disagree
the order relationship, then not necessarily will a given implementation of the datatype support any order relationship given,
the LI datatype should not be defined to be ordered.

Issue 10. How many characterizing operations are enough?

There is consensus that the characterizing operations on any datatype should be limited to those which are necessary to (
guish the datatype from types with similar value spaces. It was later determined to be useful to include operations which, thc
redundant with respect to distinguishing the datatype, would be used in the definitions of characterizing operations on o
datatypes, e.g. Boolean And and Or.

Issue 11.Are conversion operations between datatypes characterizing?

"Conversion operations”, that is, operations which map one datatype into another, are of several kinds, each of which nee
be considered differently:

a) Operations which are part of the mathematical derivation of primitive datatypes are generally "characterizing". S
cifically, the Promote operation, which maps Integer into Rational and Rational to Real, etc., is part of the mathematic
characterization of the numeric datatypes.

b) Other operations which map opemitive datatype into another are clearly not "characterizing", if the datatype is well-
defined. Specifically, the Pascal ORD operation on enumerated types is not characterizing - it has nothing to do w

85

ISO/IEC 11404:1996 (E) [0 ISO/IEC

the meaning of the enumerated datatype itself. Similarly, Floor, which maps Real to Integer, is useful but not charac-
terizing for either the Real or Integer datatypes.

c) Operations which create a value of a generated type from values of the component datatypes may be characterizing
for the generator. Thus Setof is characterizing for the Set generator, and Replace is characterizing for the Array gen-
erator.

d) Operations which project a value of a generated type onto any of its component datatypes may be characterizing for
the generator. Thus Select (subscripting) is characterizing for Array and Dereference is characterizing for Pointer.

e) All characterizing operations on datatype generators must be one of the above, but not necessarily are all such opera-
tions characterizing. It suffices to define any set of such operations which unambiguously identifies the datatype gen-
erator.

Issue 12. Should characterizing operations identify exception conditions?

Consensus is no. Exceptions result from the performance of operations on datatype values, or from attempts to move or convert
a value from one environment to another. Specifications for operations, exchanges and conversions are out of the scope of this
International Standard, as stated in clauses 1 and 6.1. They are addressed by related standards.

F.7 Elements of the Datatype Specification Language

Issue 13.Should the LI datatypes have a concrete syntax?

To allow the standard to be used to specify datatypes unambiguously, it must have a syntax, with specific production rules for
each of the datatypes and generators. Moreover, this syntax must permit datatype definitions to be recursive or contain forward
references, in order to permit definition of datatypes such as Tree, or the LISP-characteristic indefinite-list datatype.

The syntax chosen is a subset of the “common” Interface Definition Notation (see Issue 5).
F.8 Datatypes

Issue 14. Should datatypes with “units” be included in the standard?

The concept of datatypes which express values in particular units is considered important to interface definitions, but the collec-
tion of values which might be appropriate for the “units” is open-ended and very application-dependent. For this reason, there
is consensus that this version of LI Datatypes should not standardize such datatypes. There is one exception to this: Time units
are standardized and supported by a number of programming languages. Therefore, Date-and-Time and T iraued irtelwa

ed in this version.

Issue 15. Should some of the datatypes in Clause 8 be in Clause 10 (derived)?

The question of whether Enumerated can be “derived from” State, or Ordinal from Integer, etc., depends on the particular taxon-
omy of datatypes which is chosen. Other taxonomies of datatypes are possible which might entail such changes. No claim is
made that the taxonomy in Clause 8 is the best available, but it is viable, and changing taxonomies would not bring about sub-
stantive improvements in the specification. What is important is that datatypes that are similar but can be distinguished are dis-
tinguished.

F.8.1.4 Character

Issue 16.Should Character types be ordered?

The problem is that the accepted ordering of characters in a standard character-set by ascending value of their integer codes is a
machine-oriented view of the datatype. The “dictionary” order for the character-set may vary from nation to nation or from ap-
plication to application. Thus, although everyone agrees that these datatypes are conceptually ordered, there is no agreement on
what the order relationship is. Therefore, no standard InOrder function can be defined, and for that reason these types are said
to be unordered. (See Issue 9.)

F.8.1.8 Rational

Issue 17.Can the cardinality of the Rational datatype be supported by any language or implementation?

It is possible for a mapping of Rational to fully support the datatype, as defined in 6.3.4, if the language supports unbounded
integers.

For a language/implementation which does not support unbounded integers, however, no mapping of the Rational datatype can

86

0 ISO/IEC ISO/IEC 11404:1996 (E)

satisfy the requirements of clause 11.4.4.
F.8.1.9 Scaled

Issue 18.How is Scaled distinct from Real? Is Scaled an implementation?

Scaled is a mathematically tractable datatype which has a number of properties which tend to be associated with represent
such as rounding. Scaled is not merely a subtype of Real, nor a poorer representation of Real values than floating-point. (In
Scaled is properly represented by integral values and not, in general, by floating-point.) It is the datatype of objects which
exactto some number of (radix) places. Scaled, with these semantics, is the most frequently occurring datatype in COBOL |
grams, and also appears in other standard languages, such as PL/I. Parameters radix and factor are provided for consistenc
the usage in programming languages. Only a single parameter, giving the common denominator of the datatype, is semant
necessary. Since both base-two and base-ten scaling are in common usage, generalizing to an arbitrary radix seems to be
priate. Mappings and implementations will limit this.

Issue 19.1s it necessary to support radices of Scaled datatypes other than 2 and 10?

Many applications use conceptually Scaled datatypes with unusual radices, notably 60 and 360, although they are represen
programs by an Integer with the scale-factor hidden in the semantic units. There is no reason not to make such datatypes ex|
ible as LI datatypes, although there may be strong constraints on the mappings to programming languages.

F.8.1.10 Real

Issue 20.What is the computational notion of datatypes Real and Complex?

The LI Datatypes Real and Complex cannot usefully be the mathematical datatypes. The computational notion of these ty
regardless of representation mechanism, is one of “approximate” values. The model used is the “scientific number”, which
a widely accepted computational model in the physical sciences before the advent of computers. Itis conceptually similar tc
“floating point” model, but the standard floating-point models (IEC 559) are too closely tied to representation concerns.

F.8.1.12 Void

Issue 21.1s Void a value of multiple types, as in SQL2 Null, or a datatype itself?

Void, or nil or null, is not a value of every type (or of many types). It has none of the properties of any datatype to which it mig
be assigned. Every value of type Integer, for example, can be compared with zero. Is nil <0? Is nil = 0? Allowing such a cc
parison is clearly inappropriate. Nil must therefore be a value distinct from those of any other primitive type. The SQL2 nu
valued column is properly described in LI datatypes as a choice datatype one of whose alternatives is the true datatype ©
column and and the other is some state datatype representing the "null values”. And in general, objects which “could be n
are better modelled as having choice datatypes. “Void” was originally called “Null”, but has been renamed to avoid confusi
with “null values” in SQL.

Issue 22.1s Undefined the same as Void?

There is consensus that Undefinedhist a datatype. Undefined is a part of the behaviour of entities which have the concep
datatype, but itis distinct from the datatype of the entity. I1ts meaning arises from the nature of the entity and its usage. In gen
“undefined” models the case in which a value of some datatype is appropriate, but not available. Some processing entities
SQL, have more than one “undefined” value, in order to model different “situations” in which no value is available. Void, o
the other hand, models the empty variant in Pascal and Ada and the Null type in ASN.1 and other places where an elel
datatype, or value, is syntactically or semantically required to complete a complex datatype, or value, but no (other) datatyp
value is appropriate. The Void datatype should not be confused with “undefined values” in various languages, which do not h
these semantics.

F.8.2.2 Selecting

Issue 23. Should the base type of Selecting and Excluding be restricted to exact datatypes?

Exactness is required to ensure independence of implementation. Any implementation of an exact datatype must be able t
tinguish exactly the conceptual values. This requirement does not exist for approximate datatypes — it is permissible in re
senting approximate datatypes to have more than the conceptual values and to be unable to distinguish values which are
ciently close. If this is permitted for "Selecting" and “Excluding” subtypes, the same LI datatype as implemented by two m
chines might actually have non-isomorphic value spaces.

87

ISO/IEC 11404:1996 (E) [0 ISO/IEC

F.8.3.2 Pointer

Issue 24.1s Pointer a conceptual datatype or solely an implementation mechanism?

Pointer is the name of an implementation mechanism, but it has a conceptual foundation. Pointer is the datatype form of the
conceptelationshipin conceptual models, specifically of relationships between otherwise independent data objects which may
possess multiple such relationships. Objects of pointer datatype represent single-ended relationships, i.e. from (any) to (object
of element type), in which the usage of the pointer determines the other object (any) in the relationship. In this regard, pointer
may be considered to be similar to the database cokespivhich also conveys a single-ended relationship to the object which

the key identifies. The related concégndle meaning a manipulable representative for an otherwise inaccessible object, does
not appear to be quite the same, since the notion of accessing the data object to which the handle refers is intentionally not sup-
ported, while accessing the object to which a pointer refers is a characterizing operation of Pointer.

Issue 25.1s Pointer a primitive datatype or an aggregate datatype?

There is consensus that Pointer is a primitive datatype in that its values are objects with the property that values of another
datatype can be associated to them. These objects are not “constructed from” values of the associated datatype; rather they are
distinct primitive objects drawn from a conceptually large state-value space by the process of association. This notion is similar

to the mapping notion of Arrays, but unlike these explicit mappings, the values in the domain — the pointer value-space — have
no other semantics.

Issue 26.Must there be a characterizing operation which produces values of type Pointer to (T)?

After much debate on the merits of the Allocate and Associate operations, there is consensus that no single "constructor"” for
datatype pointer is truly characterizing, in the sense that any implementation of the datatype Pointer would necessarily be able to
support it.

Issue 27.Must there be a null value of every datatype Pointer to (T)?

Itis acknowledged that “null” is not a useful value of a pointer datatype — the sole characterizing operation Dereference does not
apply to “null”. Therefore it is possible to define “pointer” to mean “pure” pointer datatypes that do not have “null” values, and
to model the commonly occurring pointer datatypes as:

choice (boolean) of ((true): pointer to x, (false): void).
On the other hand, most programming languages which support pointer datatypes support null values of such datatypes. Con-
sensus is to make “null” a value of the LI datatype pointer to (T) for consistency with most applications. “Pure” pointer datatypes
can be modelled as: pointer to (T) excluding (null).

F.8.4.1 Record

Issue 28.1s the ordering of fields in a Record significant?

Conceptually, a record is a collection of related information units which are accessible by name rather than by position. There-
fore, the ordering of fields in a Record is not a property of the conceptual datatype itself. Order is, however, an important con-
sideration in mappings and representations of the datatype.

F.8.4.2 Set

Issue 29. Should the element type of a Set be required to be finite?

At the conceptual level, there is no reason to require the base datatype of a Set to be finite. There may, of course, be implemen-
tation limitations.

Issue 30. Should the base type of Set be restricted to exact datatypes?

Exactness is required to assure independence of implementation. Any implementation of an exact datatype must be able to dis-
tinguish exactly the conceptual values. This requirement does not exist for approximate datatypes — it is permissible in repre-

senting approximate datatypes to have more than the conceptual values and to be unable to distinguish values which are suffi-
ciently close. But the values of members of a set-value must be clearly distinguishable, in order for the uniqueness constraint

and the Isln operation to be well-defined.

F.8.4.3 Bag

Issue 31.Should the base type of Bag be restricted to exact datatypes?
Exactness is required to assure independence of implementation. Like Sets, the values of members of a bag-value must be clearly

88

0 ISO/IEC ISO/IEC 11404:1996 (E)

distinguishable, in order for the Delete and Insert operations to be well-defined.
F.8.4.5 Array

Issue 32.1s Array a variant of Sequence?

No. The important characteristic of an Array is the mapping of the index types onto the element type, while Sequence capt
the fundamental notion (fequence They are only related by having similar representations. An Array can be made into a se
guence by adopting a convention for mapping the index space into the ordinals. There is nothing intrinsic about this mapp
if one chooses different conventions, as Fortran and Pascal do, ortiffpgentsequences which represent faenearray value.

And in general, there iso array datatype which can be mapped to the value space of a sequence datatype: the set of values
given size is the image of many array datatypes, but each different size is the image of a different array datatype.

Issue 33.Does the syntax of the array-type properly support “Dynamic sized arrays”?
There are several “dynamic” size and shape notions applied to array types in various programming languages:

Array-types whose values have different numbers of elements (Ada [1:?n]). Such types are designated Sequence in this Int
tional Standard (clause 8.4.4) and are fully supported thereby, although the complete Ada semantics may also require use
SIZE subtype capability (clause 8.2.4).

“Conformant” array-types -- types of procedure parameters whose subscript ranges are dependent on the values of other p
eters. Such types are supported in this International Standard by Array types (clause 8.4.5) whose subscript ranges are “d
dent-values” (clause 7.5.2), i.e. values of other parameters or other elements of a Record which contains the Array.

Array parameters whose “shape” is implicitly passed by the caller, possibly including array parameters with a variable num
of dimensions. This is not supported directly by LI datatypes. In general, what is actually passed is either a caller-defined <
scripting function or a set of parameters by which the called subprogram can reconstruct the subscripting function. In a langu
independent interface, in order for the two language environments to agree on the operations on the passed array valu
“shape” function or parameters must be made explicit. Thus, this case is a special case of “conformant” arrays using “depenc
values” which are other passed parameters.

F.9 Declarations

Issue 34.How will multiple and contradictory definitions of defined-datatypes be avoided?

It is expected that datatype definitions will occur in at least the following places:
a) this International Standard
b) standards containing the outward mappings of programming languages
¢) standards defining service interfaces
d) the LI Procedure Calling and Remote Procedure Calling standards
e) users using the Interface Definition Notation for the LIPC/RPC.
f) other user applications

In all of cases a-d, the reference tetandardensures common understanding of the name and meaning of the defined-datatyp
In case e, it is expected that all users of the same procedure interface will share a common IDN description — a kind of “Ic
standard” ensuring common understanding. In case f, if the application is private to a particular user, it is not necessary for
be shared, and if it is not private, then one of the means a-e should be sought. Nonetheless, over time, it may be expectel
multiple definitions of a common datatype will occur in cases b and c. This would certainly be grounds for modifying Clause |
of this International Standard. On the other hand, definitions of different datatypes with the same name can be expected in ¢
b, cand e as well. Thisis unfortunate and cannot be avoided in the general case, but it does not affect the interchange of data
except when conflicting standards are used in the same application. A work-around for this should be provided in the LIPC/R
but in general, this situation is probably grounds for a revision of the standards in question.

F.10.1.1 Natural number

Issue 35. Should NaturalNumber or Unsigned be LI datatypes?

Naturalnumber is a semantic datatype, but for LI datatype purposes, it is nothing more than integer range(0..*) and is so decl;
"Unsigned" is an implementation convention for the representation of certain Integer and Enumerated datatypes, including |
uralnumber.

89

ISO/IEC 11404:1996 (E) [0 ISO/IEC

F.10.1.2 Modulo

Issue 36.Should Modulo be limited to integers?

In various drafts, Modulo has been:
a) a datatype derived from Integer,
b) a datatype generator applicable to any ordered datatype, with extremely complex characterizing operations,
c) adefined generator, applicable only to enumerated datatypes, which redefines Successor.

Characterization (a) is deemed to be the only commonly occurring instance of (b) and has properties that do not generalize, such
as multiplication. Characterization (b) is at most a defined generator, because Modulo affects only the operations, not the value
space, and applicability to arbitrary ordered datatypes is an unnecessarily complex generalization. Characterization (c), however,
is thought to be potentially useful and is retained as “Cyclic of (enumerated datatype)”.

F.10.1.3 Bit

Issue 37.What is the nature of the Bit datatype?

The LI datatypes define four two-valued datatypes, all of which are semantically different, and each of which is some expert’s
definition of "Bit". Making some or all of these datatypes identical is a feature of some programming languages, while making
them distinct is a feature of others. The LI datatypes must support the latter, while proper use of mapping will support the former.

In the standard, the datatype Bit is used to refer to the numeric finite field of two values — the Modulo(2) datatype derived from
Integer — which is conveyed by the term "binary digit". The datatype integer range(0..1) is different, in that Add (1,1) produces
different results in the two datatypes. The datatype Boolean is mathematically equivalent to Bit, in that identification of the Xor
(Add) and And (Multiply) operations produces the same finite field. But semantically, Boolean is not a numeric datatype and
can be characterized by other operations associated with the logic notions true and false, while Bit is a numeric datatype and is
characterized by the numeric operations Add and Multiply only. Two-valued Enumerated or State datatypes are none of the
above. They have neither numeric nor logical operations. Since the cardinality of all the value spaces is 2, itis obviously possible
to map one into another, but it is the characterizing operations which determine the true datatype.

F.10.1.5 Character string

Issue 38.1s Character-string primitive?

No. A character-string must be manipulated as a sequence of members of some character-set in order for the definition of the
character-set itself to be useful. That is, the definition of any such datatype is dependent on the (International) Standard defining
the character-set. Thus the character datatype whose value space is defined by the standard is the primitive datatype and the char-
acter-string datatypes are constructed from it. Some programming languages make the character-string primitive in order to de-
fine useful operations that don’t generalize to Sequences or Arrays in that language. Others, such as LISP, APL and Pascal make
the single character a primitive type.

Issue 39. Should Character-string types be ordered?

The problem is that the collating sequence for character-strings using the same character-set varies from nation to nation and is
often constrained by other application-dependent standards. Thus, although everyone agrees that these datatypes are conceptu
ally ordered, there is no agreement on what that ordering is. Therefore, no standard InOrder function can be defined, and for that
reason these types are said to be unordered. (See Issue 9.)

F.10.2 Defined generators

Issue 40. Should mathematical Matrix and Tensor constructors be standard generators?

At one level, Tensor-of-degree-n is simply an array datatype with mathematical operations, e.g.

type tensor2 (rows: integer, columns: integer, numbers: type) = new array (1..rows, 1..columns) of (numbers);

But Tensor is, at another level, a legitimate mathematical datatype generator, which generates vector spaces, or linear operator
spaces, over a numeric datatype. The consensus is:

a) The tensor datatype generator is adequately supported by generator-declaration, and could be added to subclause 10.2
if there were consensus on the numbering of the elements (from O, from 1) and on the ordering of the dimension spec-
ifications (rows first, columns first, etc.). (There is no such consensus.)

b) Conceptually, Tensor should be the mathematical object, but the mathematical type generator is not really supported
by any programming language. Some programming languages (e.g. BASIC, APL) support special operations on array
datatypes which support the mathematical interpretation of the array representation, but these operations tend to be gen-
eralized to the array datatypes as such and only in some cases emulate the mathematical operations. Thus Tensor is

90

0 ISO/IEC ISO/IEC 11404:1996 (E)

outside the scope of the LI datatypes.

Issue 41. Should File be a standard generator?

Afile, seen as a medium or the object managed by the operating system, which has name, type, organization, state, position
attributes, goes beyond the scope of this standard. The datatype, its attributes and operations, are better defined by an ope
system services standard. To the extent that such file objects are integral to programming languages, it is necessary that t
defined for the specific programming language, since there does not appear to be a common model.

A file, seen as a structure of datatype values, may be adequately supported by an aggregate type generator, such as Sec
Array or Table (see clause 8.4 and also Annex D.2.7).

F.11 Mappings

Issue 42. How much of the concept "mapping onto the LI datatypes" should be standardized?

Consensus is that formal requirementsifatirect conformancare necessary to relate language standards to language-indeper
dent specifications. The mapping is a necessary part of the concept of indirect conformance and therefore a necessary part «
standard. There is further consensus that the standard should specify exactly what a mapping, or a set of mappings, consi:
This should include specifying values of all "parameters"” of the LI datatypes, and a discussion of the distinction between "logi
identification of two datatypes" and "physical transformation between two datatypes". It should be left to the language stand:
to formalize the individual mappings, since distinguishing the language syntax constructions which equate to various LI dataty
might be quite complicated.

Issue 43.What support of “aggregate properties” should be required?

There was no consensus on requirements for support of aggregate properties, most notably the nature of array indexing (i
access) as against position in sequence (indirect access). Thus the consensus standard contains no requirements for suy
aggregate properties.

Issue 44.Should the standard address implementation of a mapping?

The implementation of a mapping or binding may occur at the level of language syntax (the representation of the type itsel
another language) or at the level of value representation or both. Such requirements are left to other standards whict
datatypes and datatype syntax for a particular purpose. The binding for a datatype in databases and exchange files, for exa
may specify a particular value representation but no operations, while requirements for support of the same datatype in a
gramming language specify syntax and operations but not representation.

91

	Contents
	Foreword
	Introduction
	1 Scope
	2 Conformance
	2.1 Direct conformance
	2.2 Indirect conformance
	2.3 Conformance of a mapping standard

	3 Normative References
	4 Definitions
	5 Conventions Used in this International Standard
	5.1 Formal syntax
	5.2 Text conventions

	6 Fundamental Notions
	6.1 Datatype
	6.2 Value space
	6.3 Datatype properties
	6.3.1 Equality
	6.3.2 Order
	6.3.3 Bound
	6.3.4 Cardinality
	6.3.5 Exact and approximate
	6.3.6 Numeric

	6.4 Primitive and non-primitive datatypes
	6.5 Datatype generator
	6.6 Characterizing operations
	6.7 Datatype families
	6.8 Aggregate datatypes
	6.8.1 Homogeneity
	6.8.2 Size
	6.8.3 Uniqueness
	6.8.4 (Aggregate-imposed) ordering
	6.8.5 Access method
	6.8.6 Recursive structure

	7 Elements of the Datatype Specification Language
	7.1 IDN character-set
	7.2 Whitespace
	7.3 Lexical objects
	7.3.1 Identifiers
	7.3.2 Digit-string
	7.3.3 Character-literal and string-literal
	7.3.4 Keywords

	Table 7-2 — Reserved Keywords
	7.4 Annotations
	7.5 Values
	7.5.1 Independent values
	7.5.2 Dependent values

	8 Datatypes
	8.1 Primitive datatypes
	8.1.1 Boolean
	8.1.2 State
	8.1.3 Enumerated
	8.1.4 Character
	8.1.5 Ordinal
	8.1.6 Date-and-Time
	8.1.7 Integer
	8.1.8 Rational
	8.1.9 Scaled
	8.1.10 Real
	8.1.11 Complex
	8.1.12 Void

	8.2 Subtypes and extended types
	8.2.1 Range
	8.2.2 Selecting
	8.2.3 Excluding
	8.2.4 Size
	8.2.5 Explicit subtypes
	8.2.6 Extended

	8.3 Generated datatypes
	8.3.1 Choice
	8.3.2 Pointer
	8.3.3 Procedure

	8.4 Aggregate Datatypes
	8.4.1 Record
	8.4.2 Set
	8.4.3 Bag
	8.4.4 Sequence
	8.4.5 Array
	8.4.6 Table

	8.5 Defined Datatypes

	9 Declarations
	9.1 Type Declarations
	9.1.1 Renaming declarations
	9.1.2 New datatype declarations
	9.1.3 New generator declarations

	9.2 Value Declarations
	9.3 Termination Declarations

	10 Defined Datatypes and Generators
	10.1 Defined datatypes
	10.1.1 Natural number
	10.1.2 Modulo
	10.1.3 Bit
	10.1.4 Bit string
	10.1.5 Character string
	10.1.6 Time interval
	10.1.7 Octet
	10.1.8 Octet string
	10.1.9 Private
	10.1.10 Object identifier

	10.2 Defined generators
	10.2.1 Stack
	10.2.2 Tree
	10.2.3 Cyclic enumerated
	10.2.4 Optional

	11 Mappings
	11.1 Outward Mappings
	11.2 Inward Mappings
	11.3 Reverse Inward Mapping
	11.4 Support of Datatypes
	11.4.1 Support of equality
	11.4.2 Support of order
	11.4.3 Support of bounds
	11.4.4 Support of cardinality
	11.4.5 Support for the exact or approximate property
	11.4.6 Support for the numeric property

	Table 7-1 — IDN Character Set

	Annex A (informative)
	Character-Set Standards

	Annex B (informative)
	Recommended Placement of Annotations
	B.1 Type-attributes
	B.2 Component-attributes
	B.3 Procedure-attributes
	B.4 Argument-attributes

	Annex C (informative)
	Implementation Notions of Datatypes
	C.1 StorageSize
	C.2 Mode
	C.3 Floating-Point
	C.4 Fixed-Point
	C.5 Tag
	C.6 Discriminant
	C.7 StorageSequence
	C.8 Packed
	C.9 Alignment
	C.10 Form

	Annex D (informative)
	Syntax for the Common Interface Definition Notation

	Annex D (informative)
	Example Mapping to Pascal
	D.1 LI Primitive Datatypes
	D.1.1 Boolean
	D.1.2 State
	D.1.3 Enumerated
	D.1.4 Character
	D.1.5 Ordinal
	D.1.6 Date-and-time
	D.1.7 Integer
	D.1.8 Rational
	D.1.9 Scaled
	D.1.10 Real
	D.1.11 Complex
	D.1.12 Void

	D.2 LI Generated Types
	D.2.1 Choice
	D.2.2 Pointer
	D.2.3 Procedure
	D.2.4 Record
	D.2.5 Set
	D.2.6 Bag
	D.2.7 Sequence
	D.2.8 Array
	D.2.9 Table

	D.3 LI Subtypes
	D.3.1 Range
	D.3.2 Selecting
	D.3.3 Excluding
	D.3.4 Size
	D.3.5 Explicit subtypes
	D.3.6 Extended

	D.4 LI Defined Datatypes
	D.4.1 Natural number
	D.4.2 Modulo
	D.4.3 Bit
	D.4.4 Bit string
	D.4.5 Character string
	D.4.6 Time interval
	D.4.7 Octet
	D.4.8 Octetstring
	D.4.9 Private
	D.4.10 Object identifier

	D.5 Defined Generators
	D.5.1 Stack
	D.5.2 Tree
	D.5.3 Cyclic enumerated
	D.5.4 Optional

	D.6 Type-Declarations
	D.6.1 Renaming declarations
	D.6.2 Datatype declarations
	D.6.3 Generator declarations

	Annex E (informative)
	Example Mapping to MUMPS
	E.1 LI Primitive Datatypes
	E.1.1 Boolean
	E.1.2 State
	E.1.3 Enumerated
	E.1.4 Character
	E.1.5 Ordinal
	E.1.6 Date and Time
	E.1.7 Integer
	E.1.8 Rational
	E.1.9 Scaled
	E.1.10 Real
	E.1.11 Complex
	E.1.12 Void

	E.2 LI Generated Types
	E.2.1 Choice
	E.2.2 Pointer
	E.2.3 Procedure
	E.2.4 Record
	E.2.5 Set
	E.2.6 Bag
	E.2.7 Sequence
	E.2.8 Array
	E.2.9 Table

	E.3 LI Subtypes
	E.4 LI Defined Datatypes
	E.4.1 Natural number
	E.4.2 Modulo
	E.4.3 Bit
	E.4.4 Bit string
	E.4.5 Character string
	E.4.6 Time interval
	E.4.7 Octet
	E.4.8 Octet string
	E.4.9 Private
	E.4.10 Object identifier

	E.5 Type-Declarations and Defined Datatypes

	Annex F (informative)
	Resolved Issues

