
Reference number
ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001

INTERNATIONAL
STANDARD

ISO/IEC
10967-2

First edition
2001-08-15

Information technology — Language
independent arithmetic —

Part 2:
Elementary numerical functions

Technologies de l'information — Arithmétique de langage indépendant —

Partie 2: Fonctions numériques élémentaires

ISO/IEC 10967-2:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2001 – All rights reserved

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Contents

Foreword . viii
Introduction . ix

1 Scope 1
1.1 Inclusions . 1
1.2 Exclusions . 2

2 Conformity 2

3 Normative references 3

4 Symbols and definitions 4
4.1 Symbols . 4

4.1.1 Sets and intervals . 4
4.1.2 Operators and relations . 4
4.1.3 Mathematical functions . 5
4.1.4 Exceptional values . 5
4.1.5 Datatypes . 6

4.2 Definitions of terms . 7

5 Specifications for integer and floating point operations 10
5.1 Basic integer operations . 10

5.1.1 The integer result and wrap helper functions 10
5.1.2 Integer maximum and minimum . 11
5.1.3 Integer diminish . 11
5.1.4 Integer power and arithmetic shift . 12
5.1.5 Integer square root . 12
5.1.6 Divisibility tests . 12
5.1.7 Integer division (with floor, round, or ceiling) and remainder 13
5.1.8 Greatest common divisor and least common positive multiple 13
5.1.9 Support operations for extended integer range 14

5.2 Basic floating point operations . 15
5.2.1 The rounding and floating point result helper functions 15
5.2.2 Floating point maximum and minimum . 17
5.2.3 Floating point diminish . 18
5.2.4 Floor, round, and ceiling . 19
5.2.5 Remainder after division with round to integer 20
5.2.6 Square root and reciprocal square root . 20
5.2.7 Multiplication to higher precision floating point datatype 20
5.2.8 Support operations for extended floating point precision 21

5.3 Elementary transcendental floating point operations 22
5.3.1 Maximum error requirements . 22
5.3.2 Sign requirements . 23
5.3.3 Monotonicity requirements . 23
5.3.4 The result∗ helper function . 23
5.3.5 Hypotenuse . 24
5.3.6 Operations for exponentiations and logarithms 24

iii

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.6.1 Integer power of argument base 24
5.3.6.2 Natural exponentiation . 25
5.3.6.3 Natural exponentiation, minus one 26
5.3.6.4 Exponentiation of 2 . 27
5.3.6.5 Exponentiation of 10 . 27
5.3.6.6 Exponentiation of argument base 28
5.3.6.7 Exponentiation of one plus the argument base, minus one 29
5.3.6.8 Natural logarithm . 29
5.3.6.9 Natural logarithm of one plus the argument 30
5.3.6.10 2-logarithm . 30
5.3.6.11 10-logarithm . 31
5.3.6.12 Argument base logarithm . 31
5.3.6.13 Argument base logarithm of one plus each argument 32

5.3.7 Introduction to operations for trigonometric elementary functions 32
5.3.8 Operations for radian trigonometric elementary functions 33

5.3.8.1 Radian angle normalisation . 34
5.3.8.2 Radian sine . 35
5.3.8.3 Radian cosine . 35
5.3.8.4 Radian tangent . 36
5.3.8.5 Radian cotangent . 36
5.3.8.6 Radian secant . 37
5.3.8.7 Radian cosecant . 37
5.3.8.8 Radian cosine with sine . 38
5.3.8.9 Radian arc sine . 38
5.3.8.10 Radian arc cosine . 38
5.3.8.11 Radian arc tangent . 39
5.3.8.12 Radian arc cotangent . 40
5.3.8.13 Radian arc secant . 41
5.3.8.14 Radian arc cosecant . 41
5.3.8.15 Radian angle from Cartesian co-ordinates 42

5.3.9 Operations for trigonometrics with given angular unit 43
5.3.9.1 Argument angular-unit angle normalisation 43
5.3.9.2 Argument angular-unit sine . 44
5.3.9.3 Argument angular-unit cosine . 45
5.3.9.4 Argument angular-unit tangent . 45
5.3.9.5 Argument angular-unit cotangent 46
5.3.9.6 Argument angular-unit secant . 47
5.3.9.7 Argument angular-unit cosecant 47
5.3.9.8 Argument angular-unit cosine with sine 48
5.3.9.9 Argument angular-unit arc sine 48
5.3.9.10 Argument angular-unit arc cosine 48
5.3.9.11 Argument angular-unit arc tangent 49
5.3.9.12 Argument angular-unit arc cotangent 50
5.3.9.13 Argument angular-unit arc secant 51
5.3.9.14 Argument angular-unit arc cosecant 51
5.3.9.15 Argument angular-unit angle from Cartesian co-ordinates 52

5.3.10 Operations for angular-unit conversions . 53
5.3.10.1 Converting radian angle to argument angular-unit angle 53

iv

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.3.10.2 Converting argument angular-unit angle to radian angle 54
5.3.10.3 Converting argument angular-unit angle to (another) argument

angular-unit angle . 55
5.3.11 Operations for hyperbolic elementary functions 56

5.3.11.1 Hyperbolic sine . 56
5.3.11.2 Hyperbolic cosine . 56
5.3.11.3 Hyperbolic tangent . 57
5.3.11.4 Hyperbolic cotangent . 58
5.3.11.5 Hyperbolic secant . 58
5.3.11.6 Hyperbolic cosecant . 59
5.3.11.7 Inverse hyperbolic sine . 59
5.3.11.8 Inverse hyperbolic cosine . 60
5.3.11.9 Inverse hyperbolic tangent . 60
5.3.11.10 Inverse hyperbolic cotangent . 60
5.3.11.11 Inverse hyperbolic secant . 61
5.3.11.12 Inverse hyperbolic cosecant . 61

5.4 Operations for conversion between numeric datatypes 62
5.4.1 Integer to integer conversions . 63
5.4.2 Floating point to integer conversions . 63
5.4.3 Integer to floating point conversions . 64
5.4.4 Floating point to floating point conversions 64
5.4.5 Floating point to fixed point conversions . 65
5.4.6 Fixed point to floating point conversions . 66

5.5 Numerals as operations in a programming language 67
5.5.1 Numerals for integer datatypes . 67
5.5.2 Numerals for floating point datatypes . 68

6 Notification 68
6.1 Continuation values . 69

7 Relationship with language standards 69

8 Documentation requirements 70

Annex A (normative) Partial conformity 73
A.1 Maximum error relaxation . 73
A.2 Extra accuracy requirements relaxation . 74
A.3 Relationships to other operations relaxation . 74
A.4 Very-close-to-axis angular normalisation relaxation 74
A.5 Part 1 requirements relaxation . 75

Annex B (informative) Rationale 77
B.1 Scope . 77

B.1.1 Inclusions . 77
B.1.2 Exclusions . 78

B.2 Conformity . 78
B.2.1 Validation . 79

B.3 Normative references . 79
B.4 Symbols and definitions . 79

v

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

B.4.1 Symbols . 79
B.4.1.1 Sets and intervals . 79
B.4.1.2 Operators and relations . 80
B.4.1.3 Mathematical functions . 80
B.4.1.4 Exceptional values . 80
B.4.1.5 Datatypes . 81

B.4.2 Definitions of terms . 81
B.5 Specifications for the numerical functions . 81

B.5.1 Basic integer operations . 82
B.5.1.1 The integer result and wrap helper functions 82
B.5.1.2 Integer maximum and minimum 82
B.5.1.3 Integer diminish . 82
B.5.1.4 Integer power and arithmetic shift 83
B.5.1.5 Integer square root . 83
B.5.1.6 Divisibility tests . 83
B.5.1.7 Integer division (with floor, round, or ceiling) and remainder . . . 83
B.5.1.8 Greatest common divisor and least common positive multiple . . . 84
B.5.1.9 Support operations for extended integer range 84

B.5.2 Basic floating point operations . 84
B.5.2.1 The rounding and floating point result helper functions 86
B.5.2.2 Floating point maximum and minimum 86
B.5.2.3 Floating point diminish . 86
B.5.2.4 Floor, round, and ceiling . 86
B.5.2.5 Remainder after division and round to integer 87
B.5.2.6 Square root and reciprocal square root 87
B.5.2.7 Multiplication to higher precision floating point datatype 88
B.5.2.8 Support operations for extended floating point precision 88

B.5.3 Elementary transcendental floating point operations 89
B.5.3.1 Maximum error requirements . 89
B.5.3.2 Sign requirements . 90
B.5.3.3 Monotonicity requirements . 90
B.5.3.4 The result∗ helper function . 90
B.5.3.5 Hypotenuse . 91
B.5.3.6 Operations for exponentiations and logarithms 91
B.5.3.7 Introduction to operations for trigonometric elementary functions 93
B.5.3.8 Operations for radian trigonometric elementary functions 94
B.5.3.9 Operations for trigonometrics with given angular unit 96
B.5.3.10 Operations for angular-unit conversions 97
B.5.3.11 Operations for hyperbolic elementary functions 98

B.5.4 Operations for conversion between numeric datatypes 98
B.5.5 Numerals as operations in a programming language 99

B.5.5.1 Numerals for integer datatypes . 99
B.5.5.2 Numerals for floating point datatypes 99

B.6 Notification . 100
B.6.1 Continuation values . 100

B.7 Relationship with language standards . 101
B.8 Documentation requirements . 101

vi

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Annex C (informative) Example bindings for specific languages 103
C.1 Ada . 104
C.2 BASIC . 110
C.3 C . 114
C.4 C++ . 120
C.5 Fortran . 126
C.6 Haskell . 132
C.7 Java . 137
C.8 Common Lisp . 142
C.9 ISLisp . 147
C.10 Modula-2 . 152
C.11 Pascal and Extended Pascal . 157
C.12 PL/I . 162
C.13 SML . 167

Annex D (informative) Bibliography 173

Annex E (informative) Possible changes to part 1 177

vii

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialized system for worldwide standardization. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Direc-
tives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are
circulated to national bodies for voting. Publication as an International Standard requires approval
by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 10967
may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying
any or all such patent rights.

International Standard ISO/IEC 10967-2 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments
and system software interfaces.

ISO/IEC 10967 consists of the following parts, under the general title Information technology
— Language independent arithmetic:

– Part 1: Integer and floating point arithmetic
– Part 2: Elementary numerical functions
– Part 3: Complex integer and floating point arithmetic and complex elementary numerical

functions

Additional parts will specify other arithmetic datatypes or arithmetic operations.

Annex A forms a normative part of this part of ISO/IEC 10967. Annexes B to E are for
information only.

viii

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Introduction

The aims

Portability is a key issue for scientific and numerical software in today’s heterogeneous computing
environment. Such software may be required to run on systems ranging from personal computers
to high performance pipelined vector processors and massively parallel systems, and the source
code may be ported between several programming languages. Part 1 of ISO/IEC 10967 specifies
the basic properties of integer and floating point types that can be relied upon in writing portable
software.

Programmers writing programs that perform a significant amount of numeric processing have
often not been certain how a program will perform when run under a given language processor.
Programming language standards have traditionally been somewhat weak in the area of numeric
processing, seldom providing an adequate specification of the properties of arithmetic datatypes,
particularly floating point numbers. Often they do not even require much in the way of documen-
tation of the actual arithmetic operations by a conforming language processor.

It is the intent of this part to help to redress these shortcomings, by setting out precise defini-
tions of elementary numerical functions, and requirements for documentation.

It is not claimed that this part will ensure complete certainty of arithmetic behaviour in all
circumstances; the complexity of numeric software and the difficulties of analysing and proving
algorithms are too great for that to be attempted. Rather, this International Standard will provide
a firmer basis than hitherto for attempting such analysis.

The aims for this part, part 2 of ISO/IEC 10967, are extensions of the aims for part 1: to ensure
adequate accuracy for numerical computation, predictability, notification on the production of
exceptional results, and compatibility with programming language standards.

The content

The content of this part is based on part 1, and extends part 1’s specifications to specifications for
operations approximating real elementary functions, operations often required (usually without
a detailed specification) by the standards for programming languages widely used for scientific
software. This part also provides specifications for conversions between the “internal” values of
an arithmetic datatype, and a very close approximation in, e.g., the decimal radix. It does not
cover the further transformation to decimal string format, which is usually provided by language
standards. This part also includes specifications for a number of other functions deemed useful,
even though they may not be stipulated by programming language standards.

The numerical functions covered by this part are computer approximations to mathematical
functions of one or more real arguments. Accuracy versus performance requirements often vary
with the application at hand. This is recognised by recommending that implementors support more
than one library of these numerical functions. Various documentation and (program available)
parameters requirements are specified to assist programmers in the selection of the library best
suited to the application at hand.

The benefits

Adoption and proper use of this part can lead to the following benefits.

Language standards will be able to define their arithmetic semantics more precisely without
preventing the efficient implementation of their language on a wide range of machine architectures.

ix

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

Programmers of numeric software will be able to assess the portability of their programs in
advance. Programmers will be able to trade off program design requirements for portability in
the resulting program.

Programs will be able to determine (at run time) the crucial numeric properties of the imple-
mentation. They will be able to reject unsuitable implementations, and (possibly) to correctly
characterize the accuracy of their own results. Programs will be able to detect (and possibly
correct for) exceptions in arithmetic processing.

End users will find it easier to determine whether a (properly documented) application program
is likely to execute satisfactorily on their platform. This can be done by comparing the documented
requirements of the program against the documented properties of the platform.

Finally, end users of numeric application packages will be able to rely on the correct execution
of those packages. That is, for correctly programmed algorithms, the results are reliable if and
only if there is no notification.

x

INTERNATIONAL STANDARD
c© ISO/IEC 2001 ISO/IEC 10967-2:2001(E)

Information technology —
Language independent arithmetic —

Part 2: Elementary numerical functions

1 Scope

This part of ISO/IEC 10967 defines the properties of numerical approximations for many of the
real elementary numerical functions available in standard libraries for a variety of programming
languages in common use for mathematical and numerical applications.

An implementor may choose any combination of hardware and software support to meet the
specifications of this part. It is the computing environment, as seen by the programmer/user, that
does or does not conform to the specifications.

The term implementation (of this part) denotes the total computing environment pertinent
to this part, including hardware, language processors, subroutine libraries, exception handling
facilities, other software, and documentation.

1.1 Inclusions

The specifications of part 1 are included by reference in this part.

This part provides specifications for numerical functions for which all operand values are of
integer or floating point datatypes satisfying the requirements of part 1. Boundaries for the oc-
currence of exceptions and the maximum error allowed are prescribed for each specified operation.
Also the result produced by giving a special value operand, such as an infinity, or a NaN, is
prescribed for each specified floating point operation.

This part covers most numerical functions required by the ISO/IEC standards for Ada [11],
Basic [16], C [17], C++ [18], Fortran [22], ISLisp [24], Pascal [27], and PL/I [29]. In particular,
specifications are provided for:

a) Some additional integer operations.

b) Some additional non-transcendental floating point operations, including maximum and min-
imum operations.

c) Exponentiations, logarithms, and hyperbolics.

d) Trigonometrics, both in radians and for argument-given angular unit with degrees as a
special case.

This part also provides specifications for:

1. Scope 1

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

e) Conversions between integer and floating point datatypes (possibly with different radices)
conforming to the requirements of part 1, and the conversion operations used, for example,
in text input and output of integer and floating point numbers.

f) The results produced by an included floating point operation when one or more argument
values are IEC 60559 special values.

g) Program-visible parameters that characterise certain aspects of the operations.

1.2 Exclusions

This part provides no specifications for

a) Numerical functions whose operands are of more than one datatype (with one exception).
This part neither requires nor excludes the presence of such “mixed operand” operations.

b) An interval datatype, or the operations on such data. This part neither requires nor excludes
such data or operations.

c) A fixed point datatype, or the operations on such data. This part neither requires nor
excludes such data or operations.

d) A rational datatype, or the operations on such data. This part neither requires nor excludes
such data or operations.

e) Complex, matrix, statistical, or symbolic operations. This part neither requires nor excludes
such data or operations.

f) The properties of arithmetic datatypes that are not related to the numerical process, such
as the representation of values on physical media.

g) The properties of integer and floating point datatypes that properly belong in programming
language standards or other specifications. Examples include

1) the syntax of numerals and expressions in the programming language,

2) the syntax used for parsed (input) or generated (output) character string forms for
numerals by any specific programming language or library,

3) the precedence of operators in the programming language,

4) the presence or absence of automatic datatype coercions,

5) the rules for assignment, parameter passing, and returning value,

6) the consequences of applying an operation to values of improper datatype, or to unini-
tialised data.

Furthermore, this part does not provide specifications for how the operations should be imple-
mented or which algorithms are to be used for the various operations.

2 Conformity

It is expected that the provisions of this part of ISO/IEC 10967 will be incorporated by refer-
ence and further defined in other International Standards; specifically in programming language
standards and in binding standards.

2 Conformity

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

A binding standard specifies the correspondence between one or more of the parameters and
operations specified in this part and the concrete language syntax of some programming language.
More generally, a binding standard specifies the correspondence between certain parameters and
operations and the elements of some arbitrary computing entity. A language standard that ex-
plicitly provides such binding information can serve as a binding standard.

When a binding standard for a language exists, an implementation shall be said to conform to
this part if and only if it conforms to the binding standard. In case of conflict between a binding
standard and this part, the specification of the binding standard takes precedence.

When a binding standard covers only a subset of the operations specified in this part, an im-
plementation remains free to conform to this part with respect to other operations, independently
of that binding standard.

When no binding standard for a language and some operations specified in this part exists,
an implementation conforms to this part if and only if it provides one or more operations that
together satisfy all the requirements of clauses 5 through 8 that are relevant to those operations.
The implementation shall then document the binding.

Conformity to this part is always with respect to a specified set of datatypes and operations.
Conformity to this part implies conformity to part 1 for the integer and floating point datatypes
used.

An implementation is free to provide operations that do not conform to this part, or that are
beyond the scope of this part. The implementation shall not claim or imply conformity to this
part with respect to such operations.

An implementation is permitted to have modes of operation that do not conform to this part.
A conforming implementation shall specify how to select the modes of operation that ensure
conformity. However, a mode of operation that conforms to this part should be the default mode
of operation.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. See annex C for suggested language bindings.

2 A complete binding for this part will include (explicitly or by reference) a binding for part 1
as well, which in turn may include (explicitly or by reference) a binding for IEC 60559 as
well.

3 This part does not require a particular set of operations to be provided. It is not possible
to conform to this part without specifying to which datatypes and set of operations (and
modes of operation) conformity is claimed.

3 Normative references

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this part of ISO/IEC 10967. For dated references, subsequent amendments
to, or revisions of, any of these publications do not apply. However, parties to agreements based
on this part of ISO/IEC 10967 are encouraged to investigate the possibility of applying the most
recent editions of the normative documents indicated below. For undated references, the latest
edition of the normative document referred to applies. Members of ISO and IEC maintain registers
of currently valid International Standards.

3. Normative references 3

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.

ISO/IEC 10967-1:1994, Information technology – Language independent arithmetic –
Part 1: Integer and floating point arithmetic.

NOTE – See also annex E.

4 Symbols and definitions

4.1 Symbols

4.1.1 Sets and intervals

In this part, Z denotes the set of mathematical integers,R denotes the set of classical real numbers,
and C denotes the set of complex numbers over R. Note that Z ⊂ R ⊂ C.

The conventional notation for set definition and manipulation is used.

In this part, the following notation for intervals is used

[x, z] designates the interval {y ∈ R | x 6 y 6 z},
]x, z] designates the interval {y ∈ R | x < y 6 z},
[x, z[designates the interval {y ∈ R | x 6 y < z}, and
]x, z[designates the interval {y ∈ R | x < y < z}.

NOTE – The notation using a round bracket for an open end of an interval is not used, for
the risk of confusion with the notation for pairs.

4.1.2 Operators and relations

All prefix and infix operators have their conventional (exact) mathematical meaning. In particular
this part uses

⇒ and ⇔ for logical implication and equivalence
+, −, /, |x|, bxc, dxe, and round(x) on reals
· for multiplication on reals
<, 6, >, and > between reals
= and 6= between real as well as special values
max on non-empty upwardly closed sets of reals
min on non-empty downwardly closed sets of reals
∪, ∩, ×, ∈, 6∈, ⊂, ⊆, *, 6=, and = with sets
× for the Cartesian product of sets
→ for a mapping between sets
| for the divides relation between integers

For x ∈ R, the notation bxc designates the largest integer not greater than x:

bxc ∈ Z and x− 1 < bxc 6 x
the notation dxe designates the smallest integer not less than x:

dxe ∈ Z and x 6 dxe < x+ 1

4 Symbols and definitions

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

and the notation round(x) designates the integer closest to x:

round(x) ∈ Z and x− 0.5 6 round(x) 6 x+ 0.5

where in case x is exactly half-way between two integers, the even integer is the result.

The divides relation (|) on integers tests whether an integer i divides an integer j exactly:

i|j ⇔ (i 6= 0 and i · n = j for some n ∈ Z)
NOTE – i|j is true exactly when j/i is defined and j/i ∈ Z).

4.1.3 Mathematical functions

This part specifies properties for a number of operations numerically approximating some of the
elementary functions. The following ideal mathematical functions are defined in chapter 4 of the
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [47] (e is
the Napierian base)

ex, xy,
√
x, ln, logb,

sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot, arcsec, arccsc,
sinh, cosh, tanh, coth, sech, csch, arcsinh, arccosh, arctanh, arccoth, arcsech, arccsch.

Many of the inverses above are multi-valued. The selection of which value to return, the
principal value, so as to make the inverses into functions, is done in the conventional way. E.g.,√
x ∈ [0,∞[when x ∈ [0,∞[. The only one over which there is some difference of conventions

is the arccot function. Conventions there vary for negative arguments; either a negative value
(giving a sign symmetric function), or a positive return value (giving a function that is continuous
over zero). In this part, arccot refers to the sign symmetric inverse function (with a branch cut
at 0), and arccotc refers to the continuous inverse function.

arccosh(x) > 0, arcsech(x) > 0,
arcsin(x) ∈ [−π/2, π/2], arccos(x) ∈ [0, π], arctan(x) ∈]−π/2, π/2[,
arccot(x) ∈]−π/2, π/2], arccotc(x) ∈]0, π[, arcsec(x) ∈ [0, π], arccsc(x) ∈ [−π/2, π/2].

NOTE – e = 2.71828.... e is not in any floating point datatype conforming to part 1, unless
added as a special value, which is usually not done.

4.1.4 Exceptional values

The exceptional value underflow is used in this part as it is in part 1.

Three new exceptional values, overflow, invalid, and infinitary, are introduced in this part
replacing three other exceptional values used in part 1. invalid and infinitary are in this part
used instead of the undefined of part 1. overflow is used instead of the integer overflow
and floating overflow of part 1. Bindings may still distinguish between integer overflow and
floating overflow.

One new exceptional value, absolute precision underflow, is introduced in this part with
no correspondence in part 1. The exceptional value absolute precision underflow is used when
the given floating point angle value argument is so big that even a highly accurate result from a
trigonometric operation is questionable, due to the fact that the density of floating point values
has decreased significantly at these big angle values.

4.1.3 Mathematical functions 5

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

For the exceptional values, a continuation value may be given in parenthesis after the excep-
tional value.

4.1.5 Datatypes

The datatype Boolean consists of the two values true and false.
NOTE 1 – Mathematical relations are true or false (or undefined, if an operand is undefined).
In contrast, true and false are values in Boolean.

For pairs, define:

fst((x, y)) = x
snd((x, y)) = y

Square brackets are used to write finite sequences of values. [] is the sequence containing no
values. [s], is the sequence of one value, s. [s1, s2], is the sequence of two values, s1 and then s2,
etc. The colon operator is used to prepend a value to a sequence: x : [x1, ..., xn] = [x, x1, ..., xn].
[S], where S is a set, denotes the set of finite sequences, where each value in a sequence is in S.

NOTE 2 – It is always clear from context, in the text of this part, if [X] is a sequence of one
element, or the set of sequences with values from X. It is also clear from context if [x1, x2] is
a sequence of two values or an interval.

Integer datatypes and floating point datatypes are defined in part 1. Let I be the non-special
value set for an integer datatype conforming to part 1. Let F be the non-special value set for a
floating point datatype conforming to part 1. Floating point datatypes that conform to part 1
shall, for use with this part, have a value for the parameter pF such that pF > 2 ·max{1, dlogrF (2 ·
π)e}, and have a value for the parameter eminF such that eminF 6 −pF − 1.

NOTES

3 This implies that fminNF < 0.5 · epsilonF /rF in this part, rather than just fminNF 6
epsilonF .

4 These extra requirements, which do not limit the use of any existing floating point datatype,
are made 1) so that angles in radians are not too degenerate within the first two cycles,
plus and minus, when represented in F , and 2) in order to be able to avoid the underflow
notification in specifications for the expm1F and ln1pF operations.

5 F should also be such that pF > 2 + dlogrF (1000)e, to allow for a not too coarse angle
resolution anywhere in the interval [−big angle rF , big angle rF]. See clause 5.3.8.

The following symbols represent special values defined in IEC 60559 and used in this part:

−−−0, +∞+∞+∞, −∞−∞−∞, qNaN, and sNaN.

These values are not part of the set I or the set F , but if iec 559F has the value true, these values
are included in the floating point datatype corresponding to F .

NOTE 6 – This part uses the above five special values for compatibility with IEC 60559. In
particular, the symbol −−−0 (in bold) is not the application of (mathematical) unary − to the
value 0, and is a value logically distinct from 0.

The specifications cover the results to be returned by an operation if given one or more of the
IEC 60559 special values −−−0, +∞+∞+∞, −∞−∞−∞, or NaNs as input values. These specifications apply only
to systems which provide and support these special values. If an implementation is not capable
of representing a −−−0 result or continuation value, the actual result or continuation value shall be
0. If an implementation is not capable of representing a prescribed result or continuation value

6 Symbols and definitions

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

of the IEC 60559 special values +∞+∞+∞, −∞−∞−∞, or qNaN, the actual result or continuation value is
binding or implementation defined.

The following symbols used in this part are defined in part 1:

Integer parameters:
bounded I , maxintI , and minintI .

Integer helper function:
wrapI .

Integer operations:
negI , addI , subI , and mulI .

Floating point parameters:
rF , pF , eminF , emaxF , denormF , and iec 559F .

Derived floating point constants:
fmaxF , fminF , fminNF , fminDF , and epsilonF .

Floating point rounding constant:
rnd errorF .

Floating point value sets related to F :
F ∗, FD, and FN .

Floating point helper functions:
eF , resultF , and rndF .

Floating point operations:
negF , addF , subF , mulF , divF , and ulpF .

4.2 Definitions of terms

For the purposes of this part, the following definitions apply:

accuracy: The closeness between the true mathematical result and a computed result.

arithmetic datatype: A datatype whose non-special values are members of Z, R, or C.

NOTE 1 – This part specifies requirements for integer and floating point datatypes.
Complex numbers are not covered by this part, but will be included in a subsequent part
of ISO/IEC 10967 [3].

continuation value: A computational value used as the result of an arithmetic operation when
an exception occurs. Continuation values are intended to be used in subsequent arithmetic
processing. A continuation value can be a (in the datatype representable) value in R or an
IEC 60559 special value. (Contrast with exceptional value. See clause 6.1 of part 1.)

denormalisation loss: A larger than normal rounding error caused by the fact that subnormal
values have less than full precision. (See clause 5.2 of part 1 for a full definition.)

error: (1) The difference between a computed value and the correct value. (Used in phrases like
“rounding error” or “error bound”.)

(2) A synonym for exception in phrases like “error message” or “error output”. Error and
exception are not synonyms in any other context.

exception: The inability of an operation to return a suitable finite numeric result from finite
arguments. This might arise because no such finite result exists mathematically (infinitary

4.2 Definitions of terms 7

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

(e.g. at a pole), invalid (e.g. when the true result is in C but not in R), or because the math-
ematical result cannot, or might not, be representable with sufficient accuracy (underflow,
overflow) or viability (absolute precision underflow).

NOTE 2 – The term exception is here not used to designate certain methods of handling
notifications that fall under the category ‘change of control flow’. Such methods of noti-
fication handling will be referred to as “[programming language name] exception”, when
referred to, particularly in annex C.

exceptional value: A non-numeric value produced by an arithmetic operation to indicate the
occurrence of an exception. Exceptional values are not used in subsequent arithmetic pro-
cessing. (See clause 5 of part 1.)

NOTES
3 Exceptional values are used as part of the defining formalism only. With respect to

this part, they do not represent values of any of the datatypes described. There is no
requirement that they be represented or stored in the computing system.

4 Exceptional values are not to be confused with the NaNs and infinities defined in
IEC 60559. Contrast this definition with that of continuation value above.

helper function: A function used solely to aid in the expression of a requirement. Helper func-
tions are not visible to the programmer, and are not required to be part of an implementation.
However, some implementation defined helper functions are required to be documented.

implementation (of this part): The total arithmetic environment presented to a programmer,
including hardware, language processors, exception handling facilities, subroutine libraries,
other software, and documentation pertinent to this part.

literal: A syntactic entity, that does not have any proper sub-entity that is an expression, denot-
ing a constant value.

monotonic approximation: An approximation helper function h : ...× S × ...→ R, where the
other arguments are kept constant, and where S ⊆ R, is a monotonic approximation of a
predetermined mathematical function f : R→ R if, for every a ∈ S and b ∈ S, where a < b,

a) f is monotonic non-decreasing on [a, b] implies h(..., a, ...) 6 h(..., b, ...),

b) f is monotonic non-increasing on [a, b] implies h(..., a, ...) > h(..., b, ...).

monotonic non-decreasing: A function f : R → R is monotonic non-decreasing on a real
interval [a, b] if for every x and y such that a 6 x 6 y 6 b, f(x) and f(y) are well-defined
and f(x) 6 f(y).

monotonic non-increasing: A function f : R → R is monotonic non-increasing on a real
interval [a, b] if for every x and y such that a 6 x 6 y 6 b, f(x) and f(y) are well-defined
and f(x) > f(y).

normalised: The non-zero values of a floating point type F that provide the full precision allowed
by that type. (See FN in clause 5.2 of part 1 for a full definition.)

notification: The process by which a program (or that program’s end user) is informed that an
arithmetic exception has occurred. For example, dividing 2 by 0 results in a notification.
(See clause 6 of part 1 for details.)

numeral: A numeric literal. It may denote a value in Z or R, −−−0, an infinity, or a NaN.

8 Symbols and definitions

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

numerical function: A computer routine or other mechanism for the approximate evaluation of
a mathematical function.

operation: A function directly available to the programmer, as opposed to helper functions or
theoretical mathematical functions.

pole: A mathematical function f has a pole at x0 if x0 is finite, f is defined, finite, monotone,
and continuous in at least one side of the neighbourhood of x0, and lim

x→x0

f(x) is infinite.

precision: The number of digits in the fraction of a floating point number. (See clause 5.2 of
part 1.)

rounding: The act of computing a representable final result for an operation that is close to the
exact (but unrepresentable) result for that operation. Note that a suitable representable
result may not exist (see clause 5.2 of part 1).

rounding function: Any function rnd : R→ X (where X is a given discrete and unlimited sub-
set of R) that maps each element of X to itself, and is monotonic non-decreasing. Formally,
if x and y are in R,

x ∈ X ⇒ rnd(x) = x
x < y ⇒ rnd(x) 6 rnd(y)

Thus, if u is between two adjacent values in X, rnd(u) selects one of those adjacent values.

round to nearest: The property of a rounding function rnd that when u ∈ R is between two
adjacent values in X, rnd(u) selects the one nearest u. If the adjacent values are equidistant
from u, either may be chosen deterministically, but so that rnd(−u) = −rnd(u).

round toward minus infinity: The property of a rounding function rnd that when u ∈ R is
between two adjacent values in X, rnd(u) selects the one less than u.

round toward plus infinity: The property of a rounding function rnd that when u ∈ R is
between two adjacent values in X, rnd(u) selects the one greater than u.

shall: A verbal form used to indicate requirements strictly to be followed in order to conform to
the standard and from which no deviation is permitted. (Quoted from the directives [1].)

should: A verbal form used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that (in the negative form)
a certain possibility is deprecated but not prohibited. (Quoted from the directives [1].)

signature (of a function or operation): A summary of information about an operation or func-
tion. A signature includes the function or operation name; a subset of allowed argument
values to the operation; and a superset of results from the function or operation (including
exceptional values if any), if the argument is in the subset of argument values given in the
signature. Approximation helper functions may be undefined for some argument values.

The signature addI : I × I → I ∪ {overflow} states that the operation named addI shall
accept any pair of values in I as input, and when given such input shall return either a
single value in I as its output or the exceptional value overflow possibly accompanied by a
continuation value.

A signature for an operation or function does not forbid the operation from accepting a
wider range of arguments, nor does it guarantee that every value in the result range will

4.2 Definitions of terms 9

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

actually be returned for some argument(s). An operation given an argument outside the
stipulated argument domain may produce a result outside the stipulated result range.

subnormal: The non-zero values of a floating point type F that provide less than the full precision
allowed by that type. (See FD in clause 5.2 of part 1 for a full definition. In part 1 and
IEC 60559 this concept is called denormal.)

ulp: The value of one “unit in the last place” of a floating point number. This value depends on
the exponent, the radix, and the precision used in representing the number. Thus, the ulp
of a normalised value x (in F), with exponent t, precision pF , and radix rF , is rt−pFF , and
the ulp of a subnormal or zero value is fminDF . (See clause 5.2 of part 1.)

5 Specifications for integer and floating point operations

This clause specifies a number of helper functions and operations for integer and floating point
datatypes. Each operation is given a signature and is further specified by a number of cases. These
cases may refer to other operations (specified in this part or in part 1), to mathematical functions,
and to helper functions (specified in this part or in part 1). They also use special abstract values
(−∞−∞−∞, +∞+∞+∞, −−−0, qNaN, sNaN). For each datatype, two of these abstract values may represent
several actual values each: qNaN and sNaN. Finally, the specifications may refer to exceptional
values.

The signatures in the specifications in this clause specify only all non-special values as input
values, and indicate as output values a superset of all non-special, special, and exceptional values
that may result from these (non-special) input values. Exceptional and special values that can
never result from non-special input values are not included in the signatures given. Also, signatures
that, for example, include IEC 60559 special values as arguments are not given in the specifications
below. This does not exclude such signatures from being valid for these operations.

5.1 Basic integer operations

Clause 5.1 of part 1 specifies integer datatypes and a number of operations on values of an integer
datatype. In this clause some additional operations on values of an integer datatype are specified.

I is the set of non-special values, I ⊆ Z, for an integer datatype conforming to part 1. Integer
datatypes conforming to part 1 often do not contain any NaN or infinity values, even though they
may do so. Therefore this clause has no specifications for such values as arguments or results
other than as continuation values.

NOTE – For some integer operations, infinitary notifications may occur. For infinitary
notifications, an infinitary continuation value is recommended. For bounded integer datatypes,
maxintI or minintI may be used as replacement continuation values as appropriate, if infini-
tary values are not available in the datatype. For unbounded integer datatypes, however, no
maxintI and minintI in I are defined, and infinitary values should be used.

5.1.1 The integer result and wrap helper functions

The resultI helper function:

resultI : Z → I ∪ {overflow}

10 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

resultI(x) = x if x ∈ I
= overflow if x ∈ Z and x 6∈ I

The wrapI helper function:

wrapI : Z → I

wrapI(x) = x if x ∈ I
= x− (n · (maxintI −minintI + 1))

if x ∈ Z and x 6∈ I
where n ∈ Z is chosen such that the result is in I.

NOTES

1 n = b(x−minintI)/(maxintI −minintI + 1)c if x ∈ Z and boundedI = true; or equivalently
n = d(x−maxintI)/(maxintI −minintI + 1)e if x ∈ Z and boundedI = true.

2 For some wrapping basic arithmetic operations this n is computed by the ‘ ov’ operations
in clause 5.1.9.

3 The wrapI helper function is also used in part 1.

5.1.2 Integer maximum and minimum

maxI : I × I → I

maxI(x, y) = max{x, y} if x, y ∈ I

minI : I × I → I

minI(x, y) = min{x, y} if x, y ∈ I

max seqI : [I]→ I ∪ {infinitary}
max seqI([x1, ..., xn])

= infinitary(−∞−∞−∞) if n = 0
= max{x1, ..., xn} if n > 1 and {x1, ..., xn} ⊆ I

min seqI : [I]→ I ∪ {infinitary}
min seqI([x1, ..., xn])

= infinitary(+∞+∞+∞) if n = 0
= min{x1, ..., xn} if n > 1 and {x1, ..., xn} ⊆ I

5.1.3 Integer diminish

dimI : I × I → I ∪ {overflow}
dimI(x, y) = resultI(max{0, x− y}) if x, y ∈ I

NOTE – dimI cannot be implemented as maxI(0, subI(x, y)) for bounded integer types, since
this latter expression has other overflow properties.

5.1.2 Integer maximum and minimum 11

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.1.4 Integer power and arithmetic shift

powerI : I × I → I ∪ {overflow, infinitary, invalid}
powerI(x, y) = resultI(xy) if x, y ∈ I and (y > 0 or |x| = 1)

= 1 if x ∈ I and x 6= 0 and y = 0
= invalid(1) if x = 0 and y = 0
= infinitary(+∞+∞+∞) if x = 0 and y ∈ I and y < 0
= invalid(0) if x, y ∈ I and x 6∈ {−1, 0, 1} and y < 0

shift2I : I × I → I ∪ {overflow}
shift2I(x, y) = resultI(bx · 2yc) if x, y ∈ I

shift10I : I × I → I ∪ {overflow}
shift10I(x, y) = resultI(bx · 10yc) if x, y ∈ I

5.1.5 Integer square root

sqrtI : I → I ∪ {invalid}
sqrtI(x) = b

√
xc if x ∈ I and x > 0

= invalid(qNaN) if x ∈ I and x < 0

5.1.6 Divisibility tests

dividesI : I × I → Boolean

dividesI(x, y) = true if x, y ∈ I and x|y
= false if x, y ∈ I and not x|y

NOTES

1 dividesI(0, 0) = false, since 0 does not divide anything, not even 0.

2 dividesI cannot be implemented as, e.g., eqI(0,modI(y, x)), since the remainder functions
give notifications for a zero second argument.

evenI : I → Boolean

evenI(x) = true if x ∈ I and 2|x
= false if x ∈ I and not 2|x

oddI : I → Boolean

oddI(x) = true if x ∈ I and not 2|x
= false if x ∈ I and 2|x

12 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.1.7 Integer division (with floor, round, or ceiling) and remainder

quotI : I × I → I ∪ {overflow, infinitary, invalid}
quotI(x, y) = resultI(bx/yc) if x, y ∈ I and y 6= 0

= infinitary(+∞+∞+∞) if x ∈ I and x > 0 and y = 0
= invalid(qNaN) if x = 0 and y = 0
= infinitary(−∞−∞−∞) if x ∈ I and x < 0 and y = 0

NOTE – quotI(minintI ,−1), for a bounded signed integer datatype where minintI =
−maxintI − 1, is the only case where this operation will overflow.

modI : I × I → I ∪ {invalid}
modI(x, y) = x− (bx/yc · y) if x, y ∈ I and y 6= 0

= invalid(qNaN) if x ∈ I and y = 0

ratioI : I × I → I ∪ {overflow, infinitary, invalid}
ratioI(x, y) = resultI(round(x/y)) if x, y ∈ I and y 6= 0

= infinitary(+∞+∞+∞) if x ∈ I and x > 0 and y = 0
= invalid(qNaN) if x = 0 and y = 0
= infinitary(−∞−∞−∞) if x ∈ I and x < 0 and y = 0

residueI : I × I → I ∪ {overflow, invalid}
residueI(x, y) = resultI(x− (round(x/y) · y))

if x, y ∈ I and y 6= 0
= invalid(qNaN) if x ∈ I and y = 0

groupI : I × I → I ∪ {overflow, infinitary, invalid}
groupI(x, y) = resultI(dx/ye) if x, y ∈ I and y 6= 0

= infinitary(+∞+∞+∞) if x ∈ I and x > 0 and y = 0
= invalid(qNaN) if x = 0 and y = 0
= infinitary(−∞−∞−∞) if x ∈ I and x < 0 and y = 0

padI : I × I → I ∪ {invalid}
padI(x, y) = (dx/ye · y)− x if x, y ∈ I and y 6= 0

= invalid(qNaN) if x ∈ I and y = 0

5.1.8 Greatest common divisor and least common positive multiple

gcdI : I × I → I ∪ {overflow, infinitary}
gcdI(x, y) = resultI(max{v ∈ Z | v|x and v|y})

if x, y ∈ I and (x 6= 0 or y 6= 0)
= infinitary(+∞+∞+∞) if x = 0 and y = 0

lcmI : I × I → I ∪ {overflow}

5.1.7 Integer division (with floor, round, or ceiling) and remainder 13

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

lcmI(x, y) = resultI(min{v ∈ Z | x|v and y|v and v > 0})
if x, y ∈ I and x 6= 0 and y 6= 0

= 0 if x, y ∈ I and (x = 0 or y = 0)

gcd seqI : [I]→ I ∪ {overflow, infinitary}
gcd seqI([x1, ..., xn])

= resultI(max{v ∈ Z | v|xi for all i ∈ {1, ..., n}})
if {x1, ..., xn} ⊆ I and {x1, ..., xn} * {0}

= infinitary(+∞+∞+∞) if {x1, ..., xn} ⊆ {0}

lcm seqI : [I]→ I ∪ {overflow}
lcm seqI([x1, ..., xn])

= resultI(min{v ∈ Z | xi|v for all i ∈ {1, ..., n} and v > 0})
if {x1, ..., xn} ⊆ I and 0 6∈ {x1, ..., xn}

= 0 if {x1, ..., xn} ⊆ I and 0 ∈ {x1, ..., xn}

NOTE – These specifications imply: gcd seqI([]) = infinitary(+∞+∞+∞) and lcm seqI([]) = 1.

5.1.9 Support operations for extended integer range

These operations can be used to implement extended range integer datatypes, including un-
bounded integer datatypes.

add wrapI : I × I → I

add wrapI(x, y) = wrapI(x+ y) if x, y ∈ I

add ovI : I × I → {−1, 0, 1}
add ovI(x, y) = ((x+ y)− add wrapI(x, y))/(maxintI −minintI + 1)

if x, y ∈ I and bounded I = true
= 0 if x, y ∈ I and bounded I = false

sub wrapI : I × I → I

sub wrapI(x, y) = wrapI(x− y) if x, y ∈ I

sub ovI : I × I → {−1, 0, 1}
sub ovI(x, y) = ((x− y)− sub wrapI(x, y))/(maxintI −minintI + 1)

if x, y ∈ I and bounded I = true
= 0 if x, y ∈ I and bounded I = false

mul wrapI : I × I → I

mul wrapI(x, y) = wrapI(x · y) if x, y ∈ I

14 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

mul ovI : I × I → I

mul ovI(x, y) = ((x · y)−mul wrapI(x, y))/(maxintI −minintI + 1)
if x, y ∈ I and bounded I = true

= 0 if x, y ∈ I and bounded I = false

NOTE – The add ovI and sub ovI will only return −1 (for negative overflow), 0 (no overflow),
and 1 (for positive overflow).

5.2 Basic floating point operations

Clause 5.2 of part 1 specifies floating point datatypes and a number of operations on values of a
floating point datatype. In this clause some additional operations on values of a floating point
datatype are specified.

NOTE – Further operations on values of a floating point datatype, for elementary floating
point numerical functions, are specified in clause 5.3.

F is the non-special value set, F ⊂ R, for a floating point datatype conforming to part 1.
Floating point datatypes conforming to part 1 often do contain −−−0, infinity, and NaN values.
Therefore, in this clause there are specifications for such values as arguments.

5.2.1 The rounding and floating point result helper functions

Floating point rounding helper functions (F ∗ is defined in part 1):

The floating point helper function

downF : R→ F ∗

is the rounding function that rounds towards negative infinity. The floating point helper function

upF : R→ F ∗

is the rounding function that rounds towards positive infinity. The floating point helper function

nearestF : R→ F ∗

is the rounding function that rounds to nearest. nearestF is partially implementation defined:
the handling of ties is implementation defined, but must be sign symmetric. If iec 559F = true,
the semantics of nearestF is completely defined by IEC 60559: in this case ties are rounded so
that the result has an even last digit.

resultF is a helper function that is partially implementation defined. resultF has a signature:

resultF : R× (R→ F ∗)→ F ∪ {underflow,overflow}
For the overflow cases it is defined as:

resultF (x, nearestF) = overflow(+∞+∞+∞) if x ∈ R and nearestF (x) > fmaxF
resultF (x, nearestF) = overflow(−∞−∞−∞) if x ∈ R and nearestF (x) < −fmaxF
resultF (x, upF) = overflow(+∞+∞+∞) if x ∈ R and upF (x) > fmaxF
resultF (x, upF) = overflow(−fmaxF) if x ∈ R and upF (x) < −fmaxF
resultF (x, downF) = overflow(fmaxF) if x ∈ R and downF (x) > fmaxF
resultF (x, downF) = overflow(−∞−∞−∞) if x ∈ R and downF (x) < −fmaxF

5.2 Basic floating point operations 15

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

For other cases and for any rounding function rnd in (R→ F ∗), the following shall apply:

resultF (x, rnd) = x if x = 0
= rnd(x) if x ∈ R and fminNF 6 |x| and |rnd(x)| 6 fmaxF
= rnd(x) or underflow(c)

if x ∈ R and |x| < fminNF and |rnd(x)| = fminNF

and rnd has no denormalisation loss at x
= rnd(x) or underflow(c)

if x ∈ R and denormF = true and
|rnd(x)| < fminNF and x 6= 0
and rnd has no denormalisation loss at x

= underflow(c) otherwise

where

c = rnd(x) when denormF = true and (rnd(x) 6= 0 or x > 0),
c =−−−0 when denormF = true and rnd(x) = 0 and x < 0,
c = 0 when denormF = false and x > 0,
c =−−−0 when denormF = false and x < 0

An implementation is allowed to choose between rnd(x) and underflow(rnd(x)) in the region
between 0 and fminNF . However, a subnormal value without an underflow notification can be
chosen only if denormF = true and no denormalisation loss occurs at x.

NOTES

1 This differs from the specification of resultF as given in part 1 in the following respects:
1) the continuation values on overflow and underflow are given directly here, and 2) all
instances of denormalisation loss must be accompanied with an underflow notification.

2 denormF = false implies iec 559F = false, and iec 559F = true implies denormF = true.

3 If iec 559F = true, then subnormal or zero results that have no denormalisation loss do
not result in an underflow notification, if the notification is by recording of indicators.

Define the no resultF , no result2F , and no result3F helper functions:

no resultF : F → {invalid}
no resultF (x) = invalid(qNaN) if x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}

= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

no result2F : F × F → {invalid}
no result2F (x, y)

= invalid(qNaN) if x, y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if at least one of x and y is a quiet NaN and

neither a signalling NaN
= invalid(qNaN) if x is a signalling NaN or y is a signalling NaN

no result3F : F × F × F → {invalid}
no result3F (x, y, z)

= invalid(qNaN) if x, y, z ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if at least one of x, y, and z is a quiet NaN and

neither is a signalling NaN

16 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

= invalid(qNaN) if at least one of x, y, or z is a signalling NaN

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNaN) is the appropriate result.

NOTE 4 – The handling of other special values, if available, is left unspecified by this part.

5.2.2 Floating point maximum and minimum

The appropriate return value of the maximum and minimum operations given a quiet NaN
(qNaN) as one of the input values depends on the circumstances for each point of use. Sometimes
qNaN is the appropriate result, sometimes the non-NaN argument is the appropriate result.
Therefore, two variants each of the floating point maximum and minimum operations are specified
here, and the programmer can decide which one is appropriate to use at each particular place of
usage, assuming both variants are included in the binding.

maxF : F × F → F

maxF (x, y) = max{x, y} if x, y ∈ F
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ F ∪ {−∞−∞−∞,−−−0}
= y if x =−−−0 and y ∈ F and y > 0
=−−−0 if x =−−−0 and ((y ∈ F and y < 0) or y =−−−0)
= y if x =−∞−∞−∞ and y ∈ F ∪ {+∞+∞+∞,−−−0}
= +∞+∞+∞ if y = +∞+∞+∞ and x ∈ F ∪ {+∞+∞+∞,−−−0}
= x if y =−−−0 and x ∈ F and x > 0
=−−−0 if y =−−−0 and x ∈ F and x < 0
= x if y =−∞−∞−∞ and x ∈ F ∪ {−∞−∞−∞,−−−0}
= no result2F (x, y) otherwise

minF : F × F → F

minF (x, y) = min{x, y} if x, y ∈ F
= y if x = +∞+∞+∞ and y ∈ F ∪ {−∞−∞−∞,−−−0}
=−−−0 if x =−−−0 and y ∈ F and y > 0
= y if x =−−−0 and ((y ∈ F and y < 0) or y =−−−0)
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ F ∪ {+∞+∞+∞,−−−0}
= x if y = +∞+∞+∞ and x ∈ F ∪ {+∞+∞+∞,−−−0}
=−−−0 if y =−−−0 and x ∈ F and x > 0
= x if y =−−−0 and x ∈ F and x < 0
=−∞−∞−∞ if y =−∞−∞−∞ and x ∈ F ∪ {−∞−∞−∞,−−−0}
= no result2F (x, y) otherwise

mmaxF : F × F → F

mmaxF (x, y) = maxF (x, y) if x, y ∈ F ∪ {+∞+∞+∞,−−−0,−∞−∞−∞}
= x if x ∈ F ∪ {+∞+∞+∞,−−−0,−∞−∞−∞} and y is a quiet NaN
= y if y ∈ F ∪ {+∞+∞+∞,−−−0,−∞−∞−∞} and x is a quiet NaN
= no result2F (x, y) otherwise

mminF : F × F → F

5.2.2 Floating point maximum and minimum 17

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

mminF (x, y) = minF (x, y) if x, y ∈ F ∪ {+∞+∞+∞,−−−0,−∞−∞−∞}
= x if x ∈ F ∪ {+∞+∞+∞,−−−0,−∞−∞−∞} and y is a quiet NaN
= y if y ∈ F ∪ {+∞+∞+∞,−−−0,−∞−∞−∞} and x is a quiet NaN
= no result2F (x, y) otherwise

max seqF : [F]→ F ∪ {infinitary}
max seqF ([x1, ..., xn])

= infinitary(−∞−∞−∞) if n = 0
= x1 if n = 1 and x1 is not a NaN
= maxF (max seqF ([x1, ..., xn−1]), xn)

if n > 2
= no resultF (x1) otherwise

min seqF : [F]→ F ∪ {infinitary}
min seqF ([x1, ..., xn])

= infinitary(+∞+∞+∞) if n = 0
= x1 if n = 1 and x1 is not a NaN
= minF (min seqF ([x1, ..., xn−1]), xn)

if n > 2
= no resultF (x1) otherwise

mmax seqF : [F]→ F ∪ {infinitary}
mmax seqF ([x1, ..., xn])

= infinitary(−∞−∞−∞) if n = 0
= x1 if n = 1 and x1 is not a NaN
= mmaxF (mmax seqF ([x1, ..., xn−1]), xn)

if n > 2
= no resultF (x1) otherwise

mmin seqF : [F]→ F ∪ {infinitary}
mmin seqF ([x1, ..., xn])

= infinitary(+∞+∞+∞) if n = 0
= x1 if n = 1 and x1 is not a NaN
= mminF (mmin seqF ([x1, ..., xn−1]), xn)

if n > 2
= no resultF (x1) otherwise

5.2.3 Floating point diminish

dimF : F × F → F ∪ {underflow,overflow}
dimF (x, y) = resultF (max{0, x− y)}, rndF)

if x, y ∈ F
=−−−0 if x =−−−0 and y = 0
= dimF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞} and y 6= 0
= dimF (x, 0) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}

18 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ F ∪ {−∞−∞−∞}
= 0 if x =−∞−∞−∞ and y ∈ F ∪ {+∞+∞+∞}
= 0 if y = +∞+∞+∞ and x ∈ F
= +∞+∞+∞ if y =−∞−∞−∞ and x ∈ F
= no result2F (x, y) otherwise

NOTE – dimF cannot be implemented by maxF (−−−0, subF (x, y)), since this latter expression
has other overflow properties.

5.2.4 Floor, round, and ceiling

floorF : F → F

floorF (x) = bxc if x ∈ F
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no resultF (x) otherwise

floor restF : F → F

floor restF (x) = resultF (x− bxc, rndF) if x ∈ F
= 0 if x =−−−0
= no resultF (x) otherwise

roundingF : F → F ∪ {−−−0}
roundingF (x) = round(x) if x ∈ F and (x > 0 or round(x) 6= 0)

=−−−0 if x ∈ F and x < 0 and round(x) = 0
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no resultF (x) otherwise

NOTE – roundF is a different operation specified in part 1.

rounding restF : F → F

rounding restF (x)
= x− round(x) if x ∈ F
= 0 if x =−−−0
= no resultF (x) otherwise

ceilingF : F → F ∪ {−−−0}
ceilingF (x) = dxe if x ∈ F and (x > 0 or dxe 6= 0)

=−−−0 if x ∈ F and x < 0 and dxe = 0
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no resultF (x) otherwise

ceiling restF : F → F

5.2.4 Floor, round, and ceiling 19

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

ceiling restF (x)
= resultF (x− dxe, rndF) if x ∈ F
= 0 if x =−−−0
= no resultF (x) otherwise

5.2.5 Remainder after division with round to integer

residueF : F × F → F ∪ {−−−0,underflow, invalid}
residueF (x, y) = resultF (x− (round(x/y) · y), nearestF)

if x, y ∈ F and y 6= 0 and
(x > 0 or x− (round(x/y) · y) 6= 0)

=−−−0 if x, y ∈ F and y 6= 0 and
x < 0 and x− (round(x/y) · y) = 0

=−−−0 if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y 6= 0
= x if x ∈ F and y ∈ {−∞−∞−∞,+∞+∞+∞}
= no result2F (x, y) otherwise

5.2.6 Square root and reciprocal square root

sqrtF : F → F ∪ {invalid}
sqrtF (x) = nearestF (

√
x) if x ∈ F and x > 0

= x if x ∈ {−−−0,+∞+∞+∞}
= no resultF (x) otherwise

rec sqrtF : F → F ∪ {infinitary, invalid}
rec sqrtF (x) = rndF (1/

√
x) if x ∈ F and x > 0

= infinitary(+∞+∞+∞) if x ∈ {−−−0, 0}
= 0 if x = +∞+∞+∞
= no resultF (x) otherwise

5.2.7 Multiplication to higher precision floating point datatype

For the following operation, F ′ is a floating point datatype conforming to part 1, where rF ′ = rF
and pF ′ > pF .

mulF→F ′ : F × F → F ′ ∪ {−−−0,underflow,overflow}
mulF→F ′(x, y) = mulF ′(convertF→F ′(x), convertF→F ′(y))
NOTES

1 convertF→F ′ is specified in clause 5.4.4.

2 F ′ has the same radix as, but higher precision than F . If the precision is sufficiently
much higher, rounding can be avoided. If also eminF ′ is sufficiently smaller than eminF ,
underflow can be avoided, and if emaxF ′ is sufficiently greater than emaxF , overflow can
be avoided.

20 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.2.8 Support operations for extended floating point precision

These operations are useful when keeping guard digits or implementing extra precision floating
point datatypes. The resulting datatypes, e.g. so-called doubled precision, do not necessarily
conform to part 1.

add loF : F × F → F ∪ {underflow}
add loF (x, y) = resultF ((x+ y)− rndF (x+ y), rndF)

if x, y ∈ F
=−−−0 if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
=−−−0 if x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y =−−−0
= y if x = +∞+∞+∞ and y ∈ F ∪ {+∞+∞+∞}
= y if x =−∞−∞−∞ and y ∈ F ∪ {−∞−∞−∞}
= x if x ∈ F and y ∈ {−∞−∞−∞,+∞+∞+∞}
= no result2F (x, y) otherwise

sub loF : F × F → F ∪ {underflow}
sub loF (x, y) = add loF (x, negF (y))

NOTE 1 – If rnd styleF = nearest, then, in the absence of notifications, add loF and sub loF
return exact results.

mul loF : F × F → F ∪ {underflow,overflow}
mul loF (x, y) = resultF ((x · y)− rndF (x · y), rndF)

if x, y ∈ F
= mul loF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= mul loF (x, 0) if x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y =−−−0
= mulF (x, y) if x ∈ {−∞−∞−∞,+∞+∞+∞} and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= mulF (x, y) if x ∈ F and y ∈ {−∞−∞−∞,+∞+∞+∞}
= no result2F (x, y) otherwise

NOTE 2 – In the absence of notifications, mul loF returns an exact result.

div restF : F × F → F ∪ {underflow, invalid}
div restF (x, y) = resultF (x− (y · rndF (x/y)), rndF)

if x, y ∈ F
= div restF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= x if x ∈ F and y ∈ {−∞−∞−∞,+∞+∞+∞}
= x if x ∈ {−∞−∞−∞,+∞+∞+∞} and y ∈ F
= no result2F (x, y) otherwise

sqrt restF : F → F ∪ {underflow, invalid}
sqrt restF (x) = resultF (x− (sqrtF (x) · sqrtF (x)), rndF)

if x ∈ F and x > 0
=−−−0 if x =−−−0

5.2.8 Support operations for extended floating point precision 21

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

= +∞+∞+∞ if x = +∞+∞+∞
= no resultF (x) otherwise

NOTE 3 – sqrt restF (x) is exact when there is no underflow.

5.3 Elementary transcendental floating point operations

The specifications for each of the floating point transcendental operations and the floating point
conversion operations (clause 5.4) use an approximation helper function. The approximation
helper functions are ideally identical to the true mathematical functions. However, that would
imply a maximum error for the corresponding operation of 0.5 ulp (i.e., the minimum value for
operations that are not always exact). This part does not require that the maximum error is only
0.5 ulp for the operations specified in clause 5.3, but allows the maximum error to be a bit bigger.
To express this, the approximation helper functions need not be identical to the mathematical
elementary transcendental functions, but are allowed to be approximate. The approximation
helper functions shall be defined for the elements of its given argument signature where the
corresponding mathematical function is also defined, unless otherwise noted. The requirements on
approximation helper functions apply only where the approximation helper functions are defined.

5.3.1 Maximum error requirements

The approximation helper functions for the individual operations in these subclauses have maxi-
mum error parameters that describe the maximum relative error, in ulps, of the helper function
composed with nearestF , for non-subnormal and non-zero results. The maximum error parame-
ters also describe the maximum absolute error, in ulps, for −fminNF , fminNF , subnormal, or zero
results and underflow continuation values if denormF = true. All maximum error parameters
shall have a value that is > 0.5. For the maximum value for the maximum error parameters,
see the specification of each of the maximum error parameters. See also Annex A, on partial
conformity. The relevant maximum error parameters shall be made available to programs.

When the maximum error for an approximation helper function hF , approximating f , is
max error opF , then for all arguments x, ... ∈ F × ... the following equation shall hold:

|f(x, ...)− nearestF (hF (x, ...))| 6 max error opF · reF (f(x,...))−pF
F

NOTES

1 Partially conforming implementations may have greater values for maximum error param-
eters than stipulated below. See annex A.

2 For most positive (and not too small) return values t, the true result is thus claimed to be in
the interval [t− (max error opF ·ulpF (t)), t+(max error opF ·ulpF (t))]. But if the return
value is exactly rnF for some not too small n ∈ Z, then the true result is claimed to be in
the interval [t− (max error opF ·ulpF (t)/rF), t+ (max error opF ·ulpF (t))]. Similarly for
negative return values.

The results of the approximating helper functions in this clause must be exact for certain
arguments as detailed below, and may be exact for all arguments. If the approximating helper
function is exact for all arguments, then the corresponding maximum error parameter should have
the value 0.5, the minimum value.

22 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.3.2 Sign requirements

For this part, the approximation helper functions shall be zero exactly at the points where the
approximated mathematical function is exactly zero. For this part, at points where the ap-
proximation helper functions are not zero, they shall have the same sign as the approximated
mathematical function at that point. For the radian trigonometric helper functions, these zero
and sign requirements are imposed only for arguments, x, such that |x| 6 big angle rF (see clause
5.3.8).

NOTE – For the operations, the continuation value after an underflow may be zero (including
negative zero) as given by result∗F (see below), even though the approximation helper function
is not zero at that point. Such zero results are required to be accompanied by an underflow
notification. When appropriate, zero may also be returned for IEC 60559 infinities arguments.
See the individual specifications.

5.3.3 Monotonicity requirements

For this part, each approximation helper function shall be a monotonic approximation to the
mathematical function it is approximating, except:

a) For the radian trigonometric approximation helper functions, the monotonic approximation
requirement is imposed only for arguments, x, such that |x| 6 big angle rF (see clause
5.3.8).

b) The argument angular unit trigonometric and argument angular unit inverse trigonometric
approximating helper functions, as well as the angular unit conversion helper functions, are
excepted from the monotonic approximation requirement for the angular unit argument(s).

5.3.4 The result∗ helper function

The result∗F helper function is similar to the resultF helper function (see clause 5.2.1), but is
simplified compared to resultF concerning underflow: result∗F always underflows for non-zero
arguments that have an absolute value less than fminNF − (fminDF /rF), whereas resultF does
not necessarily underflow in that case. This difference from resultF is made since the argument to
result∗F might not be exact. To return underflow or not, for a tiny result, based upon an inexact
argument would be misleading. For the operations specified using result∗F where the specification
implies that there can never be any denormalisation loss for certain tiny results, underflow is
instead explicitly avoided.

result∗F : R× (R→ F ∗)→ F ∪ {underflow,overflow}
result∗F (x, rnd) = underflow(c) if x ∈ R and denormF = true and

|rnd(x)| < fminNF and x 6= 0
= resultF (x, rnd) otherwise

where

c = rnd(x) when rnd(x) 6= 0 or x > 0,
c =−−−0 when rnd(x) = 0 and x < 0

5.3.2 Sign requirements 23

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.5 Hypotenuse

There shall be a maximum error parameter for the hypotF operation:

max error hypotF ∈ F
The max error hypotF parameter shall have a value that is 6 1.

The hypot∗F approximation helper function:

hypot∗F : F × F → R

hypot∗F (x, y) returns a close approximation to
√
x2 + y2 inR, with maximum errormax error hypotF .

Further requirements on the hypot∗F approximation helper function are:

hypot∗F (x, y) = hypot∗F (y, x) if x, y ∈ F
hypot∗F (−x, y) = hypot∗F (x, y) if x, y ∈ F
hypot∗F (x, y) > max{|x|, |y|} if x, y ∈ F
hypot∗F (x, y) 6 |x|+ |y| if x, y ∈ F
hypot∗F (x, y) > 1 if x, y ∈ F and

√
x2 + y2 > 1

hypot∗F (x, y) 6 1 if x, y ∈ F and
√
x2 + y2 6 1

The hypotF operation:

hypotF : F × F → F ∪ {underflow,overflow}
hypotF (x, y) = result∗F (hypot∗F (x, y), nearestF)

if x, y ∈ F
= hypotF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= hypotF (x, 0) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞} and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}
= +∞+∞+∞ if y ∈ {−∞−∞−∞,+∞+∞+∞} and x ∈ F
= no result2F (x, y) otherwise

5.3.6 Operations for exponentiations and logarithms

There shall be two maximum error parameters for approximate exponentiations and logarithms:

max error expF ∈ F
max error powerF ∈ F

Themax error expF parameter shall have a value that is6 1.5·rnd errorF . Themax error powerF
parameter shall have a value that is 6 2 · rnd errorF .

5.3.6.1 Integer power of argument base

The power∗F,I approximation helper function:

power∗F,I : F × I → R
power∗F,I(x, y) returns a close approximation to xy in R, with maximum error max error powerF .

Further requirements on the power∗F,I approximation helper function are:

24 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

power∗F,I(x, y) = xy if x ∈ Z ∩ F and y ∈ I and (|x| = 1 or y > 0)
power∗F,I(x, 1) = x if x ∈ F
power∗F,I(x, 0) = 1 if x ∈ F and x 6= 0
power∗F,I(x, y) < fminDF /2 if x ∈ F and x > 0 and y ∈ I and xy < fminDF /3
power∗F,I(x, y) = power∗F,I(−x, y) if x ∈ F and x < 0 and y ∈ I and 2|y
power∗F,I(x, y) = −power∗F,I(−x, y) if x ∈ F and x < 0 and y ∈ I and not 2|y

The relationship to other power∗FI′ helper functions for any powerFI′ operations in the same
library shall be:

power∗FI(x, y) = power∗FI′(x, y) if x ∈ F and y ∈ I ∩ I ′

The powerFI operation:

powerFI : F × I → F ∪ {underflow,overflow, infinitary}
powerFI(x, y) = result∗F (power∗FI(x, y), nearestF)

if x ∈ F and x 6= 0 and y ∈ I

= +∞+∞+∞ if x =−∞−∞−∞ and y ∈ I and y > 0 and 2|y
=−∞−∞−∞ if x =−∞−∞−∞ and y ∈ I and y > 0 and not 2|y
= 0 if x =−−−0 and y ∈ I and y > 0 and 2|y
=−−−0 if x =−−−0 and y ∈ I and y > 0 and not 2|y
= 0 if x = 0 and y ∈ I and y > 0
= +∞+∞+∞ if x = +∞+∞+∞ and y ∈ I and y > 0

= 1 if x ∈ {−∞−∞−∞,−−−0, 0,+∞+∞+∞} and y = 0

= 0 if x =−∞−∞−∞ and y ∈ I and y < 0 and 2|y
=−−−0 if x =−∞−∞−∞ and y ∈ I and y < 0 and not 2|y
= infinitary(+∞+∞+∞) if x =−−−0 and y ∈ I and y < 0 and 2|y
= infinitary(−∞−∞−∞) if x =−−−0 and y ∈ I and y < 0 and not 2|y
= infinitary(+∞+∞+∞) if x = 0 and y ∈ I and y < 0
= 0 if x = +∞+∞+∞ and y ∈ I and y < 0

= no resultF (x) otherwise

NOTES

1 powerFI(x, y) will overflow approximately when xy > fmaxF , i.e., if x > 1, approximately
when y > logx(fmaxF), and if 0 < x < 1, approximately when y < logx(fmaxF) (which is
then negative). It will not overflow when x = 0 or when x = 1.

2 powerI (in clause 5.1.4) does not allow most negative exponents (unless |x| = 1) since the
exact result then is not in Z unless |x| = 1. powerF (in clause 5.3.6.6) does not allow any
negative bases since the (exact) result is not in R unless the exponent is integer. powerFI
takes care of this latter case, where all exponents are ensured to be integers that have not
arisen from implicit floating point rounding.

5.3.6.2 Natural exponentiation

The exp∗F approximation helper function:

exp∗F : F → R

5.3.6 Operations for exponentiations and logarithms 25

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

exp∗F (x) returns a close approximation to ex in R, with maximum error max error expF .

Further requirements on the exp∗F approximation helper function are:

exp∗F (1) = e
exp∗F (x) = 1 if x ∈ F and exp∗F (x) 6= ex and

ln(1− (epsilonF /(2 · rF))) < x and
x < ln(1 + (epsilonF /2))

exp∗F (x) < fminDF /2 if x ∈ F and x < ln(fminDF)− 3

The expF operation:

expF : F → F ∪ {underflow,overflow}
expF (x) = result∗F (exp∗F (x), nearestF)

if x ∈ F
= 1 if x =−−−0
= +∞+∞+∞ if x = +∞+∞+∞
= 0 if x =−∞−∞−∞
= no resultF (x) otherwise

NOTES

1 expF (1) = nearestF (e).

2 expF (x) will overflow approximately when x > ln(fmaxF).

5.3.6.3 Natural exponentiation, minus one

The expm1 ∗F approximation helper function:

expm1 ∗F : F → R
expm1 ∗F (x) returns a close approximation to ex − 1 in R, with maximum error max error expF .

Further requirements on the expm1 ∗F approximation helper function are:

expm1 ∗F (1) = e− 1
expm1 ∗F (x) = x if x ∈ F and expm1 ∗F (x) 6= ex − 1 and

−epsilonF /rF 6 x < 0.5 · epsilonF /rF
expm1 ∗F (x) = −1 if x ∈ F and expm1 ∗F (x) 6= ex − 1 and

x < ln(epsilonF /(3 · rF))

The relationship to the exp∗F approximation helper function for the expF operation in the same
library shall be:

expm1 ∗F (x) 6 exp∗F (x) if x ∈ F
The expm1F operation:

expm1F : F → F ∪ {overflow}
expm1F (x) = result∗F (expm1 ∗F (x), nearestF)

if x ∈ F and |x| > fminNF

= x if x ∈ F and |x| < fminNF

=−−−0 if x =−−−0
= +∞+∞+∞ if x = +∞+∞+∞
= −1 if x =−∞−∞−∞
= no resultF (x) otherwise

26 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

NOTES

1 underflow is explicitly avoided. Part 1 requires that fminNF 6 epsilonF . This part
requires that fminNF < 0.5 · epsilonF /rF , so that underflow can be avoided here.

2 expm1F (1) = nearestF (e− 1).

3 expm1F (x) will overflow approximately when x > ln(fmaxF).

5.3.6.4 Exponentiation of 2

The exp2 ∗F approximation helper function:

exp2 ∗F : F → R
exp2 ∗F (x) returns a close approximation to 2x in R, with maximum error max error expF .

Further requirements on the exp2 ∗F approximation helper function are:

exp2 ∗F (x) = 1 if x ∈ F and exp2 ∗F (x) 6= 2x and
log2(1− (epsilonF /(2 · rF))) < x and
x < log2(1 + (epsilonF /2))

exp2 ∗F (x) = 2x if x ∈ F ∩ Z and 2x ∈ F
exp2 ∗F (x) < fminDF /2 if x ∈ F and x < log2(fminDF)− 3

The exp2F operation:

exp2F : F → F ∪ {underflow,overflow}
exp2F (x) = result∗F (exp2 ∗F (x), nearestF)

if x ∈ F
= 1 if x =−−−0
= +∞+∞+∞ if x = +∞+∞+∞
= 0 if x =−∞−∞−∞
= no resultF (x) otherwise

NOTE – exp2F (x) will overflow approximately when x > log2(fmaxF).

5.3.6.5 Exponentiation of 10

The exp10 ∗F approximation helper function:

exp10 ∗F : F → R
exp10 ∗F (x) returns a close approximation to 10x in R, with maximum error max error expF .

Further requirements on the exp10 ∗F approximation helper function are:

exp10 ∗F (x) = 1 if x ∈ F and exp10 ∗F (x) 6= 10x and
log10(1− (epsilonF /(2 · rF))) < x and
x < log10(1 + (epsilonF /2))

exp10 ∗F (x) = 10x if x ∈ F ∩ Z and 10x ∈ F
exp10 ∗F (x) < fminDF /2 if x ∈ F and x < log10(fminDF)− 3

The exp10F operation:

exp10F : F → F ∪ {underflow,overflow}

5.3.6 Operations for exponentiations and logarithms 27

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

exp10F (x) = result∗F (exp10 ∗F (x), nearestF)
if x ∈ F

= 1 if x =−−−0
= +∞+∞+∞ if x = +∞+∞+∞
= 0 if x =−∞−∞−∞
= no resultF (x) otherwise

NOTE – exp10F (x) will overflow approximately when x > log10(fmaxF).

5.3.6.6 Exponentiation of argument base

The power∗F approximation helper function:

power∗F : F × F → R
power∗F (x, y) returns a close approximation to xy in R, with maximum error max error powerF .
The power∗F helper function need be defined only for first arguments that are greater than 0.

Further requirements on the power∗F approximation helper function are:

power∗F (1, y) = 1 if y ∈ F
power∗F (x, 0) = 1 if x ∈ F and x > 0
power∗F (x, 1) = x if x ∈ F and x > 0
power∗F (x, y) < fminDF /2 if x ∈ F and x > 0 and y ∈ F and xy < fminDF /3

The relationship to the power∗FI approximation helper functions for any powerFI operations in
the same library shall be:

power∗F (x, y) = power∗F,I(x, y) if x ∈ F and x > 0 and y ∈ I ∩ F
The powerF operation:

powerF : F × F → F ∪ {underflow,overflow, infinitary, invalid}
powerF (x, y) = result∗F (power∗F (x, y), nearestF)

if x ∈ F and x > 0 and y ∈ F
= powerF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= powerF (x, 0) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}

= +∞+∞+∞ if x = +∞+∞+∞ and ((y ∈ F and y > 0) or y = +∞+∞+∞)
= +∞+∞+∞ if x ∈ F and x > 1 and y = +∞+∞+∞
= 0 if x ∈ F and 0 6 x < 1 and y = +∞+∞+∞
= 0 if x = 0 and y ∈ F and y > 0
= infinitary(+∞+∞+∞) if x = 0 and y ∈ F and y < 0
= +∞+∞+∞ if x ∈ F and 0 6 x < 1 and y =−∞−∞−∞
= 0 if x ∈ F and x > 1 and y =−∞−∞−∞
= 0 if x = +∞+∞+∞ and ((y ∈ F and y < 0) or y =−∞−∞−∞)

= no result2F (x, y) otherwise

NOTE – powerF (x, y) will overflow approximately when xy > fmaxF , i.e., if x > 1, approxi-
mately when y > logx(fmaxF), and if 0 < x < 1, approximately when y < logx(fmaxF) (which
is a negative number). It will not overflow when x = 0 or when x = 1.

28 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.3.6.7 Exponentiation of one plus the argument base, minus one

The power1pm1 ∗F approximation helper function:

power1pm1 ∗F : F × F → R
power1pm1 ∗F (x, y) returns a close approximation to (1 + x)y − 1 in R, with maximum error
max error powerF . The power1pm1 ∗F helper function need be defined only for first arguments
that are greater than or equal to −1.

Further requirements on the power1pm1 ∗F approximation helper function are:

power1pm1 ∗F (x, y) = (1 + x)y − 1 if x, y ∈ F ∩ Z and x > −1 and y > 0
power1pm1 ∗F (x, 1) = x if x, 1 + x ∈ F and x > −1
power1pm1 ∗F (−1, y) = −1 if y ∈ F and y > 0
power1pm1 ∗F (x, y) = −1 if x ∈ F and x > −1 and y ∈ F and

power1pm1 ∗F (x, y) 6= (1 + x)y − 1 and
(1 + x)y < epsilonF /(3 · rF)

The relationship to the power∗F approximation helper function for the powerF operation in the
same library shall be:

power1pm1 ∗F (x, y) 6 power∗F (1 + x, y) if x, 1 + x ∈ F and x > −1 and y ∈ F
NOTE 1 – power1pm1 ∗F (x, y) ≈ y ·ln(1+x) if x ∈ F and x > −1 and y ∈ F and |y ·ln(1+x)| <
epsilonF /rF .

The power1pm1F operation:

power1pm1F : F × F → F ∪ {−−−0,underflow,overflow, infinitary, invalid}
power1pm1F (x, y)

= result∗F (power1pm1 ∗F (x, y), nearestF)
if x ∈ F and x > −1 and x 6= 0 and y ∈ F and y 6= 0

= mulF (x, y) if x ∈ {−−−0, 0} and y ∈ F and y 6= 0
= mulF (x, y) if y ∈ {−−−0, 0} and x ∈ F and x > −1
= +∞+∞+∞ if x = +∞+∞+∞ and ((y ∈ F and y > 0) or y = +∞+∞+∞)
= +∞+∞+∞ if x ∈ F and x > 0 and y = +∞+∞+∞
= −1 if x ∈ F and −1 6 x < 0 and y = +∞+∞+∞
= −1 if x = −1 and y ∈ F and y > 0
= infinitary(+∞+∞+∞) if x = −1 and y ∈ F and y < 0
= +∞+∞+∞ if x ∈ F and −1 6 x < 0 and y =−∞−∞−∞
= −1 if x ∈ F and x > 0 and y =−∞−∞−∞
= −1 if x = +∞+∞+∞ and ((y ∈ F and y < 0) or y =−∞−∞−∞)

= no result2F (x, y) otherwise

NOTE 2 – power1pm1F (x, y) will overflow approximately when (1 + x)y > fmaxF , i.e., if
x > 0, approximately when y > log1+x(fmaxF), and if −1 < x < 0, approximately when
y < log1+x(fmaxF). It will not overflow when x ∈ {−1, 0}.

5.3.6.8 Natural logarithm

The ln∗F approximation helper function:

ln∗F : F ∪ {e} → R

5.3.6 Operations for exponentiations and logarithms 29

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

ln∗F (x) returns a close approximation to ln(x) in R, with maximum error max error expF .

A further requirement on the ln∗F approximation helper function is:

ln∗F (e) = 1

The lnF operation:

lnF : F → F ∪ {infinitary, invalid}
lnF (x) = result∗F (ln∗F (x), nearestF)

if x ∈ F and x > 0
= infinitary(−∞−∞−∞) if x ∈ {−−−0, 0}
= +∞+∞+∞ if x = +∞+∞+∞
= no resultF (x) otherwise

5.3.6.9 Natural logarithm of one plus the argument

The ln1p∗F approximation helper function:

ln1p∗F : F ∪ {e− 1} → R
ln1p∗F (x) returns a close approximation to ln(1 + x) in R, with maximum error max error expF .

Further requirements on the ln1p∗F approximation helper function are:

ln1p∗F (e− 1) = 1
ln1p∗F (x) = x if x ∈ F and ln1p∗F (x) 6= ln(1 + x) and

−0.5 · epsilonF /rF < x 6 epsilonF /rF

The relationship to the ln∗F approximation helper function for the lnF operation in the same
library shall be:

ln1p∗F (x) > ln∗F (x) if x ∈ F and x > 0

The ln1pF operation:

ln1pF : F → F ∪ {infinitary, invalid}
ln1pF (x) = result∗F (ln1p∗F (x), nearestF)

if x ∈ F and x > −1 and |x| > fminNF

= x if x ∈ F and |x| < fminNF

=−−−0 if x =−−−0
= infinitary(−∞−∞−∞) if x = −1
= +∞+∞+∞ if x = +∞+∞+∞
= no resultF (x) otherwise

NOTE – underflow is explicitly avoided. Part 1 requires that fminNF 6 epsilonF . This
part requires that fminNF < 0.5 · epsilonF /rF , so that underflow can be avoided here.

5.3.6.10 2-logarithm

The log2 ∗F approximation helper function:

log2 ∗F : F → R
log2 ∗F (x) returns a close approximation to log2(x) in R, with maximum error max error expF .

A further requirement on the log2 ∗F approximation helper function is:

30 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

log2 ∗F (x) = log2(x) if x ∈ F and log2(x) ∈ Z
The log2F operation:

log2F : F → F ∪ {infinitary, invalid}
log2F (x) = result∗F (log2 ∗F (x), nearestF)

if x ∈ F and x > 0
= infinitary(−∞−∞−∞) if x ∈ {−−−0, 0}
= +∞+∞+∞ if x = +∞+∞+∞
= no resultF (x) otherwise

5.3.6.11 10-logarithm

The log10 ∗F approximation helper function:

log10 ∗F : F → R
log10 ∗F (x) returns a close approximation to log10(x) in R, with maximum error max error expF .

A further requirement on the log10 ∗F approximation helper function is:

log10 ∗F (x) = log10(x) if x ∈ F and log10(x) ∈ Z
The log10F operation:

log10F : F → F ∪ {infinitary, invalid}
log10F (x) = result∗F (log10 ∗F (x), nearestF)

if x ∈ F and x > 0
= infinitary(−∞−∞−∞) if x ∈ {−−−0, 0}
= +∞+∞+∞ if x = +∞+∞+∞
= no resultF (x) otherwise

5.3.6.12 Argument base logarithm

The logbase∗F approximation helper function:

logbase∗F : F × F → R
logbase∗F (x, y) returns a close approximation to logx(y) inR, with maximum errormax error powerF .

A further requirement on the logbase∗F approximation helper function is:

logbase∗F (x, x) = 1 if x ∈ F and x > 0 and x 6= 1

The logbaseF operation:

logbaseF : F × F → F ∪ {−−−0, infinitary, invalid}
logbaseF (x, y) = result∗F (logbase∗F (x, y), nearestF)

if x ∈ F and x > 0 and x 6= 1 and y ∈ F and y > 0
= logbaseF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= logbaseF (x, 0) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,+∞+∞+∞}

= infinitary(+∞+∞+∞) if x = 1 and y ∈ F and y > 1
= infinitary(−∞−∞−∞) if x = 1 and y ∈ F and 0 6 y < 1
= 0 if x = +∞+∞+∞ and y ∈ F and y > 1
= +∞+∞+∞ if x ∈ F and 1 6 x and y = +∞+∞+∞

5.3.6 Operations for exponentiations and logarithms 31

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

=−∞−∞−∞ if x ∈ F and 0 < x < 1 and y = +∞+∞+∞
=−−−0 if x = 0 and y ∈ F and y > 1
= 0 if x = 0 and y ∈ F and 0 < y < 1
= infinitary(+∞+∞+∞) if x ∈ F and 0 < x < 1 and y = 0
= infinitary(−∞−∞−∞) if x ∈ F and 1 < x and y = 0
=−−−0 if x = +∞+∞+∞ and y ∈ F and 0 < y < 1

= no result2F (x, y) otherwise

5.3.6.13 Argument base logarithm of one plus each argument

The logbase1p1p∗F approximation helper function:

logbase1p1p∗F : F × F → R
logbase1p1p∗F (x, y) returns a close approximation to log(1+x)(1 + y) in R, with maximum error
max error powerF .

A further requirements on logbase1p1p∗F approximation helper function is:

logbase1p1p∗F (x, x) = 1 if x ∈ F and x > −1 and x 6= 0

The logbase1p1pF operation:

logbase1p1pF : F × F → F ∪ {−−−0,underflow, infinitary, invalid}
logbase1p1pF (x, y)

= result∗F (logbase1p1p∗F (x, y), nearestF)
if x ∈ F and x > −1 and x 6= 0 and
y ∈ F and y > −1 and y 6= 0

= divF (y, x) if x ∈ {−−−0, 0} and
((y ∈ F and y > −1 and y 6= 0) or y = +∞+∞+∞)

= divF (y, x) if y ∈ {−−−0, 0} and
((x ∈ F and x > −1) or x = +∞+∞+∞)

= 0 if x = +∞+∞+∞ and y ∈ F and y > 0
= +∞+∞+∞ if x ∈ F and 0 < x and y = +∞+∞+∞
=−∞−∞−∞ if x ∈ F and −1 < x < 0 and y = +∞+∞+∞
=−−−0 if x = −1 and y ∈ F and y > 0
= 0 if x = −1 and y ∈ F and −1 < y < 0
= infinitary(+∞+∞+∞) if x ∈ F and −1 < x < 0 and y = −1
= infinitary(−∞−∞−∞) if x ∈ F and 0 < x and y = −1
=−−−0 if x = +∞+∞+∞ and y ∈ F and −1 < y < 0

= no result2F (x, y) otherwise

5.3.7 Introduction to operations for trigonometric elementary functions

Two different operations for each of sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot,
arccotc, arcsec, and arccsc are specified. One version for radians and one version where the
angular unit is given as a parameter.

For use in the specifications below, define the following mathematical functions:

32 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

rad : R→ R
axis rad : R→ {(1, 0), (0, 1), (−1, 0), (0,−1)} ×R
arc : R×R → R

The rad , angular value normalisation, function is defined by

rad(x) = x− round(x/(2 · π)) · 2 · π
The axis rad function is defined by

axis rad(x) = ((1, 0), arcsin(sin(x))) if cos(x) > 1/
√

2
= ((0, 1), arcsin(cos(x))) if sin(x) > 1/

√
2

= ((−1, 0), arcsin(sin(x))) if cos(x) 6 −1/
√

2
= ((0,−1), arcsin(cos(x))) if sin(x) < −1/

√
2

The arc, angle, function is defined by

arc(x, y) = − arccos(x/
√
x2 + y2) if y < 0

= arccos(x/
√
x2 + y2) if y > 0

5.3.8 Operations for radian trigonometric elementary functions

There shall be one radian big-angle parameter:

big angle rF ∈ F
It should have the following default value:

big angle rF = r
dpF /2e
F

A binding or implementation can include a method to change the value of the radian big-angle
parameter. This method should only allow the value of this parameter to be set to a value greater
than 2 · π and such that ulpF (big angle rF) < π/1000.

NOTE – Part 1 requires only that pF > 2, but see also A.5.2.0.2 in part 1. This part requires
that pF > 2·max{1, dlogrF (2·π)e}, in order to allow at least the first two cycles (plus and minus)
to be in the interval [−big angle rF , big angle rF]. In order to allow ulpF (big angle rF) <
π/1000, pF > 2 + dlogrF (1000)e should hold.

For use in the approximation helper function’s signatures, define

F 2·π = (F ∪ {n · π/4, n · π/6 | n ∈ Z}) ∩ [−big angle rF , big angle rF]

There shall be three maximum error parameters for radian trigonometric operations:

max error radF ∈ F
max error sinF ∈ F
max error tanF ∈ F

The max error radF parameter shall have a value that is 0.5 (ulp). The max error sinF parame-
ter shall have a value that is 6 1.5·rnd errorF . The max error tanF parameter shall have a value
that is 6 2 · rnd errorF . If the binding standard requires that the max error radF parameter
has the value 0.5, that parameter need not be made available for programs.

5.3.8 Operations for radian trigonometric elementary functions 33

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.8.1 Radian angle normalisation

The rad∗F approximation helper function:

rad∗F : F 2·π → R
rad∗F (x) returns a close approximation to rad(x) in R, if |x| 6 big angle rF , with maximum error
max error radF .

The axis rad∗F approximation helper function:

axis rad∗F : F 2·π → {(1, 0), (0, 1), (−1, 0), (0,−1)} ×R
axis rad∗F (x) returns a close approximation to axis rad(x), if |x| 6 big angle rF , with maximum
error max error radF for the second part of the result. The approximation consists of that the
second part of the result (the offset from the indicated axis) is approximate. The first part (the
nearest axis indication) shall be exact if |x| 6 big angle rF .

NOTE 1 – With the maximum error 0.5 ulp, these helper functions are not really needed.
However, Annex A allows for partial conformity, such that the maximum error for these two
helper functions may be greater than 0.5 ulp.

Further requirements on the rad∗F and axis rad∗F approximation helper functions are:

rad∗F (x) = x if x ∈ F 2·π and |x| < π
snd(axis rad∗F (x)) = rad∗F (x) if x ∈ F 2·π and fst(axis rad∗F (x)) = (1, 0)

The radF operation:

radF : F → F ∪ {underflow,absolute precision underflow}
radF (x) = result∗F (rad∗F (x), nearestF)

if x ∈ F and |x| > fminNF and |x| 6 big angle rF
= x if (x ∈ F and |x| 6 fminNF) or x =−−−0

= absolute precision underflow(qNaN)
if x ∈ F and |x| > big angle rF

= no resultF (x) otherwise

The axis radF operation:

axis radF : F → ({(1, 0), (0, 1), (−1, 0), (0,−1)} × F) ∪ {absolute precision underflow}
axis radF (x) = (fst(axis rad∗F (x)), result∗F (snd(axis rad∗F (x)), nearestF))

if x ∈ F and |x| > fminNF and |x| 6 big angle rF
= ((1, 0), x) if (x ∈ F and |x| 6 fminNF) or x =−−−0

= absolute precision underflow((qNaN,qNaN),qNaN)
if x ∈ F and |x| > big angle rF

= ((qNaN,qNaN),qNaN)
if x is a quiet NaN

= invalid((qNaN,qNaN),qNaN)
otherwise

NOTE 2 – radF is simpler, easier to use, but less accurate than axis radF . The latter may
still not be sufficient for implementing the radian trigonometric operations to less than the
maximum error stated by the parameters.

34 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.3.8.2 Radian sine

The sin∗F approximation helper function:

sin∗F : F 2·π → R
sin∗F (x) returns a close approximation to sin(x) in R if |x| 6 big angle rF , with maximum error
max error sinF .

Further requirements on the sin∗F approximation helper function are:

sin∗F (n · 2 · π + π/6) = 1/2 if n ∈ Z and |n · 2 · π + π/6| 6 big angle rF
sin∗F (n · 2 · π + π/2) = 1 if n ∈ Z and |n · 2 · π + π/2| 6 big angle rF
sin∗F (n · 2 · π + 5 · π/6) = 1/2 if n ∈ Z and |n · 2 · π + 5 · π/6| 6 big angle rF
sin∗F (x) = x if x ∈ F 2·π and sin∗F (x) 6= sin(x) and

|x| 6
√

3 · epsilonF /rF
sin∗F (−x) = −sin∗F (x) if x ∈ F 2·π

The sinF operation:

sinF : F → F ∪ {underflow,absolute precision underflow}
sinF (x) = result∗F (sin∗F (x), nearestF)

if x ∈ F and fminNF < |x| and |x| 6 big angle rF
= radF (x) otherwise

NOTE – underflow is here explicitly avoided for subnormal arguments, but the operation
may underflow for other arguments.

5.3.8.3 Radian cosine

The cos∗F approximation helper function:

cos∗F : F 2·π → R
cos∗F (x) returns a close approximation to cos(x) in R if |x| 6 big angle rF , with maximum error
max error sinF .

Further requirements on the cos∗F approximation helper function are:

cos∗F (n · 2 · π) = 1 if n ∈ Z and |n · 2 · π| 6 big angle rF
cos∗F (n · 2 · π + π/3) = 1/2 if n ∈ Z and |n · 2 · π + π/3| 6 big angle rF
cos∗F (n · 2 · π + 2 · π/3) = −1/2 if n ∈ Z and |n · 2 · π + 2 · π/3| 6 big angle rF
cos∗F (n · 2 · π + π) = −1 if n ∈ Z and |n · 2 · π + π| 6 big angle rF
cos∗F (x) = 1 if x ∈ F 2·π and cos∗F (x) 6= cos(x) and

|x| <
√
epsilonF /rF

cos∗F (−x) = cos∗F (x) if x ∈ F 2·π

The cosF operation:

cosF : F → F ∪ {underflow,absolute precision underflow}
cosF (x) = result∗F (cos∗F (x), nearestF)

if x ∈ F and |x| 6 big angle rF
= 1 if x =−−−0
= radF (x) otherwise

5.3.8 Operations for radian trigonometric elementary functions 35

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.8.4 Radian tangent

The tan∗F approximation helper function:

tan∗F : F 2·π → R
tan∗F (x) returns a close approximation to tan(x) in R if |x| 6 big angle rF , with maximum error
max error tanF .

Further requirements on the tan∗F approximation helper function are:

tan∗F (n · 2 · π + π/4) = 1 if n ∈ Z and |n · 2 · π + π/4| 6 big angle rF
tan∗F (n · 2 · π + 3 · π/4) = −1 if n ∈ Z and |n · 2 · π + 3 · π/4| 6 big angle rF
tan∗F (x) = x if x ∈ F 2·π and tan∗F (x) 6= tan(x) and

|x| <
√
epsilonF /rF

tan∗F (−x) = −tan∗F (x) if x ∈ F 2·π

NOTE 1 – tan has a smallest period of π, but the above expresses a period of 2 · π, which is
more in line with the other operations. The desired points of extra accuracy are still covered.

The tanF operation:

tanF : F → F ∪ {underflow,overflow,absolute precision underflow}
tanF (x) = result∗F (tan∗F (x), nearestF)

if x ∈ F and fminNF < |x| and |x| 6 big angle rF
= radF (x) otherwise

NOTE 2 – underflow is explicitly avoided for subnormal arguments, but the operation may
underflow for other arguments.

5.3.8.5 Radian cotangent

The cot∗F approximation helper function:

cot∗F : F 2·π → R
cot∗F (x) returns a close approximation to cot(x) in R if |x| 6 big angle rF , with maximum error
max error tanF .

Further requirements on the cot∗F approximation helper function are:

cot∗F (n · 2 · π + π/4) = 1 if n ∈ Z and |n · 2 · π + π/4| 6 big angle rF
cot∗F (n · 2 · π + 3 · π/4) = −1 if n ∈ Z and |n · 2 · π + 3 · π/4| 6 big angle rF
cot∗F (−x) = −cot∗F (x) if x ∈ F 2·π

NOTE – cot has a smallest period of π, but the above expresses a period of 2 · π, which is
more in line with the other operations. The desired points of extra accuracy are still covered.

The cotF operation:

cotF : F → F ∪ {underflow,overflow, infinitary,absolute precision underflow}
cotF (x) = result∗F (cot∗F (x), nearestF)

if x ∈ F and x 6= 0 and |x| 6 big angle rF
= infinitary(+∞+∞+∞) if x = 0
= infinitary(−∞−∞−∞) if x =−−−0
= radF (x) otherwise

36 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.3.8.6 Radian secant

The sec∗F approximation helper function:

sec∗F : F 2·π → R
sec∗F (x) returns a close approximation to sec(x) in R if |x| 6 big angle rF , with maximum error
max error tanF .

Further requirements on the sec∗F approximation helper function are:

sec∗F (n · 2 · π) = 1 if n ∈ Z and |n · 2 · π| 6 big angle rF
sec∗F (n · 2 · π + π/3) = 2 if n ∈ Z and |n · 2 · π + π/3| 6 big angle rF
sec∗F (n · 2 · π + 2 · π/3) = −2 if n ∈ Z and |n · 2 · π + 2 · π/3| 6 big angle rF
sec∗F (n · 2 · π + π) = −1 if n ∈ Z and |n · 2 · π + π| 6 big angle rF
sec∗F (x) = 1 if x ∈ F 2·π and sec∗F (x) 6= sec(x) and

|x| <
√
epsilonF

sec∗F (−x) = sec∗F (x) if x ∈ F 2·π

The secF operation:

secF : F → F ∪ {overflow,absolute precision underflow}
secF (x) = result∗F (sec∗F (x), nearestF)

if x ∈ F and |x| 6 big angle rF
= 1 if x =−−−0
= radF (x) otherwise

5.3.8.7 Radian cosecant

The csc∗F approximation helper function:

csc∗F : F 2·π → R
csc∗F (x) returns a close approximation to csc(x) in R if |x| 6 big angle rF , with maximum error
max error tanF .

Further requirements on the csc∗F approximation helper function are:

csc∗F (n · 2 · π + π/6) = 2 if n ∈ Z and |n · 2 · π + π/6| 6 big angle rF
csc∗F (n · 2 · π + π/2) = 1 if n ∈ Z and |n · 2 · π + π/2| 6 big angle rF
csc∗F (n · 2 · π + 5 · π/6) = 2 if n ∈ Z and |n · 2 · π + 5 · π/6| 6 big angle rF
csc∗F (−x) = −csc∗F (x) if x ∈ F 2·π

The cscF operation:

cscF : F → F ∪ {overflow, infinitary,absolute precision underflow}
cscF (x) = result∗F (csc∗F (x), nearestF)

if x ∈ F and x 6= 0 and |x| 6 big angle rF
= infinitary(+∞+∞+∞) if x = 0
= infinitary(−∞−∞−∞) if x =−−−0
= radF (x) otherwise

5.3.8 Operations for radian trigonometric elementary functions 37

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.8.8 Radian cosine with sine

cossinF : F → (F × F) ∪ {underflow,absolute precision underflow}
cossinF (x) = (cosF (x), sinF (x))

NOTES

1 If there is an absolute precision underflow notification, then both result parts suffer
from the absolute precision underflow and the continuation values for both parts are
qNaN. Similarly for NaN and infinitary arguments.

2 If there is an underflow notification, only one of the result parts suffer from the underflow,
and the other part has an absolute value greater than fminNF .

5.3.8.9 Radian arc sine

The arcsin∗F approximation helper function:

arcsin∗F : F → R
arcsin∗F (x) returns a close approximation to arcsin(x) inR, with maximum error max error sinF .

Further requirements on the arcsin∗F approximation helper function are:

arcsin∗F (1/2) = π/6
arcsin∗F (1) = π/2
arcsin∗F (x) = x if x ∈ F and arcsin∗F (x) 6= arcsin(x) and

|x| <
√

2 · epsilonF /rF
arcsin∗F (−x) = −arcsin∗F (x) if x ∈ F

The arcsin#
F range limitation helper function (for x ∈ F):

arcsin#
F (x) = max{upF (−π/2),min{arcsin∗F (x), downF (π/2)}}

The arcsinF operation:

arcsinF : F → F ∪ {invalid}

arcsinF (x) = result∗F (arcsin#
F (x), nearestF)

if x ∈ F and fminNF < |x| 6 1
= x if (x ∈ F and |x| 6 fminNF) or x =−−−0
= no resultF (x) otherwise

NOTE – underflow is explicitly avoided.

5.3.8.10 Radian arc cosine

The arccos∗F approximation helper function:

arccos∗F : F → R
arccos∗F (x) returns a close approximation to arccos(x) inR, with maximum error max error sinF .

Further requirements on the arccos∗F approximation helper function are:

38 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

arccos∗F (1/2) = π/3
arccos∗F (0) = π/2
arccos∗F (−1/2) = 2 · π/3
arccos∗F (−1) = π

The arccos#
F range limitation helper function (for x ∈ F):

arccos#
F (x) = min{arccos∗F (x), downF (π)}

The arccosF operation:

arccosF : F → F ∪ {invalid}

arccosF (x) = result∗F (arccos#
F (x), nearestF)

if x ∈ F and |x| 6 1
= arccosF (0) if x =−−−0
= no resultF (x) otherwise

5.3.8.11 Radian arc tangent

The arctan∗F approximation helper function:

arctan∗F : F → R
arctan∗F (x) returns a close approximation to arctan(x) inR, with maximum errormax error tanF .

Further requirements on the arctan∗F approximation helper function are:

arctan∗F (1) = π/4
arctan∗F (x) = x if x ∈ F and arctan∗F (x) 6= arctan(x) and

|x| 6
√

1.5 · epsilonF /rF
arctan∗F (x) = π/2 if x ∈ F and arctan∗F (x) 6= arctan(x) and

x > 3 · rF /epsilonF
arctan∗F (−x) = −arctan∗F (x) if x ∈ F

The arctan#
F range limitation helper function (for x ∈ F):

arctan#
F (x) = max{upF (−π/2),min{arctan∗F (x), downF (π/2)}}

The arctanF operation:

arctanF : F → F

arctanF (x) = result∗F (arctan#
F (x), nearestF)

if x ∈ F and fminNF < |x|
= x if (x ∈ F and |x| 6 fminNF) or x =−−−0
= upF (−π/2) if x =−∞−∞−∞
= downF (π/2) if x = +∞+∞+∞
= no resultF (x) otherwise

NOTES

1 arctanF (x) ≈ arcF (1, x). (arcF is specified in subclause 5.3.8.15 below.)

2 underflow is explicitly avoided.

5.3.8 Operations for radian trigonometric elementary functions 39

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.8.12 Radian arc cotangent

This clause specifies two inverse cotangent operations. One approximating the sign symmetric
(but discontinuous at 0) arccot, the other approximating the continuous (but not sign symmetric)
arccotc.

The arccot∗F approximation helper function:

arccot∗F : F → R
arccot∗F (x) returns a close approximation to arccot(x) inR, with maximum error max error tanF .

The arccotc∗F approximation helper function:

arccotc∗F : F → R
arccotc∗F (x) returns a close approximation to arccotc(x) inR, with maximum errormax error tanF .

Further requirements on the arccot∗F and arccotc∗F approximation helper functions are:

arccot∗F (1) = π/4
arccot∗F (0) = π/2
arccot∗F (−x) = −arccot∗F (x) if x ∈ F and x 6= 0

arccotc∗F (x) = arccot∗F (x) if x ∈ F and x > 0
arccotc∗F (−1) = 3 · π/4
arccotc∗F (x) = π if x ∈ F and arccotc∗F (x) 6= arccotc(x) and

x < −3 · rF /epsilonF
The arccot#F and arccotc#F range limitation helper functions (for x ∈ F):

arccot#F (x) = max{upF (−π/2),min{arccot∗F (x), downF (π/2)}}
arccotc#

F (x) = min{arccotc∗F (x), downF (π)}
The arccotF operation:

arccotF : F → F ∪ {underflow}

arccotF (x) = result∗F (arccot#F (x), nearestF)
if x ∈ F

= upF (−π/2) if x =−−−0
=−−−0 if x =−∞−∞−∞
= 0 if x = +∞+∞+∞
= no resultF (x) otherwise

NOTES

1 arccotF (negF (x)) = negF (arccotF (x)).

2 Due to the range limitation, arccotF (0) need not equal arccotcF (0).

The arccotcF operation:

arccotcF : F → F ∪ {underflow}

arccotcF (x) = result∗F (arccotc#F (x))
if x ∈ F

= nearestF (π/2) if x =−−−0
= downF (π) if x =−∞−∞−∞
= 0 if x = +∞+∞+∞
= no resultF (x) otherwise

40 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

NOTE 3 – arccotcF (x) ≈ arcF (x, 1). (arcF is specified in subclause 5.3.8.15 below.)

5.3.8.13 Radian arc secant

The arcsec∗F approximation helper function:

arcsec∗F : F → R
arcsec∗F (x) returns a close approximation to arcsec(x) inR, with maximum error max error tanF .

Further requirements on the arcsec∗F approximation helper function are:

arcsec∗F (2) = π/3
arcsec∗F (−2) = 2 · π/3
arcsec∗F (−1) = π
arcsec∗F (x) 6 π/2 if x ∈ F and x > 0
arcsec∗F (x) > π/2 if x ∈ F and x < 0
arcsec∗F (x) = π/2 if x ∈ F and arcsec∗F (x) 6= arcsec(x) and

|x| > 3 · rF /epsilonF
The arcsec#F range limitation helper function (for x ∈ F):

arcsec#
F (x) = min{arcsec∗F (x), downF (π/2)}

if x > 1
= max{upF (π/2),min{arcsec∗F (x), downF (π)}}

if x 6 −1

The arcsecF operation:

arcsecF : F → F ∪ {invalid}

arcsecF (x) = result∗F (arcsec#F (x), nearestF)
if x ∈ F and 1 6 |x|

= upF (π/2) if x =−∞−∞−∞
= downF (π/2) if x = +∞+∞+∞
= no resultF (x) otherwise

5.3.8.14 Radian arc cosecant

The arccsc∗F approximation helper function:

arccsc∗F : F → R
arccsc∗F (x) returns a close approximation to arccsc(x) inR, with maximum error max error tanF .

Further requirements on the arccsc∗F approximation helper function are:

arccsc∗F (2) = π/6
arccsc∗F (1) = π/2
arccsc∗F (−x) = −arccsc∗F (x) if x ∈ F

The arccsc#F range limitation helper function (for x ∈ F):

arccsc#
F (x) = max{upF (−π/2),min{arccsc∗F (x), downF (π/2)}}

The arccscF operation:

arccscF : F → F ∪ {underflow, invalid}

5.3.8 Operations for radian trigonometric elementary functions 41

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

arccscF (x) = result∗F (arccsc#F (x), nearestF)
if x ∈ F and 1 6 |x|

=−−−0 if x =−∞−∞−∞
= 0 if x = +∞+∞+∞
= no resultF (x) otherwise

5.3.8.15 Radian angle from Cartesian co-ordinates

The arc∗F approximation helper function:

arc∗F : F × F → R
arc∗F (x, y) returns a close approximation to arc(x, y) in R, with maximum error max error tanF .

NOTE 1 – The arc operations, with the arguments swapped, are often called arctan2.

Further requirements on the arc∗F approximation helper function are:

arc∗F (x, 0) = 0 if x ∈ F and x > 0
arc∗F (x, x) = π/4 if x ∈ F and x > 0
arc∗F (0, y) = π/2 if y ∈ F and y > 0
arc∗F (x,−x) = 3 · π/4 if x ∈ F and x < 0
arc∗F (x, 0) = π if x ∈ F and x < 0
arc∗F (x,−y) = −arc∗F (x, y) if x, y ∈ F and (y 6= 0 or x > 0)

The arc#
F range limitation helper function (for x, y ∈ F):

arc#
F (x, y) = max{upF (−π),min{arc∗F (x, y), downF (π)}}

The arcF operation:

arcF : F × F → F ∪ {underflow}

arcF (x, y) = result∗F (arc#
F (x, y), nearestF)

if x, y ∈ F and (x 6= 0 or y 6= 0)
= 0 if x = 0 and y = 0
= downF (π) if x =−−−0 and y = 0
= arcF (0, y) if x =−−−0 and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and y 6= 0
= negF (arcF (x, 0)) if y =−−−0 and x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}
= 0 if x = +∞+∞+∞ and y ∈ F and y > 0
=−−−0 if x = +∞+∞+∞ and y ∈ F and y < 0
= nearestF (π/4) if x = +∞+∞+∞ and y = +∞+∞+∞
= nearestF (π/2) if x ∈ F and y = +∞+∞+∞
= nearestF (3 · π/4) if x =−∞−∞−∞ and y = +∞+∞+∞
= downF (π) if x =−∞−∞−∞ and y ∈ F and y > 0
= upF (−π) if x =−∞−∞−∞ and y ∈ F and y < 0
= nearestF (−3 · π/4) if x =−∞−∞−∞ and y =−∞−∞−∞
= nearestF (−π/2) if x ∈ F and y =−∞−∞−∞
= nearestF (−π/4) if x = +∞+∞+∞ and y =−∞−∞−∞
= no result2F (x, y) otherwise

NOTE 2 – Note that the arc operations do not return an invalid notification at the origin
(both arguments in {−−−0, 0}). See B.5.3.8. Bindings may choose to alter this behaviour.

42 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.3.9 Operations for trigonometrics with given angular unit

There shall be one big-angle parameter for argument angular-unit trigonometric operations:

big angle uF ∈ F
It should have the following default value:

big angle uF = drdpF /2eF /6e
A binding or implementation can include a method to change the value of this parameter. This
method should only allow the value of this parameter to be set to a value greater than or equal
to 1 and such that ulpF (big angle uF) 6 1/2000.

NOTE 1 – In order to allow ulpF (big angle uF) 6 1/2000, pF > 2+logrF (1000) should hold.

There shall be a derived parameter signifying the minimum allowed angular unit:

min angular unitF = rF · fminNF /epsilonF

NOTE 2 – That is, min angular unitF = r
(eminF−1+pF)
F

For use in the approximation helper function’s signatures, define

F u = (F ∪ {n · u/8, n · u/12 | n ∈ Z}) ∩ [−big angle uF · |u|, big angle uF · |u|]
Note that u is a parameter here, a parameter which is the value of the first argument to the
approximation helper function. To signify this, the notation (u : F) is used below.

To make the specifications below a bit easier to express, let

GF = {x ∈ F | min angular unitF 6 |x|}.
Let T = {1, 2, 360, 400, 6400}. T consists of angle values for exactly one revolution for some

common non-radian angular units: cycles, half-cycles, arc degrees, grades, and mils.

There shall be two parameterised maximum error parameters for argument angular-unit trigono-
metric operations:

max error sinuF : F → F ∪ {invalid}
max error tanuF : F → F ∪ {invalid}

For u ∈ GF , the max error sinuF (u) parameter shall have a value that is 6 2 ·max error sinF .
The max error sinuF (u) parameter shall have the value of max error sinF if |u| ∈ T . For
u ∈ GF , the max error tanuF (u) parameter shall have a value that is 6 2 · max error tanF .
The max error tanuF (u) parameter shall have the value of max error tanF if |u| ∈ T . The
max error sinuF (u) and max error tanuF (u) parameters return invalid(qNaN) if u 6∈ GF .

5.3.9.1 Argument angular-unit angle normalisation

The argument angular-unit normalisation computes exactly rad(2 · π · x/u) · u/(2 · π), where x is
the angular value, and u is the angular unit.

The cycleF operation:

cycleF : F × F → F ∪ {−−−0,absolute precision underflow, invalid}
cycleF (u, x) = residueF (x, u) if u ∈ GF and (x =−−−0 or

(x ∈ F and |x/u| 6 big angle uF))
= absolute precision underflow(qNaN)

if u ∈ GF and x ∈ F and |x/u| > big angle uF
= no result2F (u, x) otherwise

5.3.9 Operations for trigonometrics with given angular unit 43

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

The axis cycleF operation:

axis cycleF : F × F → ({(1, 0), (0, 1), (−1, 0), (0,−1)} × (F ∪ {−−−0}))∪
{absolute precision underflow, invalid}

axis cycleF (u, x)
= (axis(u, x), resultF (x− (round(x · 4/u) · u/4), nearestF))

if u ∈ GF and x ∈ F and |x/u| 6 big angle uF and
(x/u > 0 or x− (round(x · 4/u) · u/4) 6= 0)

= (axis(u, x),−−−0) if u ∈ GF and x ∈ F and |x/u| 6 big angle uF and
x/u < 0 and x− (round(x · 4/u) · u/4) = 0

= ((1, 0),−−−0) if u ∈ GF and x =−−−0
= absolute precision underflow((qNaN,qNaN),qNaN)

if u ∈ GF and x ∈ F and |x/u| > big angle uF
= ((qNaN,qNaN),qNaN)

if at least one of x and u is a quiet NaN and
neither is a signalling NaN

= invalid((qNaN,qNaN),qNaN)
otherwise

where

axis(u, x) = (1, 0) if round(x · 4/u) = 4 · n
= (0, 1) if round(x · 4/u) = 4 · n+ 1
= (−1, 0) if round(x · 4/u) = 4 · n+ 2
= (0,−1) if round(x · 4/u) = 4 · n+ 3

for some n ∈ Z.

NOTES

1 axis cycleF (u, x) is exact when divF (u, 4) = u/4.

2 cycleF is an exact operation.

3 cycleF (u, x) is −−−0 or has a result in the interval [−|u/2|, |u/2|] if there is no notification.

4 A zero resulting angle is negative if the original angle value is negative.

5 The cycleF operation is used also in the specifications of the unit argument trigonometric
operations. This does not imply that the implementation has to use the cycleF operation,
when implementing the operations. It only implies that the results (including notifications)
must be as if the cycleF operation was used.

5.3.9.2 Argument angular-unit sine

The sinu∗F approximation helper function:

sinu∗F : (u : F)× F u → R
sinu∗F (u, x) returns a close approximation to sin(x · 2 · π/u) in R if u 6= 0, with maximum error
max error sinuF (u).

Further requirements on the sinu∗F approximation helper function are:

sinu∗F (u, n · u+ x) = sinu∗F (u, x) if n ∈ Z and u ∈ F and u 6= 0 and x ∈ F u
sinu∗F (u, u/12) = 1/2 if u ∈ F and u 6= 0
sinu∗F (u, u/4) = 1 if u ∈ F and u 6= 0

44 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

sinu∗F (u, 5 · u/12) = 1/2 if u ∈ F and u 6= 0
sinu∗F (u,−x) = −sinu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u
sinu∗F (−u, x) = −sinu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u

NOTE – sinu∗F (u, x) ≈ x · 2 · π/u if |x · 2 · π/u| < fminNF .

The sinuF operation:

sinuF : F × F → F ∪ {−−−0,underflow,absolute precision underflow, invalid}
sinuF (u, x) = result∗F (sinu∗F (u, x), nearestF)

if cycleF (u, x) ∈ F and cycleF (u, x) 6∈ {−u/2, 0, u/2}
= divF (0, u) if cycleF (u, x) ∈ {0, u/2}
= divF (−−−0, u) if cycleF (u, x) ∈ {−u/2,−−−0}
= cycleF (u, x) otherwise

5.3.9.3 Argument angular-unit cosine

The cosu∗F approximation helper function:

cosu∗F : (u : F)× F u → R
cosu∗F (u, x) returns a close approximation to cos(x · 2 · π/u) in R if u 6= 0, with maximum error
max error sinuF (u).

Further requirements on the cosu∗F approximation helper function are:

cosu∗F (u, n · u+ x) = cosu∗F (u, x) if n ∈ Z and u ∈ F and u 6= 0 and x ∈ F u
cosu∗F (u, 0) = 1 if u ∈ F and u 6= 0
cosu∗F (u, u/6) = 1/2 if u ∈ F and u 6= 0
cosu∗F (u, u/3) = −1/2 if u ∈ F and u 6= 0
cosu∗F (u, u/2) = −1 if u ∈ F and u 6= 0
cosu∗F (u,−x) = cosu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u
cosu∗F (−u, x) = cosu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u

NOTE – cosu∗F (u, x) = 1 should hold if |x · 2 · π/u| <
√
epsilonF /rF

The cosuF operation:

cosuF : F × F → F ∪ {underflow,absolute precision underflow, invalid}
cosuF (u, x) = result∗F (cosu∗F (u, x), nearestF)

if cycleF (u, x) ∈ F
= 1 if cycleF (u, x) =−−−0
= cycleF (u, x) otherwise

5.3.9.4 Argument angular-unit tangent

The tanu∗F approximation helper function:

tanu∗F : (u : F)× F u → R
tanu∗F (u, x) returns a close approximation to tan(x · 2 · π/u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the tanu∗F approximation helper function are:

5.3.9 Operations for trigonometrics with given angular unit 45

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

tanu∗F (u, n · u+ x) = tanu∗F (u, x) if n ∈ Z and u ∈ F and u 6= 0 and x ∈ F u
tanu∗F (u, u/8) = 1 if u ∈ F and u 6= 0
tanu∗F (u, 3 · u/8) = −1 if u ∈ F and u 6= 0
tanu∗F (u,−x) = −tanu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u
tanu∗F (−u, x) = −tanu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u

NOTE 1 – tanu∗F (u, x) ≈ x · 2 · π/u if |x · 2 · π/u| < fminNF .

The tanuF operation:

tanuF : F × F → F ∪ {−−−0,underflow,overflow, infinitary,
absolute precision underflow, invalid}

tanuF (u, x) = result∗F (tanu∗F (u, x), nearestF)
if cycleF (u, x) ∈ F and
cycleF (u, x) 6∈ {−u/2,−u/4, 0, u/4, u/2}

= divF (0, u) if cycleF (u, x) ∈ {−u/2, 0}
= divF (−−−0, u) if cycleF (u, x) ∈ {−−−0, u/2}
= infinitary(+∞+∞+∞) if cycleF (u, x) = u/4
= infinitary(−∞−∞−∞) if cycleF (u, x) = −u/4
= cycleF (u, x) otherwise

NOTE 2 – The infinitary notification can arise for tanuF (u, x) only when u/4 is in F .

5.3.9.5 Argument angular-unit cotangent

The cotu∗F approximation helper function:

cotu∗F : (u : F)× F u → R
cotu∗F (u, x) returns a close approximation to cot(x · 2 · π/u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the cotu∗F approximation helper function are:

cotu∗F (u, n · u+ x) = cotu∗F (u, x) if n ∈ Z and u ∈ F and u 6= 0 and x ∈ F u
cotu∗F (u, u/8) = 1 if u ∈ F and u 6= 0
cotu∗F (u, 3 · u/8) = −1 if u ∈ F and u 6= 0
cotu∗F (u,−x) = −cotu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u
cotu∗F (−u, x) = −cotu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u

The cotuF operation:

cotuF : F × F → F ∪ {−−−0,underflow,overflow, infinitary,
absolute precision underflow, invalid}

cotuF (u, x) = result∗F (cotu∗F (u, x), nearestF)
if cycleF (u, x) ∈ F and
cycleF (u, x) 6∈ {−u/2,−u/4, 0, u/2}

=−−−0 if cycleF (u, x) = −u/4
= divF (u, tanuF (u, x)) if cycleF (u, x) ∈ {−u/2,−−−0, 0, u/2}
= cycleF (u, x) otherwise

46 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.3.9.6 Argument angular-unit secant

The secu∗F approximation helper function:

secu∗F : (u : F)× F u → R
secu∗F (u, x) returns a close approximation to sec(x · 2 · π/u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the secu∗F approximation helper function are:

secu∗F (u, n · u+ x) = secu∗F (u, x) if n ∈ Z and u ∈ F and u 6= 0 and x ∈ F u
secu∗F (u, 0) = 1 if u ∈ F and u 6= 0
secu∗F (u, u/6) = 2 if u ∈ F and u 6= 0
secu∗F (u, u/3) = −2 if u ∈ F and u 6= 0
secu∗F (u, u/2) = −1 if u ∈ F and u 6= 0
secu∗F (u,−x) = secu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u
secu∗F (−u, x) = secu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u

The secuF operation:

secuF : F × F → F ∪ {overflow, infinitary,absolute precision underflow, invalid}
secuF (u, x) = result∗F (secu∗F (u, x), nearestF)

if cycleF (u, x) ∈ F and
cycleF (u, x) 6∈ {−u/4, u/4}

= divF (1, cosuF (u, x)) if cycleF (u, x) ∈ {−u/4,−−−0, u/4}
= cycleF (u, x) otherwise

5.3.9.7 Argument angular-unit cosecant

The cscu∗F approximation helper function:

cscu∗F : (u : F)× F u → R
cscu∗F (u, x) returns a close approximation to csc(x · 2 · π/u) in R if u 6= 0, with maximum error
max error tanuF (u).

Further requirements on the cscu∗F approximation helper function are:

cscu∗F (u, n · u+ x) = cscu∗F (u, x) if n ∈ Z and u ∈ F and u ∈ 0 and x ∈ F u
cscu∗F (u, u/12) = 2 if u ∈ F and u 6= 0
cscu∗F (u, u/4) = 1 if u ∈ F and u 6= 0
cscu∗F (u, 5 · u/12) = 2 if u ∈ F and u 6= 0
cscu∗F (u,−x) = −cscu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u
cscu∗F (−u, x) = −cscu∗F (u, x) if u ∈ F and u 6= 0 and x ∈ F u

The cscuF operation:

cscuF : F × F → F ∪ {overflow, infinitary,absolute precision underflow, invalid}
cscuF (u, x) = result∗F (cscu∗F (u, x), nearestF)

if cycleF (u, x) ∈ F and
cycleF (u, x) 6∈ {−u/2, 0, u/2}

= divF (1, sinuF (u, x)) if cycleF (u, x) ∈ {−u/2,−−−0, 0, u/2}
= cycleF (u, x) otherwise

5.3.9 Operations for trigonometrics with given angular unit 47

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.9.8 Argument angular-unit cosine with sine

cossinuF : F × F → (F × (F ∪ {−−−0})) ∪ {underflow,absolute precision underflow,
invalid}

cossinuF (u, x) = (cosuF (u, x), sinuF (u, x))

NOTES

1 If there is an absolute precision underflow notification, then both result parts suffer
from the absolute precision underflow and the continuation values for both parts are
qNaN. Similarly for NaN and infinitary arguments, as well as an angular unit with too
small absolute value.

2 If there is an underflow notification, only one of the result parts suffer from the underflow,
and the other part has an absolute value greater than fminNF .

5.3.9.9 Argument angular-unit arc sine

The arcsinu∗F approximation helper function:

arcsinu∗F : F × F → R
arcsinu∗F (u, x) returns a close approximation to arcsin(x) · u/(2 · π) in R, with maximum error
max error sinuF (u).

Further requirements on the arcsinu∗F approximation helper function are:

arcsinu∗F (u, 1/2) = u/12 if u ∈ F
arcsinu∗F (u, 1) = u/4 if u ∈ F
arcsinu∗F (u,−x) = −arcsinu∗F (u, x) if u, x ∈ F
arcsinu∗F (−u, x) = −arcsinu∗F (u, x) if u, x ∈ F
NOTE – arcsinu∗F (u, x) ≈ u/(2 · π) if |x| < fminNF .

The arcsinu#
F range limitation helper function (for u, x ∈ F):

arcsinu#
F (u, x) = max{upF (−|u/4|),min{arcsinu∗F (u, x), downF (|u/4|)}}

The arcsinuF operation:

arcsinuF : F × F → F ∪ {−−−0,underflow, invalid}

arcsinuF (u, x) = result∗F (arcsinu#
F (u, x), nearestF)

if u ∈ GF and x ∈ F and |x| 6 1 and x 6= 0
= mulF (u, x) if u ∈ GF and x ∈ {−−−0, 0}
= no result2F (u, x) otherwise

5.3.9.10 Argument angular-unit arc cosine

The arccosu∗F approximation helper function:

arccosu∗F : F × F → R
arccosu∗F (u, x) returns a close approximation to arccos(x) · u/(2 · π) in R, with maximum error
max error sinuF (u).

Further requirements on the arccosu∗F approximation helper function are:

48 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

arccosu∗F (u, 1/2) = u/6 if u ∈ F
arccosu∗F (u, 0) = u/4 if u ∈ F
arccosu∗F (u,−1/2) = u/3 if u ∈ F
arccosu∗F (u,−1) = u/2 if u ∈ F
arccosu∗F (−u, x) = −arccosu∗F (u, x) if u, x ∈ F

The arccosu#
F range limitation helper function (for u, x ∈ F):

arccosu#
F (u, x) = max{upF (−|u/2|),min{arccosu∗F (u, x), downF (|u/2|)}}

The arccosuF operation:

arccosuF : F × F → F ∪ {underflow, invalid}

arccosuF (u, x) = result∗F (arccosu#
F (u, x), nearestF)

if u ∈ GF and x ∈ F and |x| 6 1
= nearestF (u/4) if u ∈ GF and x =−−−0
= no result2F (u, x) otherwise

5.3.9.11 Argument angular-unit arc tangent

The arctanu∗F approximation helper function:

arctanu∗F : F × F → R
arctanu∗F (u, x) returns a close approximation to arctan(x) · u/(2 · π) in R, with maximum error
max error tanuF (u).

Further requirements on the arctanu∗F approximation helper function are:

arctanu∗F (u, 1) = u/8 if u ∈ F
arctanu∗F (u, x) = u/4 if u, x ∈ F and arctanu∗F (u, x) 6= arctan(x) · u/(2 · π)

and x > 3 · rF /epsilonF
arctanu∗F (u,−x) = −arctanu∗F (u, x) if u, x ∈ F
arctanu∗F (−u, x) = −arctanu∗F (u, x) if u, x ∈ F
NOTE 1 – arctanu∗F (u, x) ≈ u/(2 · π) if |x| < fminNF

The arctanu#
F range limitation helper function (for u, x ∈ F):

arctanu#
F (u, x) = max{upF (−|u/4|),min{arctanu∗F (u, x), downF (|u/4|)}}

The arctanuF operation:

arctanuF : F × F → F ∪ {−−−0,underflow, invalid}

arctanuF (u, x) = result∗F (arctanu#
F (u, x), nearestF)

if u ∈ GF and x ∈ F and x 6= 0
= mulF (x, u) if u ∈ GF and x ∈ {−−−0, 0}
= upF (−u/4) if u ∈ GF and x =−∞−∞−∞ and u > 0
= downF (u/4) if u ∈ GF and x = +∞+∞+∞ and u > 0
= downF (−u/4) if u ∈ GF and x =−∞−∞−∞ and u < 0
= upF (u/4) if u ∈ GF and x = +∞+∞+∞ and u < 0
= no result2F (u, x) otherwise

NOTE 2 – arctanuF (u, x) ≈ arcuF (u, 1, x). (arcuF is specified in subclause 5.3.9.15 below.)

5.3.9 Operations for trigonometrics with given angular unit 49

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.9.12 Argument angular-unit arc cotangent

This clause specifies two inverse cotangent operations. One approximating the sign symmetric
(but discontinuous at 0) arccot, the other approximating the continuous (but not sign symmetric)
arccotc (both for non-radian angular units).

The arccotu∗F approximation helper function:

arccotu∗F : F × F → R
arccotu∗F (u, x) returns a close approximation to arccot(x) · u/(2 · π) in R, with maximum error
max error tanuF (u).

The arccotcu∗F approximation helper function:

arccotcu∗F : F × F → R
arccotcu∗F (u, x) returns a close approximation to arccotc(x) · u/(2 · π) in R, with maximum error
max error tanuF (u).

Further requirements on the arccotu∗F and arccotcu∗F approximation helper functions are:

arccotu∗F (u, 1) = u/8 if u ∈ F
arccotu∗F (u, 0) = u/4 if u ∈ F
arccotu∗F (u,−x) = −arccotu∗F (u, x) if u, x ∈ F and x 6= 0

arccotcu∗F (u, x) = arccotu∗F (u, x) if u, x ∈ F and x > 0
arccotcu∗F (u,−1) = 3 · u/8 if u ∈ F
arccotcu∗F (u, x) = u/2 if u, x ∈ F and arccotcu∗F (u, x) 6= arccotc(x) · u/(2 · π)

and x < −3 · rF /epsilonF
arccotcu∗F (−u, x) = −arccotcu∗F (u, x) if u, x ∈ F

The arccotu#
F and arccotcu#

F range limitation helper functions (for u, x ∈ F):

arccotu#
F (u, x) = max{upF (−|u/4|),min{arccotu∗F (u, x), downF (|u/4|)}}

arccotcu#
F (u, x) = max{upF (−|u/2|),min{arccotcu∗F (u, x), downF (|u/2|)}}

The arccotuF operation:

arccotuF : F × F → F ∪ {underflow, invalid}

arccotuF (u, x) = result∗F (arccotu#
F (u, x), nearestF)

if u ∈ GF and x ∈ F
= negF (arccotuF (u, 0)) if u ∈ GF and x =−−−0
= divF (u, x) if u ∈ GF and x ∈ {−∞−∞−∞,+∞+∞+∞}
= no result2F (u, x) otherwise

NOTES

1 arccotuF (u, negF (x)) = negF (arccotuF (u, x)).

2 Due to the range limitation, arccotuF (u, 0) need not equal arccotcuF (u, 0).

The arccotcuF operation:

arccotcuF : F × F → F ∪ {underflow, invalid}

arccotcuF (u, x) = result∗F (arccotcu#
F (u, x), nearestF)

if u ∈ GF and x ∈ F
= nearestF (u/4) if u ∈ GF and x =−−−0
= downF (u/2) if u ∈ GF and x =−∞−∞−∞ and u > 0

50 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

= upF (u/2) if u ∈ GF and x =−∞−∞−∞ and u < 0
= divF (u, x) if u ∈ GF and x = +∞+∞+∞
= no result2F (u, x) otherwise

NOTE 3 – arccotcuF (u, x) ≈ arcuF (u, x, 1). (arcuF is specified in subclause 5.3.9.15 below.)

5.3.9.13 Argument angular-unit arc secant

The arcsecu∗F approximation helper function:

arcsecu∗F : F × F → R
arcsecu∗F (u, x) returns a close approximation to arcsec(x) · u/(2 · π) in R, with maximum error
max error tanuF (u).

Further requirements on the arcsecu∗F approximation helper function are:

arcsecu∗F (u, 2) = u/6 if u ∈ F
arcsecu∗F (u,−2) = u/3 if u ∈ F
arcsecu∗F (u,−1) = u/2 if u ∈ F
arcsecu∗F (u, x) 6 u/4 if u, x ∈ F and x > 0 and u > 0
arcsecu∗F (u, x) > u/4 if u, x ∈ F and x < 0 and u > 0
arcsecu∗F (u, x) = u/4 if u, x ∈ F and arcsecu∗F (u, x) 6= arcsec(x) · u/(2 · π)

and |x| > 3 · rF /epsilonF
arcsecu∗F (−u, x) = −arcsecu∗F (u, x) if u, x ∈ F

The arcsecu#
F range limitation helper function (for u, x ∈ F):

arcsecu#
F (u, x) = max{upF (−|u/4|),min{arcsecu∗F (u, x), downF (|u/4|)}}

if x > 1
= max{upF (u/4),min{arcsecu∗F (u, x), downF (u/2)}}

if x 6 −1 and u > 0
= max{upF (u/2),min{arcsecu∗F (u, x), downF (u/4)}}

if x 6 −1 and u < 0

The arcsecuF operation:

arcsecuF : F × F → F ∪ {underflow, invalid}

arcsecuF (u, x) = result∗F (arcsecu#
F (u, x), nearestF)

if u ∈ GF and x ∈ F and 1 6 |x|
= downF (u/4) if u ∈ GF and x =−∞−∞−∞ and u > 0
= upF (u/4) if u ∈ GF and x = +∞+∞+∞ and u > 0
= upF (u/4) if u ∈ GF and x =−∞−∞−∞ and u < 0
= downF (u/4) if u ∈ GF and x = +∞+∞+∞ and u < 0
= no result2F (u, x) otherwise

5.3.9.14 Argument angular-unit arc cosecant

The arccscu∗F approximation helper function:

arccscu∗F : F × F → R

5.3.9 Operations for trigonometrics with given angular unit 51

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

arccscu∗F (u, x) returns a close approximation to arccsc(x) · u/(2 · π) in R, with maximum error
max error tanuF (u).

Further requirements on the arccscu∗F approximation helper function are:

arccscu∗F (u, 2) = u/12 if u ∈ F
arccscu∗F (u, 1) = u/4 if u ∈ F
arccscu∗F (u,−x) = −arccscu∗F (u, x) if u, x ∈ F
arccscu∗F (−u, x) = −arccscu∗F (u, x) if u, x ∈ F

The arccscu#
F range limitation helper function (for u, x ∈ F):

arccscu#
F (u, x) = max{upF (−|u/4|),min{arccscu∗F (u, x), downF (|u/4|)}}

The arccscuF operation:

arccscuF : F × F → F ∪ {underflow, invalid}

arccscuF (u, x) = result∗F (arccscu#
F (u, x), nearestF)

if u ∈ GF and x ∈ F and 1 6 |x|
= mulF (−u, 0) if u ∈ GF and x =−∞−∞−∞
= mulF (u, 0) if u ∈ GF and x = +∞+∞+∞
= no result2F (u, x) otherwise

5.3.9.15 Argument angular-unit angle from Cartesian co-ordinates

The arcu∗F approximation helper function:

arcu∗F : F × F × F → R
arcu∗F (u, x, y) returns a close approximation to arc(x, y) · u/(2 · π) in R, with maximum error
max error tanuF (u).

Further requirements on the arcu∗F approximation helper function are:

arcu∗F (u, x, x) = u/8 if u, x ∈ F and x > 0
arcu∗F (u, 0, y) = u/4 if u, y ∈ F and y > 0
arcu∗F (u, x,−x) = 3 · u/8 if u, x ∈ F and x < 0
arcu∗F (u, x, 0) = u/2 if u, x ∈ F and x < 0
arcu∗F (u, x,−y) = −arcu∗F (u, x, y) if u, x, y ∈ F and (y 6= 0 or x > 0)
arcu∗F (−u, x, y) = −arcu∗F (u, x, y) if u, x, y ∈ F

The arcu#
F range limitation helper function (for u, x, y ∈ F):

arcu#
F (u, x, y) = max{upF (−|u/2|),min{arcu∗F (u, x, y), downF (|u/2|)}}

The arcuF operation:

arcuF : F × F × F → F ∪ {−−−0,underflow, invalid}

arcuF (u, x, y) = result∗F (arcu#
F (u, x, y), nearestF)

if u ∈ GF and x, y ∈ F and (x < 0 or y 6= 0)
= mulF (u, 0) if u ∈ GF and x ∈ F and x > 0 and y = 0
= downF (u/2) if u ∈ GF and x =−−−0 and y = 0 and u > 0
= upF (u/2) if u ∈ GF and x =−−−0 and y = 0 and u < 0
= arcuF (u, 0, y) if u ∈ GF and x =−−−0 and y ∈ F ∪ {−∞−∞−∞,+∞+∞+∞} and

y 6= 0
= negF (arcuF (u, x, 0)) if u ∈ GF and y =−−−0 and x ∈ F ∪ {−∞−∞−∞,−−−0,+∞+∞+∞}

52 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

= mulF (0, u) if u ∈ GF and x = +∞+∞+∞ and y ∈ F and y > 0
= mulF (0,−u) if u ∈ GF and x = +∞+∞+∞ and y ∈ F and y < 0
= nearestF (u/8) if u ∈ GF and x = +∞+∞+∞ and y = +∞+∞+∞
= nearestF (u/4) if u ∈ GF and x ∈ F and y = +∞+∞+∞
= nearestF (3 · u/8) if u ∈ GF and x =−∞−∞−∞ and y = +∞+∞+∞
= downF (u/2) if u ∈ GF and x =−∞−∞−∞ and y ∈ F and

y > 0 and u > 0
= upF (−u/2) if u ∈ GF and x =−∞−∞−∞ and y ∈ F and

y < 0 and u > 0
= upF (u/2) if u ∈ GF and x =−∞−∞−∞ and y ∈ F and

y > 0 and u < 0
= downF (−u/2) if u ∈ GF and x =−∞−∞−∞ and y ∈ F and

y 6 0 and u < 0
= nearestF (−3 · u/8) if u ∈ GF and x =−∞−∞−∞ and y =−∞−∞−∞
= nearestF (−u/4) if u ∈ GF and x ∈ F and y =−∞−∞−∞
= nearestF (−u/8) if u ∈ GF and x = +∞+∞+∞ and y =−∞−∞−∞

= no result3F (u, x, y) otherwise

NOTE – Note that the arc operations do not return an invalid notification at the origin
(both second and third arguments in {−−−0, 0}). See B.5.3.8 and B.5.3.9. Bindings may choose
to alter this behaviour.

5.3.10 Operations for angular-unit conversions

5.3.10.1 Converting radian angle to argument angular-unit angle

Define the mathematical function:

rad to cycle : R×R → R
rad to cycle(x,w) = arccos(cos(x)) · w/(2 · π) if sin(x) > 0 and w 6= 0

= − arccos(cos(x)) · w/(2 · π) if sin(x) < 0 and w 6= 0

The rad to cycle∗F approximation helper function:

rad to cycle∗F : F 2·π × F → R
rad to cycle∗F (x,w) returns a close approximation to rad to cycle(x,w) in R, with maximum error
max error radF , if |x| 6 big angle rF .

Further requirements on the rad to cycle∗F approximation helper function are (for w ∈ F):

rad to cycle∗F (n · 2 · π + π/6, w) = w/12 if n ∈ Z and |n · 2 · π + π/6| 6 big angle rF
rad to cycle∗F (n · 2 · π + π/4, w) = w/8 if n ∈ Z and |n · 2 · π + π/4| 6 big angle rF
rad to cycle∗F (n · 2 · π + π/3, w) = w/6 if n ∈ Z and |n · 2 · π + π/3| 6 big angle rF
rad to cycle∗F (n · 2 · π + π/2, w) = w/4 if n ∈ Z and |n · 2 · π + π/2| 6 big angle rF
rad to cycle∗F (n · 2 · π + 2 · π/3, w) = w/3

if n ∈ Z and |n · 2 · π + 2 · π/3| 6 big angle rF
rad to cycle∗F (n · 2 · π + 3 · π/4, w) = 3 · w/8

if n ∈ Z and |n · 2 · π + 3 · π/4| 6 big angle rF

5.3.10 Operations for angular-unit conversions 53

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

rad to cycle∗F (n · 2 · π + 5 · π/6, w) = 5 · w/12
if n ∈ Z and |n · 2 · π + 5 · π/6| 6 big angle rF

rad to cycle∗F (n · 2 · π + π,w) = w/2 if n ∈ Z and |n · 2 · π + π| 6 big angle rF
rad to cycle∗F (−x,w) = −rad to cycle∗F (x,w)

if x ∈ F 2·π and rad to cycle(x,w) 6= w/2
rad to cycle∗F (x,−w) = −rad to cycle∗F (x,w)

if x ∈ F 2·π and rad to cycle(x,w) 6= w/2

The rad to cycleF operation:

rad to cycleF : F × F → F ∪ {underflow,absolute precision underflow, invalid}
rad to cycleF (x,w)

= result∗F (rad to cycle∗F (x,w), nearestF)
if w ∈ GF and x ∈ F and |x| 6 big angle rF and
x 6= 0

= mulF (w, x) if w ∈ GF and x ∈ {−−−0, 0}
= absolute precision underflow(qNaN)

if w ∈ GF and x ∈ F and |x| > big angle rF
= no result2F (x,w) otherwise

5.3.10.2 Converting argument angular-unit angle to radian angle

Define the mathematical function:

cycle to rad : R×R → R
cycle to rad(u, x) = arccos(cos(x · 2 · π/u)) if sin(x · 2 · π/u) > 0

= − arccos(cos(x · 2 · π/u)) if sin(x · 2 · π/u) < 0

The cycle to rad∗F approximation helper function:

cycle to rad∗F : (u : F)× F u → R
cycle to rad∗F (u, x) returns a close approximation to cycle to rad(u, x) in R, if u 6= 0, with maxi-
mum error max error radF .

Further requirements on the cycle to rad∗F approximation helper function are (for u ∈ F ,
u 6= 0):

cycle to rad∗F (u, n · u+ x) = cycle to rad∗F (u, x)
if n ∈ Z and x ∈ F u

cycle to rad∗F (u, u/12) = π/6
cycle to rad∗F (u, u/8) = π/4
cycle to rad∗F (u, u/6) = π/3
cycle to rad∗F (u, u/4) = π/2
cycle to rad∗F (u, u/3) = 2 · π/3
cycle to rad∗F (u, 3 · u/8) = 3 · π/4
cycle to rad∗F (u, 5 · u/12) = 5 · π/6
cycle to rad∗F (u, u/2) = π
cycle to rad∗F (u,−x) = −cycle to rad∗F (u, x)

if x ∈ F u and cycle to rad(u, x) 6= π
cycle to rad∗F (−u, x) = −cycle to rad∗F (u, x)

if x ∈ F u and cycle to rad(u, x) 6= π

54 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

The cycle to radF operation:

cycle to radF : F × F → F ∪ {−−−0,underflow,absolute precision underflow, invalid}
cycle to radF (u, x)

= result∗F (cycle to rad∗F (u, x), nearestF)
if cycleF (u, x) ∈ F and cycleF (u, x) 6= 0

= mulF (cycleF (u, x), u) if cycleF (u, x) ∈ {−−−0, 0}
= cycleF (u, x) otherwise

5.3.10.3 Converting argument angular-unit angle to (another) argument angular-
unit angle

Define the mathematical function:

cycle to cycle : R×R×R → R
cycle to cycle(u, x, w)

= arccos(cos(x · 2 · π/u)) · w/(2 · π)
if u 6= 0 and w 6= 0 and sin(x · 2 · π/u) > 0

= − arccos(cos(x · 2 · π/u)) · w/(2 · π)
if u 6= 0 and w 6= 0 and sin(x · 2 · π/u) < 0

The cycle to cycle∗F approximation helper function:

cycle to cycle∗F : (u : F)× F u × F → R
cycle to cycle∗F (u, x, w) returns a close approximation to cycle to cycle(u, x, w) in R if u 6= 0 and
|x/u| 6 big angle uF , with maximum error max error radF .

Further requirements on the cycle to cycle∗F approximation helper function are (for u,w ∈ F ,
u 6= 0):

cycle to cycle∗F (u, n · u+ x,w) = cycle to cycle∗F (u, x, w)
if n ∈ Z and x ∈ F u

cycle to cycle∗F (u, u/12, w) = w/12
cycle to cycle∗F (u, u/8, w) = w/8
cycle to cycle∗F (u, u/6, w) = w/6
cycle to cycle∗F (u, u/4, w) = w/4
cycle to cycle∗F (u, u/3, w) = w/3
cycle to cycle∗F (u, 3 · u/8, w) = 3 · w/8
cycle to cycle∗F (u, 5 · u/12, w) = 5 · w/12
cycle to cycle∗F (u, u/2, w) = w/2
cycle to cycle∗F (u,−x,w) = −cycle to cycle∗F (u, x, w)

if x ∈ F u and cycle to cycle(u, x, w) 6= w/2
cycle to cycle∗F (−u, x, w) = −cycle to cycle∗F (u, x, w)

if x ∈ F u and cycle to cycle(u, x, w) 6= w/2
cycle to cycle∗F (u, x,−w) = −cycle to cycle∗F (u, x, w)

if x ∈ F u and cycle to cycle(u, x, w) 6= w/2

The cycle to cycleF operation:

cycle to cycleF : F × F × F → F ∪ {−−−0,underflow,absolute precision underflow,
invalid}

5.3.10 Operations for angular-unit conversions 55

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

cycle to cycleF (u, x, w)
= result∗F (cycle to cycle∗F (u, x, w), nearestF)

if w ∈ GF and cycleF (u, x) ∈ F and cycleF (u, x) 6= 0
= mulF (w, cycleF (u, x)) if w ∈ GF and cycleF (u, x) ∈ {−−−0, 0}
= absolute precision underflow(qNaN)

if w ∈ GF and
cycleF (u, x) = absolute precision underflow

= no result3F (u, x, w) otherwise

5.3.11 Operations for hyperbolic elementary functions

There shall be two maximum error parameters for operations corresponding to the hyperbolic and
inverse hyperbolic functions:

max error sinhF ∈ F
max error tanhF ∈ F

Themax error sinhF parameter shall have a value that is6 2·rnd errorF . Themax error tanhF
parameter shall have a value that is 6 2 · rnd errorF .

5.3.11.1 Hyperbolic sine

The sinh∗F approximation helper function:

sinh∗F : F → R
sinh∗F (x) returns a close approximation to sinh(x) in R, with maximum error max error sinhF .

Further requirements on the sinh∗F approximation helper function are:

sinh∗F (x) = x if x ∈ F and sinh∗F (x) 6= sinh(x) and
|x| <

√
2 · epsilonF /rF

sinh∗F (−x) = −sinh∗F (x) if x ∈ F
The sinhF operation:

sinhF : F → F ∪ {overflow}
sinhF (x) = result∗F (sinh∗F (x), nearestF)

if x ∈ F and |x| > fminNF

= x if x ∈ F and |x| 6 fminNF

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no resultF (x) otherwise

NOTES

1 underflow is explicitly avoided.

2 sinhF (x) will overflow approximately when |x| > ln(2 · fmaxF).

5.3.11.2 Hyperbolic cosine

The cosh∗F approximation helper function:

cosh∗F : F → R

56 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

cosh∗F (x) returns a close approximation to cosh(x) in R, with maximum error max error sinhF .

Further requirements on the cosh∗F approximation helper function are:

cosh∗F (x) = 1 if x ∈ F and cosh∗F (x) 6= cosh(x) and
|x| <

√
epsilonF

cosh∗F (−x) = cosh∗F (x) if x ∈ F
The relationship to the sinh∗F approximation helper function for the sinhF operation in the

same library shall be:

cosh∗F (x) > sinh∗F (x) if x ∈ F
The coshF operation:

coshF : F → F ∪ {overflow}
coshF (x) = result∗F (cosh∗F (x), nearestF)

if x ∈ F
= 1 if x =−−−0
= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞}
= no resultF (x) otherwise

NOTE – coshF (x) will overflow approximately when |x| > ln(2 · fmaxF).

5.3.11.3 Hyperbolic tangent

The tanh∗F approximation helper function:

tanh∗F : F → R
tanh∗F (x) returns a close approximation to tanh(x) in R, with maximum error max error tanhF .

Further requirements on the tanh∗F approximation helper function are:

tanh∗F (x) = x if x ∈ F and tanh∗F (x) 6= tanh(x) and
|x| 6

√
1.5 · epsilonF /rF

tanh∗F (x) = 1 if x ∈ F and tanh∗F (x) 6= tanh(x) and
x > arctanh(1− (epsilonF /(3 · rF)))

tanh∗F (−x) = −tanh∗F (x) if x ∈ F
The tanhF operation:

tanhF : F → F

tanhF (x) = result∗F (tanh∗F (x), nearestF)
if x ∈ F and |x| > fminNF

= x if x ∈ F and |x| 6 fminNF

=−−−0 if x =−−−0
= −1 if x =−∞−∞−∞
= 1 if x = +∞+∞+∞
= no resultF (x) otherwise

NOTE – underflow is explicitly avoided.

5.3.11 Operations for hyperbolic elementary functions 57

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.11.4 Hyperbolic cotangent

The coth∗F approximation helper function:

coth∗F : F → R
coth∗F (x) returns a close approximation to coth(x) in R, with maximum error max error tanhF .

Further requirements on the coth∗F approximation helper function are:

coth∗F (x) = 1 if x ∈ F and coth∗F (x) 6= coth(x) and
x > arccoth(1 + (epsilonF /4))

coth∗F (−x) = −coth∗F (x) if x ∈ F
The cothF operation:

cothF : F → F ∪ {infinitary,overflow}
cothF (x) = result∗F (coth∗F (x), nearestF)

if x ∈ F and x 6= 0
= infinitary(+∞+∞+∞) if x = 0
= infinitary(−∞−∞−∞) if x =−−−0
= −1 if x =−∞−∞−∞
= 1 if x = +∞+∞+∞
= no resultF (x) otherwise

NOTE – cothF (x) will overflow approximately when |1/x| > fmaxF .

5.3.11.5 Hyperbolic secant

The sech∗F approximation helper function:

sech∗F : F → R
sech∗F (x) returns a close approximation to sech(x) in R, with maximum error max error tanhF .

Further requirements on the sech∗F approximation helper function are:

sech∗F (x) = 1 if x ∈ F and sech∗F (x) 6= sech(x) and
|x| <

√
epsilonF /rF

sech∗F (−x) = sech∗F (x) if x ∈ F
sech∗F (x) < fminDF /2 if x ∈ F and x > 2− ln(fminDF /4)

The sechF operation:

sechF : F → F ∪ {underflow}
sechF (x) = result∗F (sech∗F (x), nearestF)

if x ∈ F
= 1 if x =−−−0
= 0 if x ∈ {−∞−∞−∞,+∞+∞+∞}
= no resultF (x) otherwise

58 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

5.3.11.6 Hyperbolic cosecant

The csch∗F approximation helper function:

csch∗F : F → R
csch∗F (x) returns a close approximation to csch(x) in R, with maximum error max error tanhF .

Further requirements on the csch∗F approximation helper function are:

csch∗F (−x) = −csch∗F (x) if x ∈ F
csch∗F (x) < fminDF /2 if x ∈ F and x > 2− ln(fminDF /4)

The relationship to the sech∗F approximation helper function for the sechF operation in the
same library shall be:

csch∗F (x) > sech∗F (x) if x ∈ F and x > 0

The cschF operation:

cschF : F → F ∪ {underflow,overflow, infinitary}
cschF (x) = result∗F (csch∗F (x), nearestF)

if x ∈ F and x 6= 0
= divF (1, x) if x ∈ {−∞−∞−∞,−−−0, 0,+∞+∞+∞}
= no resultF (x) otherwise

NOTE – cschF (x) will overflow approximately when |1/x| > fmaxF .

5.3.11.7 Inverse hyperbolic sine

The arcsinh∗F approximation helper function:

arcsinh∗F : F → R
arcsinh∗F (x) returns a close approximation to arcsinh(x) inR, with maximum errormax error sinhF .

Further requirements on the arcsinh∗F approximation helper function are:

arcsinh∗F (x) = x if x ∈ F and arcsinh∗F (x) 6= arcsinh(x) and
|x| 6

√
3 · epsilonF /rF

arcsinh∗F (−x) = −arcsinh∗F (x) if x ∈ F
The arcsinhF operation:

arcsinhF : F → F

arcsinhF (x) = result∗F (arcsinh∗F (x), nearestF)
if x ∈ F and |x| > fminNF

= x if x ∈ F and |x| 6 fminNF

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= no resultF (x) otherwise

NOTE – underflow is explicitly avoided.

5.3.11 Operations for hyperbolic elementary functions 59

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.3.11.8 Inverse hyperbolic cosine

The arccosh∗F approximation helper function:

arccosh∗F : F → R
arccosh∗F (x) returns a close approximation to arccosh(x) inR, with maximum errormax error sinhF .

The relationship to the arcsinh∗F approximation helper function for the arcsinhF operation in
the same library shall be:

arccosh∗F (x) 6 arcsinh∗F (x) if x ∈ F
The arccoshF operation:

arccoshF : F → F ∪ {invalid}
arccoshF (x) = result∗F (arccosh∗F (x), nearestF)

if x ∈ F and x > 1
= +∞+∞+∞ if x = +∞+∞+∞
= no resultF (x) otherwise

5.3.11.9 Inverse hyperbolic tangent

The arctanh∗F approximation helper function:

arctanh∗F : F → R
arctanh∗F (x) returns a close approximation to arctanh(x) inR, with maximum errormax error tanhF .

Further requirements on the arctanh∗F approximation helper function are:

arctanh∗F (x) = x if x ∈ F and arctanh∗F (x) 6= arctanh(x) and
|x| <

√
epsilonF /rF

arctanh∗F (−x) = −arctanh∗F (x) if x ∈ F
The arctanhF operation:

arctanhF : F → F ∪ {infinitary, invalid}
arctanhF (x) = result∗F (arctanh∗F (x), nearestF)

if x ∈ F and fminNF < |x| < 1
= x if x ∈ F and |x| 6 fminNF

=−−−0 if x =−−−0
= infinitary(+∞+∞+∞) if x = 1
= infinitary(−∞−∞−∞) if x = −1
= no resultF (x) otherwise

NOTE – underflow is explicitly avoided.

5.3.11.10 Inverse hyperbolic cotangent

The arccoth∗F approximation helper function:

arccoth∗F : F → R
arccoth∗F (x) returns a close approximation to arccoth(x) inR, with maximum errormax error tanhF .

A further requirement on the arccoth∗F approximation helper function is:

60 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

arccoth∗F (−x) = −arccoth∗F (x) if x ∈ F
The arccothF operation:

arccothF : F → F ∪ {underflow, infinitary, invalid}
arccothF (x) = result∗F (arccoth∗F (x), nearestF)

if x ∈ F and |x| > 1
= infinitary(+∞+∞+∞) if x = 1
= infinitary(−∞−∞−∞) if x = −1
=−−−0 if x =−∞−∞−∞
= 0 if x = +∞+∞+∞
= no resultF (x) otherwise

NOTE – There is no underflow for this operation for most kinds of floating point types,
e.g. IEC 60559 ones.

5.3.11.11 Inverse hyperbolic secant

The arcsech∗F approximation helper function:

arcsech∗F : F → R
arcsech∗F (x) returns a close approximation to arcsech(x) inR, with maximum errormax error tanhF .

The arcsechF operation:

arcsechF : F → F ∪ {infinitary, invalid}
arcsechF (x) = result∗F (arcsech∗F (x), nearestF)

if x ∈ F and 0 < x 6 1
= infinitary(+∞+∞+∞) if x ∈ {−−−0, 0}
= no resultF (x) otherwise

5.3.11.12 Inverse hyperbolic cosecant

The arccsch∗F approximation helper function:

arccsch∗F : F → R
arccsch∗F (x) returns a close approximation to arccsch(x) inR, with maximum errormax error tanhF .

A further requirement on the arccsch∗F approximation helper function is:

arccsch∗F (−x) = −arccsch∗F (x) if x ∈ F
The arccschF operation:

arccschF : F → F ∪ {underflow, infinitary}
arccschF (x) = result∗F (arccsch∗F (x), nearestF)

if x ∈ F and x 6= 0
= divF (1, x) if x ∈ {−∞−∞−∞,−−−0, 0,+∞+∞+∞}
= no resultF (x) otherwise

NOTE – There is no underflow for this operation for most kinds of floating point types,
e.g. IEC 60559 ones.

5.3.11 Operations for hyperbolic elementary functions 61

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.4 Operations for conversion between numeric datatypes

Numeric conversion between different representation forms for integer and fractional values can
take place under a number of different circumstances. E.g.:

a) explicit or implicit conversion between different numeric datatypes conforming to part 1;

b) explicit or implicit conversion between different numeric datatypes only one of which con-
forms to part 1;

c) explicit or implicit conversion between a character string and a numeric datatype.

The latter includes outputting a numeric value as a character string, inputting a numeric value
from a character string source, and converting a numeral in the source program to a value in a
numeric datatype (see clause 5.5). This part covers only the cases where at least one of the source
and target is a numeric datatype conforming to part 1.

When a character string is involved as either source or target of a conversion, this part does not
specify the lexical syntax for the numerals parsed or formed. A binding standard should specify
the lexical syntax or syntaxes for these numerals, and, when appropriate, how the lexical syntax
for the numerals can be altered. This could include which script for the digits to use in a position
system (Latin-Arabic digits, Arabic-Indic digits, traditional Thai digits, etc.). With the exception
of the radix used in numerals expressing fractional values, differences in lexical syntactic details
that do not affect the value in R denoted by the numerals should not affect the result of the
conversion.

Character string representations for integer values can include representations for −−−0, +∞+∞+∞,
−∞−∞−∞, and quiet NaNs. Character string representations for floating point and fixed point values
should have formats for −−−0, +∞+∞+∞, −∞−∞−∞, and quiet NaNs. For both integer and floating point
values, character strings that are not numerals nor special values according to the lexical syntax
used, shall be regarded as signalling NaNs when used as source of a numerical conversion.

For the cases where one of the datatypes involved in the conversion does not conform to part 1,
the values of some numeric datatype parameters need to be inferred. For integers, one need to
infer the value for bounded, and if that is true then also values for maxint and minint, and for
string formats also the radix. For floating point values, one need to infer the values for r, p,
and emax or emin. In case a precise determination is not possible, values that are ‘safe’ for that
instance should be used. ‘Safe’ values for otherwise undetermined inferred parameters are such
that

a) monotonicity of the conversion function is not affected,

b) the error in the conversion does not exceed that specified by the maximum error parameter
(see below),

c) if the value resulting from the conversion is converted back to the source datatype by a
conversion conforming to this part, the original value should be regenerated if possible, and

d) overflow and underflow are avoided if possible.

If, and only if, a specified infinite special value result cannot be represented in the target
datatype, the infinity result shall be interpreted as implying the infinitary notification. If, and
only if, a specified NaN special value result cannot be represented in the target datatype, the
NaN result shall be interpreted as implying the invalid notification. If, and only if, a specified

62 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

−−−0 special value result cannot be represented in the target datatype, the −−−0 result shall be
interpreted as 0.

5.4.1 Integer to integer conversions

Let I and I ′ be non-special value sets for integer datatypes. At least one of the datatypes
corresponding to I and I ′ conforms to part 1.

convertI→I′ : I → I ′ ∪ {overflow}
convertI→I′(x) = resultI′(x) if x ∈ I

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE – If both I and I ′ are conforming to part 1, then this conversion is covered by part 1.
This operation generalises the cvtI→I′ of part 1, since only one of the integer datatypes in the
conversion need be conforming to part 1.

5.4.2 Floating point to integer conversions

Let I be the non-special value set for an integer datatype conforming to part 1. Let F be the
non-special value set for a floating point datatype conforming to part 1.

floorF→I : F → I ∪ {overflow}
floorF→I(x) = resultI(bxc) if x ∈ F

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

roundingF→I : F → I ∪ {−−−0,overflow}
roundingF→I(x)

= resultI(round(x)) if x ∈ F and (x > 0 or round(x) 6= 0)
=−−−0 if x ∈ F and x < 0 and round(x) = 0
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

ceilingF→I : F → I ∪ {−−−0,overflow}
ceilingF→I(x) = resultI(dxe) if x ∈ F and (x > 0 or dxe 6= 0)

=−−−0 if x ∈ F and x < 0 and dxe = 0
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

5.4.1 Integer to integer conversions 63

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

5.4.3 Integer to floating point conversions

Let I be the non-special value set for an integer datatype. Let F be the non-special value set for
a floating point datatype. At least one of the source and target datatypes is conforming to part 1.

convertI→F : I → F ∪ {overflow}
convertI→F (x) = resultF (x, nearestF) if x ∈ I

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTE – When both I and F conform to part 1, integer to nearest floating point conversions
are covered by part 1. In this case the operations cvtI→F and convertI→F are identical.

5.4.4 Floating point to floating point conversions

Define the least radix function, lb, defined for arguments that are greater than 0:

lb : Z → Z
lb(r) = min{n ∈ Z | n > 1 and there is an m ∈ Z such that r = nm}

Let F , F ′, and F ′′ be non-special value sets for floating point datatypes. At least one of the
source and target datatypes in the conversion conforms to part 1.

There shall be a max error convertF ′ parameter that gives the maximum error when convert-
ing from F to F ′ and lb(rF) 6= lb(rF ′). The max error convertF ′ parameter shall have the value
0.5. If the binding standard requires that this parameter has the value 0.5 (see annex A), this
parameter need not be made available for programs.

If lb(rF) = lb(rF ′), the maximum error shall be 0.5 ulp when converting from F to F ′, even
when the implementation is only partially conforming (see Annex A), but this is not reflected in
any parameter.

The convert∗F→F ′ approximation helper functions:

convert∗F→F ′ : F → R
convert∗F→F ′(x) returns a close approximation to x inR, with maximum errormax error convertF ′ .

NOTE 1 – With the maximum error 0.5 ulp, this and the below conversion helper functions
are not really needed. However, Annex A allows for partial conformity, such that the maximum
error for these helper functions may be greater than 0.5 ulp.

Further requirements on the convert∗F→F ′ approximation helper functions are:

convert∗F→F ′(x) = x if x ∈ Z ∩ F
convert∗F→F ′(x) > 0 if x ∈ F and x > 0
convert∗F→F ′(−x) = −convert∗F→F ′(x) if x ∈ F
convert∗F→F ′(x) 6 convert∗F→F ′(y) if x, y ∈ F and x < y

Relationship to other floating point to floating point conversion approximation helper functions
for conversion operations in the same library shall be:

convert∗F→F ′(x) = convert∗F ′′→F ′(x) if lb(rF ′′) = lb(rF) and x ∈ F ∩ F ′′

The convertF→F ′ operation:

convertF→F ′ : F → F ′ ∪ {overflow,underflow}

64 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

convertF→F ′(x) = resultF ′(x, nearestF ′) if x ∈ F and lb(rF) = lb(rF ′)
= result∗F ′(convert

∗
F→F ′(x), nearestF ′)

if x ∈ F and lb(rF) 6= lb(rF ′)
= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

2 Modern techniques allow, on the average, efficient conversion with a maximum error of 0.5
ulp even when the radices differ. C99 [17], for instance, requires that all floating point value
conversion is done with a maximum error of 0.5 ulp.

3 IEC 60559 requirements imply that the max error convertF ′ parameter has a value 6 0.97.
Such a large maximum error for the conversion is only partially conforming. See Annex A.

4 When the maximum error is 0.5, the conversion helper function above can be the identity
function.

5 When both datatypes conform to part 1, and the radices for both of these floating point
datatypes are the same, floating point to nearest floating point conversions are covered by
part 1. In this case the operations cvtF→F ′ and convertF→F ′ are identical.

5.4.5 Floating point to fixed point conversions

Let F be the non-special value set for a floating point datatype conforming to part 1. Let D be
the non-special value set for a fixed point datatype.

A fixed point datatype D is a subset of R, characterised by a radix, rD ∈ Z (> 2), a density,
dD ∈ Z (> 0), and if it is bounded, a maximum positive value, dmaxD ∈ D∗ (> 1). Given these
values, the following sets are defined:

D∗ = {n/(rdDD) | n ∈ Z}

D = D∗ if D is not bounded
D = D∗ ∩ [−dmaxD, dmaxD] if D is bounded
NOTE 1 – D corresponds to scaled(rD, dD) in ISO/IEC 11404 Language independent
datatypes (LID) [10]. LID has no parameter corresponding to dmaxD even when the datatype
is bounded.

The fixed point rounding helper function:

nearestD : R→ D∗

is the rounding function that rounds to nearest, ties round to even last digit.

The fixed point result helper function, resultD, is like resultF , but for a fixed point datatype.
It will return overflow if the rounded result is not representable:

resultD : R× (R→ D∗)→ D ∪ {−−−0,overflow}
resultD(x, rnd) = rnd(x) if rnd(x) ∈ D and (rnd(x) 6= 0 or x > 0)

=−−−0 if rnd(x) = 0 and x < 0
= overflow if x ∈ R and rnd(x) 6∈ D

There shall be amax error convertD parameter that gives the maximum error when converting
from F to D and lb(rF) 6= lb(rD). The max error convertD parameter shall have the value 0.5. If
the binding standard requires that this parameter has the value 0.5 (see annex A), this parameter
need not be made available for programs.

5.4.5 Floating point to fixed point conversions 65

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

If lb(rF) = lb(rD), the maximum error shall be 0.5 ulp when converting from F to D, even
when the implementation is only partially conforming (see Annex A), but this is not reflected in
any parameter.

The convert∗F→D approximation helper function:

convert∗F→D : F → R
convert∗F→D(x) returns a close approximation to x inR, with maximum errormax error convertD.

Further requirements on the convert∗F→D approximation helper functions are:

convert∗F→D(x) = x if x ∈ Z ∩ F
convert∗F→D(x) > 0 if x ∈ F and x > 0
convert∗F→D(−x) = −convert∗F→D(x) if x ∈ F
convert∗F→D(x) 6 convert∗F→D(y) if x, y ∈ F and x < y

Relationship to other floating point to fixed point conversion approximation helper functions
for conversion operations in the same library shall be:

convert∗F→D(x) = convert∗F ′′→D(x) if lb(rF ′′) = lb(rF) and x ∈ F ∩ F ′′

The convertF→D operation:

convertF→D : F → D ∪ {−−−0,overflow}
convertF→D(x) = resultD(x, nearestD) if x ∈ F and lb(rF) = lb(rD)

= resultD(convert∗F→D(x), nearestD)
if x ∈ F and lb(rF) 6= lb(rD)

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

2 The datatype D need not be visible in the programming language. D may be a subtype of
strings, according to some format. Even so, no datatype for strings need be present in the
programming language.

3 This covers, among other things, “output” of floating point datatype values, to fixed point
string formats. E.g. a binding may say that float to fixed string(x, m, n) is bound
to convertF→Sm,n(x) where Sm,n is strings of length m, representing fixed point values in
radix 10 with n decimals. The binding should also detail how NaNs, signed zeroes and
infinities are represented in Sm,n, as well as the precise format of the strings representing
ordinary values. (Note that if the length of the target string is limited, the conversion may
overflow.)

4 IEC 60559 requirements imply that the max error convertD parameter has a value 6 0.97.
Such a large maximum error for the conversion is only partially conforming. See Annex A.

5 When the maximum error is 0.5, the conversion helper function above can be the identity
function.

5.4.6 Fixed point to floating point conversions

Let F be the non-special value set for a floating point datatype conforming to part 1. Let D and
D′ be the non-special value set for fixed point datatypes.

The convert∗D→F approximation helper function:

convert∗D→F : D → R

66 Specifications for integer and floating point operations

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

convert∗D→F (x) returns a close approximation to x inR, with maximum errormax error convertF .

Further requirements on the convert∗D→F approximation helper functions are:

convert∗D→F (x) = x if x ∈ Z ∩D
convert∗D→F (x) > 0 if x ∈ D and x > 0
convert∗D→F (−x) = −convert∗D→F (x) if x ∈ D
convert∗D→F (x) 6 convert∗D→F (y) if x, y ∈ D and x < y

Relationship to other floating point and fixed point to floating point conversion approximation
helper functions for conversion operations in the same library shall be:

convert∗D→F (x) = convert∗D′→F (x) if lb(rD′) = lb(rD) and x ∈ D ∩D′
convert∗D→F (x) = convert∗F ′→F (x) if lb(rF ′) = lb(rD) and x ∈ D ∩ F ′

The convertD→F operation:

convertD→F : D → F ∪ {overflow,underflow}
convertD→F (x) = resultF (x, nearestF) if x ∈ D and lb(rD) = lb(rF)

= result∗F (convert∗D→F (x), nearestF)
if x ∈ D and lb(rD) 6= lb(rF)

= x if x ∈ {−∞−∞−∞,−−−0,+∞+∞+∞}
= qNaN if x is a quiet NaN
= invalid(qNaN) if x is a signalling NaN

NOTES

1 This covers, among other things, “input” of floating point datatype values, from fixed point
string formats. E.g. a binding may say that string to float(s) is bound to convertSm,n→F (s)
where Sm,n is strings of length m, where m is the length of s, and n is the number of digits
after the “decimal symbol” represented in Sm,n, as well as the precise format of the strings
representing ordinary values.

2 When the maximum error is 0.5, the conversion helper function above can be the identity
function.

5.5 Numerals as operations in a programming language

NOTE – Numerals in strings, or input, is covered by the conversion operations in clause 5.4.

Each numeral is a parameterless operation. Thus, this clause introduces a very large number
of operations, since the number of numerals is in principle infinite.

5.5.1 Numerals for integer datatypes

Let I ′ be a non-special value set for integer numerals for the datatype corresponding to I.

An integer numeral, denoting an abstract value n in I ′ ∪ {−−−0,+∞+∞+∞,−∞−∞−∞,qNaN, sNaN}, for
an integer datatype with non-special value set I, shall result in

convertI′→I(n)

For each integer datatype conforming to part 1 and made directly available, there shall be
integer numerals with radix 10.

For each radix for numerals made available for a bounded integer datatype with non-special
value set I, there shall be integer numerals for all non-negative values of I. For each radix for

5.5 Numerals as operations in a programming language 67

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

numerals made available for an unbounded integer datatype, there shall be integer numerals for
all non-negative integer values smaller than 1020.

For each integer datatype made directly available and that may have special values:

a) There should be a numeral for positive infinity. There shall be a numeral for positive infinity
if there is a positive infinity in the integer datatype.

b) There should be numerals for quiet and signalling NaNs.

5.5.2 Numerals for floating point datatypes

Let D be a non-special value set for fixed point numerals for the datatype corresponding to F .
Let F ′ be a non-special value set for floating point numerals for the datatype corresponding to F .

A fixed point numeral, denoting an abstract value x in D∪{−−−0,+∞+∞+∞,−∞−∞−∞,qNaN, sNaN}, for
a floating point datatype with non-special value set F , shall result in

convertD→F (x)

A floating point numeral, denoting an abstract value x in F ′ ∪{−−−0,+∞+∞+∞,−∞−∞−∞,qNaN, sNaN},
for a floating point datatype with non-special value set F , shall result in

convertF ′→F (x)

For each floating point datatype conforming to part 1 and made directly available, there should
be radix 10 floating point numerals, and there shall be radix 10 fixed point numerals.

For each radix for fixed point numerals made available for a floating point datatype, there shall
be numerals for all bounded precision and bounded range expressible non-negative values of R.
At least a precision (dD) of 20 should be available. At least a range (dmaxD) of 1020 should be
available.

For each radix for floating point numerals made available for a floating point datatype with
non-special value set F , there shall be numerals for all bounded precision and bounded range
expressible non-negative values of R. The precision and range bounds for the numerals shall be
large enough to allow all non-negative values of F to be reachable.

For each floating point datatype made directly available and that may have special values:

a) There should be a numeral for positive infinity. There shall be a numeral for positive infinity
if there is a positive infinity in the floating point datatype.

b) There should be numerals for quiet and signalling NaNs.

The conversion operations used for numerals as operations should be the same as those used
by default for converting strings to values in conforming integer or floating point datatypes.

6 Notification

Notification is the process by which a user or program is informed that an arithmetic operation
cannot return a suitable numeric result. Specifically, a notification shall occur when any arith-
metic operation returns an exceptional value. Notification shall be performed according to the
requirements of clause 6 of part 1.

An implementation shall not give notifications for operations conforming to this part, unless
the specification requires that an exceptional value results for the given arguments.

68 Notification

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

The default method of notification should be recording of indicators.

6.1 Continuation values

If notifications are handled by a recording of indicators, in the event of notification the imple-
mentation shall provide a continuation value to be used in subsequent arithmetic operations.
Continuation values may be in I or F (as appropriate), or be special values (−−−0, −∞−∞−∞, +∞+∞+∞, or a
qNaN).

Floating point datatypes that satisfy the requirements of IEC 60559 have special values in
addition to the values in F . These are: −−−0, +∞+∞+∞, −∞−∞−∞, signalling NaNs (sNaN), and quiet
NaNs (qNaN). Such values may be passed as arguments to operations, and used as results or
continuation values. Floating point types that do not fully conform to IEC 60559 can also have
values corresponding to −−−0, +∞+∞+∞, −∞−∞−∞, or NaN.

Continuation values of −−−0, +∞+∞+∞, −∞−∞−∞, and NaN are required only if the parameter iec 559F
has the value true. If the implementation can represent such special values in the result datatype,
they should be used according to the specifications in this part.

7 Relationship with language standards

A computing system often provides some of the operations specified in this part within the context
of a programming language. The requirements of the present standard shall be in addition to those
imposed by the relevant programming language standards.

This part does not define the syntax of arithmetic expressions. However, programmers need to
know how to reliably access the operations specified in this part.

NOTE 1 – Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation that should be used to invoke an operation
specified in this part and made available. An implementation should document the notation that
should be used to invoke an operation specified in this part and that could be made available.

NOTE 2 – For example, the radian arc sine operation for an argument x (arcsinF (x)) might
be invoked as

arcsin(x) in Pascal [27] and Ada [11]
asin(x) in C [17] and Fortran [22]
(asin x) in Common Lisp [42] and ISLisp [24]
function asin(x) in COBOL [19]

with a suitable expression for the argument (x).

An implementation shall document the semantics of arithmetic expressions in terms of compo-
sitions of the operations specified in clause 5 of this part and in clause 5 of part 1.

NOTE 3 – An arithmetic expression might not be executed as written.

For example, if x is declared to be single precision (SP) floating point, and calculation is done
in single precision, then the expression

arcsin(x)

might translate to

6.1 Continuation values 69

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

arcsinSP (x)

If the language in question did all computations in double precision (DP) floating point, the
above expression might translate to

arcsinDP (convertSP→DP (x))

Alternatively, if x was declared to be an integer, and the expected result datatype is single
precision float, the above expression might translate to

convertDP→SP (arcsinDP (convertI→DP (x)))

Compilers often “optimize” code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include

a) Insertion of operations, such as datatype conversions or changes in precision.

b) Replacing operations (or entire subexpressions) with others, such as “cos(-x)”→ “cos(x)”
(exactly the same result) or “pi - arccos(x)” → “arccos(-x)” (more accurate result) or
“exp(x)-1” → “expm1(x)” (more accurate result if x > −1, less accurate result if x < −1,
different notification behaviour).

c) Evaluating constant subexpressions.

d) Eliminating unneeded subexpressions.

Only transformations which alter the semantics of an expression (the values produced, and the
notifications generated) need be documented. Only the range of permitted transformations need
be documented. It is not necessary to describe the specific choice of transformations that will be
applied to a particular expression.

The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

NOTE 4 – It is highly desirable that programming languages intended for numerical use
provide means for limiting the transformations applied to particular arithmetic expressions.

8 Documentation requirements

In order to conform to this part, an implementation shall include documentation providing the
following information to programmers.

NOTE – Much of the documentation required in this clause is properly the responsibility of
programming language or binding standards. An individual implementation would only need
to provide details if it could not cite an appropriate clause of the language or binding standard.

a) A list of the provided operations that conform to this part.

b) For each maximum error parameter, the value of that parameter or definition of that param-
eter function. Only maximum error parameters that are relevant to the provided operations
need be given.

c) The value of the parameters big angle rF and big angle uF . Only big angle parameters that
are relevant to the provided operations need be given.

d) For the nearestF function, the rule used for rounding halfway cases, unless iec 559F is fixed
to true.

70 Documentation requirements

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

e) For each conforming operation, the continuation value provided for each notification condi-
tion. Specific continuation values that are required by this part need not be documented. If
the notification mechanism does not make use of continuation values (see clause 6), contin-
uation values need not be documented.

f) For each conforming operation, how the results depend on the rounding mode, if rounding
modes are provided. Operations may be insensitive to the rounding mode, or sensitive to it,
but even then need not heed the rounding mode.

g) For each conforming operation, the notation to be used for invoking that operation.

h) For each maximum error parameter, the notation to be used to access that parameter.

i) The notation to be used to access the parameters big angle rF and big angle uF .

j) For each of the provided operations where this part specifies a relation to another operation
specified in this part, the binding for that other operation.

k) For numerals conforming to this part, which available string conversion operations, including
reading from input, give exactly the same conversion results, even if the string syntaxes for
‘internal’ and ‘external’ numerals are different.

Since the integer and floating point datatypes used in conforming operations shall satisfy the
requirements of part 1, the following information shall also be provided by any conforming imple-
mentation.

l) The means for selecting the modes of operation that ensure conformity.

m) The translation of arithmetic expressions into combinations of the operations provided by
any part of ISO/IEC 10967, including any use made of higher precision. (See clause 7 of
part 1.)

n) The methods used for notification, and the information made available about the notification.
(See clause 6 of part 1.)

o) The means for selecting among the notification methods, and the notification method used
in the absence of a user selection. (See clause 6.3 of part 1.)

p) When “recording of indicators” is the method of notification, the datatype used to represent
Ind (see clause 6.1.2 of part 1), the method for denoting the values of Ind , and the notation
for invoking each of the “indicator” operations. E is the set of notification indicators. The
association of values in Ind with subsets of E must be clear. In interpreting clause 6.1.2 of
part 1, the set of indicators E shall be interpreted as including all exceptional values listed
in the signatures of conforming operations. In particular, E may need to contain infinitary
and absolute precision underflow.

8. Documentation requirements 71

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

72 Documentation requirements

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Annex A
(normative)

Partial conformity

If an implementation of an operation fulfills all relevant requirements according to the main
normative text in this part, except the ones relaxed in this Annex, the implementation of that
operation is said to partially conform to this part.

Conformity to this part shall not be claimed for operations that only fulfill partial conformity.

Partial conformity shall not be claimed for operations that relax other requirements than those
relaxed in this Annex.

A.1 Maximum error relaxation

This part has the following maximum error requirements for conformity.

max error hypotF ∈ [0.5, 1]

max error expF ∈ [0.5, 1.5 · rnd errorF]
max error powerF ∈ [0.5, 2 · rnd errorF]

max error radF = 0.5
max error sinF ∈ [0.5, 1.5 · rnd errorF]
max error tanF ∈ [0.5, 2 · rnd errorF]

max error sinuF : F → F ∪ {invalid}
max error tanuF : F → F ∪ {invalid}
max error sinhF ∈ [0.5, 2 · rnd errorF]
max error tanhF ∈ [0.5, 2 · rnd errorF]

max error convertF = 0.5
max error convertD = 0.5

For u ∈ GF , the max error sinuF (u) parameter shall have a value in the interval [0.5, 2 ·
max error sinF], and the max error tanuF (u) parameter shall have a value in the interval
[0.5, 2 · max error tanF]. For u ∈ T , the max error sinuF (u) parameter shall be equal to
max error sinF , and the max error tanuF (u) parameter shall be equal to max error tanF , for
the same library.

In a partially conforming implementation the maximum error parameters may be greater than
what is specified by this part. The maximum error parameter values given by an implementation
shall still adequately reflect the accuracy of the relevant operations, if a claim of partial conformity
is made.

A partially conforming implementation shall document which maximum error parameters have
greater values than specified by this part, and their values.

A. Partial conformity 73

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

A.2 Extra accuracy requirements relaxation

This part has a number of extra accuracy requirements. These are detailed in the paragraphs
beginning “Further requirements on the op∗F approximation helper function are:”.

In a partially conforming implementation these further requirements need not be fulfilled. The
values returned must still be within the maximum error bounds that are given by the maximum
error parameters, if a claim of partial conformity is made.

The extra accuracy requirements together with the sign and monotonicity requirements imply
a number of requirements that are not stated explicitly, due to that they are implied. Removing
one or more of thee given requirements may thus remove some weaker requirements that were
not intended to be removed. Some of the remaining weaker requirements may need to be stated
explicitly if a stronger requirement is removed.

A partially conforming implementation shall document which extra accuracy requirements are
not fulfilled by the implementation, and which weaker requirements that are still fulfilled.

A.3 Relationships to other operations relaxation

This part has a number of requirements giving relations to other operations. These are detailed
in the paragraphs beginning with wordings like “Relationship to the op∗F approximation helper
function for operations in the same library shall be:”.

In a partially conforming implementation these relationships need not be fulfilled. The values
returned must still be within the maximum error bounds that are given by the values provided
for the maximum error parameters, if a claim of partial conformity is made.

A partially conforming implementation shall document which operation relationships are not
fulfilled by the implementation.

A.4 Very-close-to-axis angular normalisation relaxation

This part requires, explicitly and by implication, that angular normalisation (sometimes called
argument reduction) is done so that the (intermediate or explicit) result is accurate within less
than an ulp. For angular values, especially in radians, that denote an angle very close to an axis,
that requires extra high precision in the calculation of the normalised value.

In a partially conforming implementation the accuracy requirements for angular normalisation
for angles that are very close to an axis need not be fulfilled.

A partially conforming implementation shall document which trigonometric operations and for
which (small) intervals near axes angular values, that are not so large that absolute precision
underflow notifications would be the result, the angular normalisation accuracy requirements
are not fulfilled by the implementation. The implementation shall also document how large the
absolute error for angular normalisation is also for angles that are in those intervals very near
an axis. It may be appropriate for a binding to specify one or more parameters describing this
relaxation if this relaxation is allowed by a binding. The maximum error parameter values given
by an implementation shall still adequately reflect the accuracy of the relevant trigonometric oper-
ations for angular values outside of those very-near-axis intervals, if a claim of partial conformity
is made.

74 Partial conformity

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

A.5 Part 1 requirements relaxation

Part 2 depends on the datatypes and operations specified in part 1. Part 1 allows for partial
conformity. Part 2 operations may thus be only partially conforming if a relevant datatype or
part 1 operation is only partially conforming to part 1.

A.5 Part 1 requirements relaxation 75

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

76 Partial conformity

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Annex B
(informative)

Rationale

This annex explains and clarifies some of the ideas behind Information technology – Language
independent arithmetic – Part 2: Elementary numerical functions (LIA-2). This allows the stan-
dard itself to be more concise. The clause numbering matches that of the standard, although
additional clauses have been added.

B.1 Scope

The scope of LIA-2 includes the traditional arithmetic operations, that are not already covered
by LIA-1, usually provided in programming languages. This includes operations that are numeric
approximations to real elementary functions. Even though these operations usually are imple-
mented in software rather than hardware they are still to be regarded as atomic in the sense that
they are never (as seen by the user) interrupted by an intermediate notifiacation.

B.1.1 Inclusions

LIA-2 is intended to define the meaning of some operations on integer and floating point types
as specified in LIA-1 (ISO/IEC 10967-1), in addition to the operations specified in LIA-1. LIA-2
does not specify operations for any additional arithmetic datatypes, though fixed point datatypes
are used in some of the specifications for conversion operations.

The specifications for the operations covered by LIA-2 are given in sufficient detail to

a) support detailed and accurate numerical analysis of arithmetic algorithms,

b) enable a precise determination of conformity or non-conformity, and

c) prevent exceptions (like overflow) from going undetected.

LIA-2 only covers operations that involve integer or floating point datatypes, as specified in
LIA-1, and in some cases also a Boolean datatype, but then only as result. In order to include
also fixed point string formats for floating point values, fixed point datatypes are also involved in
some of the LIA-2 conversion operations.

The operations covered by LIA-2 are often to some extent covered by programming language
standards, like the operations sin, cos, tan, arctan, and so on. Annex C also surveys which
operations are already covered by various programming languages.

LIA-2 includes some operations that are not (yet) common in programming languages. Like
operations to normalise angular values, and to convert angular values between different angular
units. These operations are closely related to the other operations included in LIA-2, and these
operations are non-trivial to implement with high accuracy. The angular normalisation operations
are useful to keep high accuracy in the angular values used when increasing angular values are
used.

LIA-2 does in no way prevent language standards or implementations including further arith-
metic operations, other variations of included arithmetic operations, or the inclusion of further

B. Rationale 77

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

arithmetic datatypes, like rational number or fixed point datatypes. Some of these may become
the topic of standardization in other parts of LIA.

B.1.2 Exclusions

LIA-2 is not concerned with techniques for the implementation of numerical functions. Even when
an LIA-2 operation specification is made in terms of other LIA-1 or LIA-2 operations, that does
not imply a requirement that an implementation implements the operation in terms of those other
operations. It is sufficient that the result (returned value or returned continuation value, and
exception behaviour) is as if it was implemented in terms of those other operations.

LIA-2 does not provide specifications for operations which involve no arithmetic processing, like
assignment and parameter passing, though any implicit conversions done in association with such
operations are in scope. The implicit conversions should be made available to the programmer as
explicit conversions.

LIA-2 does not cover operations for the support of domains such as linear algebra, statistics,
and symbolic processing. Such domains deserve separate standardization, if standardized.

LIA-2 does not cover how to represent numeric values, internally (as bit patterns) or externally
(as character strings).

B.2 Conformity

Conformity to this standard is dependent on the existence of language binding standards. Each
programming language committee (or other organization responsible for a programming language
or other specification to which LIA-1 and LIA-2 may apply) is encouraged to produce a binding
covering at least those operations already required by the programming language (or similar) and
also specified in LIA-2.

The term “programming language” is here used in a generalised sense to include other comput-
ing entities such as calculators, spread sheets, page description languages, web-script languages,
and database query languages to the extent that they provide the operations covered by LIA-2.

A conforming system consists of an implementation (which obeys the requirements) together
with documentation which shows how the implementation conforms to the standard. This doc-
umentation is vital since it gives crucial characteristics of the system, such as the range for
trigonometric operations, and the accuracy of the operations.

The binding of LIA-2 facilities to a particular programming language should be as natural
as possible. Existing language syntax and features should be used for operations, parameters,
notification, and so on. For example, if a language expresses application of cosine as “cos(x),”
then LIA-2 cosine operations cosF should be bound to (overloaded) “cos” functions.

Suggestions for bindings are provided in annex C. Annex C has partial binding examples for
a number of existing programming languages and LIA-2. In addition to the bindings for the
operations in LIA-2, it is also necessary to provide bindings for the maximum error parameters
and big angle parameters specified by LIA-2. Annex C contains suggestions for these bindings. To
conform to this standard, in the absence of a binding standard, an implementation should create
a binding, following the suggestions in annex C.

78 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

LIA-2 has fairly strict accuracy requirements. Annex A deals with the case that an implemen-
tation (or binding standard) conforms to most aspects of LIA-2, but not necessarily all of the
accuracy requirements.

Some implementations, or binding standards, may wish to conform to most of the requirements
in LIA-2, but make exceptions from the specifications given by LIA-2 in certain cases. Some of
the bindings examples in annex C also exemplify, in different ways, such changes of specification.
Real bindings are expected to elaborate such differences much more than in the examples given
in annex C.

B.2.1 Validation

LIA-2 gives a very precise description of the operations included. This will expedite the construc-
tion of conformity tests. It is important that objective tests are available.

LIA-2 does not define any process for validating conformity.

Independent assurance of conformity to LIA-2 could be by spot checks on products by a val-
idation suite. Alternatively, checking could be regarded as the responsibility of the vendor, who
would then document the evidence supporting any claim to conformity.

B.3 Normative references

The referenced IEC 60559 standard is identical to the IEEE 754 standard and the former IEC 559
standard.

B.4 Symbols and definitions

LIA-2 uses the same specification mechanisms as LIA-1. LIA-2, however, uses helper functions to a
much higher degree, in particular for the specification of the operations approximating elementary
transcendental functions.

As in LIA-1, operations specified in LIA-2 are done so by cases, and in some of the cases helper
functions are used. In contrast to LIA-1, LIA-2 also cover cases that involve “special values”
for the floating point operations. The specification of how to handle these “special values” as
arguments and results for the included operations is one of the major added-values of LIA-2.

The cases in each operation specification are non-overlapping, though there is an “otherwise”
case at the end of many lists of cases.

B.4.1 Symbols

B.4.1.1 Sets and intervals

The interval notation is in common use. It has been chosen over the other commonly used interval
notation (with brackets and round parentheses mixed) because the chosen notation has no risk of
confusion with the pair notation.

B.2.1 Validation 79

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

B.4.1.2 Operators and relations

Note that all operators, relations, and other mathematical notation used in LIA-2 is used in their
conventional exact mathematical sense. They are not used to stand for operations specified by
IEC 60559, LIA-1, LIA-2, or, with the exception of program excerpts which are clearly marked, any
programming language. For example, x/u stands for the mathematically exact result of dividing
x by u, independently of whether that value is representable in any floating point datatype or
not, and x/u 6= divF (x, u) is often the case. Likewise, = is the mathematical equality, not the eqF
operation: 0 6=−−−0, while eqF (0,−−−0) = true.

B.4.1.3 Mathematical functions

The elementary functions named sin, cos, etc., used in LIA-2 are the exact mathematical functions,
not any approximation. The approximations to these mathematical functions are introduced in
clauses 5.3 and 5.4 and are written in a way clearly distinct from the mathematical functions.
E.g., sin∗F , cos∗F , etc., which are unspecified (or, more precisely, partially specified) mathematical
functions approximating the targeted exact mathematical functions to a specified degree; sinF ,
cosF , etc., which are the operations specified by LIA-2 based on the respective approximating
function; sin, cos, etc., which are programming language names that may be bound to LIA-2
operations. sin and cos are thus very different from sin and cos.

B.4.1.4 Exceptional values

LIA-2 uses a modified set of exceptional values compared to LIA-1. Instead of LIA-1’s undefined,
LIA-2 uses invalid and infinitary. IEC 60559 distinguishes between invalid and divide by zero
(the latter is called infinitary by LIA-2). The distinction is valid and should be recognised, since
infinitary indicates that an infinite but exact result is (or can be, if it were available) returned,
while invalid indicates that a result in the target datatype (extended with infinities) cannot, or
should not, be returned with adequate accuracy.

LIA-1 distinguished between integer overflow and floating overflow. This distinction is
moot, since no distinction was made between integer undefined and floating undefined. In
addition, continuing this distinction would force LIA to start distinguishing not only integer
overflow and floating overflow, but also fixed overflow, complex floating overflow, com-
plex integer overflow, etc. Further, there is no general consensus that maintaining this distinc-
tion is useful, and many programming languages do not require a distinction. A binding standard
can still maintain distinctions of this kind, if desired.

infinitary is used for integer operations, when the operation rightfully should return an infini-
tary value, but no infinitary value occurs among the arguments. infinitary is also used for floating
point operations for the same circumstances. That includes when the approximated real-valued
function has a pole at the argument point.

LIA allows for three methods for handing notifications: recording of indicators, change of
control flow (returnable or not), and termination of program. The LIA-2 preferred method is
recording of indicators. This allows the computation to continue using the continuation values.
For underflow and infinitary notifications this course of action is strongly preferred, provided
that a suitable continuation value can be represented in the result datatype.

80 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Not all occurrences of the same exceptional value need be handled the same. There may be
explicit mode changes in how notifications are handled, and there may be implicit changes. For
example, invalid without a specified continuation value may cause change of control flow (like
an Ada [11] exception), while invalid with a specified continuation value may use recording of
indicators. This should be specified by bindings or by implementations.

The operations may return any of the exceptional values overflow, underflow, invalid,
infinitary, or absolute precision underflow. This does not imply that the implemented op-
erations are to actually return any of these values. When these values are returned according to
the LIA specification, that means that the implementation is to perform a notification handling
for that exceptional value. If the notification handling is by recording of indicators, then what is
actually returned by the implemented operation is the continuation value.

Most bindings are expected to be such that underflow and infinitary are “quietly” handled.
If infinities are guaranteed to be representable, infinitary may even be disregarded completely,
quietly returning the infinitary result without even any setting of any indicator.

B.4.1.5 Datatypes

The sequence types [I] and [F] appear as input datatypes to a few operations: max seqI , min seqI ,
gcd seqI , lcm seqI , max seqF , min seqF , mmax seqF , and mmin seqF .

In effect, a sequence is a finite linearly ordered collection of elements which can be indexed
from 1 to the length of the sequence. Equality of two or more elements with different indices
is possible. Sequences are used in LIA-2 as an abstraction of arrays, lists, other kinds of one-
dimensional sequenced collections, and even variable length argument lists. As used in LIA-2 the
order of the elements and number of occurrences of each element, as long as it is more than one,
does not matter, so sets, multi-sets (bags), and tuples also qualify.

B.4.2 Definitions of terms

Note the LIA distinction between exceptional values, exceptions, and exception handling (hand-
ling of notification by non-returnable change of control flow; as in, e.g., Ada). LIA exceptional
values are not the same as Ada exceptions, nor are they the same as IEC 60559 special values.

Note also that LIA-1 used the term denormal for what IEC 60559 and LIA-2 refer to as
subnormal.

B.5 Specifications for the numerical functions

The abstract values used in the specifications are independent of datatype, just like the mathe-
matical numbers are. That they are represented differently in, say, single precision and in double
precision is out of scope for LIA-2.

The specifications in LIA-2 for floating point operations give details about certain special values
(they are ‘special’ in that they are not in R). These special values are commonly representable in
floating point datatypes, in particular all floating point datatypes conforming to IEC 60559.

B.4.2 Definitions of terms 81

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

B.5.1 Basic integer operations

Integer datatypes can have infinity values as well as NaN values, and also may have a −−−0. A
corresponding I must, however, be a subset of Z. −−−0 is commonly available when the integer
datatype is represented using radix-minus-1-complement, e.g., 1’s complement. When using, e.g.,
2’s complement, the representation that would otherwise represent the most negative value can
be used as a NaN. Especially for unbounded integer types, the inclusion of infinities is advisable,
not for overflow, since these do not occur, but in order to have a smallest and a largest value in
the type.

B.5.1.1 The integer result and wrap helper functions

The resultI helper function notifies overflow when the result cannot be represented in I. When
an overflow occurs, and recording of indicators is the method for handling (integer) overflows, a
continuation value must be given. For bounded integer datatypes, maxintF and minintF can
be suitable continuation values, if infinities are not representable. In some instances a wrapped
result, see below, may be used as continuation value on overflow. Few integer datatypes offer
representations for positive and negative infinity. In case such representations are offered, they
can be used as continuation values on overflow, similar to their use in floating point datatypes. LIA
does not specify the continuation value in this case, that is left to bindings or implementations,
but LIA does require that the continuation value(s) be documented.

The wrapI helper function wraps the result into a value that can be represented in I. The
result is wrapped in such a way that the value returned can be used to implement extended range
integer arithmetic.

B.5.1.2 Integer maximum and minimum

The operations for integer maximum and minimum are trivial, except taking the maximum or
minimum of an empty sequence (empty array, empty list, zero number of parameters, or similar).
The case for zero number of parameters is often syntactically excluded (as in Fortran, Common
Lisp, and ISLisp), while an empty array or empty list given as a single argument must usually be
possible to handle at ‘runtime’. LIA specifies an infinitary notification for this case. infinitary
is to be interpreted as “exact infinite result from finite operands”, in this case an empty list of
numbers. The infinitary notification is not specified if any of the arguments is an infinity.

If infinity values are required to be available for a particular integer datatype, a binding may
require the continuation values specified to be returned without any infinitary notification. When
the specified continuation value, +∞+∞+∞ or −∞−∞−∞, is not available, other suitable continuation values
may be used, and if so they must be documented. If the integer datatype is bounded, but without
infinities, maxintF may be used in place of +∞+∞+∞ and minintF may be used instead of −∞−∞−∞.

Infinities as arguments are not specified for these operations, since infinities are rarely available
in integer datatypes. However, compare the specification for max and min operations for floating
point datatypes (clause 5.2.2).

B.5.1.3 Integer diminish

Integer diminish is sometimes called ‘monus’.

82 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

B.5.1.4 Integer power and arithmetic shift

The integer arithmetic shift operations can be used to implement integer multiplication and integer
division more quickly in special cases (assuming the shift operation is supported by the hardware,
and that support is used).

The shift operations shift either ‘right’ or ‘left’ depending on the sign of the second argument.
‘Right’ shift is done with a positive second argument, and ‘left’ shift with a negative second
argument.

Any continuation value used on overflow here must be documented, either by the binding
standard or by the implementation.

B.5.1.5 Integer square root

B.5.1.6 Divisibility tests

Even and odd are simple special cases of the divisibility test offered as separately named operations
in several programming languages.

B.5.1.7 Integer division (with floor, round, or ceiling) and remainder

When the result of a division between integers is not an integer, but the final result is required to
be an integer, the quotient must be rounded. There are several ways of doing this; floor, ceiling,
and unbiased round to nearest being the most important. Truncating, rounding towards zero,
is often provided, which, however, may introduce subtle program errors. Integer division, and
remainder, is often used for grouping into groups of n items, it is natural to put item i into group
divide(i, n). If i can be negative, and truncation is used, group 0 will get 2 · n − 1 items, rather
than the desired n.

padI returns the negative of the remainder after division and ceiling. The reason for this is
twofold: 1) for unsigned integer datatypes the remainder is 6 0, and would thus often not be
representable unless negated, and 2) it is intuitively easier to think of the “places left in the last
unfilled group of equi-sized and packed groups” as a positive entity, a padding.

residueI can overflow only for unsigned integer datatypes (minintI = 0), and does so for too
many cases, and negating it does not change this. residueI should therefore not be provided for
unsigned integer datatypes. residueI rounds in the same way as residueF . residueF is often
referred to as IEEE remainder.

When there is no exception, for n ∈ Z these operations fulfill:

quotI(x+ n · y, y) = quotI(x, y) + n,
ratioI(x+ 2 · n · y, y) = ratioI(x, y) + 2 · n,
groupI(x+ n · y, y) = groupI(x, y) + n,
modI(x+ n · y, y) = modI(x, y),
residueI(x+ 2 · n · y, y) = residueI(x, y), and
padI(x+ n · y, y) = padI(x, y).

Note that the divtI and remt
I from LIA-1 do not fulfill similar useful equalities, due to the

disruption around 0 for this pair of operations.

And, when there is no exception, the sign rules are:

B.5.1 Basic integer operations 83

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

quotI(x, y) = −groupI(−x, y),
quotI(x, y) = −groupI(x,−y),
ratioI(x, y) = −ratioI(−x, y),
ratioI(x, y) = −ratioI(x,−y),
modI(x, y) = −padI(x,−y), and
residueI(x, y) = residueI(x,−y).

Finally, when there is no exception, the integer division and remainder operations come in pairs
that fulfill:

quotI(x, y) · y +modI(x, y) = x,
ratioI(x, y) · y + residueI(x, y) = x, and
groupI(x, y) · y − padI(x, y) = x.

B.5.1.8 Greatest common divisor and least common positive multiple

The greatest common divisor is useful in reducing a rational number to its lowest terms. The least
common multiple is useful in converting two rational numbers to have the same denominator.

Returning 0 for gcdI(0, 0), as is sometimes suggested, would be incorrect, since the greatest
common divisor for 0 and 0 should be the supremum (upper limit) of Z+, since elements of Z+

divide 0. The supremum of Z+ is infinity. Note also that for an n > 0, gcdI(n,+∞+∞+∞) should be n,
given a reasonable extension of gcdI to cover infinity arguments.

gcdI will overflow only if boundedI = true, minintI = −maxintI − 1, and both arguments are
minintI . The greatest common divisor is then −minintI , which then is not in I.

Least common positive multiple, lcmI(x, y), overflows for many “large” arguments. E.g., if x
and y are relatively prime, then the least common multiple is |x · y|, which may be greater than
maxintI .

B.5.1.9 Support operations for extended integer range

These operations would typically be used to extend the range of the highest level integer datatype
supported by the underlying hardware of an implementation.

The two parts of an integer product, mul ovI(x, y) and mul wrapI(x, y) together provide the
complete integer product. Similarly for addition and subtraction. The use of wrapI guarantees
that overflow will not occur.

B.5.2 Basic floating point operations

F must be a subset of R. Floating point datatypes can have infinity values as well as NaN values,
and also may have a −−−0. These values are not in F . The special values are, however, commonly
available in floating point datatypes today, thanks to the wide adoption of IEC 60599.

Note that for some operations the exceptional value invalid is produced only for argument
values involving −−−0, +∞+∞+∞, −∞−∞−∞, or sNaN. For these operations the signature given in LIA-2 does
not contain invalid.

The report Floating-Point C Extensions [57] discusses possible ways of exploiting the IEC 60559
special values, much of which is now integrated in C. The report identifies some of its suggestions

84 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

as controversial and cites Branch Cuts for Complex Elementary Functions, or Much Ado about
Nothing’s Sign Bit [52] as justification.

The following paragraphs is a short summary of the specifications of IEC 60559 regarding the
creation and propagation of signed zeros, infinities, and NaNs. There is also some discussion of
the material in references [52, 53, 50] where suggestions on this matter are made.

IEC 60559 specifies that 0 and−−−0 compare equal. The sign is supposed to indicate the direction
of approach to zero. The sign is reliable for a zero generated by underflow in a multiplication
or division operation, and should be reliable also for operations that approximate elementary
transcendental functions (see the LIA-2 specifications in clause 5.3). It is not reliable for a zero
generated by an implied subtraction of two floating point numbers with the same value, for which
case the zero is arbitrarily given a + sign. The phrase “implied subtraction” indicates either the
addition of two oppositely signed numbers or the subtraction of two like signed numbers.

On occurrence of floating overflow or division of a non-zero number by zero, an implementation
conforming to IEC 60559 sets the appropriate status flag (if trapping is not enabled) and then
continues execution with a result of +∞+∞+∞ or −∞−∞−∞ if rounding is to nearest. Infinities as such do not
indicate that an overflow or division by zero has occurred; infinities can be exact values. IEC 60559
states that the arithmetic of infinities is that associated with mathematical infinities. Thus, an
infinity times, plus, minus, or divided by a non-zero finite floating point number yields an infinity
for the result; no status flag is set and execution continues. These rules are not necessarily valid
for infinities generated by overflow, though they are valid if the infinitary arguments are exact.

NaNs are generated by invalid operations on infinities, 0 divided by 0, and the square root of a
negative number (other than −−−0). Thus NaNs can represent unknown real or complex values, as
well as totally undefined values. IEC 60559 requires that the result of any of its basic operations
with one or more NaN arguments shall be a NaN. This principle is not extended to the numerical
functions by Floating-Point C Extensions [57]. The controversial specifications in Floating-Point
C Extensions [57], Branch Cuts for Complex Elementary Functions, or Much Ado about Nothing’s
Sign Bit [52], and Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point
Arithmetic [53] are based on an assumption that all NaN operands represent finite non-zero real-
valued numbers.

The LIA-2 policy (for clauses 5.2 and 5.3) for dealing with signed zeros, infinities, and NaNs
is as follows:

a) The output is a quiet NaN for any operation for which one (or more) arguments is a quiet
NaN, and none of the other arguments is a signalling NaN. There is then no notification.

b) If a mathematical function h(x) is such that h(0) = 0, the corresponding operation opF (x)
returns x if x ∈ {0,−−−0} and h has a positive derivative at 0, and opF (x) returns negF (x) if
x ∈ {0,−−−0} and h has a negative derivative at 0.

c) For an argument vector, −→x , where that argument vector involves 0, −−−0, +∞+∞+∞, or −∞−∞−∞, the
result of the operation opF (−→x) is

lim−→z→−→x
h(−→z)

where an approach to zero is from the positive side if −→x = (..., 0, ...), and the approach
is from the negative side if −→x = (...,−−−0, ...). There is no notification if the limit exists,
is finite, and is path independent. The returned value is +∞+∞+∞ or −∞−∞−∞ if the limiting value
is unbounded, and the approach is towards a point infinitely far from the origin. The
returned value is infinitary(+∞+∞+∞) or infinitary(−∞−∞−∞) if the limiting value is unbounded,

B.5.2 Basic floating point operations 85

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

and the approach is towards a finite point. The result is −−−0 if the limit is zero and the
approaching values are path independently negative. The result is 0 if the limit is zero and
the approaching values are path independently positive. If a path independent limit does
not exist the value returned is invalid, and a notification occurs, with a continuation value
of qNaN if appropriate.

An exception is made for the arcF and arcuF operations, where it is found significantly more
useful to return certain non-exceptional values for the origin and for the four double infinity
argument cases, than to return an exceptional value, even with non-NaN continuation values.

B.5.2.1 The rounding and floating point result helper functions

The resultF helper function notifies overflow when the result is too large to be approximated by a
value in F . The resultF helper function notifies underflow when there is (risk for) denormalisation
loss for a tiny result. The resultF helper function also ensures that a properly signed zero is
the continuation value when a zero is appropriate for an underflow continuation value. When an
overflow or underflow occurs, and recording of indicators is the method for handling (floating point)
overflow or underflow, a continuation value must be provided. LIA-2 specifies a continuation value,
and if that can be represented in the target datatype, that value should be used as continuation
value. If the parameter iec 559F has the value true, then IEC 60559 in many cases require
particular continuation values (consistent with what is specified by LIA-2) to be used.

The continuation values for overflow are defined to be in accordance with IEC 60559. These
particular choices for continuation values are useful for interval arithmetic.

B.5.2.2 Floating point maximum and minimum

As for the integer case, the maximum and minimum of empty sequences need be handled, but for
floating point datatypes, infinities are usually available.

For floating point datatypes there is also usually a negative zero available, and returning the
correct sign on a zero result for the maximum and minimum operations requires more than simple
comparisons to implement. The signs of zeroes may need to be inspected using copysign or
isnegativezero.

B.5.2.3 Floating point diminish

As for the integer case, this operation computes the positive difference. Note that dimF (+∞+∞+∞,+∞+∞+∞) =
invalid(qNaN) is consistent with that subF (+∞+∞+∞,+∞+∞+∞) = invalid(qNaN) according to IEC 60559.

An implementation of dimF could be if x >= y then x-y else 0.

B.5.2.4 Floor, round, and ceiling

Since fmaxF always has an integral value for floating point types that conform to LIA-1, no
overflow can occur for these operations.

Note that the sign of a zero result is maintained in accordance with IEC 60559:

86 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

floorF (x) = negF (ceilingF (negF (x)))
roundingF (x) = negF (roundingF (negF (x)))
ceilingF (x) = negF (floorF (negF (x)))

Negative zeroes, if available, are handled in such a way as to maintain these identities.

Note that rounding restF always is an exact operation, while floor restF is not always exact
for negative arguments, and ceiling restF is not always exact for positive arguments.

B.5.2.5 Remainder after division and round to integer

The remainder after division and unbiased round to integer (IEC 60559 remainder, or IEEE
remainder) is always an exact operation (unless there is an implied division by zero), even if the
floating point datatype only conforms to LIA-1, but not to the more specific IEC 60559.

Remainder after floating point division and floor to integer cannot be exact for all pairs of
arguments from F . For a small negative numerator and a positive denominator, the resulting
value loses much absolute accuracy in relation to the original value. Such an operation is therefore
not included in LIA-2. Similarly for floating point division and ceiling.

See also the radian normalisation and the argument angular-unit normalisation operations
(5.3.8.1, and especially 5.3.9.1).

B.5.2.6 Square root and reciprocal square root

The inverses of squares are double valued, the two possible results having the same magnitude with
opposite signs. For a non-zero result, LIA-2 requires that each of the corresponding operations
return a positive result.
√
x cannot be exactly halfway between two values in F if x ∈ F . For

√
x to be exactly halfway

between two values in F would require that it had exactly (p+ 1) digits (last digit non-zero) for
its exact representation. The square of such a number would require at least (2 · p+ 1) digits with
last p+ 1 digits not all zero, which could not equal the p-digit number x.

The extensions sqrtF (+∞+∞+∞) = +∞+∞+∞ and sqrtF (−−−0) = −−−0 are mandated by IEC 60559. LIA-2
also requires that these hold for implementations which support infinities and signed zeros. How-
ever, it should be noted that while the second is harmless, the first may lead to erroneous results for
a +∞+∞+∞ generated by an addition or subtraction with result just barely outside of [−fmaxF , fmaxF]
after rounding. Hence its square root would be well within the representable range. The possi-
bility that LIA-2 should require that sqrtF (+∞+∞+∞) = invalid(+∞+∞+∞) was considered, but rejected
because of the principle of regarding arguments as exact, even if they are not exact, when there is
a non-degenerate neighbourhood around the argument point, for which the mathematical function
on R is defined. In addition sqrtF (+∞+∞+∞) = +∞+∞+∞ is already required by IEC 60559.

Note that the requirement that sqrtF (x) = invalid(qNaN) for x strictly less than zero is
mandated by IEC 60559. It follows that NaNs generated in this way represent imaginary values,
which would become complex through addition and subtraction, and even imaginary infinities on
multiplication by ordinary infinities.

The rec sqrtF operation will increase performance for scaling a vector into a unit vector. Such
an operation involves division of each component of the vector by the magnitude of the vector or,
equivalently and with higher performance, multiplication by the reciprocal of the magnitude.

B.5.2 Basic floating point operations 87

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

B.5.2.7 Multiplication to higher precision floating point datatype

This operation is intended for the case that there exist at least two floating point datatypes F
and F ′, ideally such that the product of two numbers of type F is always exactly representable in
type F ′.

To obtain higher precision for multiplication, in the absence of a suitable level of precision F ′,
a programmer can exploit the paired mulF and mul loF operations.

B.5.2.8 Support operations for extended floating point precision

These operations would typically be used to extend the precision of the highest level floating
point datatype supported by the underlying hardware of an implementation. There is, however,
no intent to provide a set of operations suitable for the implementation of a complete package for
the support of calculations at an arbitrarily high level of precision.

The major motivation for including them in LIA-2 is to provide a capability for accurately
evaluating residuals in an iterative algorithm. The residuals give a measure of the error in the
current solution. More importantly they can be used to estimate a correction to the current
solution. The accuracy of the correction depends on the accuracy of the residuals. The residuals
are calculated as a difference in which the number of leading digits cancelled increases as the
accuracy of the solution increases. A doubled precision calculation of the residuals is usually
adequate to produce a reasonably efficient iteration.

For the basic floating point arithmetic doubled precision operations, the high parts may be
calculated by the corresponding floating point operations as specified in LIA-1. Note, however,
that in order to implement exact floating point addition and subtraction, rndF must round to
nearest. If addF (x, y) rounds to nearest then the high and low parts represent x+ y exactly.

When the high parts of an addition or subtraction overflows, the low parts, as specified by
LIA-2, return their results as if there was no overflow. add loF and sub loF can underflow only
when subnormals are not supported. In addition, if the high part underflows, then the low part
is zero.

The product of two numbers, each with p digits of precision, is always exactly representable in
at most 2 · p digits. The high and low parts of the product will always represent the true product.

The remainder for division is more useful than a 2 · p-digit approximation. The remainder will
be exactly representable if the high part differs from the true quotient by less than one ulp. The
true quotient can be constructed p digits at a time by division of the successive remainders by the
divisor.

The remainder for square root is more useful than a low part for the same reason that the
remainder is more useful for division. The remainder for the square root operation will be exactly
representable only if the high part is correctly rounded to nearest, as is required by the specification
for sqrtF .

See Semantics for Exact Floating Point Operations [62] for more information on exact floating
point operations.

See Proposal for Accurate Floating-Point Vector Arithmetic [63] for more information on exact,
or high accuracy, floating point summation and dot product. These operations may be the subject
of an amendment to LIA-2.

88 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

B.5.3 Elementary transcendental floating point operations

The basic floating point operations of LIA-2 and the elementary transcendental floating point
operations have been separated into two different clauses of LIA-2, since they use slightly different
specification mechanisms. The basic floating point operations need no approximation helper
functions. The elementary transcendental floating point operations need approximation helper
function in order to express the wider error tolerance for these operations.

B.5.3.1 Maximum error requirements

The max error opF parameters measure the discrepancy between the computed value opF (x) and
the true mathematical value f(x) in ulps of the true value. The magnitude of the error bound is
thus available to a program from the computed value opF (x). Note that for results at an exponent
boundary for F , y, the error away from zero is in terms of ulpF (y), whereas the error toward zero
is in terms of ulpF (y)/rF , which is the ulp of values slightly smaller in magnitude than y.

Within limits, accuracy and performance may be varied to best meet customer needs. Note also
that LIA-2 does not prevent a vendor from offering two or more implementations of the various
operations.

The operation specifications define the domain and range for the operations. This is done
partly by the given signature, and partly by the specification of cases that do not return invalid.
In addition, the computational domain and range are more limited for the operations than for
the corresponding mathematical functions because the arithmetic datatypes are subsets of R.
Further, any (conforming) F is limited in range, and the operations may return an overflow or
an underflow. Thus the actual domain of expF (x) is approximately given by x 6 ln(fmaxF). For
larger values of x, expF (x) will overflow, though for x = +∞+∞+∞ the exact result +∞+∞+∞ will be returned.
The actual range extends over positive F , although there are non-negative values, v ∈ F , for which
there is no x ∈ F satisfying expF (x) = v.

The thresholds for the overflow and underflow notifications are determined by the parameters
defining the arithmetic datatypes. The threshold for an invalid notification is determined by the
domain of arguments for which the mathematical function being approximated is defined. The
infinitary notification is the operation’s counterpart of a mathematical pole of the mathematical
function being approximated by the operation. The threshold for absolute precision underflow
is determined by the parameters big angle rF and big angle uF .

LIA-2 imposes a fairly tight bound on the maximum error allowed in the implementation of
each operation. The tightest possible bound is given by requiring rounding to nearest, for which
the accompanying performance penalty is often unacceptably high for the operations approxi-
mating elementary transcendental functions. LIA-2 does not require round to nearest for such
operations, but allows for a slightly wider error bound characterised via the max error opF pa-
rameters. The max error opF parameters must be documented by the implementation for each
such parameter required by LIA-2. A comparison of the values of these parameters with the values
of the specified maximum value for each such parameter will give some indication of the “quality”
of the routines provided. Further, a comparison of the values of this parameter for two versions
of a frequently used operation will give some indication of the accuracy sacrifice made in order to
gain performance.

Language bindings are free to modify the error limits provided in the specifications for the
operations to meet the expected requirements of their users.

B.5.3 Elementary transcendental floating point operations 89

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

Material on the implementation of high accuracy operations is provided in for example [50, 52,
59].

B.5.3.2 Sign requirements

The requirements imply that the sign of the result or continuation value is to be reliable, except
for the sign of an infinite result or continuation value, where except for a signed zero argument,
it is often the case that one cannot determine the sign of the infinity. Still for sign symmetric
mathematical functions, the approximating operation is also sign symmetric, including infinitary
results.

Note that the sign requirements stated generally imply some requirements that are not given
explicitly for each operation specification in LIA-2. For example, sin∗F (n · 2 · π + π) = 0 is a
requirement implied by the general sign requirements.

B.5.3.3 Monotonicity requirements

A maximum error of 0.5 ulp implies that an approximation helper function must be a monotonic
approximation to the mathematical function. When the maximum error is greater than 0.5 ulp,
and the rounding is not directed, this is not automatically the case.

There is no general requirement that the approximation helper functions are strictly monotone
on the same intervals on which the corresponding exact function is strictly monotone, however,
since such a requirement cannot be made due to the fact that all floating point types are discrete,
not continuous.

The monotonicity requirements are not extended to the angular unit arguments (for the opera-
tions that take such an argument or arguments). The reason for this is that it is thought both hard
to implement, and also of no interest to users to have monotonicity on that (those) argument(s),
since the angular unit is not normally varied, except when converting between angular units, and
even then the unit arguments involved are usually constants.

The monotonicity requirements together with the extra accuracy requirements also imply re-
quirements not explicitly stated. For example −1 6 sin∗F (x) 6 1 is such an implied requirement.
Therefore, even if some of the extra accuracy requirements are relaxed (see annex A), it may be
necessary to reintroduce some of the requirements that were implied.

B.5.3.4 The result∗ helper function

The result∗F helper function is more suitable than the resultF helper function when the approxi-
mation is not guaranteed to be 0.5 ulp nor guaranteed to be directed.

Ideally, however, though not expressed in the LIA-2 specifications, also the operations approx-
imating elementary transcendental functions obey the rounding mode (if the implementation has
rounding modes) in the sense that “round towards negative infinity” gives a result that is less
than or equal to the true result (and similarly for “round towards positive infinity”). However,
and in contrast to the basic arithmetic operations, the error may then be more than 1 ulp. So
even if the rounding modes are heeded also for the operations approximating elementary tran-
scendental functions, the interpretation of the rounding modes are still looser than for the basic
arithmetic operations. LIA-2 as such does not require even this looser interpretation. It is up
to implementations, and the accompanying documentation, to implement this, if desired, and to

90 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

document the behaviour of these operations under different rounding modes. To get reliable upper
and lower bounds of the true result, that are also close to the true result, is useful for interval
arithmetic. Still, using the returned result, within the error bounds specified by LIA-2, together
with the relevant max error opF parameter, one can get a (perhaps slightly wider) safe interval
containing the true result.

B.5.3.5 Hypotenuse

The hypotF operation can produce an overflow only if both arguments have magnitudes very close
to the overflow threshold. hypotF only underflows if both arguments are subnormal numbers. Care
must be taken in its implementation to either avoid or properly handle overflows and underflows
which might occur in squaring the arguments. The function approximated by this operation
is mathematically equivalent to complex absolute value, which is needed in the calculation of
the argument (also called phase; see arcF) and modulus (also called absolute value; hypotF) of a
complex number. It is important for this application that an implementation satisfy the constraint
on the magnitude of the result returned.

LIA-2’s hypotF does not follow the recommendations in Branch Cuts for Complex Elementary
Functions, or Much Ado about Nothing’s Sign Bit [52] and in Lecture Notes on the Status of IEEE
Standard 754 for Binary Floating-Point Arithmetic [53] which recommend that

hhypotF (+∞+∞+∞,qNaN) = +∞+∞+∞
hhypotF (−∞−∞−∞,qNaN) = +∞+∞+∞
hhypotF (qNaN,+∞+∞+∞) = +∞+∞+∞
hhypotF (qNaN,−∞−∞−∞) = +∞+∞+∞

which are based on the claim that a qNaN represents an (unknown) real valued number. Such a
claim is not always valid, though it may sometimes be.

B.5.3.6 Operations for exponentiations and logarithms

For all of the exponentiation operations, overflow occurs for sufficiently large values of the argu-
ment(s).

There is a problem for powerF (x, y) if both x and y are zero:

– Ada raises an ‘exception’ for the operation that is close in semantics to powerF when both
arguments are zero, in accordance with the fact that 00 is mathematically undefined.

– The X/OPEN Portability Guide, as well as C99, specifies for pow(0.0, 0.0) a return value
of 1, and no notification. Those specifications agree with the recommendations in [50, 52,
53, 56].

The specification in LIA-2 follows Ada, and returns invalid for powerF (0, 0), because of the
risks inherent in returning a result which might be inappropriate for the application at hand. Note
however, that powerF,I(0, 0) is 1, without any notification. The reason is that the limiting value
for the corresponding mathematical function, when following either of the only two continuous
paths, is 1. This also agrees with the Ada specification for a floating point value raised to a power
in an integer datatype, as well as that for other programming languages which distinguish these
operations. The C99 (and X/OPEN) specification for the pow can be regarded as a combination
of the powerF,I and powerF operations. Due to this combination, LIA-2 has a requirement that

B.5.3 Elementary transcendental floating point operations 91

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

powerF for integral second arguments and powerF,I (in the same library) are related by equality
for positive first arguments.

Along any path defined by y = k/ ln(x) the mathematical function xy has the value ek. It
follows that some of the limiting values for xy depend on the choice of k, and hence are undefined,
as indicated in the specification.

The result of the powerF operation is invalid for negative values of the base x. The reason
is that the floating point exponent y might imply an implicit extraction of an even root of x,
which would have a complex value for negative x. This constraint is explicit in Ada, and is widely
imposed in existing numerical packages provided by vendors, as well as several other programming
languages.

The arguments of powerF are floating point numbers. No special treatment is provided for
integer floating point values, which may be approximate. The cases for integer values of the
arguments are covered by the operations powerF,I and powerI . In the example binding for C a
specification for powF is supplied. powF combines powerF and powerFZ in a way suitable for C’s
pow operation.

For implementations of the powerF operation there is an accuracy problem with an algorithm
based on the following, mathematically valid, identity:

xy = r
y·logrF

(x)

F

The integer part (floor plus one, not truncation) of the product y · logrF (x) defines the exponent
of the result and the remaining fractional part defines the reduced argument. If the exponent is
large, and one calculates pF digits of this intermediate result, there will be fewer than pF digits for
the fraction. Thus, in order to obtain a reduced argument accurately rounded to pF digits, it may
be necessary to calculate an approximation to y · logrF (x) to a few more than logrF (emaxF) + pF
base rF digits.

In Ada95 the operation closest to powerF,I is specified to be computed by successive multipli-
cations, for which the error in the evaluation increases linearly with the size of the exponent. In a
strict Ada implementation there is no way that a prescribed error limit of a few ulps can be met
for large exponents.

The special exponentiation operations, corresponding to 2x and 10x, have specifications which
are minor variations on those for expF (x). Accuracy and performance can be increased if they are
specially coded, rather than evaluated as, e.g., expF (mulF (x, lnF (2))) or powerF (2, x). Similar
comments hold for the base 2 and base 10 logarithms operations.

The expm1F operation has two advantages: Firstly, expm1F (x) is much more accurate than
subF (expF (x), 1) when the exponent argument is close to zero. Secondly, the expm1F operation
does not underflow for “very” negative exponent arguments, something which may be advan-
tageous if underflow handling is slow, and high accuracy for “very” negative arguments is not
needed. Note in addition that underflow is avoided for this operation. This can be done only
since LIA-2 adds requirements beyond those of LIA-1 regarding minimum precision (see clause
4). If those extra requirements were not done, underflow would not be justifiably removable for
this operation. Similar argumentation applies to ln1pF .

Similarly, there are two advantages with the power1pm1F operation: Firstly, power1pm1F (b, x)
is much more accurate than subF (powerF (addF (1, b), x), 1) when the exponent argument is close
to zero. Secondly, the power1pm1F operation does not underflow for “very” negative exponent
arguments (when the base is greater than 1), something which may be advantageous if underflow
handling is slow, and high accuracy for “very” negative arguments is not needed.

92 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

The handling of infinites and negative zero as arguments to the exponentiation and logarithm
operations, like for all other LIA operations, follow the principles for dealing with these values as
explained in section B.5.2. Note in particular that logbaseF (b, x) is specified so as to be consistent
with divF (lnF (x), lnF (b)) except that logbaseF (b, x) is required to be more accurate.

The expm1F and ln1pF operations are required to return the argument when the argument is
in a certain interval around 0. Some floating point parameters from LIA-1 had to be made a bit
stricter for LIA-2 to guarantee that this interval always is wider than the interval of subnormal
numbers (this change is to be integrated with LIA-1 when LIA-1 is revised). This way underflow
can always be avoided for these operations, and in the interval specified, they can with high
accuracy return the argument unchanged.

Several of the operations have requirements that push the result towards a finite limiting value,
so that that the limiting value is actually reached (within a reasonable margin) after rounding,
even if the limiting value cannot, or otherwise need not, be reached before rounding. Similar
requirements appear also in the other subclauses of clause 5.3.

Note also that even the use of the nearest approximation to e that is representable in F as a
base argument to the powerF and logbaseF operations do not produce a duplication of expF and
lnF .

B.5.3.7 Introduction to operations for trigonometric elementary functions

The real trigonometric functions sin, cos, tan, cot, sec, and csc are all periodic. The smallest
period for sin, cos, sec, and csc is 2 · π radians (360 degrees). The smallest period for tan and
cot is π radians (180 degrees) (and thus also have a period of 2 · π radians (360 degrees)). The
mathematical trigonometric functions are perfectly periodic. Their numerical counterparts are
not that perfect, for two reasons.

Firstly, the radian normalisation cannot be exact, even though it can be made very good given
very many digits for the approximation(s) of π used in the angle normalisation, returning an offset
from the nearest axis, and including guard digits. The unit argument normalisation, however, can
be made exact regardless of the (non-zero and, in case denormF = false not too small) unit
and the original angle, returning only a plain angle in F . LIA-2 requires unit argument angle
normalisation to be exact.

Secondly, the length of one revolution is of course constant, but the density of floating point
values gets sparser (in absolute spacing rather than relative) the larger the magnitude of the values
are. This means that the number of floating point values gets sparser per revolution the larger the
magnitude of the angle value is. For this reason the notification absolute precision underflow
is introduced, together with two parameters, one for radians and one for other angular units.
This notification is given when the magnitude of the angle value is “too big”. Exactly when the
representable angle values get too sparse depends upon the application at hand, but LIA-2 gives
a default value for the parameters that define the cut-off.

Note that the absolute precision underflow notification is unrelated to any argument re-
duction problems. Argument reduction is (implicitly for radians, explicitly for other angular units)
required by LIA-2 to be very accurate. But no matter how accurate the argument reduction is,
floating point values are still sparser in absolute terms the larger the values are. The trigonometric
operations return a result within about an ulp, and that high accuracy is wasted if the angular
argument is not kept at a high accuracy too, both relative and absolute.

B.5.3 Elementary transcendental floating point operations 93

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

LIA-2 includes specifications for high accuracy angle normalisation operations, both for radi-
ans and for other angular units. The angle normalisation operations give a result within minus
half a cycle to plus half a cycle (as does the angle conversion operations), unless the argument
angular value is too big (or there is some other error). These operations should be used to keep
the representation of angles at a high accuracy. LIA-2 also includes angle normalisation opera-
tions that can be used to maintain an even higher degree of accuracy, giving the offset from the
nearest axis (though without any extra guard digits). To use these, one need to keep track of the
currently nearest axis, and make appropriate adjustments in the calculations, which unfortunately
complicates programs that use these nearest-axis normalisations.

Note that rad(x) = arccos(cos(x)) if sin(x) > 0 and rad(x) = − arccos(cos(x)) if sin(x) < 0.
The first part of axis rad(x) indicates which axis is nearest to the angle x. The second part of
axis rad(x) is an angle offset from the axis that is nearest to the angle x. The second part of
axis rad(x) is equal to rad(x) if cos(x) > 1/

√
2 (i.e. if the first part of axis rad(x) is (1, 0)). More

generally, the second part of axis rad(x) is equal to rad(4 · x)/4.

rad(x) returns the same angle as the angle value x, but the returned angle value is between −π
and π. The rad function is defined to be used as the basis for the angle normalisation operations.
The axis rad function is defined to be used as the basis for a numerically more accurate radian
angle normalisation operation. The arc function is defined to be used as the basis for the arcus
(angle) operations, which are used for conversion from Cartesian to polar co-ordinates.

B.5.3.8 Operations for radian trigonometric elementary functions

The radian trigonometric approximation helper functions (including those for normalisation and
conversion from radians) are required to have the same zero points as the approximated mathe-
matical function only if the absolute value of the argument is less than or equal to big angle rF .
Likewise, the radian trigonometric approximation helper functions are required to have the same
sign as the approximated mathematical function only if the absolute value of the argument is less
than or equal to big angle rF . Indeed, the radian trigonometric approximation helper functions
need not be defined at all outside of [−big angle rF , big angle rF].

The big angle rF parameter may be adjusted by bindings, or even by some compiler flag,
or mode setting within a program. However, this method should only allow the value of this
parameter to be set to a value greater than 2 · π, so that at least arguments within the first two
(plus and minus) cycles are allowed, and such that ulpF (big angle rF) < π/1000, so that at least
2000 evenly distributed points within the ‘last’ cycle (farthest away from 0) are distinguishable.
The latter gives a rather low accuracy at the far ends of the range, especially if pF is comparatively
large, so values this large for big angle rF are not recommendable unless the application is such
that high accuracy trigonometric operations are not needed. Note that if big angle rF is allowed
to be increased, then, for conformity with LIA-2, the radian angle reduction may need to be made
more precise.

For reduction of an argument given in radians, implementations use one or several approximate
value(s) of π (or of a multiple of π), valid to, say, n digits. The division implied in the argument
reduction cannot be valid to more than n digits, which implies a maximum absolute angle value
for which the reduction yields an accurate reduced angle value.

Regarding argument reduction for radians, there is a particular problem when the result of the
trigonometric operation is very small (or very big), but the angular argument is not very small. In
such cases the argument reduction must be very accurate, using an extra-precise approximation

94 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

to π, relative to what is normally used for arguments of similar magnitude, so that significant
digits in the result are not lost. Such loss would imply non-conformance to LIA-2 by the error in
the final result being greater than that specified by LIA-2. In general, extra care has to be taken
when the second part of axis rad(x) is close to 0.

Note that

– tan and sec have poles at odd multiples of π/2 radians (90 degrees).

– cot and csc have poles at multiples of π radians (180 degrees).

All four of the corresponding operations with poles may produce overflow for arguments suffi-
ciently close to the poles of the functions. The tanF operation produces no infinitary notification.
The reason is that the poles of tan(x) are at odd multiples of π/2, which are not representable
in F . The mathematical cotangent function has poles at even multiples of π/2, of which only the
origin is representable in F . For a system which supports signed zeros and infinities, the contin-
uation values are +∞+∞+∞ and −∞−∞−∞ for arguments of 0 and −−−0 respectively to cotF (x). Although the
mathematical function sec has poles at odd multiples of π/2, the secF operation will not generate
any infinitary notification because such arguments are not representable in F .

The infinitary notification cannot occur for any non-zero argument in radians because π is not
representable in F , nor is π/2. For the angular unit argument trigonometric operations the sign
of the infinitary continuation value has been chosen arbitrarily for an infinitary which occurs for
a non-zero argument. However, sign symmetry, when appropriate, is maintained.

The operations may produce underflow for arguments sufficiently close to the zeros of the
function. For a subnormal argument x, the sinF , tanF , arcsinF , and arctanF return x for the
result, with very high accuracy. Similarly, for a subnormal argument, cosF and secF can return
a result of 1.0 with very high accuracy.

The trigonometric inverses are multiple valued. They are rendered single valued by defining a
principal value range. This range is closely related to a branch cut in the complex plane for the
corresponding complex function. Among the floating point numerical functions this branch cut
is “visible” only for the arcF operation. The arc function has a branch cut along the negative
real axis. For x < 0 the function has a discontinuity from −π to +π as y passes through zero
from negative to positive values. Thus for x < 0, systems supporting signed zeros can handle the
discontinuity as follows:

arcF (x,−−−0) = upF (−π)
arcF (x, 0) = downF (π)

There is a problem for zero argument values for this operation. The values given for the
operation arcF (x, y) for the four combinations of signed zeros for x and y are those given in [52].
The following table of values is given in [52] for the value of arcF (x, y) with both of the arguments
zero:

Zero arguments
x y arcF (x, y)
0 0 0
−−−0 0 π
−−−0 −−−0 −π
0 −−−0 −−−0

B.5.3 Elementary transcendental floating point operations 95

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

Note that the mathematical arc function is indeterminate (undefined) for (0,0), but close rep-
resentable approximations the above result are numerically more useful than giving an invalid
notification for such arguments. LIA-2 therefore specifies results as above.

There is also a problem for argument values of +∞+∞+∞ or −∞−∞−∞ for this operation. The following
table of values is given in [52] for the value of arcF (x, y) with at least one of the arguments infinite:

Infinite arguments
x y arcF (x, y)

+∞+∞+∞ > 0 0
+∞+∞+∞ +∞+∞+∞ π/4
finite +∞+∞+∞ π/2
−∞−∞−∞ +∞+∞+∞ 3 · π/4
−∞−∞−∞ > 0 π
−∞−∞−∞ −−−0 −π
−∞−∞−∞ < 0 −π
−∞−∞−∞ −∞−∞−∞ −3 · π/4
finite −∞−∞−∞ −π/2
+∞+∞+∞ −∞−∞−∞ −π/4
+∞+∞+∞ < 0 −−−0
+∞+∞+∞ −−−0 −−−0

If one of x and y is infinite and the other is finite, the result tabulated is consistent with that
obtained by a conventional limiting process. However, the results of π/4, −π/4, 3 · π/4, and
−3 · π/4 corresponding to infinite values for both x and y, are of questionable validity, since only
the quadrant is known, not the angle within the quadrant. However, these results are numerically
more useful than giving an invalid notification for such arguments. LIA-2 therefore specifies
results as above.

B.5.3.9 Operations for trigonometrics with given angular unit

At present only Ada specifies trigonometric operations with angular unit argument. LIA-2 has
adopted angular unit argument operations in order to encourage uniformity among languages
which might include such operations in the future. The angular units in T appear to be particularly
important and have therefore been given a tighter error bound requirement. An implementation
can of course have the same (tighter) error bound for all angular units. Some programming
languages provide trigonometric operations with an implicit angular unit argument with value
360.

The trigonometric approximation helper functions with angular unit argument (including those
for normalisation and conversion from radians) are required to have the same zero points as the
approximated mathematical function. Likewise, the trigonometric approximation helper functions
with angular unit argument are required to have the same sign as the approximated mathematical
function. However, the trigonometric approximation helper functions with angular unit argument
need not be defined at all outside of [−big angle uF · |u|, big angle uF · |u|], where u is the value
of the angular unit argument.

The big angle uF parameter may be adjusted by bindings, or even by some compiler flag,
or mode setting within a program. However, this method should only allow the value of this
parameter to be set to a value greater than or equal to 1, so that at least arguments within

96 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

the first two (plus and minus) cycles are allowed, and such that ulpF (big angle uF) 6 1/2000,
so that at least 2000 evenly distributed points within the ‘last’ cycle (farthest away from 0) are
distinguishable. The latter gives a rather low accuracy at the far ends of the range, especially if
pF is comparatively large, so values this large for big angle uF are not recommendable unless the
application is such that high accuracy trigonometric operations are not needed.

The min angular unitF parameter is specified for two reasons. Firstly, if the type F has
no subnormal values (denormF = false), some angle values in F are not representable after
normalisation if the angular unit has too small magnitude. This gives the firm limit given in
cluase 5.3.9. Secondly, even if F has subnormal values (denormF = true), angular units with
very small magnitude do not allow the representable angles to be particularly dense, not even if
the angular value is within the first cycle. This does in itself not give rise to a particular limit
value, but the limit value defined in cluase 5.3.9 is reasonable.

Provided that |u| > min angular unitF , an angular unit u can be either positive or negative. If
it’s negative, growing angular values turns the angle “clockwise” rather than counter-clockwise as
for radians and other positive angular units. Ada does not permit negative angular units, but since
there is no mathematical nor numerical reason to not allow them, LIA-2 allows negative angular
unit argument values, avoiding an unjustifiable and arbitrary decision to disallow them. This only
very marginally complicates the specifications given in LIA-2 as well as the implementations that
follow those specifications.

Note that the angular unit argument need not be integral, even though several common non-
radian angular units are integral, 360, 400, etc. Note also that even the use of the nearest
approximation to 2 · π that is representable in F as angular unit argument does not produce a
duplication of the radian trigonometric operations. The radian trigonometric operations need to
use one or more approximations to π (or an integer fraction of π) that are more accurate than
can be represented in F , in order to fulfill the accuracy requirements of LIA-2.

All of the argument angular unit trigonometric, and argument angular unit inverse trigonomet-
ric, approximation helper functions, including those for normalisation, angular unit conversion,
and arc, are exempted from the monotonicity requirement for the angular unit argument.

If the angular unit argument, u, is such that u/4 ∈ F , the tanuF operation has poles at odd
multiples of u/4. This is the case for degrees (u = 360). As for tanuF , if the angular unit
argument, u, is such that u/4 ∈ F the secuF operation has poles (infinitary) at odd multiples
of u/4.

The same comments hold for the arcuF operation as for arcF operation, except that the
discontinuity in the mathematical function is from −u/2 to +u/2.

B.5.3.10 Operations for angular-unit conversions

Angular conversion operations are commonly found on ‘scientific’ calculators and also in Java,
though then often only between degrees and radians.

Conversion of an angular value x from angular unit a to angular unit b appears simple: compute
x · b/a. Basing a numerical conversion of angular values directly on the above mathematical
equality (e.g. divF (mulF (x, b), a)) loses much absolute angular accuracy, however, especially for
large angular values. Instead computing arcuF (b, cosuF (a, x), sinuF (a, x)) then gives a more
accurate result. This might still not be within the accuracy required by LIA-2 for the angular
unit conversion operations specified by LIA-2, which here requires a maximum error of 0.5 ulp.

B.5.3 Elementary transcendental floating point operations 97

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

Note that all of the angular conversion operations return an angularly normalised result. This
is in order to maintain high absolute accuracy of the angle being represented.

B.5.3.11 Operations for hyperbolic elementary functions

The hyperbolic sine operation, sinhF (x), will overflow if |x| is in the immediate neighbourhood
of ln(2 · fmaxF), or greater.

The hyperbolic cosine operation, coshF (x), will overflow if |x| is in the immediate neighbour-
hood of ln(2 · fmaxF), or greater.

The hyperbolic cotangent operation, cothF (x), has a pole at x = 0.

The inverse of cosh is double valued, the two possible results having the same magnitude with
opposite signs. The value returned by arccoshF is always greater than or equal to 1.

The inverse hyperbolic tangent operation arctanhF (x) has poles at x = +1 and at x = −1.

The inverse hyperbolic cotangent operation arccothF (x) has poles at x = +1 and at x = −1.

Like for the exponentiation and logarithm operations, there are extra accuracy requirements,
for certain arguments.

When appropriate, there are also sign symmetry requirements on the approximation helper
functions. These sign symmetry requirements for “ordinary” arguments are followed through in
the operation specification to cover also signed zeroes and infinites. Similar requirements appear
also in the other subclauses of clause 5.3.

For sinhF , tanhF , arcsinhF , and arctanhF , for a specified interval around 0, the operation
returns its argument unchanged, and does so with high accuracy. Underflow notifications are also
avoided for these cases, since there is no denormalisation loss.

B.5.4 Operations for conversion between numeric datatypes

Clause 5.2 of LIA-1 covers conversions from an integer type to another integer type and to a
floating point type, as well as between (LIA-1 conforming) floating point types of the same radix.

LIA-2 extends these conversions to cover conversions to and from non-LIA conforming datatypes,
such as conversion to and from strings, and also extends the floating point conversion specifications
to handle conversions where the radices may be different.

In ordinary string formats for numerals, the string “Hello world!” is an example of a signalling
NaN.

LIA-2 does not specify any string formats, not even for the special values −−−0, +∞+∞+∞, −∞−∞−∞, and
quiet NaN, but possibilities for the special values include the strings used in the text of LIA-
2, as well as strings like “+infinity” or “positiva oändligheten”, etc, and the strings used may
depend on preference settings, as they may also for non-special values. For instance, one may
use different notation for the decimal separator character (like period, comma, Arabic comma,
...), use superscript digits for exponents in scientific notation, or use Arabic digits or traditional
Thai digits. String formats for numerical values, and if and how they may depend on preference
settings, is also an issue for bindings or programming language specifications, not for this part of
LIA.

If the value converted is greater than those representable in the target, or less than those
representable in the target, even after rounding, then an overflow will result. E.g., if the target is

98 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

a character string of at most 3 digits, and the target radix is 10, then an integer source value of
1000 will result in an overflow. As for other operations, if the notification handling is by recording
of indicators, a suitable continuation value must be used.

Most language standards contain (partial) format specifications for conversion to and from
strings, usually for a decimal representation.

LIA-2 requires, like C99, all floating point conversion operations to be such that the error is
at most 0.5 ulp. This is in contrast to IEC 60559, which allows conversion operations to have an
error of up to 0.97 ulp.

B.5.5 Numerals as operations in a programming language

B.5.5.1 Numerals for integer datatypes

Negative values (except minintI if minintI = −maxintI − 1) can be obtained by using the
negation operation (negI).

Integer numerals in radix 10 are normally available in programming languages. Other radices
may also be available for integer numerals, and the radix used may be part of determining the
target integer datatype. E.g., radix 10 may be for signed integer datatypes, and radix 8 or 16 may
be for unsigned integer datatypes.

Syntaxes for numerals for different integer datatypes need not be different, nor need they be
the same. This part does not further specify the format for integer numerals. That is an issue for
bindings.

Overflow for integer numerals can be detected at “compile time”, and warned about. Likewise
can notifications about invalid, e.g. for infinitary or NaN numerals that cannot be converted to
the target type, be detected at “compile time” and be warned about.

B.5.5.2 Numerals for floating point datatypes

If the numerals used as operations in a program, and numerals read from other sources use the
same radix, then “internal” numerals and “external” numerals (strings) denoting the same value
in R and converted to the same target datatype should be converted to the same value. Indeed,
the requirement on such conversions to round to nearest implies this. But even if this requirements
is relaxed by a binding (see Annex A), external and internal conversions should not differ.

Negative values (including negative 0, −−−0, if avaliable) can be obtained by using the negation
operation (negF).

Radices other than 10 may also be available for floating point numerals.

Integer numerals may also be floating point numerals, i.e. their syntaxes need not be different.
Nor need syntaxes for numerals for different floating point datatypes be different, nor need they
be the same. This part does not specify the syntax for numerals. That is an issue for bindings or
programming language specifications.

Overflow or underflow for floating point numerals can be detected at “compile time”, and
warned about. Likewise can notifications about infinitary or invalid, e.g. for infinitary or NaN
numerals that cannot be converted to the target type, be detected at “compile time” and be
warned about.

B.5.5 Numerals as operations in a programming language 99

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

B.6 Notification

An intermediate overflow on computing approximations to, for example, x2 or y2 during the
calculation of hypotF (x, y) ≈

√
x2 + y2 does not result in an overflow notification, unless the end

result overflows. This is clear from the specification of the hypotF operation in this part. It is
not helpful for the user of an operation to let intermediary overflows or underflows that are not
reflected in the end result be propagated. Implementations of LIA-2 operations are required to
shield the user from such intermediary overflows for all of the LIA-2 operations. More generally,
well-made numerical software should similarly shield users of that software from overflows and
underflows that are not reflected in a properly calculated end result. However, such requirements
in general are beyond the scope of LIA-2.

If a single argument operation opF , for the corresponding mathematical function f , is such that
f(x) very closely approximates x, when |x| 6 fminNF , then opF (x) returns x for |x| 6 fminNF ,
and does not give a notification if there cannot be any denormalisation loss relative to f(x).
For details, see the individual operation specifications for expm1F , ln1pF , sinF , arcsinF , tanF ,
arctanF , sinhF , arcsinhF , tanhF , and arctanhF .

Operations specified in LIA-2 return invalid(qNaN) when passed a signalling NaN (sNaN)
as an argument. Most operations specified in LIA-2 return qNaN, without any notification when
passed a quiet NaN (qNaN) as an argument.

The different kinds of notifications occur under the following circumstances:

a) invalid: when an argument is not valid for the operation, and no value in F ∗ or any special
value result makes mathematical sense.

b) infinitary: when the input operand corresponds to a pole of the mathematical function
approximated by the operation, or, more generally, when the true result is infinitary, but
none of the arguments is infinitary.

c) overflow: when the (rounded) result is outside of the range of the result datatype.

d) underflow: when a sufficiently closely approximating result of the operation has a magni-
tude that is so small that it might not be sufficiently accurately represented in the result
datatype.

e) absolute precision underflow: when the magnitude of the angle argument to a floating
point trigonometric operation exceeds the maximum value of the argument for which the
density of floating point values is deemed sufficient for the operation to make sense. See
clause 5.3.7 and the associated discussion in this rationale (section B.5.3.7).

In order to avoid absolute precision underflow notifications, and to maintain a high
accuracy, implementors are encouraged to provide, and programmers encouraged to use, the
angle normalisation operations specified in 5.3.8.1 and 5.3.9.1.

The difference between the infinitary and overflow notifications for floating point operations
is that the first corresponds to a true mathematical singularity, and the second corresponds to a
well-defined mathematical result that happens to lie outside the range of F .

B.6.1 Continuation values

For handling of notifications, the method that does recording of indicators (LIA-1, clause 6.1.2)
is preferred.

100 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

An implementation which supports recording of indicators must supply continuation values to
be used when execution is continued following the occurrence of a notification. For systems which
support signed zeros, infinities and NaNs, LIA-2 specifies how these values, as well as ordinary
values, are used as continuation values. Other implementations which use recording of indicators
must supply other suitable continuation values and document the values selected.

B.7 Relationship with language standards

The datatypes involved in implicit conversions need not be accessible to the programmer. For
example, trigonometric operations may be evaluated in extended double precision, even though
that datatype is not made available to programmers using a particular programming language.
These extra datatypes should be made available, however, and the implicit conversions should be
expressible as explicit conversions. At least in order to be able to show exactly which expression
is going to be evaluated without having to look at the machine code.

B.8 Documentation requirements

To make good use of an implementation that conforms to LIA-2, programmers need to know not
only that the implementation conforms, but how it conforms. LIA-2 requires implementations
to document the binding between the LIA-2 operations and parameters and the total arithmetic
environment provided by the implementation.

It is expected that an implementation will meet part of its documentation requirements by
incorporation of the relevant language standard. However, there will be aspects of the implemen-
tation that the language standard does not specify in the required detail, and the implementation
needs to document those details. For example, the language standard may specify the range of
allowed parameter values, but the implementation must document the actual value. The combi-
nation of the language standard and the implementation documentation together should meet all
the requirements in clause 8.

B.7 Relationship with language standards 101

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

102 Rationale

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Annex C
(informative)

Example bindings for specific languages

This annex describes how a computing system can simultaneously conform to a language stan-
dard (or publicly available specification) and to LIA-2. It contains suggestions for binding the
“abstract” operations specified in LIA-2 to concrete language syntax. The format used for these
example bindings in this annex is a short form version, suitable for the purposes of this annex. An
actual binding is under no obligation to follow this format. An actual binding should, however,
as in the bindings examples, give the LIA-2 operation name, or parameter name, bound to an
identifier (or expression) by the binding.

Portability of programs can be improved if two conforming LIA-2 systems using the same pro-
gramming language agree in the manner with which they adhere to LIA-2. For instance, LIA-2
requires that the parameter big angle rF be provided (if any conforming radian trigonometric
operations are provided), but if one system provides it by means of the identifier BigAngle and
another by the identifier MaxAngle, portability is impaired. Clearly, it would be best if such names
were defined in the relevant language standards or binding standards, but in the meantime, sug-
gestions are given here to aid portability. Name consistency cannot, however, be fully maintained
between different programming languages, due to already existing differences in naming conven-
tions, and LIA does not require wholesale naming changes, nor expression syntax changes.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various programming language standards committees. Until binding stan-
dards are in place, implementors can promote “de facto” portability by following these suggestions
on their own.

The languages covered in this annex are

Ada,
BASIC,
C,
C++,
Fortran,
Haskell,
Java,
Common Lisp,
ISLisp,
Modula-2,
Pascal and Extended Pascal,
PL/I, and
SML.

This list is not exhaustive. Other languages and other computing devices (like ‘scientific’ cal-
culators, ‘web script’ languages, and database ‘query languages’) are suitable for conformity to
LIA-2.

In this annex, the parameters, operations, and exception behaviour of each language are ex-
amined to see how closely they fit the requirements of LIA-2. Where parameters, constants, or

C. Example bindings for specific languages 103

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

operations are not provided by the language, names and syntax are suggested. (Already provided
syntax is marked with a ?.)

This annex describes only the language-level support for LIA-2. An implementation that wishes
to conform must ensure that the underlying hardware and software is also configured to conform
to LIA-2 requirements.

A complete binding for LIA-2 will include, or refer to, a binding for LIA-1. In turn, a complete
binding for the LIA-1 may include, or refer to, a binding for IEC 60559. Such a joint LIA-2/LIA-
1/IEC 60559 binding should be developed as a single binding standard. To avoid conflict with
ongoing development, only the LIA-2 specific portions of such a binding are examplified in this
annex.

Most language standards permit an implementation to provide, by some means, the parameters
and operations required by LIA-2 that are not already part of the language. The method for ac-
cessing these additional parameters and operations depends on the implementation and language,
and is not specified in LIA-2 nor examplified in this annex. It could include external subroutine
libraries; new intrinsic functions supported by the compiler; constants and functions provided as
global “macros”; and so on. The actual method of access through libraries, macros, etc. should
of course be given in a real binding.

Most language standards do not constrain the accuracy of elementary numerical functions, or
specify the subsequent behaviour after an arithmetic notification occurs.

In the event that there is a conflict between the requirements of the language standard and
the requirements of LIA-2, the language binding standard should clearly identify the conflict and
state its resolution of the conflict.

C.1 Ada

The programming language Ada is defined by ISO/IEC 8652:1995, Information Technology –
Programming Languages – Ada [11].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to LIA-2 for that operation or parameter. For each
of the marked items a suggested identifier is provided.

The Ada datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of Ada has at least one integer datatype, and at least one floating point
datatype. The notations INT and FLT are used to stand for the names of one of these datatypes
(respectively) in what follows.

Ada has an overloading system, so that the same name can be used for different types of
arguments to the operations. Ada allows in general that formal parameter names are used in
calls, though one normally does not write out the formal parameter names in calls. However, in
some cases a formal parameter name is needed in the call to make the overloaded name resolve to
the appropriate definition, rather than some other definition.

The Ada packages which contain some of the operations listed below are not detailed in this
abbreviated example binding. For such details, see ISO/IEC 8652:1995, Information Technology –

104 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Programming Languages – Ada [11]. A full binding would include information regarding packages
also for the operations that are not included in the Ada standard.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) INT’Max(x, y) ?
minI(x, y) INT’Min(x, y) ?
max seqI(xs) Max(xs) †
min seqI(xs) Min(xs) †

dimI(x, y) Dim(x, y) †
powerI(x, y) x ** y ?
shift2I(x, y) Shift2(x, y) †
shift10I(x, y) Shift10(x, y) †
sqrtI(x) Sqrt(x) †

dividesI(x, y) x /= 0 and then y mod x = 0 ?
evenI(x) x mod 2 = 0 ?
oddI(x) x mod 2 /= 0 ?

quotI(x, y) Quotient(x, y) †
modI(x, y) x mod y ?
ratioI(x, y) Ratio(x, y) †
residueI(x, y) Residue(x, y) †
groupI(x, y) Group(x, y) †
padI(x, y) Pad(x, y) †

gcdI(x, y) Gcd(x, y) †
lcmI(x, y) Lcm(x, y) †
gcd seqI(xs) Gcd(xs) †
lcm seqI(xs) Lcm(xs) †

add wrapI(x, y) Add Wrap(x, y) †
add ovI(x, y) Add Over(x, y) †
sub wrapI(x, y) Sub Wrap(x, y) †
sub ovI(x, y) Sub Over(x, y) †
mul wrapI(x, y) Mul Wrap(x, y) †
mul ovI(x, y) Mul Over(x, y) †

where x and y are expressions of type INT and where xs is an expression of type array (Integer
range <>) of INT.

The LIA-2 basic floating point operations are listed below, along with the syntax used to invoke
them:

maxF (x, y) FLT’Max(x, y) ?
minF (x, y) FLT’Min(x, y) ?
mmaxF (x, y) MMax(x, y) †
mminF (x, y) MMin(x, y) †
max seqF (xs) Max(xs) †
min seqF (xs) Min(xs) †

C.1 Ada 105

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

mmax seqF (xs) MMax(xs) †
mmin seqF (xs) MMin(xs) †

dimF (x, y) Dim(x, y) †
floorF (x) FLT’Floor(x) ?
floor restF (x) x - FLT’Floor(x) ?
roundingF (x) FLT’Unbiased Rounding(x) ?
rounding restF (x) x - FLT’Unbiased Rounding(x) ?
ceilingF (x) FLT’Ceiling(x) ?
ceiling restF (x) x - FLT’Ceiling(x) ?
residueF (x, y) FLT’Remainder(x, y) ?
sqrtF (x) Sqrt(x) ?
rec sqrtF (x) Rec Sqrt(x) †

mulF→F ′(x, y) Prod(x, y) †
add loF (x, y) Add Low(x, y) †
sub loF (x, y) Sub Low(x, y) †
mul loF (x, y) Mul Low(x, y) †
div restF (x, y) Div Rest(x, y) †
sqrt restF (x) Sqrt Rest(x) †

where x and y are expressions of type FLT, and where xs is an expression of type array (Integer
range <>) of FLT.

The parameters for LIA-2 operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF Err Hypotenuse(x) †

max error expF Err Exp(x) †
max error powerF Err Power(x) †

big angle rF Big Radian Angle(x) †
max error radF Err Rad(x) †
max error sinF Err Sin(x) †
max error tanF Err Tan(x) †

min angular unitF Smallest Angular Unit(x) †
big angle uF Big Angle(x) †
max error sinuF (u) Err Sin Cycle(u) †
max error tanuF (u) Err Tan Cycle(u) †

max error sinhF Err Sinh(x) †
max error tanhF Err Tanh(x) †

max error convertF Err Convert(x) †
max error convertF ′ Err Convert To String †
max error convertD′ Err Convert To String †

where x and u are expressions of type FLT, and F ′ and D′ are non-special value sets for string
formats. Several of the parameter functions are constant for each type (and library), the argument

106 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

is then used only to differentiate among the floating point types. (This is in Ada normally done
as ‘type attributes’, but new such cannot be defined outside of the Ada standard itself.)

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) Hypotenuse(x, y) †

powerF,I(b, z) b ** z ?
expF (x) Exp(x) ?
expm1F (x) ExpM1(x) †
exp2F (x) Exp2(x) †
exp10F (x) Exp10(x) †
powerF (b, y) b ** y ?
power1pm1F (b, y) Power1PM1(b, y) †

lnF (x) Log(x) ?
ln1pF (x) Log1P(x) †
log2F (x) Log2(x) †
log10F (x) Log10(x) †
logbaseF (b, x) Log(x, b) (note parameter order) ?
logbase1p1pF (b, x) Log1P1P(x, b) †

radF (x) Rad(x) †
axis radF (x) Rad(x, h, v) (note out parameters) †

sinF (x) Sin(x) ?
cosF (x) Cos(x) ?
tanF (x) Tan(x) ?
cotF (x) Cot(x) ?
secF (x) Sec(x) †
cscF (x) Csc(x) †
cossinF (x) CosSin(x, c, s) (note out parameters) †

arcsinF (x) ArcSin(x) ?
arccosF (x) ArcCos(x) ?
arctanF (x) ArcTan(x) ?
arccotF (x) ArcCotS(x) †
arccotcF (x) ArcCot(x) ?
arcsecF (x) ArcSec(x) †
arccscF (x) ArcCsc(x) †
arcF (x, y) ArcTan(y, x) or ArcCot(x, y) ?(invalid at origin)

cycleF (u, x) Cycle(x, u) (note parameter order) †
axis cycleF (u, x) Cycle(x, u, h, v) †

sinuF (u, x) Sin(x, u) (note parameter order) ?
cosuF (u, x) Cos(x, u) ?
tanuF (u, x) Tan(x, u) ?

C.1 Ada 107

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

cotuF (u, x) Cot(x, u) ?
secuF (u, x) Sec(x, u) †
cscuF (u, x) Csc(x, u) †
cossinuF (u, x) CosSin(x, u, c, s) †

arcsinuF (u, x) ArcSin(x, u) ?
arccosuF (u, x) ArcCos(x, u) ?
arctanuF (u, x) ArcTan(x, Cycle=>u) ?
arccotuF (u, x) ArcCotS(x, u) †
arccotcuF (u, x) ArcCot(x, Cycle=>u) ?
arcsecuF (u, x) ArcSec(x, u) †
arccscuF (u, x) ArcCsc(x, u) †
arcuF (u, x, y) ArcTan(y, x, u) or ArcCot(x, y, u) ?(invalid at origin)

rad to cycleF (x,w) Rad to Cycle(x, w) †
cycle to radF (u, x) Cycle to Rad(u, x) †
cycle to cycleF (u, x, w) Cycle to Cycle(u, x, w) †

sinhF (x) SinH(x) ?
coshF (x) CosH(x) ?
tanhF (x) TanH(x) ?
cothF (x) CotH(x) ?
sechF (x) SecH(x) †
cschF (x) CscH(x) †

arcsinhF (x) ArcSinH(x) ?
arccoshF (x) ArcCosH(x) ?
arctanhF (x) ArcTanH(x) ?
arccothF (x) ArcCotH(x) ?
arcsechF (x) ArcSecH(x) †
arccschF (x) ArcCscH(x) †

where b, x, y, u, and w are expressions of type FLT, z is an expression of type INT, and c, s, h,
and v are variables of type FLT.

Ada95 specifies (in other words) that powerF,I must be computed by repeated multiplication
(in an unspecified order). That computation method cannot, whatever the order of multiplica-
tions, guarantee fulfillment of the LIA-2 accuracy requirements, and cannot fulfill the required
relationship between powerF,I and powerF . Further, Ada95 specifies that angular units must be
positive, and implicitly has a value for min angular unitF of fminF . LIA-2 allows also negative
angular units, but has a larger value for min angular unitF . A real Ada binding for LIA-2 must
state how these conflicts are resolved (see clause 2).

Arithmetic value conversions in Ada are always explicit and usually use the destination datatype
name as the name of the conversion function, except when converting to/from string formats.

convertI→I′(x) INT2(x) ?
convertI′′→I(s) Get(s, n, w); ?
convertI′′→I(f) Get(f?, n, w?); ?
convertI→I′′(x) Put(s, x, base?); ?
convertI→I′′(x) Put(h?, x, w?, base?); ?

108 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

floorF→I(y) INT(FLT’Floor(y)) ?
roundingF→I(y) INT(FLT’Unbiased Rounding(y)) ?
ceilingF→I(y) INT(FLT’Ceiling(y)) ?

convertI→F (x) FLT(x) ?

convertF→F ′(y) FLT2(y) ?
convertF ′′→F (s) Get(s, n, w?); ?
convertF ′′→F (f) Get(f?, n, w?); ?
convertF→F ′′(y) Put(s, y, Aft=>a?, Exp=>e?); ?
convertF→F ′′(y) Put(h?, y, Fore=>i?, Aft=>a?, Exp=>e?); ?

convertD→F (z) FLT(z) ?
convertD′→F (s) Get(s, n, w?); ?
convertD′→F (f) Get(f?, n, w?); ?

convertF→D(y) FXD(y) ?
convertF→D′(y) Put(s, y, Aft=>a?, Exp=>0); ?
convertF→D′(y) Put(h?, y, Fore=>i?, Aft=>a?, Exp=>0); ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a fixed point type. INT2 is the integer datatype that corresponds to
I ′. FLT2 is the floating point datatype that corresponds to F ′. A ? above indicates that the
parameter is optional. f is an opened input file (default is the default input file). h is an opened
output file (default is the default output file). s is of type String or Wide String. For Get of a
floating point or fixed point numeral, the base is indicated in the numeral (default 10). For Put
of a floating point or fixed point numeral, only base 10 is required to be supported. For details
on Get and Put, see clause A.10.8 Input-Output for Integer Types, A.10.9 Input-Output for Real
Types, and A.11 Wide Text Input-Output, of ISO/IEC 8652:1995. base, n, w, i, a, and e are
expressions for non-negative integers. e is greater than 0. base is greater than 1.

Ada provides non-negative numerals for all its integer and floating point types. The default base
is 10, but all bases from 2 to 16 can be used. There is no differentiation between the numerals
for different floating point types, nor between numerals for different integer types, but integer
numerals (without a point) cannot be used for floating point types, and ‘real’ numerals (with a
point) cannot be used for integer types. Integer numerals can have an exponent part though.
The details are not repeated in this example binding, see ISO/IEC 8652:1995, clause 2.4 Numeric
Literals, clause 3.5.4 Integer Types, and clause 3.5.6 Real Types.

The Ada standard does not specify any numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ FLT’Infinity †
qNaN FLT’NaN †
sNaN FLT’NaNSignalling †

as well as string formats for reading and writing these values as character strings.

Ada has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
flow. Ada uses its exception mechanism as its default means of notification. underflow does
not cause any notification in Ada, and the continuation value to the underflow is used directly,

C.1 Ada 109

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

since an Ada exception is inappropriate for an underflow notification. On underflow the con-
tinuation value (specified in LIA-2) is used directly without recording the underflow itself. Ada
uses the exception Constraint Error for infinitary and overflow notifications, and the excep-
tions Numerics.Argument Error, IO Exceptions.Data Error, and IO Exceptions.End Error
for invalid notifications. Since Ada exceptions are non-returnable changes of control flow, no
continuation value is provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.2 BASIC

The programming language BASIC is defined by ANSI X3.113-1987 (R1998) [40], endorsed by
ISO/IEC 10279:1991, Information technology – Programming languages – Full BASIC [16].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

BASIC has no user accessible datatype corresponding to the LIA datatype Boolean.

BASIC has one primitive computational datatype, numeric. The model presented by the
BASIC language is that of a real number with decimal radix and a specified (minimum) number
of significant decimal digits. Numeric data is not declared directly, but any special characteristics
are inferred from how they are used and from any OPTIONS that are in force.

The BASIC statement OPTION ARITHMETIC NATIVE ties the numeric type more closely to the
underlying implementation. The precision and type of NATIVE numeric data is implementation
dependent.

For the trigonometric operations, if OPTION ANGLE DEGREES is in effect, the argument or result
is given in degrees. If OPTION ANGLE RADIANS (default) is in effect, the argument or result is given
in radians.

Since the BASIC numeric datatype does not match LIA-1 integer datatypes, this binding
example does not include any of the LIA-2 operations for integer datatypes.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) MAX(x, y) ?
minF (x, y) MIN(x, y) ?
mmaxF (x, y) MMAX(x, y) †
mminF (x, y) MMIN(x, y) †
max seqF (xs) MAXS(xs) †
min seqF (xs) MINS(xs) †
mmax seqF (xs) MMAXS(xs) †
mmin seqF (xs) MMINS(xs) †

dimF (x, y) MONUS(x, y) †
floorF (x) INT(x) ?

110 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

floor restF (x) x - INT(x) ?
roundingF (x) ROUND(x) ?
rounding restF (x) x - ROUND(x) ?
ceilingF (x) CEIL(x) ?
ceiling restF (x) x - CEIL(x) ?
residueF (x, y) RESIDUE(x, y) †
sqrtF (x) SQR(x) ?
rec sqrtF (x) REC SQRT(x) †

add loF (x, y) ADD LOW(x, y) †
sub loF (x, y) SUB LOW(x, y) †
mul loF (x, y) MUL LOW(x, y) †
div restF (x, y) DIV REST(x, y) †
sqrt restF (x) SQRT REST(x) †

where x and y are expressions of type numeric, and where xs is an expression of type array of
numeric.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF ERR HYPOTENUSE †

max error expF ERR EXP †
max error powerF ERR POWER †

big angle rF BIG RADIAN ANGLE †
max error radF ERR RAD †
max error sinF ERR SIN †
max error tanF ERR TAN †

min angular unitF MIN ANGLE UNIT †
big angle uF BIG ANGLE †
max error sinuF (u) ERR SIN CYCLE(u) †
max error tanuF (u) ERR TAN CYCLE(u) †

max error sinhF ERR SINH †
max error tanhF ERR TANH †

max error convertF ERR CONVERT †
max error convertF ′ ERR CONVERT TO STRING †
max error convertD′ ERR CONVERT TO STRING †

where u is an expression of type numeric.

The LIA-2 floating point operations are listed below, along with the syntax used to invoke
them. BASIC has a degree mode and a radian mode for the trigonometric operations.

hypotF (x, y) HYPOT(x, y) †

expF (x) EXP(x) ?
expm1F (x) EXPM1(x) †

C.2 BASIC 111

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

exp2F (x) EXP2(x) †
exp10F (x) EXP10(x) †
powerF (b, y) POWER(b, y) †
power1pm1F (b, y) POWER1PM1(b, y) †

lnF (x) LOG(x) ?
ln1pF (x) LOG1P(x) †
log2F (x) LOG2(x) ?
log10F (x) LOG10(x) ?
logbaseF (b, x) LOGBASE(b, x) †
logbase1p1pF (b, x) LOGBASE1P1P(b, x) †

radF (x) NORMANGLE(x) (when in radian mode) †

sinF (x) SIN(x) (when in radian mode) ?
cosF (x) COS(x) (when in radian mode) ?
tanF (x) TAN(x) (when in radian mode) ?
cotF (x) COT(x) (when in radian mode) ?
secF (x) SEC(x) (when in radian mode) ?
cscF (x) CSC(x) (when in radian mode) ?

arcsinF (x) ASIN(x) (when in radian mode) ?
arccosF (x) ACOS(x) (when in radian mode) ?
arctanF (x) ATN(x) (when in radian mode) ?
arccotF (x) ACOT(x) (when in radian mode) †
arccotcF (x) ACOTC(x) (when in radian mode) †
arcsecF (x) ASEC(x) (when in radian mode) †
arccscF (x) ACSC(x) (when in radian mode) †
arcF (x, y) ANGLE(x, y) (when in radian mode) ?(invalid at origin)

cycleF (u, x) NORMANGLEU(u, x) †

sinuF (u, x) SINU(u, x) †
cosuF (u, x) COSU(u, x) †
tanuF (u, x) TANU(u, x) †
cotuF (u, x) COTU(u, x) †
secuF (u, x) SECU(u, x) †
cscuF (u, x) CSCU(u, x) †

arcsinuF (u, x) ASINU(u, x) †
arccosuF (u, x) ACOSU(u, x) †
arctanuF (u, x) ATNU(u, x) †
arccotuF (u, x) ACOTU(u, x) †
arccotcuF (u, x) ACOTCU(u, x) †
arcsecuF (u, x) ASECU(u, x) †
arccscuF (u, x) ACSCU(u, x) †
arcuF (u, x, y) ANGLEU(u, x, y) †

112 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

cycleF (360, x) NORMANGLE(x) (when in degree mode) †

sinuF (360, x) SIN(x) (when in degree mode) ?
cosuF (360, x) COS(x) (when in degree mode) ?
tanuF (360, x) TAN(x) (when in degree mode) ?
cotuF (360, x) COT(x) (when in degree mode) ?
secuF (360, x) SEC(x) (when in degree mode) ?
cscuF (360, x) CSC(x) (when in degree mode) ?

arcsinuF (360, x) ASIN(x) (when in degree mode) ?
arccosuF (360, x) ACOS(x) (when in degree mode) ?
arctanuF (360, x) ATN(x) (when in degree mode) ?
arccotuF (360, x) ACOT(x) (when in degree mode) †
arccotcuF (360, x) ACOTC(x) (when in degree mode) †
arcsecuF (360, x) ASEC(x) (when in degree mode) †
arccscuF (360, x) ACSC(x) (when in degree mode) †
arcuF (360, x, y) ANGLE(x, y) (when in degree mode) ?(invalid at origin)

rad to cycleF (x, 360) DEG(x) ?
cycle to radF (360, x) RAD(x) ?
rad to cycleF (x,w) RAD TO CYCLE(x, w) †
cycle to radF (u, x) CYCLE TO RAD(u, x) †
cycle to cycleF (u, x, w) CYCLE TO CYCLE(u, x, w) †

sinhF (x) SINH(x) ?
coshF (x) COSH(x) ?
tanhF (x) TANH(x) ?
cothF (x) COTH(x) †
sechF (x) SECH(x) †
cschF (x) CSCH(x) †

arcsinhF (x) ARCSINH(x) †
arccoshF (x) ARCCOSH(x) †
arctanhF (x) ARCTANH(x) †
arccothF (x) ARCCOTH(x) †
arcsechF (x) ARCSECH(x) †
arccschF (x) ARCCSCH(x) †

where b, x, y, u, and w are expressions of type numeric.

Arithmetic value conversions in BASIC are always tied to reading and writing text.

convertF ′′→F (stdin) READ x ?
convertF→F ′′(y) PRINT y ?

convertD′→F (stdin) READ x ?

where x is a variable of type numeric, and y is an expression of type numeric.

BASIC provides non-negative numerals for numeric in base 10.

BASIC does not specify any numerals for infinities and NaNs. Suggestion:

C.2 BASIC 113

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

+∞+∞+∞ INFINITY †
qNaN NAN †
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

BASIC has a notion of ‘exception’ that implies a non-returnable change of control flow. BASIC
uses its exception mechanism as its default means of notification. underflow does not cause any
notification in BASIC, and the continuation value to the underflow is used directly, since an
BASIC exception is inappropriate for an underflow notification. BASIC uses the exception
numbers 1001 to 1008 for overflow, exception numbers 1502 and 1503 for handled underflow,
the exception number 3001 to 3004 for infinitary, the exception numbers -3000, 3002, and
3004 to 3011 for invalid, and the exception numbers -3050 and -3051 for absolute precision
underflow. Since BASIC exceptions are non-returnable changes of control flow, no continuation
value is provided for these notifications, except that unhandled underflow uses the continuation
value specified without any BASIC exception.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.3 C

The programming language C is defined by ISO/IEC 9899:1999, Information technology – Pro-
gramming languages – C [17]. This edition of the C standard is often referred to as C99, which is
also used below.

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The LIA datatype Boolean is implemented by the C datatype int (1 = true and 0 = false)
or the new C99 Bool datatype.

C defines numerous integer datatypes. They may be aliases of each other in an implementation
defined way. The description here is not complete. See the C99 standard. Some of the integer
datatypes have a predetermined bit width, and the signed ones use 2’s complement for represen-
tation of negative values: intn t and uintn t, where n is the bit width expressed as a decimal
numeral. Some bit widths are required. There are also minimum width, fastest minimum width,
and special purpose integer datatypes (like size t). Also provided are the more well-known inte-
ger datatypes char, short int, int, long int, long long int (new in C99), unsigned char,
unsigned short int, unsigned int, unsigned long int, and unsigned long long int (new
in C99). Finally there are the integer datatypes intmax t and uintmax t (both new in C99) that
are the largest provided signed and unsigned integer datatypes. intmax t and uintmax t may
even be unbounded with a negative integer infinity as INTMAX MIN and a positive integer infinity
as INTMAX MAX and UINTMAX MAX. INT is used below to designate one of the integer datatypes.

C names three floating point datatypes: float, double, and long double. FLT is used below
to designate one of the floating point datatypes.

114 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

For some of the operations below, the C standard defines ‘type generic macros’. These are
fixed by the C standard, and new ones cannot be defined in program libraries.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) imaxt(x, y) †
maxI(x, y) (x < y ? y : x) ?
minI(x, y) imint(x, y) †
minI(x, y) (x < y ? x : y) ?
max seqI(xs) imax arrt(xs, nr of items) †
min seqI(xs) imin arrt(xs, nr of items) †

dimI(x, y) idimt(x, y) †
powerI(x, y) ipowert(x, y) †
shift2 I(x, y) shift2t(x, y) †
shift10 I(x, y) shift10t(x, y) †
sqrtI(x) isqrtt(x) †

dividesI(x, y) does dividet(x, y) †
dividesI(x, y) x != 0 && y % x == 0 ?
evenI(x) x % 2 == 0 ?
oddI(x) x % 2 != 0 ?

quotI(x, y) quott(x, y) †
modI(x, y) modt(x, y) †
ratioI(x, y) ratiot(x, y) †
residueI(x, y) iremaindert(x, y) †
groupI(x, y) groupt(x, y) †
padI(x, y) padt(x, y) †

gcdI(x, y) gcdt(x, y) †
lcmI(x, y) lcmt(x, y) †
gcd seqI(xs) gcd arrt(xs, nr of items) †
lcm seqI(xs) lcm arrt(xs, nr of items) †

add wrapI(x, y) add wrapt(x, y) †
add ovI(x, y) add overt(x, y) †
sub wrapI(x, y) sub wrapt(x, y) †
sub ovI(x, y) sub overt(x, y) †
mul wrapI(x, y) mul wrapt(x, y) †
mul ovI(x, y) mul overt(x, y) †

where x and y are expressions of the same integer type and where xs is an expression of type
array of an integer type. t is a string (part of the operation name in C), that is the empty string
for int, is l for long int, is u for unsigned int, and is ul for unsigned long int.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) nmaxt(x, y) †
minF (x, y) nmint(x, y) †

C.3 C 115

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

mmaxF (x, y) fmaxt(x, y) or fmax(x, y) ?(C99)
mminF (x, y) fmint(x, y) or fmin(x, y) ?(C99)
max seqF (xs) nmax arrt(xs, nr of items) †
min seqF (xs) nmin arrt(xs, nr of items) †
mmax seqF (xs) fmax arrt(xs, nr of items) †
mmin seqF (xs) fmin arrt(xs, nr of items) †

dimF (x, y) fdimt(x, y) or fdim(x, y) (dev. for special values) ?(C99)
floorF (x) floort(x) or floor(x) ?
floor restF (x) x - floort(x) ?
roundingF (x) nearbyintt(x) (when in round to nearest mode) ?(C99)
rounding restF (x) x - nearbyintt(x) (when in round to nearest mode) ?(C99)
ceilingF (x) ceilt(x) or ceil(x) ?
ceiling restF (x) x - ceilt(x) ?
residueF (x, y) remaindert(x, y) or remainder(x, y) ?(C99)
sqrtF (x) sqrtt(x) or sqrt(x) ?
rec sqrtF (x) rec sqrtt(x) †

mulF→F ′(x, y) dprodt(x, y) †
add loF (x, y) add lowt(x, y) †
sub loF (x, y) sub lowt(x, y) †
mul loF (x, y) mul lowt(x, y) †
div restF (x, y) div restt(x, y) †
sqrt restF (x) sqrt restt(x) †

where x and y are expressions of the same floating point type, and where xs is an expression of
type array of a floating point type. t is a string (part of the operation name), that is the empty
string for double, is f for float, and is l for long double (the same applies to the parameters
and operations below).

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF err hypott †

max error expF err expt †
max error powerF err powert †

big angle rF big radian anglet †
max error radF err radt †
max error sinF err sint †
max error tanF err tant †

min angular unitF smallest angle unitt †
big angle uF big anglet †
max error sinuF (u) err sin cyclet(u) †
max error tanuF (u) err tan cyclet(u) †

max error sinhF err sinht †
max error tanhF err tanht †

116 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

where u is an expression of a floating point type. No conversion error parameters are needed, since
C99 requires all floating point datatype conversion (even to and from strings) to always have an
error that is 6 0.5 ulp.

C has a pow operation that does not conform to LIA-2, but may be specified in LIA-2 terms:

powF (x, y) = powerFZ(x, y) if y ∈ F ∩ Z
= powF (x, 0) if y =−−−0
= 1 if x ∈ {−1, 1} and y ∈ {−∞−∞−∞,+∞+∞+∞}
= 1 if x is a quiet NaN and y = 0
= powerF (x, y) otherwise

C99 has a hypot operation that does not conform to LIA-2, but may be specified in LIA-2
terms:

hhypotF (x, y) = +∞+∞+∞ if x is a quiet NaN and y ∈ {−∞−∞−∞,+∞+∞+∞}
= +∞+∞+∞ if x ∈ {−∞−∞−∞,+∞+∞+∞} and y is a quiet NaN
= hypotF (x, y) otherwise

The LIA-2 elementary floating point operations are listed below, together with the non-LIA-2
powF and hhypotF , along with the syntax used to invoke them:

hypotF (x, y) hypotenuset(x, y) †
hhypotF (x, y) hypott(x, y) or hypot(x, y) ? Not LIA-2!

powerF,I(b, z) powerit(b, z) †
expF (x) expt(x) or exp(x) ?
expm1F (x) expm1t(x) or expm1(x) ?(C99)
exp2F (x) exp2t(x) or exp2(x) ?(C99)
exp10F (x) exp10t(x) †
powerF (b, y) powert(b, y) †
powF (b, y) powt(b, y) or pow(b, y) ? Not LIA-2!
power1pm1F (b, y) power1pm1t(b, y) †

lnF (x) logt(x) or log(x) ?
ln1pF (x) log1pt(x) or log1p(x) ?(C99)
log2F (x) log2t(x) or log2(x) ?(C99)
log10F (x) log10t(x) or log10(x) ?
logbaseF (b, x) logbaset(b, x) †
logbase1p1pF (b, x) logbase1p1pt(b, x) †

radF (x) radiant(x) †
axis radF (x) axis radt(x, &h, &v) (note out parameters) †

sinF (x) sint(x) or sin(x) ?
cosF (x) cost(x) or cos(x) ?
tanF (x) tant(x) or tan(x) ?
cotF (x) cott(x) †
secF (x) sect(x) †
cscF (x) csct(x) †
cossinF (x) cossint(x, &c, &s) †

C.3 C 117

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

arcsinF (x) asint(x) or asin(x) ?
arccosF (x) acost(x) or acos(x) ?
arctanF (x) atant(x) or atan(x) ?
arccotF (x) acott(x) †
arccotcF (x) acotct(x) †
arcsecF (x) asect(x) †
arccscF (x) acsct(x) †
arcF (x, y) atan2t(y, x) or atan2(y, x) ?

cycleF (u, x) cyclet(u, x) †
axis cycleF (u, x) axis cyclet(u, x, &h, &v) †

sinuF (u, x) sinut(u, x) †
cosuF (u, x) cosut(u, x) †
tanuF (u, x) tanut(u, x) †
cotuF (u, x) cotut(u, x) †
secuF (u, x) secut(u, x) †
cscuF (u, x) cscut(u, x) †
cossinuF (u, x) cossinut(u, x, &c, &s) †

arcsinuF (u, x) asinut(u, x) †
arccosuF (u, x) acosut(u, x) †
arctanuF (u, x) atanut(u, x) †
arccotuF (u, x) acotut(u, x) †
arccctcuF (u, x) acotcut(u, x) †
arcsecuF (u, x) asecut(u, x) †
arccscuF (u, x) acscut(u, x) †
arcuF (u, x, y) atan2ut(u, y, x) †

rad to cycleF (x,w) radian to cyclet(x, w) †
cycle to radF (u, x) cycle to radiant(u, x) †
cycle to cycleF (u, x, w) cycle to cyclet(u, x, w) †

sinhF (x) sinht(x) or sinh(x) ?(C99)
coshF (x) cosht(x) or cosh(x) ?(C99)
tanhF (x) tanht(x) or tanh(x) ?(C99)
cothF (x) cotht(x) †
sechF (x) secht(x) †
cschF (x) cscht(x) †

arcsinhF (x) asinht(x) or asinh(x) ?(C99)
arccoshF (x) acosht(x) or acosh(x) ?(C99)
arctanhF (x) atanht(x) or atanh(x) ?(C99)
arccothF (x) acotht(x) †
arcsechF (x) asecht(x) †
arccschF (x) acscht(x) †

where b, x, y, u, and w are expressions of type FLT, h, v, c, and s are lvalue expressions of type
FLT, and z is an expression of type INT.

118 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as ‘casts’, except when converting to/from string formats. The
rules for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C99 standard for a full description. In the format strings % is used to
indicate the start of a format pattern. After the %, optionally a string field width (w below) may
be given as a positive decimal integer numeral. For the floating and fixed point format patterns,
there may then optionally be a ‘.’ followed by a positive integer numeral (d below) indicating the
number of fractional digits in the string. The C operations below use HYPHEN-MINUS rather
than MINUS (which would have been typographically better), and only digits that are in ASCII,
independently of so-called locale. For generating or parsing other kinds of digits, say Arabic digits
or Thai digits, another API must be used, that is not standardised in C. For the floating and fixed
point formats, +∞+∞+∞ may be represented as either inf or infinity, −∞−∞−∞ may be represented as
either -inf or -infinity, and a NaN may be represented as NaN; all independently of so-called
locale. For language dependent representations of these values another API must be used, that is
not standardised in C.

For the integer formats then follows an internal type indicator, of which some are new to C99.
Not all C99 integer types have internal type indicators. However, for t below, hh indicates char, h
indicates short int, the empty string indicates int, l (the letter l) indicates long int, ll (the
letters ll) indicates long long int, and j indicates intmax t or uintmax t. (For system purposes
there are also special type names like size t, and z indicates size t and t indicates ptrdiff t
as type format letters.) Finally, there is a radix (for the string side) and signedness (both sides)
format letter (r below): d for signed decimal; o, u, x, X for octal, decimal, hexadecimal with small
letters, and hexadecimal with capital letters, all unsigned. E.g., %jd indicates decimal numeral
string for intmax t, %2hhx indicates hexadecimal numeral string for unsigned char, with a two
character field width, and %lu indicates decimal numeral string for unsigned long int.

For the floating point formats instead follows another internal type indicator. Not all C99
floating point types have standard internal type indicators for the format strings. However, for u
below the empty string indicates double and L indicates long double. Finally, there is a radix
(for the string side) format letter: e or E for decimal, a or A for hexadecimal. E.g., %15.8LA
indicates hexadecimal floating point numeral string for long double, with capital letters for the
letter components, a field width of 15 characters, and 8 hexadecimal fractional digits.

For the fixed point formats also follows the internal type indicator as for the floating point
formats. But for the final part of the pattern, there is another radix (for the string side) format
letter (p below), only two are standardised, both for the decimal radix: f or F. E.g., %Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter component.
(There is also a combined floating/fixed point string format: g.)

convertI→I′(x) (INT2)x ?
convertI′′→I(s) sscanf(s, "%wtr", &i) ?
convertI′′→I(f) fscanf(f, "%wtr", &i) ?
convertI→I′′(x) sprintf(s, "%wtr", x) ?
convertI→I′′(x) fprintf(h, "%wtr", x) ?

floorF→I(y) (INT)floort(y) ?

C.3 C 119

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

floorF→I(y) (INT)nearbyintt(y) (when in round towards −∞−∞−∞ mode) ?(C99)
roundingF→I(y) (INT)nearbyintt(y) (when in round to nearest mode) ?(C99)
ceilingF→I(y) (INT)nearbyintt(y) (when in round towards +∞+∞+∞ mode) ?(C99)
ceilingF→I(y) (INT)ceilt(y) ?

convertI→F (x) (FLT)x ?

convertF→F ′(y) (FLT2)y ?
convertF ′′→F (s) sscanf(s, "%w.duv", &r) ?
convertF ′′→F (f) fscanf(f, "%w.duv", &r) ?
convertF→F ′′(y) sprintf(s, "%w.duv", y) ?
convertF→F ′′(y) fprintf(h, "%w.duv", y) ?

convertD′→F (s) sscanf(s, "%wup", &g) ?
convertD′→F (f) fscanf(f, "%wup", &g) ?

convertF→D′(y) sprintf(s, "%w.dup", y) ?
convertF→D′(y) fprintf(h, "%w.dup", y) ?

where s is an expression of type char*, f is an expression of type FILE*, i is an lvalue expression
of type int, g is an lvalue expression of type double, x is an expression of type INT, y is an
expression of type FLT, INT2 is the integer datatype that corresponds to I ′, and FLT2 is the
floating point datatype that corresponds to F ′.

C99 provides non-negative numerals for all its integer and floating point types. The default
base is 10, but base 8 (for integers) and 16 (both integer and float) can be used too. Numerals
for different integer types are distinguished by suffixes. Numerals for different floating point types
are distinguished by suffix: f for float, no suffix for double, l for long double. Numerals for
floating point types must have a ‘.’ or an exponent in them. The details are not repeated in
this example binding, see ISO/IEC 9899:1999, clause 6.4.4.1 Integer constants, and clause 6.4.4.2
Floating constants.

C99 specifies numerals (as macros) for infinities and NaNs for float:

+∞+∞+∞ INFINITY ?
qNaN NAN ?
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

C99 has two ways of handling arithmetic errors. One, for backwards compatibility, is by
assigning to errno. The other is by recording of indicators, the method preferred by LIA-2, which
can be used for floating point errors. For C99, the absolute precision underflow notification
is ignored. The behaviour when integer operations initiate a notification is, however, not defined
by C99.

C.4 C++

The programming language C++ is defined by ISO/IEC 14882:1998, Programming languages –
C++ [18].

120 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

This example binding recommends that all identifiers suggested here be defined in the name-
space std::math.

The LIA datatype Boolean is implemented by the C++ datatype bool.

Every implementation of C++ has integral datatypes int, long int, unsigned int, and
unsigned long int. INT is used below to designate one of the integer datatypes.

C++ has three floating point datatypes: float, double, and long double. FLT is used below
to designate one of the floating point datatypes.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) max(x, y) ?
minI(x, y) min(x, y) ?
max seqI(xs) xs.max() ?
min seqI(xs) xs.min() ?

dimI(x, y) dim(x, y) †
powerI(x, y) power(x, y) †
shift2I(x, y) shift2(x, y) †
shift10I(x, y) shift10(x, y) †
sqrtI(x) sqrt(x) †

dividesI(x, y) does divide(x, y) †
dividesI(x, y) x != 0 && y % x == 0 ?
evenI(x) x % 2 == 0 ?
oddI(x) x % 2 != 0 ?

quotI(x, y) quot(x, y) †
modI(x, y) mod(x, y) †
ratioI(x, y) ratio(x, y) †
residueI(x, y) remainder(x, y) †
groupI(x, y) group(x, y) †
padI(x, y) pad(x, y) †

gcdI(x, y) gcd(x, y) †
lcmI(x, y) lcm(x, y) †
gcd seqI(xs) xs.gcd() †
lcm seqI(xs) xs.lcm() †

add wrapI(x, y) add wrap(x, y) †
add ovI(x, y) add over(x, y) †
sub wrapI(x, y) sub wrap(x, y) †
sub ovI(x, y) sub over(x, y) †
mul wrapI(x, y) mul wrap(x, y) †

C.4 C++ 121

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

mul ovI(x, y) mul over(x, y) †
where x and y are expressions of the same integer type and where xs is an expression of type
valarray of an integer type.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) nmax(x, y) †
minF (x, y) nmin(x, y) †
mmaxF (x, y) max(x, y) ?
mminF (x, y) min(x, y) ?
max seqF (xs) xs.nmax() †
min seqF (xs) xs.nmin() †
mmax seqF (xs) xs.max() ?
mmin seqF (xs) xs.min() ?

dimF (x, y) dim(x, y) †
floorF (x) floor(x) ?
floor restF (x) x - floor(x) ?
roundingF (x) round(x) †
rounding restF (x) x - round(x) †
ceilingF (x) ceil(x) ?
ceiling restF (x) x - ceil(x) ?
residueF (x, y) remainder(x, y) †
sqrtF (x) sqrt(x) ?
rec sqrtF (x) rec sqrt(x) †

mulF→F ′(x, y) dprod(x, y) †
add loF (x, y) add low(x, y) †
sub loF (x, y) sub low(x, y) †
mul loF (x, y) mul low(x, y) †
div restF (x, y) div rest(x, y) †
sqrt restF (x) sqrt rest(x) †

where x and y are expressions of the same floating point type, and where xs is an expression of
type valarray of a floating point type. The C++ standard does not make clear how to handle
NaN arguments, in particular for max and min.

The parameters for operations approximating real valued transcendental functions can be ac-
cessed by the following syntax:

max error hypotF numeric limits<FLT>::err hypotenuse() †

max error expF numeric limits<FLT>::err exp() †
max error powerF numeric limits<FLT>::err power() †

big angle rF numeric limits<FLT>::big radian angle() †
max error radF numeric limits<FLT>::err rad() †
max error sinF numeric limits<FLT>::err sin() †
max error tanF numeric limits<FLT>::err tan() †

122 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

min angular unitF numeric limits<FLT>::smallest angle unit() †
big angle uF numeric limits<FLT>::big angle() †
max error sinuF (u) numeric limits<FLT>::err sin cycle(u) †
max error tanuF (u) numeric limits<FLT>::err tan cycle(u) †

max error sinhF numeric limits<FLT>::err sinh() †
max error tanhF numeric limits<FLT>::err tanh() †

max error convertF numeric limits<FLT>::err convert() †
max error convertF ′ numeric limits<FLT>::err convert to string() †
max error convertD′ numeric limits<FLT>::err convert to string() †

where u is an expression of a floating point type.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) hypotenuse(x, y) †

powerF,I(b, z) power(b, z) †
expF (x) exp(x) ?
expm1F (x) expm1(x) †
exp2F (x) exp2(x) †
exp10F (x) exp10(x) †
powerF (b, y) power(b, y) †
powF (b, y) pow(b, y) ? Not LIA-2! (See C.)
power1pm1F (b, y) power1pm1(b, y) †

lnF (x) log(x) ?
ln1pF (x) log1p(x) †
log2F (x) log2(x) †
log10F (x) log10(x) ?
logbaseF (b, x) logbase(b, x) †
logbase1p1pF (b, x) logbase1p1p(b, x) †

radF (x) rad(x) †
axis radF (x) axis rad(x, &h, &v) (note out parameters) †

sinF (x) sin(x) ?
cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) †
secF (x) sec(x) †
cscF (x) csc(x) †
cossinF (x) cossin(x, &c, &s) †

arcsinF (x) asin(x) ?
arccosF (x) acos(x) ?
arctanF (x) atan(x) ?
arccotF (x) acot(x) †

C.4 C++ 123

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

arccotcF (x) acotc(x) †
arcsecF (x) asec(x) †
arccscF (x) acsc(x) †
arcF (x, y) atan2(y, x) ?

cycleF (u, x) cycle(u, x) †
axis cycleF (u, x) axis cycle(u, x, &h, &v) †

sinuF (u, x) sinu(u, x) †
cosuF (u, x) cosu(u, x) †
tanuF (u, x) tanu(u, x) †
cotuF (u, x) cotu(u, x) †
secuF (u, x) secu(u, x) †
cscuF (u, x) cscu(u, x) †
cossinuF (x) cossinu(u, x, &c, &s) †

arcsinuF (u, x) asinu(u, x) †
arccosuF (u, x) acosu(u, x) †
arctanuF (u, x) atanu(u, x) †
arccotuF (u, x) acotu(u, x) †
arccotcuF (u, x) acotcu(u, x) †
arcsecuF (u, x) asecu(u, x) †
arccscuF (u, x) acscu(u, x) †
arcuF (u, x, y) atan2u(u, y, x) †

rad to cycleF (x,w) radian to cycle(x, w) †
cycle to radF (u, x) cycle to radian(u, x) †
cycle to cycleF (u, x, w) cycle to cycle(u, x, w) †

sinhF (x) sinh(x) ?
coshF (x) cosh(x) ?
tanhF (x) tanh(x) ?
cothF (x) coth(x) †
sechF (x) sech(x) †
cschF (x) csch(x) †

arcsinhF (x) asinh(x) †
arccoshF (x) acosh(x) †
arctanhF (x) atanh(x) †
arccothF (x) acoth(x) †
arcsechF (x) asech(x) †
arccschF (x) acsch(x) †

where b, x, y, u, and w are expressions of type FLT, h, v, c, and s are lvalue expressions of type
FLT, and z is an expression of type INT.

Arithmetic value conversions in C++ can be explicit or implicit. The rules for when implicit
conversions are applied are not repeated here. C++ also deals with stream input/output in other
ways, see clause 22.2.2 of ISO/IEC 14882:1998, ‘Locale and facets’. The explicit arithmetic value

124 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

conversions are usually expressed as ‘casts’, except when converting to/from string formats.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C++ standard for a full description. In the format strings % is used to
indicate the start of a format pattern. After the %, optionally a string field width (w below) may
be given as a positive decimal integer numeral. For the floating and fixed point format patterns,
there may then optionally be a ‘.’ followed by a positive integer numeral (d below) indicating
the number of fractional digits in the string. The C++ operations below use HYPHEN-MINUS
rather than MINUS (which would have been typographically better), and only digits that are
in ASCII, independently of so-called locale. For generating or parsing other kinds of digits, say
Arabic digits or Thai digits, another API must be used, that is not standardised in C++. For
the floating and fixed point formats, +∞+∞+∞ may be represented as either inf or infinity, −∞−∞−∞
may be represented as either -inf or -infinity, and a NaN may be represented as NaN; all
independently of so-called locale. For language dependent representations of these values another
API must be used, that is not standardised in C.

For the integer formats then follows an internal type indicator. For t below, the empty string
indicates int, l (the letter l) indicates long int. Finally, there is a radix (for the string side)
and signedness (both sides) format letter (r below): d for signed decimal; o, u, x, X for octal,
decimal, hexadecimal with small letters, and hexadecimal with capital letters, all unsigned. E.g.,
%d indicates decimal numeral string for int and %lu indicates decimal numeral string for unsigned
long int.

For the floating point formats instead follows another internal type indicator. For u below the
empty string indicates double and L indicates long double. Finally, there is a radix (for the
string side) format letter: e or E for decimal. E.g., %15.8LE indicates hexadecimal floating point
numeral string for long double, with a capital letter for the letter component, a field width of
15 characters, and 8 hexadecimal fractional digits.

For the fixed point formats also follows the internal type indicator as for the floating point
formats. But for the final part of the pattern, there is another radix (for the string side) format
letter (p below), only two are standardised, both for the decimal radix: f or F. E.g., %Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter component.
(There is also a combined floating/fixed point string format: g.)

convertI→I′(x) static cast<INT2>(x) ?
convertI′′→I(s) sscanf(s, "%wtr", &i) ?
convertI′′→I(f) fscanf(f, "%wtr", &i) ?
convertI→I′′(x) sprintf(s, "%wtr", x) ?
convertI→I′′(x) fprintf(h, "%wtr", x) ?

floorF→I(y) static cast<INT>(floor(y)) ?
roundingF→I(y) static cast<INT>(round(y)) †
ceilingF→I(y) static cast<INT>(ceil(y)) ?

convertI→F (x) static cast<FLT>(x) ?

convertF→F ′(y) (FLT2)y ?
convertF ′′→F (s) sscanf(s, "%w.duv", &r) ?
convertF ′′→F (f) fscanf(f, "%w.duv", &r) ?

C.4 C++ 125

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

convertF→F ′′(y) sprintf(s, "%w.duv", y) ?
convertF→F ′′(y) fprintf(h, "%w.duv", y) ?

convertD′→F (s) sscanf(s, "%wup", &g) ?
convertD′→F (f) fscanf(f, "%wup", &g) ?

convertF→D′(y) sprintf(s, "%w.dup", y) ?
convertF→D′(y) fprintf(h, "%w.dup", y) ?

where s is an expression of type char*, f is an expression of type FILE*, i is an lvalue expression
of type int, g is an lvalue expression of type double, x is an expression of type INT, y is an
expression of type FLT, INT2 is the integer datatype that corresponds to I ′, and FLT2 is the
floating point datatype that corresponds to F ′.

C++ provides non-negative numerals for all its integer and floating point types in base 10.
Numerals for different integer types are distinguished by suffixes. Numerals for different floating
point types are distinguished by suffix: f for float, no suffix for double, l for long double.
Numerals for floating point types must have a ‘.’ or an exponent in them. The details are not
repeated in this example binding, see ISO/IEC 14882:1998, clause 2.9.1 Integer literals, and clause
2.9.4 Floating literals.

C++ specifies numerals for infinities and NaNs:

+∞+∞+∞ numeric limits<FLT>::infinity() ?
qNaN numeric limits<FLT>::quiet NaN() ?
sNaN numeric limits<FLT>::signaling NaN() ?

as well as string formats for reading and writing these values as character strings.

C++ has completely undefined behaviour on arithmetic notification. An implementation wish-
ing to conform to LIA-2 should provide a means for recording of indicators, similar to C99.

C.5 Fortran

The programming language Fortran is defined by ISO/IEC 1539-1:1997, Information technology
– Programming languages – Fortran – Part 1: Base language [22]. It is complemented with
ISO/IEC TR 15580:1998, Information technology – Programming languages – Fortran – Floating-
point exception handling [23].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided. The operations marked “(?)” are not part of the
base standard, but included in the Floating-point exception handling Technical Report [23].

The Fortran datatype LOGICAL corresponds to the LIA datatype Boolean.

Every implementation of Fortran has one integer datatype, denoted as INTEGER, and two float-
ing point datatype denoted as REAL (single precision) and DOUBLE PRECISION.

An implementation is permitted to offer additional INTEGER types with a different range and
additional REAL types with different precision or range, each parameterised with a kind parameter.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

126 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

maxI(x, y) MAX(x, y) ?
minI(x, y) MIN(x, y) ?
max seqI(xs) MAX(x1, x2, ..., xn) ?
max seqI(xs) MAXVAL(xs) ?
min seqI(xs) MIN(x1, x2, ..., xn) ?
min seqI(xs) MINVAL(xs) ?

dimI(x, y) DIM(x, y) ?
powerI(x, y) x ** y ?
shift2I(x, y) SHIFT2(x, y) †
shift10I(x, y) SHIFT10(x, y) †
sqrtI(x) ISQRT(x) †

dividesI(x, y) DIVIDES(x, y) †
evenI(x) MODULO(x,2) == 0 ?
oddI(x) MODULO(x,2) /= 0 ?

quotI(x, y) QUOTIENT(x, y) †
modI(x, y) MODULO(x, y) ?
ratioI(x, y) RATIO(x, y) †
residueI(x, y) RESIDUE(x, y) †
groupI(x, y) GROUP(x, y) †
padI(x, y) PAD(x, y) †

gcdI(x, y) GCD(x, y) †
lcmI(x, y) LCM(x, y) †
gcd seqI(xs) GCDVAL(xs) †
lcm seqI(xs) LCMVAL(xs) †

add wrapI(x, y) ADD WRAP(x, y) †
add ovI(x, y) ADD OVER(x, y) †
sub wrapI(x, y) SUB WRAP(x, y) †
sub ovI(x, y) SUB OVER(x, y) †
mul wrapI(x, y) MUL WRAP(x, y) †
mul ovI(x, y) MUL OVER(x, y) †

where x and y are expressions of type INTEGER(kind) and where xs is an expression of type array
of INTEGER(kind).

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) MAX(x, y) ?
minF (x, y) MIN(x, y) ?
mmaxF (x, y) MMAX(x, y) †
mminF (x, y) MMIN(x, y) †
max seqF (xs) MAX(x1, x2, ..., xn) ?
max seqF (xs) MAXVAL(xs) ?
min seqF (xs) MIN(x1, x2, ..., xn) ?
min seqF (xs) MINVAL(xs) ?

C.5 Fortran 127

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

mmax seqF (xs) MMAX(x1, x2, ..., xn) †
mmax seqF (xs) MMAXVAL(xs) †
mmin seqF (xs) MMIN(x1, x2, ..., xn) †
mmin seqF (xs) MMINVAL(xs) †

dimF (x, y) DIM(x, y) ?
floorF (x) IEEE RINT(x) (if in round towards −∞−∞−∞ mode) (?)
floor restF (x) x - IEEE RINT(x) (if in round towards −∞−∞−∞ mode) (?)
roundingF (x) IEEE RINT(x) (if in round to nearest mode) (?)
rounding restF (x) x - IEEE RINT(x) (if in round to nearest mode) (?)
ceilingF (x) IEEE RINT(x) (if in round towards +∞+∞+∞ mode) (?)
ceiling restF (x) x - IEEE RINT(x) (if in round towards +∞+∞+∞ mode) (?)
residueF (x, y) IEEE REM(x, y) (?)
sqrtF (x) SQRT(x) ?
rec sqrtF (x) REC SQRT(x) †

mulF→F ′(x, y) DPROD(x, y) ?
add loF (x, y) ADD LOW(x, y) †
sub loF (x, y) SUB LOW(x, y) †
mul loF (x, y) MUL LOW(x, y) †
div restF (x, y) DIV REST(x, y) †
sqrt restF (x) SQRT REST(x) †

where x and y are expressions of type REAL(kind), and where xs is an expression of type array
of REAL(kind).

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF ERR HYPOTENUSE(x) †

max error expF ERR EXP(x) †
max error powerF ERR POWER(x) †

big angle rF BIG RADIAN ANGLE(x) †
max error radF ERR RAD(x) †
max error sinF ERR SIN(x) †
max error tanF ERR TAN(x) †

min angular unitF MIN ANGLE UNIT(x) †
big angle uF BIG ANGLE(x) †
max error sinuF (u) ERR SIN CYCLE(u) †
max error tanuF (u) ERR TAN CYCLE(u) †

max error sinhF ERR SINH(x) †
max error tanhF ERR TANH(x) †

max error convertF ERR CONVERT(x) †
max error convertF ′ ERR CONVERT TO STRING †
max error convertD′ ERR CONVERT TO STRING †

128 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

where x and u are expressions of type REAL(kind). Several of the parameter functions are constant
for each type (and library), the argument is then used only to differentiate among the floating
point types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) HYPOT(x, y) †

powerF,I(b, z) b ** z ?
expF (x) EXP(x) ?
expm1F (x) EXPM1(x) †
exp2F (x) EXP2(x) †
exp10F (x) EXP10(x) †
powerF (b, y) b ** y ?
power1pm1F (b, y) POWER1PM1(b, y) †

lnF (x) LOG(x) ?
ln1pF (x) LOG1P(x) †
log2F (x) LOG2(x) †
log10F (x) LOG10(x) ?
logbaseF (b, x) LOGBASE(b, x) †
logbase1p1pF (b, x) LOGBASE1P1P(b, x) †

radF (x) RAD(x) †

sinF (x) SIN(x) ?
cosF (x) COS(x) ?
tanF (x) TAN(x) ?
cotF (x) COT(x) †
secF (x) SEC(x) †
cscF (x) CSC(x) †

arcsinF (x) ASIN(x) ?
arccosF (x) ACOS(x) ?
arctanF (x) ATAN(x) ?
arccotF (x) ACOT(x) †
arccotcF (x) ACOTC(x) †
arcsecF (x) ASEC(x) †
arccscF (x) ACSC(x) †
arcF (x, y) ATAN2(y, x) ?

cycleF (u, x) CYCLE(u, x) †

sinuF (u, x) SINU(u, x) †
cosuF (u, x) COSU(u, x) †
tanuF (u, x) TANU(u, x) †
cotuF (u, x) COTU(u, x) †
secuF (u, x) SECU(u, x) †

C.5 Fortran 129

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

cscuF (u, x) CSCU(u, x) †

arcsinuF (u, x) ASINU(u, x) †
arccosuF (u, x) ACOSU(u, x) †
arctanuF (u, x) ATANU(u, x) †
arccotuF (u, x) ACOTU(u, x) †
arccotcuF (u, x) ACOTCU(u, x) †
arcsecuF (u, x) ASECU(u, x) †
arccscuF (u, x) ACSCU(u, x) †
arcuF (u, x, y) ATAN2U(u, y, x) †

cycleF (360, x) DEGREES(x) †
sinuF (360, x) SIND(x) †
cosuF (360, x) COSD(x) †
tanuF (360, x) TAND(x) †
cotuF (360, x) COTD(x) †
secuF (360, x) SECD(x) †
cscuF (360, x) CSCD(x) †

arcsinuF (360, x) ASIND(x) †
arccosuF (360, x) ACOSD(x) †
arctanuF (360, x) ATAND(x) †
arccotuF (360, x) ACOTD(x) †
arccotcuF (360, x) ACOTCD(x) †
arcsecuF (360, x) ASECD(x) †
arccscuF (360, x) ACSCD(x) †
arcuF (360, x, y) ATAN2D(y, x) †

rad to cycleF (x,w) RAD TO CYCLE(x, w) †
cycle to radF (u, x) CYCLE TO RAD(u, x) †
cycle to cycleF (u, x, w) CYCLE TO CYCLE(u, x, w) †

sinhF (x) SINH(x) ?
coshF (x) COSH(x) ?
tanhF (x) TANH(x) ?
cothF (x) COTH(x) †
sechF (x) SECH(x) †
cschF (x) CSCH(x) †

arcsinhF (x) ASINH(x) †
arccoshF (x) ACOSH(x) †
arctanhF (x) ATANH(x) †
arccothF (x) ACOTH(x) †
arcsechF (x) ASECH(x) †
arccschF (x) ACSCH(x) †

where b, x, y, u, and w are expressions of type REAL(kind), and z is an expression of type
INTEGER(kindi).

130 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Arithmetic value conversions in Fortran are always explicit, and the conversion function is
named like the target type, except when converting to/from string formats.

convertI→I′(x) INT(x,kindi2) ?

lbl a FORMAT (Bn) ?(binary)
convertI′′→I(f) READ (UNIT=#f,FMT=lbl a) r ?
convertI→I′′(x) WRITE (UNIT=#h, FMT=lbl a) x ?

lbl b FORMAT (On) ?(octal)
convertI′′→I(f) READ (UNIT=#f,FMT=lbl b) r ?
convertI→I′′(x) WRITE (UNIT=#h, FMT=lbl b) x ?

lbl c FORMAT (In) ?(decimal)
convertI′′→I(f) READ (UNIT=#f,FMT=lbl c) r ?
convertI→I′′(x) WRITE (UNIT=#h, FMT=lbl c) x ?

lbl d FORMAT (Zn) ?(hexadecimal)
convertI′′→I(f) READ (UNIT=#f,FMT=lbl d) r ?
convertI→I′′(x) WRITE (UNIT=#h, FMT=lbl d) x ?

floorF→I(y) FLOOR(y, kindi?) ?
roundingF→I(y) ROUND(y, kindi?) †
ceilingF→I(y) CEILING(y, kindi?) ?

convertI→F (x) REAL(x, kind) or sometimes DBLE(x) ?

convertF→F ′(y) REAL(y, kind2) or sometimes DBLE(y) ?

lbl e FORMAT (Fw.d) ?
lbl f FORMAT (Dw.d) ?
lbl g FORMAT (Ew.d) ?
lbl h FORMAT (Ew.dEe) ?
lbl i FORMAT (ENw.d) ?
lbl j FORMAT (ENw.dEe) ?
lbl k FORMAT (ESw.d) ?
lbl l FORMAT (ESw.dEe) ?

convertF ′′→F (f) READ (UNIT=#f, FMT=lbl x) t ?
convertF→F ′′(y) WRITE (UNIT=#h, FMT=lbl x) y ?

convertD′→F (f) READ (UNIT=#f, FMT=lbl x) t ?

where x is an expression of type INTEGER(kindi), y is an expression of type REAL(kind), f is
an input file with unit number #f , and h is an output file with unit number #h. w, d, and e are
literal digit (0-9) sequences, giving total, decimals, and exponent widths. lbl x is one of lbl e to
lbl l; all of the lbl s are labels for formats.

Fortran provides base 10 non-negative numerals for all of its integer and floating point types.
Numerals for floating point types must have a ‘.’ in them. The details are not repeated in this
example binding, see ISO/IEC 1539-1:1997, clause 4.3.1.1 Integer type, and clause 4.3.1.2 Real
type.

Fortran does not specify numerals for infinities and NaNs. Suggestion:

C.5 Fortran 131

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

+∞+∞+∞ INFINITY †
qNaN NAN †
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

Fortran implementations can provide recording of indicators for floating point arithmetic no-
tifications, the LIA-2 preferred method. See ISO/IEC TR 15580:1998, Information technology –
Programming languages – Fortran – Floating-point exception handling [23]. absolute precision
underflow notifications are however ignored.

C.6 Haskell

The programming language Haskell is defined by Report on the programming language Haskell 98
[65], together with Standard libraries for the Haskell 98 programming language [66].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Haskell datatype Bool corresponds to the LIA datatype Boolean.

Every implementation of Haskell has at least two integer datatypes, Integer, which is un-
bounded, and Int, and at least two floating point datatypes, Float, and Double. The notation
INT is used to stand for the name of one of the integer datatypes, and FLT is used to stand for
the name of one of the floating point datatypes in what follows.

Haskell has a type class system that allows for overloading, and allowing static type checking
of dynamic overloading. But in contrast to object oriented programming languages, type classes
are not types. E.g. + has the type (Num a) => a -> a -> a, where Num is a type class and a is
a type variable.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) max x y or x ‘max‘ y ?
minI(x, y) min x y or x ‘min‘ y ?
max seqI(xs) maximum xs ?
min seqI(xs) minimum xs ?

dimI(x, y) dim x y or x ‘dim‘ y †
powerI(x, y) x ^ y or (^) x y ?
shift2I(x, y) shift2 x y or x ‘shift2‘ y †
shift10I(x, y) shift10 x y or x ‘shift10‘ y †
sqrtI(x) isqrt x †

dividesI(x, y) divides x y or x ‘divides‘ y †
evenI(x) even x ?
oddI(x) odd x ?

quotI(x, y) div x y or x ‘div‘ y ?
modI(x, y) mod x y or x ‘mod‘ y ?

132 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

ratioI(x, y) ratio x y or x ‘ratio‘ y †
residueI(x, y) residue x y or x ‘residue‘ y †
groupI(x, y) grp x y or x ‘grp‘ y †
padI(x, y) pad x y or x ‘pad‘ y †

gcdI(x, y) gcd x y or x ‘gcd‘ y ?
lcmI(x, y) lcm x y or x ‘lcm‘ y ?
gcd seqI(xs) gcd seq xs †
lcm seqI(xs) lcm seq xs †

add wrapI(x, y) x +: y †
add ovI(x, y) x +:+ y †
sub wrapI(x, y) x -: y †
sub ovI(x, y) x -:+ y †
mul wrapI(x, y) x *: y †
mul ovI(x, y) x *:+ y †

where x and y are expressions of type INT and where xs is an expression of type [INT].

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) max x y or x ‘max‘ y ?
minF (x, y) min x y or x ‘min‘ y ?
mmaxF (x, y) mmax x y or x ‘mmax‘ y †
mminF (x, y) mmin x y or x ‘mmin‘ y †
max seqF (xs) maximum xs ?
min seqF (xs) minimum xs ?
mmax seqF (xs) mmaximum xs †
mmin seqF (xs) mminimum xs †

dimF (x, y) dim x y or x ‘dim‘ y †
floorF (x) fromInteger (floor x) ?
floor restF (x) x - fromInteger (floor x) ?
roundingF (x) fromInteger (round x) ?
rounding restF (x) x - fromInteger (round x) ?
ceilingF (x) fromInteger (ceiling x) ?
ceiling restF (x) x - fromInteger (ceiling x) ?
residueF (x, y) residue x y or x ‘residue‘ y †
sqrtF (x) sqrt x ?
rec sqrtF (x) rec sqrt x †

mulF→F ′(x, y) prod x y †
add loF (x, y) x +:- y †
sub loF (x, y) x -:- y †
mul loF (x, y) x *:- y †
div restF (x, y) x /:* y †
sqrt restF (x) sqrt rest x †

where x and y are expressions of type FLT, and where xs is an expression of type [FLT].

C.6 Haskell 133

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

The binding for the floor, round, and ceiling operations here take advantage of the unbounded
Integer type in Haskell, and that Integer is the default integer type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF err hypotenuse x †

max error expF err exp x †
max error powerF err power x †

big angle rF big radian angle x †
max error radF err rad x †
max error sinF err sin x †
max error tanF err tan x †

min angular unitF min angle unit x †
big angle uF big angle x †
max error sinuF (u) err sin cycle u †
max error tanuF (u) err tan cycle u †

max error sinhF err sinh x †
max error tanhF err tanh x †

max error convertF err convert x †
max error convertF ′ err convert "" †
max error convertD′ err convert "" †

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) hypotenuse x y †

powerF,I(b, z) b ^^ z or (^^) b z ?
expF (x) exp x ?
expm1F (x) expM1 x †
exp2F (x) exp2 x †
exp10F (x) exp10 x †
powerF (b, y) b ** y or (**) b y ?
power1pm1F (b, y) power1PM1 b y or b ‘power1PM1‘ y †

lnF (x) log x ?
ln1pF (x) log1P x †
log2F (x) log2 x †
log10F (x) log10 x †
logbaseF (b, x) logBase b x or b ‘logBase‘ x ?
logbase1p1pF (b, x) logBase1P1P b x †

134 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

radF (x) radians x †
axis radF (x) axis radians x †

sinF (x) sin x ?
cosF (x) cos x ?
tanF (x) tan x ?
cotF (x) cot x †
secF (x) sec x †
cscF (x) csc x †
cossinF (x) cosSin x †

arcsinF (x) asin x ?
arccosF (x) acos x ?
arctanF (x) atan x ?
arccotF (x) acot x †
arccotcF (x) acotc x †
arcsecF (x) asec x †
arccscF (x) acsc x †
arcF (x, y) atan2 y x ?

cycleF (u, x) cycle u x †
axis cycleF (u, x) axis cycle u x †

sinuF (u, x) sinU u x †
cosuF (u, x) cosU u x †
tanuF (u, x) tanU u x †
cotuF (u, x) cotU u x †
secuF (u, x) secU u x †
cscuF (u, x) cscU u x †
cossinuF (u, x) cosSinU u x †

arcsinuF (u, x) asinU u x †
arccosuF (u, x) acosU u x †
arctanuF (u, x) atanU u x †
arccotuF (u, x) acotU u x †
arccotcuF (u, x) acotcU u x †
arcsecuF (u, x) asecU u x †
arccscuF (u, x) acscU u x †
arcuF (u, x, y) atan2U u y x †

rad to cycleF (x,w) rad to cycle w x †
cycle to radF (u, x) cycle to rad u x †
cycle to cycleF (u, x, w) cycle to cycle u x w †

sinhF (x) sinh x ?
coshF (x) cosh x ?
tanhF (x) tanh x ?

C.6 Haskell 135

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

cothF (x) coth x †
sechF (x) sech x †
cschF (x) csch x †

arcsinhF (x) asinh x ?
arccoshF (x) acosh x ?
arctanhF (x) atanh x ?
arccothF (x) acoth x †
arcsechF (x) asech x †
arccschF (x) acsch x †

where b, x, y, u, and w are expressions of type FLT, and z is an expression of type INT.

Arithmetic value conversions in Haskell are always explicit. They are done with the overloaded
fromIntegral and fromFractional operations.

convertI→I′(x) fromIntegral x ?
convertI′′→I(x) read s ?
convertI→I′′(x) show x ?

floorF→I(y) floor y ?
roundingF→I(y) round y ?
ceilingF→I(y) ceiling y ?

convertI→F (x) fromIntegral x ?

convertF→F ′(y) fromFractional y ?
convertF ′′→F (s) read s ?
convertF→F ′′(y) show y ?

convertD′→F (s) read s ?

convertF→D′(y) show y ?

where x is an expression of type INT, y is an expression of type FLT. show does not allow for
format control.

Haskell provides non-negative numerals for all its integer and floating point types in base
10. There is no differentiation between the numerals for different floating point datatypes, nor
between numerals for different integer datatypes, and integer numerals can be used for floating
point values. Integer numerals stand for a value in Integer (the unbounded integer type) and an
implicit fromInteger operation is applied to it. Fractional numerals stand for a value in Rational
(the unbounded type of rational numbers) and an implicit fromRational operation is applied to
it.

Haskell does not specify any numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ infinity †
qNaN quietNaN †
sNaN sigallingNaN †

as well as string formats for reading and writing these values as character strings.

136 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Haskell has the notion of error, which results in a change of ‘control flow’, which cannot be
returned from, nor caught. An error results in the termination of the program. (There are
suggestions to improve this.) infinitary for integer types and invalid (in general) are considered
to be error. No notification results for underflow, and the continuation value (specified by
LIA-2) is used directly, since recording of indicators is not available and error is inappropriate
for underflow. The handling of integer overflow is implementation dependent. The handling
of floating point overflow and infinitary should be to return a suitable infinity (specified by
LIA-2), if possible, without any notification, since recording of indicators is not available.

C.7 Java

The programming language Java is defined by The Java Language Specification [64], plus a number
of class libraries (exactly which vary depending on the Java ‘edition’ and version).

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided. The LIA-2 operations that are provided in Java
2 (marked “?” below) are in the final class java.lang.Math.

The Java datatype boolean corresponds to the LIA datatype Boolean.

Every implementation of Java has the integer datatypes int and long. The notation INT will
be used to refer to either one of them.

Java has two floating point datatypes, float and double, which must conform to IEC 60559.
The notation FLT will be used to refer to either one of them.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

minI(x, y) min(x, y) ?
maxI(x, y) max(x, y) ?
min seqI(xs) min arr(xs) †
max seqI(xs) max arr(xs) †

dimI(x, y) dim(x, y) †
powerI(x, y) power(x, y) †
shift2I(x, y) shift2(x, y) †
shift10I(x, y) shift10(x, y) †
sqrtI(x) sqrt(x) †

dividesI(x, y) divides(x, y) †
dividesI(x, y) x != 0 && y % x == 0 ?
evenI(x) x % 2 == 0 ?
oddI(x) x % 2 != 0 ?

quotI(x, y) quot(x, y) †
modI(x, y) mod(x, y) †
ratioI(x, y) ratio(x, y) †
residueI(x, y) residue(x, y) †

C.7 Java 137

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

groupI(x, y) group(x, y) †
padI(x, y) pad(x, y) †

gcdI(x, y) gcd(x, y) †
lcmI(x, y) lcm(x, y) †
gcd seqI(xs) gcd arr(xs) †
lcm seqI(xs) lcm arr(xs) †

add wrapI(x, y) add wrap(x, y) †
add ovI(x, y) add over(x, y) †
sub wrapI(x, y) sub wrap(x, y) †
sub ovI(x, y) sub over(x, y) †
mul wrapI(x, y) mul wrap(x, y) †
mul ovI(x, y) mul over(x, y) †

where x and y are expressions of type INT and where xs is an expression of type INT[].

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

minF (x, y) min(x, y) ?
maxF (x, y) max(x, y) ?
mmaxF (x, y) mmax(x, y) †
mminF (x, y) mmin(x, y) †
min seqF (xs) min arr(xs) †
max seqF (xs) max arr(xs) †
mmax seqF (xs) mmax(xs) †
mmin seqF (xs) mmin(xs) †

dimF (x, y) dim(x, y) †
floorF (x) floor(x) ?(only for double)
floor restF (x) x - floor(x) ?(only for double)
roundingF (x) rint(x) ?(only for double)
rounding restF (x) x - rint(x) ?(only for double)
ceilingF (x) ceil(x) ?(only for double)
ceiling restF (x) x - ceil(x) ?(only for double)
residueF (x, y) IEEEremainder(x, y) ? (only for double)
sqrtF (x) sqrt(x) ?
rec sqrtF (x) rec sqrt(x) †

mulF→F ′(x, y) dprod(x, y) †
add loF (x, y) add low(x, y) †
sub loF (x, y) sub low(x, y) †
mul loF (x, y) mul low(x, y) †
div restF (x, y) div rest(x, y) †
sqrt restF (x) sqrt rest(x) †

where x and y are expressions of type FLT, and where xs is an expression of type FLT[].

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

138 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

max error hypotF err hypotenuse(x) †

max error expF err exp(x) †
max error powerF (b, x) err power(x) †

big angle rF big radian angle(x) †
max error radF err rad(x) †
max error sinF err sin(x) †
max error tanF err tan(x) †

min angular unitF smallest angular unit(x) †
big angle uF big angle(x) †
max error sinuF (u) err sin cycle(u) †
max error tanuF (u) err tan cycle(u) †

max error sinhF err sinh(x) †
max error tanhF err tanh(x) †

max error convertF err convert(x) †
max error convertF ′ err convert to string †
max error convertD′ err convert to string †

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them. These are defined only for double not for float.

hypotF (x, y) hypotenuse(x, y) †

powerF,I(b, z) poweri(b, z) †
expF (x) exp(x) ?
expm1F (x) expm1(x) †
exp2F (x) exp2(x) †
exp10F (x) exp10(x) †
powerF (b, y) power(b, y) †
powF (b, y) pow(b, y) ? Not LIA-2!
power1pm1F (b, y) power1pm1(b, y) †

lnF (x) log(x) ?
ln1pF (x) log1p(x) †
log2F (x) log2(x) †
log10F (x) log10(x) †
logbaseF (b, x) log(b, x) †
logbase1p1pF (b, x) log1p1p(b, x) †

radF (x) radian(x) †
axis radF (x) axis rad(x) †

C.7 Java 139

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

sinF (x) sin(x) ?
cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) †
secF (x) sec(x) †
cscF (x) csc(x) †

arcsinF (x) asin(x) ?
arccosF (x) acos(x) ?
arctanF (x) atan(x) ?
arccotF (x) acot(x) †
arccotcF (x) acotc(x) †
arcsecF (x) asec(x) †
arccscF (x) acsc(x) †
arcF (x, y) atan2(y, x) ?

cycleF (u, x) cycle(u, x) †
axis cycleF (u, x) axis cycle(u, x) †

sinuF (u, x) sinu(u, x) †
cosuF (u, x) cosu(u, x) †
tanuF (u, x) tanu(u, x) †
cotuF (u, x) cotu(u, x) †
secuF (u, x) secu(u, x) †
cscuF (u, x) cscu(u, x) †

arcsinuF (u, x) asinu(u, x) †
arccosuF (u, x) acosu(u, x) †
arctanuF (u, x) atanu(u, x) †
arccotuF (u, x) acotu(u, x) †
arccotcuF (u, x) acotcu(u, x) †
arcsecuF (u, x) asecu(u, x) †
arccscuF (u, x) acscu(u, x) †
arcuF (u, x, y) atan2u(u, y, x) †

rad to cycleF (x, 360) toDegrees(x) ?
cycle to radF (360, x) toRadians(x) ?
rad to cycleF (x,w) radian to cycle(x, w) †
cycle to radF (u, x) cycle to radian(u, x) †
cycle to cycleF (u, x, w) cycle to cycle(u, x, w) †

sinhF (x) sinh(x) †
coshF (x) cosh(x) †
tanhF (x) tanh(x) †
cothF (x) coth(x) †
sechF (x) sech(x) †
cschF (x) csch(x) †

140 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

arcsinhF (x) asinh(x) †
arccoshF (x) acosh(x) †
arctanhF (x) atanh(x) †
arccothF (x) acoth(x) †
arcsechF (x) asech(x) †
arccschF (x) acsch(x) †

where b, x, y, u, and w are expressions of type FLT, and z is an expression of type INT.

Arithmetic value conversions in Java can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as ‘casts’, except when converting to/from strings.

convertI→I′(x) (INT2)x ?
convertI′′→I(s) Integer.parseInt(s) ?
convertI′′→I(s) Integer.parseInt(s, radix) ?
convertI′′→I(s) Long.parseLong(s) ?
convertI′′→I(s) Long.parseLong(s, radix) ?
convertI→I′′(x) Integer.toString(x) ?
convertI→I′′(x) Integer.toString(x, radix) ?
convertI→I′′(x) Integer.toBinaryString(x) ?
convertI→I′′(x) Integer.toOctalString(x) ?
convertI→I′′(x) Integer.toHexString(x) ?
convertI→I′′(x) Long.toString(x) ?
convertI→I′′(x) Long.toString(x, radix) ?
convertI→I′′(x) Long.toBinaryString(x) ?
convertI→I′′(x) Long.toOctalString(x) ?
convertI→I′′(x) Long.toHexString(x) ?
convertI→I′′(x) ""+x ?

floorF→I(y) (INT)floor(y) ?
roundingF→I(y) (INT)rint(y) ?
ceilingF→I(y) (INT)ceil(y) ?

convertI→F (x) (FLT)x ?

convertF→F ′(y) (FLT2)y ?
convertF ′′→F (s) Float.parseFloat(s) ?
convertF ′′→F (s) Double.parseDouble(s) ?
convertF→F ′′(y) Float.toString(y) ?
convertF→F ′′(y) Double.toString(y) ?

convertD′→F (s) Float.parseFloat(s) ?
convertD′→F (s) Double.parseDouble(s) ?

where x is an expression of type INT, y is an expression of type FLT, and s is an expression of
type String. toString does not provide any format control. INT2 is the integer datatype that
corresponds to I ′. FLT2 is the floating point datatype that corresponds to F ′.

Java provides non-negative numerals for all its integer and floating point types. The default
base is 10, but for integers base 8 and 16 can be used too. Numerals for different integer types are

C.7 Java 141

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

distinguished by suffixes. Numerals for different floating point types are distinguished by suffix:
f for float, no suffix for double, l for long double. Numerals for floating point types must
have a ‘.’ in them. The details are not repeated in this example binding, see The Java Language
Specification, clause 3.10.1 Integer literals, and clause 3.10.2 Floating-point literals.

Java specifies numerals for infinities and NaNs:

+∞+∞+∞ Float.POSITIVE INFINITY ?
+∞+∞+∞ Double.POSITIVE INFINITY ?
−∞−∞−∞ Float.NEGATIVE INFINITY ?
−∞−∞−∞ Double.NEGATIVE INFINITY ?
qNaN Float.NaN ?
qNaN Double.NaN ?
sNaN Float.SigNaN †
sNaN Double.SigNaN †

as well as string formats for writing these values as character strings. However, infinities and
NaNs cannot be converted from string.

Java has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
flow. Java uses its exception mechanism as its default means of notification. underflow does not
cause any notification in Java, and the continuation value to the underflow is used directly, since
an Java exception is inappropriate for an underflow notification. Java also ignores infinitary and
overflow notifications for floating point operations, and the continuation value (specified in LIA-
2) is used directly without recording the infinitary or overflow itself. Java uses the exception
java.lang.ArithmeticException for invalid notifications and for infinitary notifications for
integer operations. Java uses java.lang.NumberFormatException for invalid notifications for
operations that convert from string. Since Java exceptions are non-returnable changes of control
flow, no continuation value is provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications, including those that Java ignores when the
numeric notification handling mechanism is by Java exceptions. Recording of indicators is the
LIA-2 preferred means of handling numeric notifications.

C.8 Common Lisp

The programming language Common Lisp is defined by ANSI X3.226-1994, Information Technol-
ogy – Programming Language – Common Lisp [42].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

Common Lisp does not have a single datatype that corresponds to the LIA-1 datatype Boolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp has one unbounded integer datatype. Any mathemat-
ical integer is assumed to have a representation as a Common Lisp data object, subject only to
total memory limitations.

142 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Common Lisp has four floating point datatypes: short-float, single-float, double-float,
and long-float. Not all of these floating point datatypes must be distinct.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) (max x y) ?
minI(x, y) (min x y) ?
max seqI(xs) (max . xs) or (max x1 x2 ... xn) ?
min seqI(xs) (min . xs) or (min x1 x2 ... xn) ?

dimI(x, y) (dim x y) †
powerI(x, y) (expt x y) (returns a rational on negative power) ?
shift2I(x, y) (shift2 x y) †
shift10I(x, y) (shift10 x y) †
sqrtI(x) (isqrt x) ?

dividesI(x, y) (dividesp x y) †
evenI(x) (evenp x) ?
oddI(x) (oddp x) ?

(the floor, ceiling, and round can also accept floating point arguments)
(multiple-value-bind (flr md) (floor x y)) ?

quotI(x, y) flr or (floor x y) ?
modI(x, y) md or (mod x y) ?

(multiple-value-bind (rnd rm) (round x y)) ?
ratioI(x, y) rnd or (round x y) ?
residueI(x, y) rm

(multiple-value-bind (ceil pd) (ceiling x y)) ?
groupI(x, y) ceil or (ceiling x y) ?
padI(x, y) (- pd)

gcdI(x, y) (gcd x y) (deviation: (gcd 0 0) is 0) ?
lcmI(x, y) (lcm x y) ?
gcd seqI(xs) (gcd . xs) or (gcd x1 x2 ... xn) ?(dev. as above)
lcm seqI(xs) (lcm . xs) or (lcm x1 x2 ... xn) ?

add wrapI(x, y) (add-wrap x y) †
add ovI(x, y) (add-over x y) †
sub wrapI(x, y) (sub-wrap x y) †
sub ovI(x, y) (sub-over x y) †
mul wrapI(x, y) (mul-wrap x y) †
mul ovI(x, y) (mul-over x y) †

where x and y are expressions of type INT and where xs is an expression of type list of INT.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) (max x y) ?
minF (x, y) (min x y) ?
mmaxF (x, y) (mmax x y) †

C.8 Common Lisp 143

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

mminF (x, y) (mmin x y) †
max seqF (xs) (max . xs) or (max x1 x2 ... xn) ?
min seqF (xs) (min . xs) or (min x1 x2 ... xn) ?
mmax seqF (xs) (mmax . xs) or (mmax x1 x2 ... xn) †
mmin seqF (xs) (mmin . xs) or (mmin x1 x2 ... xn) †

dimF (x, y) (dim x y) †

(multiple-value-bind (flr frem) (ffloor x)) ?
floorF (x) (ffloor x) or flr ?
floor restF (x) frem

(multiple-value-bind (rnd rrem) (fround x)) ?
roundingF (x) (fround x) or rnd ?
rounding restF (x) rrem

(multiple-value-bind (cln crem) (fceiling x)) ?
ceilingF (x) (fceiling x) or cln ?
ceiling restF (x) crem

(multiple-value-bind (rnd rm) (fround x y)) ?
residueF (x, y) rm
sqrtF (x) (sqrt x) (returns a complex when x < 0) ?
rec sqrtF (x) (rec-sqrt x) †

mulF→F ′(x, y) (prod x y) †
add loF (x, y) (add-low x y) †
sub loF (x, y) (sub-low x y) †
mul loF (x, y) (mul-low x y) †
div restF (x, y) (div-rest x y) †
sqrt restF (x) (sqrt-rest x) †

where x and y are data objects of the same floating point type, and where xs is a data object
that is a list of data objects of (the same, in this binding) floating point type. Note that Common
Lisp allows mixed number datatypes in many of its operations. This example binding does not
explain that in detail.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF (err-hypotenuse x) †

max error expF (err-exp x) †
max error powerF (err-power x) †

big angle rF (big-radian-angle x) †
max error radF (err-rad x) †
max error sinF (err-sin x) †
max error tanF (err-tan x) †

min angular unitF (minimum-angular-unit x) †

144 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

big angle uF (big-angle x) †
max error sinuF (u) (err-sin-cycle u) †
max error tanuF (u) (err-tan-cycle u) †

max error sinhF (err-sinh x) †
max error tanhF (err-tanh x) †

max error convertF (err-convert x) †
max error convertF ′ err-convert-to-string †
max error convertD′ err-convert-to-string †

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
datatypes.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) (hypotenuse x y) †

powerF,I(b, z) (expt b z) ?
expF (x) (exp x) ?
exp2F (x) (exp2 x) †
exp10F (x) (exp10 x) †
expm1F (x) (expm1 x) †
powerF (b, y) (expt b y) (deviation: (expt 0.0 0.0) is 1) ?
power1pm1F (b, y) (expt1pm1 b y) †

lnF (x) (log x) (returns a complex on negative arg.) ?
ln1pF (x) (log1p x) †
log2F (x) (log2 x) †
log10F (x) (log10 x) †
logbaseF (b, x) (log x b) (note parameter order) ?
logbase1p1pF (b, x) (log1p1p x b) †

radF (x) (radians x) †
axis radF (x) (axis-rad x) †

sinF (x) (sin x) ?
cosF (x) (cos x) ?
tanF (x) (tan x) ?
cotF (x) (cot x) †
secF (x) (sec x) †
cscF (x) (csc x) †
cossinF (x) (cossin x) †

arcsinF (x) (asin x) (returns a complex when |x| > 1) ?
arccosF (x) (acos x) (returns a complex when |x| > 1) ?
arctanF (x) (atan x) ?
arccotF (x) (acot x) †

C.8 Common Lisp 145

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

arccotcF (x) (acotc x) †
arcsecF (x) (asec x) †
arccscF (x) (acsc x) †
arcF (x, y) (atan y x) ?

cycleF (u, x) (cycle u x) †
axis cycleF (u, x) (axis-cycle u x) †

sinuF (u, x) (sinU u x) †
cosuF (u, x) (cosU u x) †
tanuF (u, x) (tanU u x) †
cotuF (u, x) (cotU u x) †
secuF (u, x) (secU u x) †
cscuF (u, x) (cscU u x) †
cossinuF (u, x) (cossinU u x) †

arcsinuF (u, x) (asinU u x) †
arccosuF (u, x) (acosU u x) †
arctanuF (u, x) (atanU u x) †
arccotuF (u, x) (acotU u x) †
arccotcuF (u, x) (acotcU u x) †
arcsecuF (u, x) (asecU u x) †
arccscuF (u, x) (acscU u x) †
arcuF (u, x, y) (atanU u y x) †

rad to cycleF (x,w) (rad-to-cycle x w) †
cycle to radF (u, x) (cycle-to-rad u x) †
cycle to cycleF (u, x, w) (cycle-to-cycle u x w) †

sinhF (x) (sinh x) ?
coshF (x) (cosh x) ?
tanhF (x) (tanh x) ?
cothF (x) (coth x) †
sechF (x) (sech x) †
cschF (x) (csch x) †

arcsinhF (x) (asinh x) ?
arccoshF (x) (acosh x) (returns a complex when x < 1) ?
arctanhF (x) (atanh x) (returns a complex when |x| > 1) ?
arccothF (x) (acoth x) †
arcsechF (x) (asech x) †
arccschF (x) (acsch x) †

where b, x, y, u, and w are expressions of type FLT, and z is an expression of type INT.

Arithmetic value conversions in Common Lisp can be explicit or implicit. The rules for when
implicit conversions are done is implementation defined.

convertI→I′′(x) (format nil "~wB" x) ?(binary)
convertI→I′′(x) (format nil "~wO" x) ?(octal)

146 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

convertI→I′′(x) (format nil "~wD" x) ?(decimal)
convertI→I′′(x) (format nil "~wX" x) ?(hexadecimal)
convertI→I′′(x) (format nil "~r, wR" x) ?(radix r)
convertI→I′′(x) (format nil "~@R" x) ?(roman numeral)

floorF→I(y) (floor y) ?
roundingF→I(y) (round y) ?
ceilingF→I(y) (ceiling y) ?

convertI→F (x) (float x kind) ?

convertF→F ′(y) (float y kind2) ?
convertF→F ′′(y) (format nil "~wF" y) ?
convertF→F ′′(y) (format nil "~w, e, k, cE" y) ?
convertF→F ′′(y) (format nil "~w, e, k, cG" y) ?

convertF→D′(y) (format nil "~r, w,0,#F" y) ?

where x is an expression of type INT, y is an expression of type FLT. Conversion from string to
numeric value is in Common Lisp done via a general read procedure, which reads Common Lisp
‘S-expressions’.

Common Lisp provides non-negative numerals for all its integer and floating point datatypes
in base 10. There is no differentiation between the numerals for different floating point datatypes,
nor between numerals for different integer datatypes, and integer numerals can be used for floating
point values.

Common Lisp does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ infinity-FLT †
qNaN nan-FLT †
sNaN signan-FLT †

as well as string formats for reading and writing these values as character strings.

Common Lisp has a notion of ‘exception’. However, Common Lisp has no notion of compile
time type checking, and an operation can return differently typed values for different arguments.
When justifiable, Common Lisp arithmetic operations return a rational or a complex floating
point value rather than giving a notification, even if the argument(s) to the operation were not
complex. For instance, (sqrt -1) (quietly) returns a representation of 0 + i.

C.9 ISLisp

The programming language ISLisp is defined by ISO/IEC 13816:1997, Information technology
– Programming languages, their environments and system software interfaces – Programming
language ISLISP [24].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

C.9 ISLisp 147

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

ISLisp does not have a single datatype that corresponds to the LIA datatype Boolean. Rather,
NIL corresponds to false and T corresponds to true.

Every implementation of ISLisp has one unbounded integer datatype. Any mathematical in-
teger is assumed to have a representation as an ISLisp data object, subject only to total memory
limitations.

ISLisp has one floating point type required to conform to IEC 60559.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) (max x y) ?
minI(x, y) (min x y) ?
max seqI(xs) (max . xs) or (max x1 x2 ... xn) ?
min seqI(xs) (min . xs) or (min x1 x2 ... xn) ?

dimI(x, y) (dim x y) †
powerI(x, y) (expt x y) (deviation: (expt 0 0) is 1) ?
shift2I(x, y) (shift2 x y) †
shift10I(x, y) (shift10 x y) †
sqrtI(x) (isqrt x) ?

dividesI(x, y) (dividesp x y) †
evenI(x) (evenp x) †
oddI(x) (oddp x) †

quotI(x, y) (div x y) ?
modI(x, y) (mod x y) ?
ratioI(x, y) (ratio x y) †
residueI(x, y) (residue x y) †
groupI(x, y) (group x y) †
padI(x, y) (pad x y) †

gcdI(x, y) (gcd x y) (deviation: (gcd 0 0) is 0) ?
lcmI(x, y) (lcm x y) ?
gcd seqI(xs) (gcds xs) †
lcm seqI(xs) (lcms xs) †

add wrapI(x, y) (add-wrap x y) †
add ovI(x, y) (add-over x y) †
sub wrapI(x, y) (sub-wrap x y) †
sub ovI(x, y) (sub-over x y) †
mul wrapI(x, y) (mul-wrap x y) †
mul ovI(x, y) (mul-over x y) †

where x and y are expressions of the unbounded integer type and where xs is an expression of
type list of the unbounded integer type.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) (max x y) ?
minF (x, y) (min x y) ?

148 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

mmaxF (x, y) (mmax x y) †
mminF (x, y) (mmin x y) †
max seqF (xs) (max . xs) or (max x1 x2 ... xn) ?
min seqF (xs) (min . xs) or (min x1 x2 ... xn) ?
mmax seqF (xs) (mmax . xs) or (mmax x1 x2 ... xn) †
mmin seqF (xs) (mmin . xs) or (mmin x1 x2 ... xn) †

dimF (x, y) (dim x y) †
floorF (x) (float (floor x)) ?
floor restF (x) (- x (float (floor x)) ?
roundingF (x) (float (round x)) ?
rounding restF (x) (- x (float (round x)) ?
ceilingF (x) (float (ceiling x)) ?
ceiling restF (x) (- x (float (ceiling x)) ?
residueF (x, y) (residue x y) †
sqrtF (x) (sqrt x) ?
rec sqrtF (x) (rec-sqrt x) †

add loF (x, y) (add-low x y) †
sub loF (x, y) (sub-low x y) †
mul loF (x, y) (mul-low x y) †
div restF (x, y) (div-rest x y) †
sqrt restF (x) (sqrt-rest x) †

where x and y are data objects of the ISLisp floating point type, and where xs is a data object
that is a list of data objects of the ISLisp floating point type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF (err-hypotenuse x) †

max error expF (err-exp x) †
max error powerF (err-power x) †

big angle rF (big-radian-angle x) †
max error radF (err-rad x) †
max error sinF (err-sin x) †
max error tanF (err-tan x) †

min angular unitF (minimum-angular-unit x) †
big angle uF (big-angle x) †
max error sinuF (u) (err-sin-cycle u) †
max error tanuF (u) (err-tan-cycle u) †

max error sinhF (err-sinh x) †
max error tanhF (err-tanh x) †

max error convertF (err-convert x) †
max error convertF ′ err-convert-to-string †

C.9 ISLisp 149

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

max error convertD′ err-convert-to-string †
where x and u are expressions of the ISLisp floating point type. Several of the parameter functions
are constant.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) (hypotenuse x y) †

powerF,I(b, z) (expt b z) ?
expF (x) (exp x) ?
expm1F (x) (expm1 x) †
exp2F (x) (exp2 x) †
exp10F (x) (exp10 x) †
powerF (b, y) (expt b y) (deviation: (expt 0 0) is 1) ?
power1pm1F (b, y) (exp1pm1 b y) †

lnF (x) (log x) ?
ln1pF (x) (log1p x) †
log2F (x) (log2 x) †
log10F (x) (log10 x) †
logbaseF (b, x) (logbase b x) †
logbase1p1pF (b, x) (logbase1p1p b x) †

radF (x) (radians x) †
axis radF (x) (axis-rad x) †

sinF (x) (sin x) ?
cosF (x) (cos x) ?
tanF (x) (tan x) ?
cotF (x) (cot x) †
secF (x) (sec x) †
cscF (x) (csc x) †
cossinF (x) (cossin x) †

arcsinF (x) (asin x) ?
arccosF (x) (acos x) ?
arctanF (x) (atan x) ?
arccotF (x) (acot x) †
arccotcF (x) (acotc x) †
arcsecF (x) (asec x) †
arccscF (x) (acsc x) †
arcF (x, y) (atan2 y x) ?

cycleF (u, x) (cycle u x) †
axis cycleF (u, x) (axis-cycle u x) †

sinuF (u, x) (sinU u x) †
cosuF (u, x) (cosU u x) †

150 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

tanuF (u, x) (tanU u x) †
cotuF (u, x) (cotU u x) †
secuF (u, x) (secU u x) †
cscuF (u, x) (cscU u x) †
cossinuF (u, x) (cossinU u x) †

arcsinuF (u, x) (asinU u x) †
arccosuF (u, x) (acosU u x) †
arctanuF (u, x) (atanU u x) †
arccotuF (u, x) (acotU u x) †
arccotcuF (u, x) (acotcU u x) †
arcsecuF (u, x) (asecU u x) †
arccscuF (u, x) (acscU u x) †
arcuF (u, x, y) (atan2U u y x) †

rad to cycleF (x,w) (rad-to-cycle x w) †
cycle to radF (u, x) (cycle-to-rad u x) †
cycle to cycleF (u, x, w) (cycle-to-cycle u x w) †

sinhF (x) (sinh x) ?
coshF (x) (cosh x) ?
tanhF (x) (tanh x) ?
cothF (x) (coth x) †
sechF (x) (sech x) †
cschF (x) (csch x) †

arcsinhF (x) (asinh x) †
arccoshF (x) (acosh x) †
arctanhF (x) (atanh x) ?
arccothF (x) (acoth x) †
arcsechF (x) (asech x) †
arccschF (x) (acsch x) †

where b, x, y, u, and w are expressions of the ISLisp floating point type, and z is an expression of
the ISLisp unbounded integer type.

Arithmetic value conversions in ISLisp can be explicit or implicit. The rules for when implicit
conversions are done is implementation defined.

convertI→I′′(x) (format g "~B" x) ?(binary)
convertI→I′′(x) (format g "~O" x) ?(octal)
convertI→I′′(x) (format g "~D" x) ?(decimal)
convertI→I′′(x) (format g "~X" x) ?(hexadecimal)
convertI→I′′(x) (format g "~rR" x) ?(radix r)
convertI→I′′(x) (format-integer g x r) ?(radix r)

floorF→I(y) (floor y) ?
roundingF→I(y) (round y) ?
ceilingF→I(y) (ceiling y) ?

C.9 ISLisp 151

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

convertI→F (x) (float x kind) ?

convertF→F ′(y) (float y kind2) ?
convertF→F ′′(y) (format g "~G" y) ?
convertF→F ′′(y) (format-float g y) ?

where x is an expression of the integer type, y is an expression of the floating point type. Con-
version from string to numeric value is in ISLisp done via a general read procedure, which reads
ISLisp ‘S-expressions’.

ISLisp provides non-negative numerals for its integer and floating point datatypes in base 10.

ISLisp does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ infinity †
qNaN nan †
sNaN signan †

as well as string formats for reading and writing these values as character strings.

ISLisp has a notion of ‘error’ that implies a catchable, possibly returnable, change of control
flow. ISLisp uses its exception mechanism as its default means of notification. underflow does
not cause any notification in ISLisp, and the continuation value to the underflow is used directly,
since an ISLisp exception is inappropriate. ISLisp uses the error domain-error for invalid and
some infinitary notifications, the error arithmetic-error for overflow notifications, and the
error division-by-zero for other infinitary notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.10 Modula-2

The programming language Modula-2 is defined by ISO/IEC 10514-1:1996, Information technology
– Programming languages – Part 1: Modula-2, Base Language [25].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Modula-2 datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of Modula-2 has at least one integer datatype, and at least one floating
point datatype. The notations INT and FLT are used to stand for the names of one of these
datatypes (respectively) in what follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) imax(x, y) †
minI(x, y) imin(x, y) †
max seqI(xs) imaxArr(xs) †
min seqI(xs) iminArr(xs) †

dimI(x, y) idim(x, y) †

152 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

shift2I(x, y) shift2(x, y) †
shift10I(x, y) shift10(x, y) †
powerI(x, y) ipower(x, y) †
sqrtI(x) isqrt(x) †

dividesI(x, y) divides(x, y) †
evenI(x) not odd(x) ?
oddI(x) odd(x) ?

quotI(x, y) quot(x, y) †
modI(x, y) x mod y ?
ratioI(x, y) ratio(x, y) †
residueI(x, y) residue(x, y) †
groupI(x, y) group(x, y) †
padI(x, y) pad(x, y) †

gcdI(x, y) gcd(x, y) †
lcmI(x, y) lcm(x, y) †
gcd seqI(xs) gcdArr(xs) †
lcm seqI(xs) lcmArr(xs) †

add wrapI(x, y) addwrap(x, y) †
add ovI(x, y) addover(x, y) †
sub wrapI(x, y) subwrap(x, y) †
sub ovI(x, y) subover(x, y) †
mul wrapI(x, y) mulwrap(x, y) †
mul ovI(x, y) mulover(x, y) †

where x and y are expressions of type INT and where xs is an expression of type array [] of
INT.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) max(x, y) †
minF (x, y) min(x, y) †
mmaxF (x, y) mmax(x, y) †
mminF (x, y) mmin(x, y) †
max seqF (xs) maxarr(xs) †
min seqF (xs) minarr(xs) †
mmax seqF (xs) mmaxarr(xs) †
mmin seqF (xs) mminarr(xs) †

dimF (x, y) dim(x, y) †
floorF (x) floor(x) †
floor restF (x) x - floor(x) †
roundingF (x) rounding(x) †
rounding restF (x) x - rounding(x) †
ceilingF (x) ceiling(x) †
ceiling restF (x) x - ceiling(x) †

C.10 Modula-2 153

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

residueF (x, y) residue(x, y) †
sqrtF (x) sqrt(x) ?
rec sqrtF (x) rec sqrt(x) †

mulF→F ′(x, y) prod(x, y) †
add loF (x, y) addlow(x, y) †
sub loF (x, y) sublow(x, y) †
mul loF (x, y) mullow(x, y) †
div restF (x, y) divrest(x, y) †
sqrt restF (x) sqrtrest(x) †

where x and y are expressions of type FLT, and where xs is an expression of type array [] of
FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF err hypotenuse(x) †

max error expF err exp(x) †
max error powerF err power(x) †

big angle rF big radian angle(x) †
max error radF err rad(x) †
max error sinF err sin(x) †
max error tanF err tan(x) †

min angular unitF min angle unit(x) †
big angle uF big angle(x) †
max error sinuF (u) err sin cycle(u) †
max error tanuF (u) err tan cycle(u) †

max error sinhF err sinh(x) †
max error tanhF err tanh(x) †

max error convertF err convert(x) †
max error convertF ′ err convert to string †
max error convertD′ err convert to string †

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) hypotenuse(x, y) †

powerF,I(b, z) powerI(b, z) †
expF (x) exp(x) ?
expm1F (x) expm1(x) †
exp2F (x) exp2(x) †

154 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

exp10F (x) exp10(x) †
powerF (b, y) power(b, y) ?
power1pm1F (b, y) power1PM1(b, y) †

lnF (x) ln(x) ?
ln1pF (x) ln1P(x) †
log2F (x) log2(x) †
log10F (x) log10(x) †
logbaseF (b, x) log(x, b) †
logbase1p1pF (b, x) log1P1P(x, b) †

radF (x) radian(x) †
axis radF (x) axis rad(x) †

sinF (x) sin(x) ?
cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) †
secF (x) sec(x) †
cscF (x) csc(x) †

arcsinF (x) arcsin(x) ?
arccosF (x) arccos(x) ?
arctanF (x) arctan(x) ?
arccotF (x) arccot(x) †
arccotcF (x) arccotc(x) †
arcsecF (x) arcsec(x) †
arccscF (x) arccsc(x) †
arcF (x, y) angle(x, y) †

cycleF (u, x) cycle(u, x) †
axis cycleF (u, x) axis cycle(u, x) †

sinuF (u, x) sinu(u, x) †
cosuF (u, x) cosu(u, x) †
tanuF (u, x) tanu(u, x) †
cotuF (u, x) cotu(u, x) †
secuF (u, x) secu(u, x) †
cscuF (u, x) cscu(u, x) †

arcsinuF (u, x) arcsinu(u, x) †
arccosuF (u, x) arccosu(u, x) †
arctanuF (u, x) arctanu(u, x) †
arccotuF (u, x) arccotu(u, x) †
arccotcuF (u, x) arccotcu(u, x) †
arcsecuF (u, x) arcsecu(u, x) †
arccscuF (u, x) arccscu(u, x) †
arcuF (u, x, y) angleu(u, x, y) †

C.10 Modula-2 155

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

rad to cycleF (x,w) Radian to cycle(x, w) †
cycle to radF (u, x) Cycle to radian(u, x) †
cycle to cycleF (u, x, w) Cycle to cycle(u, x, w) †

sinhF (x) sinh(x) †
coshF (x) cosh(x) †
tanhF (x) tanh(x) †
cothF (x) coth(x) †
sechF (x) sech(x) †
cschF (x) csch(x) †

arcsinhF (x) arcsinh(x) †
arccoshF (x) arccosh(x) †
arctanhF (x) arctanh(x) †
arccothF (x) arccoth(x) †
arcsechF (x) arcsech(x) †
arccschF (x) arccsch(x) †

where b, x, y, u, and w are expressions of type FLT, and z is an expression of type INT.

Arithmetic value conversions in Modula-2 can be explicit or implicit. The rules for when
implicit conversions are applied is not repeated here. The explicit arithmetic value conversions
are usually expressed as ‘casts’, except when converting to/from string formats.

convertI→I′(x) INT2(x) ?
convertI′′→I′(f) ReadCard(f, r) ?
convertI′′→I(f) ReadInt(f, r) ?
convertI′→I′′(x) WriteCard(h, x) ?
convertI→I′′(x) WriteInt(h, x) ?

floorF→I(y) floor(y) ?
roundingF→I(y) round(y) ?
ceilingF→I(y) ceiling(y) ?

convertI→F (x) FLT(x) ?

convertF→F ′(y) FLT2(y) ?
convertF ′′→F (f) ReadReal(f, z) ?
convertF→F ′′(y) WriteFloat(f, y, a, w) ?
convertF→F ′′(y) WriteEng(h, y, a, w) ?
convertF→F ′′(y) WriteReal(h, y, a, w) ?

convertD′→F (f) ReadReal(f, z) ?

convertF→D′(y) WriteFixed(h, y, a, w) ?

where x is an expression of type INT, y is an expression of type FLT, f is an input file, h is an
output file, and a and w are integer expressions. r is an INT variable, and z is an FLT variable.
INT2 is the integer datatype that corresponds to I ′. FLT2 is the floating point datatype that
corresponds to F ′.

156 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Modula-2 provides base 8, 10, and 16 non-negative numerals for all its integer types, and base
10 non-negative numerals for all its floating point types. Numerals for floating point types must
have a ‘.’ in them. The details are not repeated in this example binding, see ISO/IEC 10514-1,
clause 6.8.7.1 Whole Number Literals, and clause 6.8.7.2 Real Literals.

Modula-2 does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ INFINITY †
qNaN NAN †
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

Modula-2 has a notion of ‘exception’ that implies a non-returnable, but catchable, change
of control flow. Modula-2 uses its exception mechanism as its default means of notification.
underflow does not cause any notification in Modula-2, and the continuation value to the
underflow is used directly, since a Modula-2 exception is inappropriate for an underflow noti-
fication. Modula-2 uses the exceptions

a) REAL-ZERO-DIVISION,

b) WHOLE-ZERO-DIVISION,

c) WHOLE-ZERO-REMAINDER,

d) NEGATIVE-SQRT-ARG,

e) NONPOSITIVE-LN-ARG,

f) NONPOSITIVE-POWER-ARG,

g) ARCSIN-ARG-MAGNITUDE, and

h) ARCCOS-ARG-MAGNITUDE

for infinitary and invalid notifications. The exceptions WHOLE-OVERFLOW, REAL-OVERFLOW, and
TAN-OVERFLOW are used for overflow notifications. Since Modula-2 exceptions are non-returnable
changes of control flow, no continuation value is provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.11 Pascal and Extended Pascal

The programming language Pascal is defined by ISO/IEC 7185:1990, Information technology -
Programming languages – Pascal [27]. The programming language Extended Pascal is defined by
ISO/IEC 10206:1991 Information technology – Programming languages – Extended Pascal [28].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The Pascal datatype Boolean corresponds to the LIA datatype Boolean.

C.11 Pascal and Extended Pascal 157

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

Every implementation of Pascal has one integer datatype, and one floating point datatype. The
notations INT and FLT are used to stand for the names of one of these datatypes (respectively)
in what follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) Imax(x, y) †
minI(x, y) Imin(x, y) †
max seqI(xs) ImaxArr(xs) †
min seqI(xs) IminArr(xs) †

dimI(x, y) Idim(x, y) †
powerI(x, y) x pow y ?(Extended Pascal)
shift2I(x, y) shift2(x, y) †
shift10I(x, y) shift10(x, y) †
sqrtI(x) Isqrt(x) †

dividesI(x, y) Divides(x, y) †
evenI(x) (not Odd(x)) ?
oddI(x) Odd(x) ?

quotI(x, y) Quotient(x, y) †
modI(x, y) Modulo(x, y) †
ratioI(x, y) Ratio(x, y) †
residueI(x, y) Residuei(x, y) †
groupI(x, y) Group(x, y) †
padI(x, y) Pad(x, y) †

gcdI(x, y) Gcd(x, y) †
lcmI(x, y) Lcm(x, y) †
gcd seqI(xs) GcdArr(xs) †
lcm seqI(xs) LcmArr(xs) †

add wrapI(x, y) AddWrap(x, y) †
add ovI(x, y) AddOver(x, y) †
sub wrapI(x, y) SubWrap(x, y) †
sub ovI(x, y) SubOver(x, y) †
mul wrapI(x, y) MulWrap(x, y) †
mul ovI(x, y) MulOver(x, y) †

where x and y are expressions of type INT and where xs is an expression of type array [] of
INT.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) Max(x, y) †
minF (x, y) Min(x, y) †
mmaxF (x, y) MMax(x, y) †
mminF (x, y) MMin(x, y) †
max seqF (xs) MaxArr(xs) †

158 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

min seqF (xs) MinArr(xs) †
mmax seqF (xs) MMaxarr(xs) †
mmin seqF (xs) MMinarr(xs) †

dimF (x, y) Dim(x, y) †
floorF (x) Floor(x) †
floor restF (x) x - Floor(x) †
roundingF (x) Rounding(x) †
rounding restF (x) x - Rounding(x) †
ceilingF (x) Ceiling(x) †
ceiling restF (x) x - Ceiling(x) †
residueF (x, y) Residue(x, y) †
sqrtF (x) Sqrt(x) ?
rec sqrtF (x) Rec sqrt(x) †

mulF→F ′(x, y) Prod(x, y) †
add loF (x, y) AddLow(x, y) †
sub loF (x, y) SubLow(x, y) †
mul loF (x, y) MulLow(x, y) †
div restF (x, y) DivRest(x, y) †
sqrt restF (x) SqrtRest(x) †

where x and y are expressions of type FLT, and where xs is an expression of type array [] of
FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max error hypotF Err hypotenuse(x) †

max error expF Err exp(x) †
max error powerF Err power(x) †

big angle rF Big radian angle(x) †
max error radF Err rad(x) †
max error sinF Err sin(x) †
max error tanF Err tan(x) †

min angular unitF Min angle unit(x) †
big angle uF Big angle(x) †
max error sinuF (u) Err sin cycle(u) †
max error tanuF (u) Err tan cycle(u) †

max error sinhF Err sinh(x) †
max error tanhF Err tanh(x) †

max error convertF Err convert(x) †
max error convertF ′ Err convert to string †
max error convertD′ Err convert to string †

where x and u are expressions of type FLT. Several of the parameter functions are constant for

C.11 Pascal and Extended Pascal 159

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) Hypotenuse(x, y) †

powerF,I(b, z) b pow z ?(Extended Pascal)
expF (x) Exp(x) ?
expm1F (x) ExpM1(x) †
exp2F (x) Exp2(x) †
exp10F (x) Exp10(x) †
powerF (b, y) b ** y ?(Extended Pascal)
power1pm1F (b, y) Power1PM1(b, y) †

lnF (x) Ln(x) ?
ln1pF (x) Ln1P(x) †
log2F (x) Log2(x) †
log10F (x) Log10(x) †
logbaseF (b, x) Log(x, b) †
logbase1p1pF (b, x) Log1P1P(x, b) †

radF (x) Radian(x) †
axis radF (x) Axis Radian(x, h, v) †

sinF (x) Sin(x) ?
cosF (x) Cos(x) ?
tanF (x) Tan(x) †
cotF (x) Cot(x) †
secF (x) Sec(x) †
cscF (x) Csc(x) †

arcsinF (x) Arcsin(x) †
arccosF (x) Arccos(x) †
arctanF (x) Arctan(x) ?
arccotF (x) Arccot(x) †
arccotcF (x) Arccotc(x) †
arcsecF (x) Arcsec(x) †
arccscF (x) Arccsc(x) †
arcF (x, y) Angle(x, y) †

cycleF (u, x) Cycle(u, x) †
axis cycleF (u, x) Axis Cycle(u, x, h, v) †

sinuF (u, x) SinU(u, x) †
cosuF (u, x) CosU(u, x) †
tanuF (u, x) TanU(u, x) †
cotuF (u, x) CotU(u, x) †

160 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

secuF (u, x) SecU(u, x) †
cscuF (u, x) CscU(u, x) †

arcsinuF (u, x) ArcsinU(u, x) †
arccosuF (u, x) ArccosU(u, x) †
arctanuF (u, x) ArctanU(u, x) †
arccotuF (u, x) ArccotU(u, x) †
arccotcuF (u, x) ArccotcU(u, x) †
arcsecuF (u, x) ArcsecU(u, x) †
arccscuF (u, x) ArccscU(u, x) †
arcuF (u, x, y) AngleU(u, x, y) †

rad to cycleF (x,w) RadianToCycle(x, w) †
cycle to radF (u, x) CycleToRadian(u, x) †
cycle to cycleF (u, x, w) CycleToCycle(u, x, w) †

sinhF (x) Sinh(x) †
coshF (x) Cosh(x) †
tanhF (x) Tanh(x) †
cothF (x) Coth(x) †
sechF (x) Sech(x) †
cschF (x) Csch(x) †

arcsinhF (x) Arcsinh(x) †
arccoshF (x) Arccosh(x) †
arctanhF (x) Arctanh(x) †
arccothF (x) Arccoth(x) †
arcsechF (x) Arcsech(x) †
arccschF (x) Arccsch(x) †

where b, x, y, u, and w are expressions of type FLT, h and v are variables of type FLT, and z is
an expression of type INT.

Arithmetic value conversions in Pascal can be explicit or implicit. The rules for when implicit
conversions are applied are not repeated here.

convertI′′→I(f) read(f?, r) ?
convertI→I′′(x) write(h?, x:n?) ?

floorF→I(y) floor(y) †
roundingF→I(y) round(y) ?
ceilingF→I(y) ceiling(y) †

convertF ′′→F (f) read(f?, m) ?
convertF→F ′′(y) write(h?, y:i) ?

convertD′→F (f) read(f?, m) ?

convertF→D′(y) write(h?, y:i:a) ?

where x is an expression of type INT, y is an expression of type FLT, f is an input file, h is an

C.11 Pascal and Extended Pascal 161

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

output file, r is an integer variable, m is a floating point variable, n, i and a are integer literals.
A ? above indicates that the parameter is optional.

Pascal provides base 10 non-negative numerals for its only integer type and only floating point
type. Numerals for floating point types must have a ‘.’ in them. The details are not repeated in
this example binding, see ISO/IEC 7185:1990 and ISO/IEC 10206:1991.

Pascal does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ INFINITY †
qNaN NAN †
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

Pascal has a notion of ‘error’, which results in a change of ‘control flow’, which cannot be
returned from, nor caught. An ‘error’ results in the termination of the program. infinitary for
integer types and invalid (in general) are considered to be ‘errors’. No notification results for
underflow, and the continuation value (specified by LIA-2) is used directly, since recording of
indicators is not available and ‘error’ is inappropriate for underflow. The handling of integer
overflow is implementation dependent. The handling of floating point overflow and infinitary
should be to return a suitable infinity (specified by LIA-2), if possible, without any notification,
since recording of indicators is not available.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.12 PL/I

The programming language PL/I is defined by ANSI X3.53-1976 (R1998), Programming languages
– PL/I [43], and endorsed by ISO 6160:1979, Programming languages – PL/I [29]. The program-
ming language General Purpose PL/I is defined by ISO/IEC 6522:1992, Information technology –
Programming languages – PL/I general-purpose subset [30], also: ANSI X3.74-1987 (R1998).

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The LIA datatype Boolean is implemented in the PL/I datatype BIT(1) (1 = true and 0 =
false).

An implementation of PL/I provides at least one integer datatype, and at least one floating
point datatype. The attribute FIXED(n,0) selects a signed integer datatype with at least n
(decimal or binary) digits of storage. The attribute FLOAT(k) selects a floating point datatype
with at least n (decimal or binary) digits of precision. The notation INT is used to stand for the
name of one of the integer datatypes, and FLT is used to stand for the name of one of the floating
point datatypes in what follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

162 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

maxI(x, y) max(x, y) ?
minI(x, y) min(x, y) ?
max seqI(xs) max(x1, x2, ..., xn) ?
min seqI(xs) min(x1, x2, ..., xn) ?

dimI(x, y) dim(x, y) †
powerI(x, y) x ** y ?
shift2I(x, y) shift2(x, y) †
shift10I(x, y) shift10(x, y) †
sqrtI(x) sqrt(x) †

dividesI(x, y) divides(x, y) †
evenI(x) mod(x, 2) = 0 ?
oddI(x) mod(x, 2) ¬= 0 ?

quotI(x, y) quotient(x, y) †
modI(x, y) mod(x, y) ?
ratioI(x, y) ratio(x, y) †
residueI(x, y) residue(x, y) †
groupI(x, y) group(x, y) †
padI(x, y) pad(x, y) †

gcdI(x, y) gcd(x, y) †
lcmI(x, y) lcm(x, y) †
gcd seqI(xs) gcd(x1, x2, ..., xn) †
lcm seqI(xs) lcm(x1, x2, ..., xn) †

add wrapI(x, y) add wrap(x, y) †
add ovI(x, y) add over(x, y) †
sub wrapI(x, y) sub wrap(x, y) †
sub ovI(x, y) sub over(x, y) †
mul wrapI(x, y) mul wrap(x, y) †
mul ovI(x, y) mul over(x, y) †

where x and y are expressions of type INT, and where are x1, x2, ..., xn expressions of type array
of INT.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) max(x, y) ?
minF (x, y) min(x, y) ?
mmaxF (x, y) mmax(x, y) †
mminF (x, y) mmin(x, y) †
max seqF (xs) max(x1, x2, ..., xn) ?
min seqF (xs) min(x1, x2, ..., xn) ?
mmax seqF (xs) mmax(x1, x2, ..., xn) †
mmin seqF (xs) mmin(x1, x2, ..., xn) †

dimF (x, y) dim(x, y) †

C.12 PL/I 163

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

floorF (x) floor(x) ?
floor restF (x) x - floor(x) ?
roundingF (x) round(x) †
rounding restF (x) x - round(x) †
ceilingF (x) ceil(x) ?
ceiling restF (x) x - ceil(x) ?
residueF (x, y) residue(x, y) †
sqrtF (x) sqrt(x) ?
rec sqrtF (x) rec sqrt(x) †

mulF→F ′(x, y) prod(x, y) †
add loF (x, y) add low(x, y) †
sub loF (x, y) sub low(x, y) †
mul loF (x, y) mul low(x, y) †
div restF (x, y) div rest(x, y) †
sqrt restF (x) sqrt rest(x) †

where x and y are expressions of type FLT, and where xs is an expression of type array of FLT.

The parameters for operations approximating real valued transcendental functions can be ac-
cessed by the following syntax:

max error hypotF err hypotenuse(x) †

max error expF err exp(x) †
max error powerF err power(x) †

big angle rF big radian angle(x) †
max error radF err rad(x) †
max error sinF err sin(x) †
max error tanF err tan(x) †

min angular unitF min angle unit(x) †
big angle uF big angle(x) †
max error sinuF (u) err sin cycle(u) †
max error tanuF (u) err tan cycle(u) †

max error sinhF err sinh(x) †
max error tanhF err tanh(x) †

max error convertF err convert(x) †
max error convertF ′ err convert to string †
max error convertD′ err convert to string †

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to differentiate among the floating point
types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) hypotenuse(x, y) †

164 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

powerF,I(b, z) poweri(b, z) †
expF (x) exp(x) ?
expm1F (x) expm1(x) †
exp2F (x) exp2(x) †
exp10F (x) exp10(x) †
powerF (b, y) power(b, y) †
power1pm1F (b, y) power1pm1(b, y) †

lnF (x) log(x) ?
ln1pF (x) log1p(x) †
log2F (x) log2(x) ?
log10F (x) log10(x) ?
logbaseF (b, x) log(b, x) †
logbase1p1pF (b, x) log1p1p(b, x) †

radF (x) rad(x) †
axis radF (x) axis rad(x) †

sinF (x) sin(x) ?
cosF (x) cos(x) ?
tanF (x) tan(x) ?
cotF (x) cot(x) ?
secF (x) sec(x) †
cscF (x) csc(x) †

arcsinF (x) arcsin(x) ?
arccosF (x) arccos(x) ?
arctanF (x) arctan(x) ?
arccotF (x) arccot(x) †
arccotcF (x) arccotc(x) †
arcsecF (x) arcsec(x) †
arccscF (x) arccsc(x) †
arcF (x, y) arc(x, y) †

cycleF (u, x) cycle(u, x) †
axis cycleF (u, x) axis cycle(u, x) †

sinuF (u, x) sin(u, x) †
cosuF (u, x) cos(u, x) †
tanuF (u, x) tan(u, x) †
cotuF (u, x) cot(u, x) †
secuF (u, x) sec(u, x) †
cscuF (u, x) csc(u, x) †

arcsinuF (u, x) arcsin(u, x) †
arccosuF (u, x) arccos(u, x) †
arctanuF (u, x) arctan(u, x) †

C.12 PL/I 165

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

arccotuF (u, x) arccot(u, x) †
arccotcuF (u, x) arccotc(u, x) †
arcsecuF (u, x) arcsec(u, x) †
arccscuF (u, x) arccsc(u, x) †
arcuF (u, x, y) arc(u, x, y) †

sinuF (360, x) sind(x) ?
cosuF (360, x) cosd(x) ?
tanuF (360, x) tand(x) ?
cotuF (360, x) cotd(x) ?
secuF (360, x) secd(x) †
cscuF (360, x) cscd(x) †

arcsinuF (360, x) arcsind(x) ?
arccosuF (360, x) arccosd(x) ?
arctanuF (360, x) arctand(x) ?
arccotuF (360, x) arccotd(x) †
arccotcuF (360, x) arccotcd(x) †
arcsecuF (360, x) arcsecd(x) †
arccscuF (360, x) arccscd(x) †
arcuF (360, x, y) arcd(x, y) †

rad to cycleF (x,w) rad to cycle(x, w) †
cycle to radF (u, x) cycle to rad(u, x) †
cycle to cycleF (u, x, w) cycle to cycle(u, x, w) †

sinhF (x) sinh(x) ?
coshF (x) cosh(x) ?
tanhF (x) tanh(x) ?
cothF (x) coth(x) †
sechF (x) sech(x) †
cschF (x) csch(x) †

arcsinhF (x) arcsinh(x) ?
arccoshF (x) arccosh(x) ?
arctanhF (x) arctanh(x) ?
arccothF (x) arccoth(x) †
arcsechF (x) arcsech(x) †
arccschF (x) arccsch(x) †

where b, x, y, u, and w are expressions of type FLT, and z is an expression of type INT.

Arithmetic value conversions in PL/I can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here.

convertI→I′(x) FIXED(x, p) ?
convertI′′→I(f) GET FILE (f)? EDIT (r) (F(w)); ?
convertI→I′′(x) PUT FILE (h)? EDIT (x) (F(w)); ?

floorF→I(y) FIXED(floor(y), p) ?

166 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

roundingF→I(y) FIXED(round(y),p) †
ceilingF→I(y) FIXED(ceil(y), p) ?

convertI→F (x) FLOAT(x, p) ?
convertI→F (x) DECIMAL(x, p) ?
convertI→F (x) BINARY(x, p) ?

convertF→F ′(y) FLOAT(y, p) ?
convertF→F ′(y) DECIMAL(y, p) ?
convertF→F ′(y) BINARY(y, p) ?
convertF ′′→F (f) GET FILE (f)? EDIT (t) (E(w,a)); ?
convertF→F ′′(y) PUT FILE (h)? EDIT (y) (E(w,a)); ?

convertD′→F (f) GET FILE (f)? EDIT (t) (F(w,a)); ?

convertF→D′(y) FIXED(y, p, a) ?
convertF→D′(y) PUT FILE (h)? EDIT (y) (F(w,a)); ?

where x is an expression of type INT, y is an expression of type FLT, f is an input file, h is an
output file, r is an integer variable, t is a floating point variable, p, w, and a are positive integer
values. A ? above indicates that the parameter is optional.

PL/I provides base 10 non-negative numerals for all its integer and floating point types.

PL/I does not specify numerals for infinities and NaNs. Suggestion:

+∞+∞+∞ INFINITY †
qNaN NAN †
sNaN NANSIGNALLING †

as well as string formats for reading and writing these values as character strings.

PL/I has a notion of ‘condition’ that implies a non-returnable, but catchable (in an ON-unit),
change of control flow. PL/I uses its condition mechanism as its default means of notification. PL/I
uses the condition UNDERFLOW for underflow notifications. PL/I uses the condition ZERODIVIDE
for infinitary notifications, and the conditions FIXEDOVERFLOW, SIZE, and OVERFLOW for overflow
notifications, and the exception UNDEFINED (†) for invalid notifications. Since PL/I exceptions are
non-returnable changes of control flow, no continuation value is provided for these notifications.
This is inappropriate, especially for underflow, so UNDERFLOW notifications are ignored if there is
no ON-unit for UNDERFLOW in the program.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.13 SML

The programming language SML is defined by The Definition of Standard ML (Revised) [67].

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

C.13 SML 167

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

The operations or parameters marked “†” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

The SML datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of SML has at least one integer datatype, int, and at least one floating
point datatype, real. The notation INT is used to stand for the name of one of the integer
datatypes, and FLT is used to stand for the name of one of the floating point datatypes in what
follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

maxI(x, y) x max y or op max (x, y) ?
minI(x, y) x min y or op min (x, y) ?
max seqI(xs) maximum xs †
min seqI(xs) minimum xs †

dimI(x, y) x dim y or op dim (x, y) †
powerI(x, y) x pow y or op pow (x, y) †
shift2I(x, y) shift2(x, y) †
shift10I(x, y) shift10(x, y) †
sqrtI(x) isqrt x †

dividesI(x, y) divides (x, y) †
evenI(x) even x †
oddI(x) odd x †

quotI(x, y) x div y or op div (x, y) ?
modI(x, y) x mod y or op mod (x, y) ?
ratioI(x, y) ratio (x, y) †
residueI(x, y) residue (x, y) †
groupI(x, y) group (x, y) †
padI(x, y) pad (x, y) †

gcdI(x, y) gcd (x, y) ?
lcmI(x, y) lcm (x, y) ?
gcd seqI(xs) gcd seq xs †
lcm seqI(xs) lcm seq xs †

add wrapI(x, y) x +: y †
add ovI(x, y) x +:+ y †
sub wrapI(x, y) x -: y †
sub ovI(x, y) x -:+ y †
mul wrapI(x, y) x *: y †
mul ovI(x, y) x *:+ y †

where x and y are expressions of type INT and where xs is an expression of type INT list.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxF (x, y) x max y or op max (x, y) ?

168 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

minF (x, y) x min y or op min (x, y) ?
mmaxF (x, y) x mmax y or op mmax (x, y) †
mminF (x, y) x mmin y or op mmin (x, y) †
max seqF (xs) maximum xs †
min seqF (xs) minimum xs †
mmax seqF (xs) mmaximum xs †
mmin seqF (xs) mminimum xs †

dimF (x, y) dim (x, y) †
floorF (x) realFloor x ?
floor restF (x) x - realFloor x ?
roundingF (x) realRound x †
rounding restF (x) x - realRound x †
ceilingF (x) realCeil x ?
ceiling restF (x) x - realCeil x ?
residueF (x, y) residue (x, y) †
sqrtF (x) sqrt x ?
rec sqrtF (x) rec sqrt x †

mulF→F ′(x, y) prod (x, y) †
add loF (x, y) x +:- y †
sub loF (x, y) x -:- y †
mul loF (x, y) x *:- y †
div restF (x, y) x /:* y †
sqrt restF (x) sqrt rest x †

where x and y are expressions of type FLT, and where xs is an expression of type FLT list.

The parameters for operations approximating real valued transcendental functions can be ac-
cessed by the following syntax:

max error hypotF err hypotenuse x †

max error expF err exp x †
max error powerF err power x †

big angle rF big radian angle x †
max error radnF err rad x †
max error sinF err sin x †
max error tanF err tan x †

min angular unitF min angular unit x †
big angle uF big angle x †
max error sinuF (u) err sin cycle u †
max error tanuF (u) err tan cycle u †

max error sinhF err sinh x †
max error tanhF err tanh x †

max error convertF err convert x †

C.13 SML 169

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

max error convertF ′ err convert to string †
max error convertD′ err convert to string †

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type, the argument is then used only to differentiate among the floating point types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x, y) hypotenuse (x,y) †

powerF,I(b, z) b ^^ z or op ^^ (b,z) †
expF (x) exp x ?
expm1F (x) expM1 x †
exp2F (x) exp2 x †
exp10F (x) exp10 x †
powerF (b, y) b ** y or op ** (b, y) †
powF (b, y) b pow y or op pow (b, y) ? Not LIA-2! (See C.)
power1pm1F (b, y) power1PM1 (b, y) †

lnF (x) ln x ?
ln1pF (x) ln1P x †
log2F (x) log2 x †
log10F (x) log10 x ?
logbaseF (b, x) log base (b, x) †
logbase1p1pF (b, x) log base1P1P (b,x) †

radF (x) radians x †
axis radF (x) axis radians x †

sinF (x) sin x ?
cosF (x) cos x ?
tanF (x) tan x ?
cotF (x) cot x †
secF (x) sec x †
cscF (x) csc x †

arcsinF (x) arcsin x ?
arccosF (x) arccos x ?
arctanF (x) arctan x ?
arccotF (x) arccot x †
arccotcF (x) arccotc x †
arcsecF (x) arcsec x †
arccscF (x) arccsc x †
arcF (x, y) arctan2 (y, x) ?

cycleF (u, x) cycle u x †
axis cycleF (u, x) axis cycle u x †

sinuF (u, x) sinU u x †

170 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

cosuF (u, x) cosU u x †
tanuF (u, x) tanU u x †
cotuF (u, x) cotU u x †
secuF (u, x) secU u x †
cscuF (u, x) cscU u x †

arcsinuF (u, x) arcsinU u x †
arccosuF (u, x) arccosU u x †
arctanuF (u, x) arctanU u x †
arccotuF (u, x) arccotU u x †
arccotcuF (u, x) arccotcU u x †
arcsecuF (u, x) arcsecU u x †
arccscuF (u, x) arccscU u x †
arcuF (u, x, y) arctan2U u (y, x) †

rad to cycleF (x,w) rad to cycle w x †
cycle to radF (u, x) cycle to rad u x †
cycle to cycleF (u, x, w) cycle to cycle u w x †

sinhF (x) sinh x ?
coshF (x) cosh x ?
tanhF (x) tanh x ?
cothF (x) coth x †
sechF (x) sech x †
cschF (x) csch x †

arcsinhF (x) arcsinh x †
arccoshF (x) arccosh x †
arctanhF (x) arctanh x †
arccothF (x) arccoth x †
arcsechF (x) arcsech x †
arccschF (x) arccsch x †

where b, x, y, u, and w are expressions of type FLT, and z is an expression of type INT.

Type conversions in SML are always explicit.

convertI→I′(x) fromLarge x or toLarge x ?
convertI′′→I(s) fromString s ?
convertI′′→I(s) scan radix getc s ?
convertI→I′′(x) toString x ?

floorF→I(y) floor y ?
floorF→I(y) toInt IEEEReal.TO NEGINF y ?
floorF→I(y) toLargeInt IEEEReal.TO NEGINF y ?
roundingF→I(y) round y ?
roundingF→I(y) toInt IEEEReal.TO NEAREST y ?
roundingF→I(y) toLargeInt IEEEReal.TO NEAREST y ?
ceilingF→I(y) ceiling y ?
ceilingF→I(y) toInt IEEEReal.TO POSINF y ?

C.13 SML 171

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

ceilingF→I(y) toLargeInt IEEEReal.TO POSINF y ?

convertI→F (x) fromInt x ?
convertI→F (x) fromLargeInt x ?

convertF→F ′(y) toLarge y ?
convertF→F ′(y) fromLarge IEEEReal.TO NEAREST y ?
convertF ′′→F (s) fromString s ?
convertF ′′→F (s) fromDecimal s ?
convertF ′′→F (s) scan getc s ?
convertF→F ′′(y) fmt (SCI a) y ?
convertF→F ′′(y) toDecimal y ?

convertD′→F (s) fromString s ?
convertD′→F (s) scan getc s ?

convertF→D′(y) fmt (FIX a) y ?

where x is an expression of type INT, y is an expression of type FLT, s is a string, radix is an
integer (> 2), getc is a character reading method, and a is an integer.

SML provides non-negative base 10 numerals for all its integer and floating point types. There is
no differentiation between the numerals for different floating point types, nor between numerals for
different integer types, but integer numerals cannot be used for floating point values. The details
are not repeated in this example binding, see The Definition of Standard ML (Revised) [67].

SML specifies numerals for infinities, but not NaNs:

+∞+∞+∞ posInf ?
−∞−∞−∞ negInf ?
qNaN NaN †
sNaN sigNaN †

An implementation wishing to conform to LIA-2 should also provide string formats for reading
and writing these values as character strings.

SML has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
flow. SML uses its exception mechanism as its default means of notification. underflow does not
cause any notification in SML, and the continuation value to the underflow is used directly, since
an SML exception is inappropriate for an underflow notification. SML uses the exception Div
for infinitary notifications, the exception Overflow for overflow notifications, and the exception
Domain for invalid notifications (except for sin, cos, or tan given an infinitary argument, where
the invalid notification is ignored). Since SML exceptions are non-returnable changes of control
flow, no continuation value is provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

172 Example bindings for specific languages

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Annex D
(informative)

Bibliography

This annex gives references to publications relevant to LIA-2.

International standards documents

[1] ISO/IEC Directives, Part 3: Rules for the structure and drafting of International Standards,
1997.

[2] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems. (Also:
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.)

[3] ISO/IEC 10967-3, Information technology – Language independent arithmetic – Part 3: Com-
plex integer and floating point arithmetic and complex elementary numerical functions, (LIA-
3). (To be published.)

[4] ISO 6093:1985, Information processing – Representation of numerical values in character
strings for information interchange.

[5] ISO/IEC 10646-1:2000, Information technology – Universal multi-octet character set (UCS)
– Part 1: Architecture and Basic Multilingual plane, second edition.

[6] ISO/IEC 10646-2:2001, Information technology – Universal multi-octet character set (UCS)
– Part 2: Supplementary planes.

[7] ISO/IEC TR 10176:1998, Information technology – Guidelines for the preparation of pro-
gramming language standards.

[8] ISO/IEC TR 10182:1993, Information technology – Programming languages, their environ-
ments and system software interfaces – Guidelines for language bindings.

[9] ISO/IEC 13886:1996, Information technology – Language-Independent Procedure Calling,
(LIPC).

[10] ISO/IEC 11404:1996, Information technology – Programming languages, their environments
and system software interfaces – Language-independent datatypes, (LID).

[11] ISO/IEC 8652:1995, Information technology – Programming languages – Ada.

[12] ISO/IEC 13813:1998, Information technology – Programming languages – Generic packages
of real and complex type declarations and basic operations for Ada (including vector and
matrix types).

[13] ISO/IEC 13814:1998, Information technology – Programming languages – Generic package
of complex elementary functions for Ada.

[14] ISO 8485:1989, Programming languages – APL.

[15] ISO/IEC 13751:2001, Information technology – Programming languages, their environments
and system software interfaces – Programming language extended APL.

D. Bibliography 173

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

[16] ISO/IEC 10279:1991, Information technology – Programming languages – Full BASIC. (Es-
sentially an endorsement of ANSI X3.113-1987 (R1998) [40].)

[17] ISO/IEC 9899:1999, Programming languages – C.

[18] ISO/IEC 14882:1998, Programming languages – C++.

[19] ISO 1989:1985, Programming languages – COBOL. (Endorsement of ANSI X3.23-1985
(R1991) [41].) Currently (2001) under revision.

[20] ISO/IEC 16262:1998, Information technology - ECMAScript language specification.

[21] ISO/IEC 15145:1997, Information technology – Programming languages – FORTH. (Also:
ANSI X3.215-1994.)

[22] ISO/IEC 1539-1:1997, Information technology – Programming languages – Fortran - Part 1:
Base language.

[23] ISO/IEC TR 15580:1998, Information technology – Programming languages – Fortran –
Floating-point exception handling.

[24] ISO/IEC 13816:1997, Information technology – Programming languages, their environments
and system software interfaces – Programming language ISLISP.

[25] ISO/IEC 10514-1:1996, Information technology – Programming languages – Part 1: Modula-
2, Base Language.

[26] ISO/IEC 10514-2:1998, Information technology – Programming languages – Part 2: Generics
Modula-2.

[27] ISO 7185:1990, Information technology – Programming languages – Pascal.

[28] ISO/IEC 10206:1991, Information technology – Programming languages – Extended Pascal.

[29] ISO 6160:1979, Programming languages – PL/I. (Endorsement of ANSI X3.53-1976 (R1998)
[43].)

[30] ISO/IEC 6522:1992, Information technology – Programming languages – PL/I general-
purpose subset. (Also: ANSI X3.74-1987 (R1998).)

[31] ISO/IEC 13211-1:1995, Information technology – Programming languages – Prolog – Part 1:
General core.

[32] ISO/IEC 8824-1:1998, Information technology – Abstract Syntax Notation One (ASN.1) –
Part 1: Specification of basic notation.

[33] ISO 9001:1994, Quality systems – Model for quality assurance in design, development, pro-
duction, installation and servicing.

[34] ISO/IEC 9126:1991, Information technology – Software product evaluation – Quality charac-
teristics and guidelines for their use.

[35] ISO/IEC 12119:1994, Information technology – Software packages – Quality requirements and
testing.

[36] ISO/IEC 14598-1:1999, Information technology – Software product evaluation – Part 1: Gen-
eral overview.

174 Bibliography

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

National and other standards documents

[37] ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

[38] ANSI/IEEE Standard 854-1987, IEEE Standard for Radix-Independent Floating-Point Arith-
metic.

[39] The Unicode Standard, version 3.0, 2000. Note that version 3.0 the encoded character reper-
toire is exactly the same as for ISO/IEC 10646-1:2000.

[40] ANSI X3.113-1987 (R1998), Information technology – Programming languages – Full BASIC.

[41] ANSI X3.23-1985 (R1991), Programming languages – COBOL.

[42] ANSI X3.226-1994, Information Technology – Programming Language – Common Lisp.

[43] ANSI X3.53-1976 (R1998), Programming languages – PL/I.

[44] ANSI/IEEE 1178-1990, IEEE Standard for the Scheme Programming Language.

[45] ANSI/NCITS 319-1998, Information Technology – Programming Languages – Smalltalk.

Books, articles, and other documents

[46] J. S. Squire (ed), Ada Letters, vol. XI, No. 7, ACM Press (1991).

[47] M. Abramowitz and I. Stegun (eds), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Tenth Printing, 1972, Superintendent of Documents, U.S.
Government Printing Office, Washington, D.C. 20402.

[48] J. Du Croz and M. Pont, The Development of a Floating-Point Validation Package, NAG
Newsletter, No. 3, 1984.

[49] J. W. Demmel and X. Li, Faster Numerical Algorithms via Exception Handling, 11th Inter-
national Symposium on Computer Arithmetic, Winsor, Ontario, June 29 - July 2, 1993.

[50] D. Goldberg, What Every Computer Scientist Should Know about Floating-Point Arithmetic.
ACM Computing Surveys, Vol. 23, No. 1, March 1991.

[51] J. R. Hauser, Handling Floating-Point Exceptions in Numeric Programs. ACM Transactions
on Programming Languages and Systems, Vol. 18, No. 2, March 1986, Pages 139-174.

[52] W. Kahan, Branch Cuts for Complex Elementary Functions, or Much Ado about Nothing’s
Sign Bit, Chapter 7 in The State of the Art in Numerical Analysis ed. by M. Powell and A.
Iserles (1987) Oxford.

[53] W. Kahan, Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point
Arithmetic, Panel Discussion of Floating-Point Past, Present and Future, May 23, 1995, in
a series of San Francisco Bay Area Computer Historical Perspectives, sponsored by SUN
Microsystems Inc.

[54] U. Kulisch and W. L. Miranker, Computer Arithmetic in Theory and Practice, Academic
Press, 1981.

[55] U. Kulisch and W. L. Miranker (eds), A New Approach to Scientific Computation, Academic
Press, 1983.

D. Bibliography 175

ISO/IEC 10967-2:2001(E) c© ISO/IEC 2001 – All rights reserved

[56] D. C. Sorenson and P. T. P. Tang, On the Orthogonality of Eigenvectors Computed by Divide-
and-Conquer Techniques, SIAM Journal of Numerical Analysis, Vol. 28, No. 6, p. 1760,
algorithm 5.3.

[57] Floating-Point C Extensions in Technical Report Numerical C Extensions Committee X3J11,
April 1995, SC22/WG14 N403, X3J11/95-004.

[58] D. M. Gay, Correctly Rounded Binary-Decimal and Decimal-Binary Conversions, AT&T Bell
Laboratories, Numerical Analysis Manuscript 90-10, November 1990.

[59] M. Payne and R. Hanek, Radian Reduction for Trigonometric Functions, SIGNUM Newslet-
ter, Vol. 18, January 1983.

[60] M. Payne and R. Hanek, Degree Reduction for Trigonometric Functions, SIGNUM Newslet-
ter, Vol. 18, April 1983.

[61] N. L. Schryer, A Test of a Computer’s Floating-Point Unit, Computer Science Technical
Report No. 89, AT&T Bell Laboratories, Murray Hill, NJ, 1981.

[62] G. Bohlender, W. Walter, P Kornerup, D. W. Matula, Semantics for Exact Floating Point
Operations, IEEE Arithmetic 10, 1992.

[63] W. Walter et al., Proposal for Accurate Floating-Point Vector Arithmetic, Mathematics and
Computers in Simulation, vol. 35, no. 4, pp. 375-382, IMACS, 1993.

[64] J. Gosling, B. Joy, G. Steele, The Java Language Specification.

[65] S. Peyton Jones et al., Report on the programming language Haskell 98, February 1999.

[66] S. Peyton Jones et al., Standard libraries for the Haskell 98 programming language, February
1999.

[67] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of Standard ML (Revised),
The MIT Press, 1997, ISBN: 0-262-63181-4.

176 Bibliography

c© ISO/IEC 2001 – All rights reserved ISO/IEC 10967-2:2001(E)

Annex E
(informative)

Possible changes to part 1

This annex indicates possible changes to ISO/IEC 10967-1:1994 to bring it more in line with
the exceptional values, terminology, etc. used in this part. A revision of part 1 is not limited to
the items listed below, nor guaranteed to be done as described below.

a) Use of infinitary and invalid instead of undefined.

b) Use of overflow instead of integer overflow and floating overflow.

c) Use of resultI (from LIA-2).

d) Use of resultF from LIA-2, which implies a minor correction, plus that overflow and
underflow continuation values are explicitly specified.

e) Slightly stricter parameter constraints for floating point parameters (from LIA-2).

f) Update of the rnd errorF definition, possibly together with removal of the rnd styleF pa-
rameter.

g) Removal of the moduloI integer parameter (replaced by new operations in part 2).

h) Removal of the divfI /divtI and remf
I /remt

I/mod
a
I/mod

p
I operations, since quotI/ratioI/groupI

andmodI/residueI/padI are now specified in part 2 as replacements. Note that quotI = divfI
and modI = modaI = remf

I .

i) Specify the LIA-1 operations also for IEC 60559 special values as arguments, like in LIA-2,
including using the no resultF and no result2F helper functions.

j) Change “data type” to “datatype”.

k) Change “denormal” to “subnormal” for consistency with IEEE 854 and C99.

E. Possible changes to part 1 177

ISO/IEC 10967-2:2001(E)

ICS 35.060
Price based on 174 pages

© ISO/IEC 2001 – All rights reserved

